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Abstract: It is proved that for every positive B there exist real numbers 0 = ap < a1 < ... <
ay =1 and maxlSjSN(aj_l/aj) < 6 < 1 such that

llﬁs;p \/_ Z Z u(n) > B

=1 9(1]1<n<a T

and

liminf —= Z > wn)<-B,

j 1 Oaja:<n<ajz

where p(n) denotes the Mdbius function.
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1. Introduction and statement of the Theorem

Let p(n) denote the Mobius function, and let us write

n<x

1
m*—hmmf— M(z) and m" =limsup —M(z).

T—00 \/_ T—00 X

The most important unproved conjecture concerning these quantities predicts that
m~ =-oc0 and m'=o0. (1.1)

In particular it is expected that
timsup —— [ M () (12)
imsup — z)| = co. .
X T
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The best result in this direction is due to Odlyzko and te Riele [5] who showed
that
m~ < —=1.009 and mT >1.06

disproving in this way the famous Mertens conjecture
IM(z)] <z for x>1

(see also [6]). Another type of approximation to the above conjectures was dis-
cussed in [3]. It was proved there that for every real a # 0 we have as ¢ — oo

Z w(n) Z wu(n) cos ( ) =0 (x1/2 log log log x) , (1.3)

n<lx n<z

so that at least one of the sums on the left is very large infinitely often. Observe
that if we could pass to the limit as a — 0, then (1.3) would imply

M (z) = Q(z'/? logloglog ),

a result much stronger than (1.2).
In this paper we prove the following result.

Theorem 1.1. For every positive B there exist real numbers
O=qgy<a1<...<an=1 (1.4)

and a real number 0 satisfying

< .
1<mﬂXN(aj 1/a;) <6<1 (1.5)
such that
limsup — Z Z w(n) > B
T—=ee j 10ajz<n<ajx
and

hznilol.}f — Z Z u(n) < —B.
] 10ajz<n<ajx
It is an interesting problem to estimate IV in terms of B. Our method of proof
gives N < B?(log B)® for certain positive C. Sufficiently sharp estimates of this
type would have important consequences. For instance N = o(B) easily implies
(1.2). Indeed, suppose in contrary, that M (z) < /z. Then

1 N
f Z > un) = 7 ;(M(ajx) — M(fajz)) < N.

j=10ajz<n<a;x

Passing to the limit as © — oo over a suitably chosen values of x, and applying
Theorem 1.1 we obtain B < N. If N = o(B) this leads to contradiction, and
hence (1.2) holds.

Acknowledgement. The author thanks Alberto Perelli who read the first version
of this paper and made a number of valuable remarks.
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2. Lemmas

Lemma 2.1. Suppose the Riemann Hypothesis is true. Then for almost all y €
[z,22], x > 2, there is a prime p € [y,y + f(y)log?y], where f(y) is any positive
function tending to infinity when y — oo.

This is a classical result proved by Selberg [7]. Let us remark that ‘almost all’
in the formulation of the lemma means that the Lebesgue measure of exceptions
is o(z) as x — 0.

Following [2] let us denote by 2 the set of all functions defined on the upper
half-plane H = {z € C : Im(z) > 0} by the formula

oo
F(z) = ane™, (2.1)
n=1

and satisfying the following conditions:

1. 0 <w; <wsg < ... are real numbers;
2.a,€C,n=1,2,3,...;
3. There exists a non-negative integer D such that

o0
Z lan|w, P < 00
n=2

4. There exists Lo = Lo(F) > 0 such that the limit

P(z) = lim RF(z +1iy)

y—0+

exists for every real x > Lo and represents a locally bounded function of
S [LQ7 OO)
5. For every bounded interval I C (Lg,00) we have

RF(x+1y) <1 1

for x € I and y > 0.
Note that in [2] condition 5 was erroneously omitted. With this notation we
have the following result, which is the basis for the proof of Theorem 1.1.
Lemma 2.2. (See [2], Corollary 2.) Let F' € 2. Then

liminf P(x) = inf ,exgRF(z)
and
limsup P(z) = sup RF(z).

r—00 z€H
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In order to construct an F(z) suitable for our purposes, we consider subsidiary
functions m(z) and M(z) defined as follows. Let ((s) = ((o + it) denote as usual
the Riemann zeta function. The function m(z) is defined for z from the upper half
plane by the following formula

m(z) = L/ Lesz ds. (2.2)
2mi Jp C(8)

The path of integration consists of the half-line s = —1/2 4 it, oo > ¢t > 0, the
line segment [—1/2,3/2], and the half-line s = 3/2 4 it, 0 < ¢ < co. Since 1/{(s)
is bounded on C, the integral converges absolutely and uniformly for z € H, and
hence represents a holomorphic function on this half-plane. Moreover, for z € H
we put

z

M(z) = / m(w) dw,

z+1i00
where the integration is taken along the vertical half-line w = z +it, co > ¢t >
Im(z).

In the case when all non-trivial zeros are simple and |¢/(p)| > ¢! for every

positive ¢, we have for z € H

pz

m(z) = Z

¥>0

L e
' (p)
and

1 oz
M(z) = Z me .

>0

Basic analytic properties of m(z) were established in [1] and [3]. In particular,
it was proved that m(z) admits meromorphic continuation to the whole complex
plane with simple poles at logarithms of positive squarefree integers and corre-
sponding residues

win
Res;=logn = _—2(7ri) (n>1). (2.3)
Moreover, m(z) satisfies the following functional equation

m(z) + m(z) = A(2), (2.4)

where A(z) is an entire function defined as follows

A(z) = —22 ) o <2%e) . (2.5)

n

For real x, we write

Mgp(z) = lim RM(z + iy).

y—0+
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The limit exists for all x, and we have
1
Mgp(z) = 5(M§R(x —0) + Mx(z +0)). (2.6)

Discontinuities occur only at = log n, where p(n) # 0. We have also the following
result, which is implicitly contained in [1]. However, for the sake of completeness,
we shall give a detailed proof.

Lemma 2.3. For real x we have
1
Mgp(z) = §M0(e“’) + 1+ H(x), (2.7)

where
Mo(w) = (M(z —0) + M(z +0)),

and H is an entire function which for z € C is defined as follows

_ — (_1)n —z\2n
?) = nz::l nEnCEn T e )T

In particular for x > 0 we have
1
Mgp(z) = §M0(e“’) +1+0(e™2). (2.8)

Let us remark that in this paper we do not need as precise formulae as provided
by Lemma 2.3. We formulate them in the full generality for the sake of a possible
future references.

Proof of Lemma 2.3. Because of (2.6) we can assume without the loss of gen-
erality that « # logn, u(n) # 0. Let a < min(0, z), and let us denote by i(a,x)
a smooth curve 7 : [0,1] — C such that 7(0) = a, 7(1) = z, and Im(7(¢)) > 0 for
0 <t < 1. Then using (2.3) and (2.4) we obtain

= M(a) + M(e”) +/( )m(z) dz

= M(a) + M(e” z)dz — At
() + M(&*) — /(W) | a
= —M(z) + M(e") + 2Mp(a) + 2H (z) — 2H(a).

Hence
2Mup(z) = M(€®) + ¢co + 2H(2),

where

¢q = 2Mwp(a) — 2H (a),
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and all what remains to be proved is that ¢, = 2. To this end let us consider the

integral
1 e®?

Ia:: = d )
27 Je sC(s) y
where C = C(0,0) denotes the circle with center 0 and radius 6 > 0. Obviously,

1
Ia7w7—2.

On the other hand we have
1 e(a—%in)s 1 e(a——in)s
I, =1 — ——d — ——ds,
ng(r)l+ {27”' /c, s¢(s) st 2mi /C+ s¢(s) iy

C_={0e?:0<p<m} and C,={0e%:—1<p<0}

where

Let k be a real number greater than 1, and let £x be the contour consisting of the
vertical half-line [—k+ioo, —k+1], the polygon line with vertices —k+4, —1+1i, —1,
—0, the half-circle —C, the line segment [4, k] and the vertical half-line [k, k+io0].
For n > 0 and sufficiently small positive § we have

1 e(a+in)s
2mi £, $C(s)

It is easy to show that the integrals along vertical half-lines tend to 0 as k — oo.

Therefore
(a+m)g
N (R
27TZ £+ C+

where £ the the infinite polygon line with vertices —oco + ¢, —1+1¢, —1 and —6.
In the similar way, but working on the lower half-plane we obtain

M) - 27”(/ -/ /)‘f(‘”" s

where £_ = £_. Adding the above two formulae and passing to the limit as  — 0
and then counting residues, we obtain

=3 (L L)

—Qna

_2+22n§’ (—2n)
=2+ 2H(a).

ds = M(a + in).

Consequently ¢, = 2, and the result follows. |
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Lemma 2.4. Suppose m~ > —oo or mT < oco. Then the Riemann Hypothesis is

true, all non-trivial zeros of the Riemann zeta function are simple, and moreover
1

¢'(p)

This is well known and classical (see for instance [4], Section 15.1).

< |yl (2.9)

Lemma 2.5. Suppose m™ > —oo or m* < co. Then the function

F(z) = e *2 M(z)

belongs to the class A. More generally, for arbitrary real numbers by, ..., bg,c1,. ..,
¢ the function
k
G(z) = beF(z+cx)
n=1

belongs to .

Proof. Using Lemma 2.4 we can assume Riemann Hypothesis and simplicity of
zeros. For z € C we have

1 Yz
F(z) = ZPC'—(P)e )

>0

and hence it is of the form (2.1). Other conditions in the definition of 2 easily
follow from described earlier properties of M(z). According to (2.9), condition 3
is satisfied with D = 3. Finally, G € 2 since 2 is a real vector space which is
invariant under the shifts of arguments by real numbers. |

3. Proof of the Theorem

We can assume m~ > —oo or mT < oo since otherwise Theorem 1.1 follows with
N =1 and § = 0. Consequently, using Lemma 2.4, we can assume Riemann
Hypothesis and simplicity of zeros.

Let X be sufficiently large and write L = [log X]. By Lemma 2.1 almost all
intervals [z,7 + L?], where X < x < 2X, contain primes. Applying the same
lemma for X/2 in place of X we see that also almost all of them contain even P,
almost primes, i.e. numbers of the form 2p, where p is a prime, X/2 <p < X. It
follows also that almost all intervals [z, x+ L?], where X < z < 2X, contain both a
prime and an even almost prime. Applying the pigeon hole principle we infer that
there exists a subinterval I C [X,2X] of length X L~* containing at least %X L7
disjoint subintervals of the form [z, z + L3] containing both a prime and an even
almost prime. Applying the pigeon hole principle once more we infer that there are
> X L~1Y disjoint subintervals [x,z + L3] C I containing a prime p and an even
almost prime 2q, with a fixed absolute value of the difference |[p—2¢| = h for certain
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h < L3. Consequently, it is easy to see that there exists X <Y < 2X — XL*
and a sequence of integers

Y<ni<na<..<ny<Y+XL*
satisfying the following properties:
nj —nj_1 > L? forevery j=1,...,N;
N> XL,
u(ng) = plny) for 1< 5,7 <N
w(nj)pn; —h)=-1 for j=1,...,N,

where h is fixed and < L3, and we put ng = 0.
Let w = 1/(2Y) and define F(2) for z from the upper half-plane by the following
formula

N
F(z)=e?/? (./\/lz—i—lo el —M(z+1o ﬂ—w).
(2) ; (2 +log 1 2) = M(z +log - — )
According to Lemma 2.5, F'(z) belongs to the class 2(. We put

.

(j=0,...,N) and f=e"

a; =
I N

(recall that ng = 0). These numbers obviously satisfy (1.4), and for sufficiently
large X we have using (3.1)

. . T3
a1 nj_1 n; — L

a; nj n;
3
<1—L—<e‘1/(2y):6<1
2Y ’

and consequently (1.5) holds as well. By (2.8), for real x — oo, we have

N

IRF (z) = e /2 Z (Mo(e”%) — Mo(e’c—“:—;) + 0(6_2”))

(3.5)

N
— /2 Z Z u(n) +o(1).

j=10aje*<n<aj;e®

Hence, using Lemma 2.2, we see that the assertion of Theorem 1.1 will follow if
we find two real numbers x; and x5 both being regular points of F(z) such that
R(F(z;))| > B/2, j = 1,2, and R(F(z1))R(F(22)) < 0.

Let us put x; =logny + w/2. Then for every j =1,2,..., N we have

1 1 ; 1
oo ==y (143540 (2) ) =+ 3 40l
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and similarly

x —w 4 1
fa;e™ =nje 12 = "y O(})
Since for large X
n 1
0<-L+0(=)<1
<mro(g)<n
we have
n; —1 < fa;e™ <n; <aje”™ <n;+ 1. (3.6)

Moreover, let us put 2 = x; — h/Y. Then

1 1 h LS
_ —h/Y _
ajc" = aje”e " —"j(hrEJrO(ﬁ)) (1‘?“)(@))
e — by 1
=n; h+4Y+O<L>,
and similarly

- n; 1
fa e :nj—h—ﬁ—l—O(E).

Consequently, for large X we have
n;—h—1<0aje™ <n; —h <aje™ <n; —h+1. (3.7)

Applying (3.5), (3.6), (3.3) and (3.2) we obtain

N

p(n)RF(21) = p(na)e™™ /2> " p(ng) + o(1)
j=1
= e 2N 4 o(1) > X210,
Similarly, but using (3.7) in place of (3.6) we prove
p(ny — R)RF(z2) > XYV2L710,

Hence
|RE(z;)| > B/2

for j = 1,2 if X is large enough. Moreover, because of (3.4), we have
RE(x1)RF(2z2) <0,

and Theorem 1.1 follows.
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