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Abstract: We survey properties of the Ankeny-Onishi sieve function and establish inequalities
for jix(x) and for 1 — j.(u) for u — oco.
Keywords: sieves, recurrence, adjoint function.

1. Introduction

The function o (u) was first introduced by Ankeny and Onishi in their pioneering
extension [1] of the Selberg sieve method, albeit in a different notational guise. It
is given by

onl) = juluf2), K1, (L1)
where
. . 0, u <0,
](U) - ]N(U) - {e—'ynun/r(’%_F 1)’ 0<uc< 1’ (1.2)
and j is continued forward as the continuous solution of
uj'(u) = Kkj(u) — kjlu—1) = /*6/ j'(tydt, w>1, (1.3)
u—1
by means of the restatement
(w ™ j(u)) = —ku " tj(u—1), wu>1, (1.3")

of (1.3); in fact (1.3) holds for all uw > 0. It is a differential delay equation of a
kind common in the study of sieves.

In this note we review basic information about j/o and develop several
interesting properties of these functions. In particular, we present simpler proofs
that (i) j.(k) > 1/2 for all k > 1, and that (ii) for each fixed ¢ > 1, ji(ck) tends
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to 1 from below as £ — oo (both these results were first proved by Grupp and
Richert in [2]); also, we show in explicit fashion that j.(u) — 1 and j/.(u) — 0 as
u — 00, each at a rate that is faster than exponential.

We begin studying j with some observations about the continuity of its
derivatives. If u > 0 and % > 1, then j'(u) is continuous for v > 0 by (1.3) and
the continuity of j; more generally, by differentiating (1.3) we see that j,gn)(u) is
continuous for u > 0 for all positive integers n < k. If K is a positive integer, then
j,gfi)(u) has a jump discontinuity at v = 0, and j,g”+") (u) has jump discontinuities
at w = 1,...,n. If K > 1 is not an integer, then j{**")(4) has infinite jump
discontinuities from the right at « =0,1,...,n —1 for each positive integer n. In
each of the preceding cases, the function is continuous at all other values of u > 0.

We show next for each k > 1 that j.(u) is a positive, strictly increasing
function of u > 0. By (1.2), j'(u) > 0 when 0 < w < 1, and by (1.3) it remains
positive for some distance to the right side of 1. Suppose there were a point ug > 1
with j'(ug) = 0. By the continuity of j, we may assume that ug is the first such
point, i.e. that j'(up) = 0 and j'(t) > 0 for 0 < ¢ < wug. Upon evaluating the
integral form of (1.3) at u = ug we obtain a contradiction, since the left side is 0
and the right side is s times the integral of a positive function. Hence

J'(u) >0, u>0; (1.4)
and we deduce immediately that
jw) >0, u>0. (1.5)

The higher derivatives of j(u) also satisfy differential delay equations. Upon
differentiating (1.3), and then once again, we obtain

uj”(u) = (k= 1)5"(u) — Kj'(u—1) (1.6)
and
uj” (u) = (k —2)5"(u) — k5" (u —1). (1.7)
In (1.3) itself, if we integrate by parts on the right (which is valid, since j’ is
absolutely continuous), we obtain

u

uj'(u) = "t — K+ 1)5(t)

— m/ (t—r—+1)5"(t)dt
-1 u—1

u

or
u

(u—m«n—uﬂw—«fw—n}zn/ (t— ki + 1) (t)dt:

u—1
hence by (1.6) (for all x > 1 and u > 0),

u

w(u — )" (u) = / (t— 5+ 1) (1)t (1.8)
u—1
We use the last equation to show that j, has a unique inflection point wu
(for k > 1) and that it lies in the interval (k — 1, k]. A finer analysis (see [2])
would show that k — 1/2 < u, < k for all kK > 1.
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Lemma 1. Suppose k > 1. There exists a unique number, call it u,, between
k —1 and k, such that j”(u) >0 for 0 < u < u,, and j"(u) < 0 for all u > u.
For k =1, we have j”(u) =0 forall u < uy =k =1 and j”(u) <0 for all u> 1.

Proof. For k = 1, we have by (1.6) that uj”(u) = —j’(u—1), an expression that
is 0 for w < 1 and is negative for v > 1 by (1.5).
Now suppose k > 1. On taking v = k in (1.8) we find that

/K (t—r+1)5"(t)dt = 0.

Since t —k+1 >0 on (k—1, k) it follows that j”(t) changes sign in this interval.
By (1.2) j”(u) > 0 on (0, 1] and it follows from (1.7) and the continuity of j’ that

4" is continuous on [0, c0). Thus there exists some number u, , the smallest value

of u>1 at which j”(u) = 0. By (1.7) at u = u,
e (ug) = —5" (ue — 1) <0

since j”(u) > 0 for 0 < u < u,, whence u, is a simple zero of j”.
Suppose if possible that j” has other zero beyond u, , and let v be the least
of these. We claim that

v < U+ 1;

for if, on the contrary, v > u,+1 then j”(v) =0 and j”(u) < 0 when u, < u < wv.
But then, by (1.6) at u=wv,

0= vj"(v) = (5 — 1)j'(4) — k' (v —1),
so that

0<j'(v) =r{j'(v) = j'(v = D} = rj"(w)

for some w strictly between v — 1 (> u,) and v, a contradiction.
Next suppose that u, < v < u, + 1. We know that j”(u) is non-decreasing
at u=wv, so that j”(v) > 0; yet by (1.7)

vi" (v) = —kj"(v—1) <0

since v — 1 < u,, also an impossibility.
Hence v does not exist, and j” has just the one zero wu, , which is simple
and lies in (k — 1,kK). [ |

The most rapid rate of increase of j occurs at u,, . How fast is the function
rising here? It was shown by Wheeler ([3], [4]) that j.(us) ~ 1/\/7Kk as kK — 0.
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2. The adjoint function

We introduce next the so-called “adjoint” of j, a function r(u) = r,(u) defined
for k > 0 by

(ur(w)) = kr(u+1) — kr(u), u>0, (2.1)
and normalized so that
lim wr(u) =1. (2.2)
U— 00

A normalized solution of (2.1) is provided by

re(u) = / exp(—ut + x Eint)dt, (2.3)
0
where
Eint := /t(l—e—S)dS —i(—l)”—li teC (2.4)
o s — nln’ ’ '

an entire function. With logt¢ denoting the principal value of logt,

—S8

< ds, |argt|<m. (2.5)
s

Eint:logt—l—v-&-/
t

To see that the integral (2.3) satisfies (2.1), first integrate it by parts, next multiply
by u, and then differentiate with respect to u.
The behavior of r(u) as u — oo is no harder to derive: by (2.4) we have

0< Eint<t, t>0,
whence

/ exp(—ut)dt < r(u) < / exp(—ut + xt)dt,
0 0

and it follows at once that
ut<re(u) (u>0) and re(u) < (u—r)"" (u> k).

Together, the last two inequalities imply that the normalization (2.2) holds.

The integral representation (2.3) of 7(u) shows that (—1)"r®)(u) > 0 for
v =0,1,2,..., and in particular, that '(u) < 0 and r"”(u) > 0 for all u > 0;
also, that (ur(u))’ <0 by (2.1) and ((v — &)r(u))’ > 0. The last inequality holds
since

(w—r)r(u)) =r{r(u+1)—r(u) —r'(uv)} =rkr'"(u+6)/2 >0
for some @ in (0,1), by Taylor’s expansion. It follows that

u+1 r(u) u—rk+1
< <
u r(u+1) u—K

)

the latter for u > k.
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The Iwaniec “inner product”

u

Gyry(u) :=uj(u)r(u) — /-@/ Jj)rt+1)dt, wu>0,

u—1

is constant, as one can verify by differentiating and using the defining equations
of r and j. To evaluate this constant let u — 0+; by (2.3) and (2.5)

r(u) = / exp{—ut + klogt + vk + o(1) }dt
0 (o)
~ e””/ exp(—ut)t™dt, u— 0+,
0
=" T'(k 4 1)u "1,

Hence, by (1.2), uj(u)r(u) — 1 as u — 0+ and so

u

uj(u)r(u) — /@/ jrit+dt=1, u>0. (2.6)

u—1

In the same vein

ur(u) — /@/ul r(t+ 1)dt

is constant by (2.1), and since ur(u) — 1 as u — 0o, we see that

u
ur(u) — Ii/ r(t+1)dt = 1. (2.7)
u—1
Lemma 2. Suppose k > 1 and u > k. Then each of the functions
((u) =3 @)r(t+1), A —j@)rt+1)

is convex in t on the interval u —1 <t < u.

Proof. The argument is the same for each function, so focus on the first and call
it J(t). Then, by (2.3),

J(t) = —r(t+1)5"(#) +2(=5' ()"t + 1) + (i (u) — j@®)r" (¢t + 1)
/ { = 37(0) 4+ 203" (1) () + () — (1))}
x exp(—(t+ 1)u + £ Einu) du.
By (1.6) the expression within the curly brackets is equal to
= (= 1) = (= 1)+ 205 (0) + () — (1)

= (20 = 52)7 0+ 5 - 1) + () — ),
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The second and third terms here are positive, and the coefficient of j'(t) is at least

K —

1
2u — 122u—1>0

w—
since u > k. Hence, J" > 0. [ |

We next consider the limiting behavior of j(u) as u — oco. When we multiply
(2.7) by j(u) and subtract it from (2.6) we obtain

1= = [ (i - j0)re+ e (2.)

if we simply subtract (2.6) from (2.7) this time we find

u

{1 g ur(w) = [

u—

{1 =4}t + 1)dt. (2.9)

There is much to be learned from these two relations. First, the integral on the
right of (2.8) is positive and therefore

jlu) <1, u>0,

as we reported earlier. Next, by (2.9), since r(-) is positive and decreasing and
j(-) > 0, we obtain at once

u

{1 —j(w)}ur(u) < m/ r(t+ 1)dt < kr(u),
u—1
so that
0<1—j(u)<k/u
and therefore
lim j,(u) = 1. (2.10)

U— 00

We apply Lemma 2 to the right side of (2.9) and obtain
. R . .
{1 =jlur(u) < 3 (rlu+ D =@} +r@{l —jl=-1)}), w=zr (2.11)
this inequality can be rewritten in two ways, which lead to different lines of deve-

lopment, one an iteration and the other a differential inequality.
First, we have

L= < 2ur(u)m(:r)(u + 1){1 —Jju—1}
= - (1—j(u—1))

2u — kr(u+1)/r(u)
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and since r(u+1)/r(u) < u/(u+ 1) from above, we derive the recurrence

u+1 K/2
u u+1l-k/2

1—j(u) < {1-ju-1)}, u>=s. (2.12)

This inequality plainly lends itself to iteration and leads, for any v > k — 1 and
positive integer n, to

1—ju(v+n) (2.13)
v+1—k/2 v4+n+1 (/{/2)”F(v+1—ﬁ/2)(17,(v))
v+1 wv+n+1—-k/2 T(v+n+1—k/2) Ir

<Tw+1-r/2) {F(v ¥ ElﬁfL /2) } 0= (o))

If w is a number near k + n for some positive integer n, then the factor in
curly brackets shows that j.(u) does indeed tend to 1 faster than exponentially
as u — 00. In the next section we shall show that 1 — j.(k) < 1/2, which in
combination with (2.13) yields a quite sharp inequality for 1 — j.(u).

To conclude this section, we return to (2.11) and deduce from it a differential
inequality. We begin by writing the relation in the form

{1 = j(wyur(u) < S{1 = j@)}r(u+1) +r(w) + 5 ({5 () = ju—1}r(w)

and, after applying (1.3) and a little rearrangement, this becomes

1= (0 < 50—t (M 1)+ S
< S0 (og ) + 57 )
or
(=g +{2= (5 +—=) }a - i) <o

in other words, for u > k,
{(1 — j(u) exp(2u — klogu(u + 1))} < 0.
Upon integrating, we find for u > k that
(1 —j(u))exp(2u — klogu(u+1)) < (1 — j(k))exp(2k — klog k(k + 1)).

Here then we have come to a curious pass: starting from (2.11) and adding
extra information — application of (1.3) — we have derived the inequality

u(u+1)

1= alw) < (0= 309 (G )

K
P ) exp(—2u + 2K), u =k, (2.14)
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which is perhaps more pleasing to the eye, and not without interest, but yields
only exponential decay of 1 — j.(u) towards 0 as u — oco! We cannot understand
why, apparently, the second approach is inferior to the first.
It should be said at this point that [1] derives a slightly weaker inequality
than (2.14) valid for u > k + 1. This is implicit in their formula (2.9) on p. 40.
In the next section we shall simplify (2.13) and (2.14) by determining a lower
bound for j, (k).

3. A lower bound for j.(k)

We learn from (1.2) that j;(1) = e~ = 0.56145... and from numerical computa-
tions that ji5(1.5) = 0.55179... and j2(2) = 0.54454 ... . In fact, it was proved
in [2] that for any constant ¢ > 0, j.(k + ¢) decreases in x > 1 and tends to 1/2
as k — 00; also that j.(c’k) — 1 as k — oo for any constant ¢/ > 1. Also, it was
shown by Wheeler ([3], [4]) that, for k > 1,

Je(k) = 1/2 4+ 1/(9v/7R) + O(k~%/3).
Here we show by a Laplace inversion method that

Proposition 1. For k > 1,
Jr(k) > 1/2.

Proof. Since 1 — j.(u) vanishes rapidly at infinity, it has a Laplace transform
whose integral converges for Res > 0. By a calculation analogous to that which
identified r(u) as a Laplace transform, we have
e 1
/ e (1 —ju(u))du = —=(1 —exp(—~ Eins)), Rs>0.
0 S

It follows by Fourier inversion (Laplace inversion on the imaginary axis) that, for
u >0,

1 /T d
1—je(u) = lim —/ " {1 — exp(—k Elnzy)}—y
-T Y
Since j is real valued, we have at v =k

= gat) =5 [ eu(1 — exp{—n Ein (i) 2L}

2mi J_ o

— l/oosin,ﬁy@_%{i/oo e*H(EiH(iy)*iy)@}.
T Jo Y 211, Y

— 00

The first expression on the right is well known to be equal to 1/2. In the second

expression,
Y1—cost Ysint —t
Ein(iy)—iy:/ ﬁdtﬂ'/ Smt dt
0 0

= C(y) +iS(y),
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say, where C(y) is an even function of y and S(y) an odd function. Hence

1 1

) =5 =% [ OO sin—ws () L

3.1
2 T Jo Y ( )

We complete the proof by showing that the integral on the right is positive.
Since

sin(=5() = (r ==Y ) " L cos(-nS(w)).

the integral equals, after integrating by parts,

1 { e—r"CW)

<1 d e*nC(y)>
k Ly —siny

_ E/o (1 fcos{/iS(y)})dfy(m dy

The integrated term vanishes at infinity since C(y) ~ logy as y — oo, and it
vanishes also at 0 since

(1 - cos{xS(y)}) }

0

2

1 K
1 —cos(kS(y)) ~ 5(/@5(1;))2 ~ o8 y* asy—0

whereas 1
Yy —siny ~ gy?’ as y — 0.

—rC(y)

As for the integral, we observe that each of e and (y —siny)~?! is positive

and decreasing as y increases, so that
d —rC(y)
BN
dy \y —siny
Since 1 — cos(kS(y)) > 0, this completes the proof that the integral on the right
side of (3.1) is positive. [ |

The estimate of the Proposition appears to be quite sharp: it is likely, on
the basis of the two asymptotic estimates of Wheeler that we have cited, that
Jr(k —1) < 1/2. However, we have not investigated this question.

The Proposition allows us to derive from (2.13) and (2.14)
Theorem 1. For u > k
) 1 7u(u+ 1)\~
. 2177(7) % — 2u), 2
) 2 1= 5 () ex(zn — 20) (32
and for any positive integer n,,

R K K K /2)n+1
Jrlntr) =1 %<1 - m)r(§)(1 * 2n+2+/@)r(7”f+/?)+ K/2)

_ D(s/2) (k/2)"*
2l(n+1+k/2)

>1

(3.3)
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Corollary 1. Let ¢ > 1 be a constant. Then j.(ck) — 1 from below as k — 0.

Proof. Let c=1+446, § > 0. By (3.2)

, 1 o IRV ET .
1>y,{(cm)>1—§(1+5) exp(—255)—1—§< ; ) -1

as K — 0. |

The theorem is most effective when w is large. As an illustration of its use,
we have 0,(3.5k) = j(1.75k) > 0.99995 for « > 25. In an earlier paper, we had
been able to show only that 0, (3.5x) > 0.99994 when x > 200.

The following examples illustrate the accuracy — and the limitations — of
formulas (3.2) and (3.3) for x and w of modest size. For £ =2 and v = 6 we have

1 — j2(6) < 0.00821 ... (using (3.2))
< 0.00324... (using (3.3) — first form)
= 0.000908.... (calculation)

We had remarked earlier that the differential inequality for j gave poorer
estimates than did the recurrence. We note in conclusion that estimates of j’(u)
as u — oo of the quality of (3.3) are easy to achieve. By (1.3)

uj'(u) = £(1 = j(u— 1)) = £(1 = j(u))
< k(1 —ju—-1)), u> 1.

In light of (2.12), little has been lost by omitting the term involving 1— j(u) when
u is large. Thus when n > 1, we have

Jen+1+k) < (1= ju(n+K)),

_r
n+1+k
and we may apply (3.3) to estimate the last factor.

Added in proof. At the end of Section 2, we observed that the asymptotic es-
timate (2.14) for 1 — j(u) produced by using the differential equation was worse
than that found by using the recursion (2.13). We have now obtained an estimate
for 1 — j(u) having the size predicted by the recursion. The method is based on
establishing a monotonicity of j”/j’. The details will be given in our forthcoming
monograph on sieves.
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