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Abstract: The present paper is devoted to the study of traces on fractals of weighted Besov
spaces Bs

pq(Rn, wΓκ) as well as weighted Triebel-Lizorkin spaces F s
pq(Rn, wΓκ) with wΓκ(x) =

dist(x, Γ)κ , where Γ is some d -set, 0 < d < n , κ > −(n− d) .
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0. Introduction

The main purpose of this work is to present a solution of the trace problem
for the weighted Besov spaces Bspq(Rn, wΓ

κ) and weighted Triebel-Lizorkin spa-
ces F spq(Rn, wΓ

κ) where the underlying weight wΓ
κ is a function that measures the

distance of a given point x ∈ Rn to a certain fractal set Γ, wΓ
κ(x) = dist(x,Γ)κ ,

x near Γ. The precise definition of the weight wΓ
κ will be stated in Section 1. The

approach taken in this work is to a large extent based on Triebel’s monograph [21,
Section 18]. Recall that the classical trace operator trRn−1 is a mapping given by

trRn−1 : f(x) −→ f(x′, 0) (0.1)

for x = (x′, xn) with x′ ∈ Rn−1 . In other words, trRn−1 restricts functions on Rn
to the hyperplane H = {x ∈ Rn : xn = 0} . Given a function space X ⊂ D′(Rn),
the trace problem consists in finding a space Y ⊂ S′(Rn−1) such that trRn−1 is
a bounded linear surjection from X to Y . There is quite an extensive literature
concerning trace problems for classical Besov and Triebel-Lizorkin spaces, begin-
ning with the work of H. Triebel [18] as well as of B. Jawerth [8]. The interested
reader is referred to [20, Chapter 4.4] for a new approach to this topic using ato-
mic decompositions and local means techniques. It is natural to try to replace the
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hyperplane H by appropriate fractal sets Γ. Possible candidates for fractal sets
to consider are d-sets. The problem of characterizing traces on fractals attrac-
ted great attention rather recently, and important progress had been made in [21,
Chapter 18]. The treatment of the fractal trace problem for weighted function spa-
ces has been inspired by the unweighted results due to H. Triebel [21, Chapter 18].
The corresponding trace operator trΓ shall map weighted function spaces of type
Bspq(Rn, wΓ

κ) and F spq(Rn, wΓ
κ) into suitable function spaces on Γ. For a deeper

discussion of analysis on fractals we refer the reader to the Section 2. It may be
worth reminding the reader that the weight function wΓ

κ belongs to the Mucken-
houpt class Ar if, and only if, −(n − d) < κ < (n − d)(r − 1). A more complete
theory may be obtained by considering trace problems for weighted function spa-
ces of Besov and Triebel-Lizorkin type with weights from Muckenhoupt class, but
we will not develop this point here. The basic idea is to investigate the interaction
between the structure of fractals and the smoothness of the underlying functions
by means of the corresponding weight function. The essential tool in proving our
results will be atomic decomposition of function spaces with Muckenhoupt weights,
which are proved in the greatest generality in the recent work [9].

The outline of this work is as follows. In the next section we introduce nota-
tion and certain preliminaries. Furthermore frequently used definitions and basic
results on Muckenhoupt class, weighted function spaces and its atomic decomposi-
tions are discussed. Sections 2-4 are devoted to the trace problem, beginning with
a heuristic approach. Our main result can be found in Section 3, Theorem 3.1.
Precisely, we prove first a weighted counterpart of some recent results on traces
parallel to the unweighted case in [21, Section 18] for B -case. Let 0 < d < n ,
κ > −(n− d), 0 < p <∞ , 0 < q 6 min(1, p) and let Γ be a d-set. Then we have

trΓB
κ
p +n−d

p
pq (Rn, wΓ

κ) = Lp(Γ), (0.2)

where trΓf ∈ Lp(Γ) for any f ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) and any fΓ ∈ Lp(Γ) is a trace

of a suitable g ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) on Γ. Furthermore

‖fΓ |Lp(Γ)‖ ∼ inf
∥∥∥∥g |B

κ
p +n−d

p
pq (Rn, wΓ

κ)
∥∥∥∥ ,

where the infimum is taken over all g ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) such that trΓg = fΓ .
Furthermore, for d-set Γ with 0 < d < n , 0 < p <∞ and 0 < q 6∞ we obtain

trΓB
s
pq(Rn, wΓ

κ) = Bσpq(Γ) with σ = s− n− d
p
− κ
p

where −(n − d) < κ < sp − (n − d) and Bσpq(Γ) is the trace space according to
the Definition 3.2.

Further consequences for F -spaces, are given in the last Section
(Theorem 4.4). Let Γ d-set with 0 < d < n , 0 < p < ∞ , 0 < q 6 ∞ , and
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−(n− d) < κ < sp− (n− d). Then we achieve that

trΓF
s
pq(Rn, wΓ

κ) = trΓB
s−κp
pp (Rn) = Bσpp(Γ) with σ = s− n− d

p
− κ
p

(0.3)

where Bσpp(Γ) is the trace space as above. Moreover for 0 < p 6 1 and 0 < q 6∞
we have

trΓF
κ
p +n−d

p
pq (Rn, wΓ

κ) = Lp(Γ). (0.4)

At the end of this paper we characterize traces on n− 1 dimensional hyperplanes
of Sobolev spaces with special case of the weight function wΓ

κ for d = n − 1,
wα(x) = |xn|α . Recall that wα belong to the Muckenhoupt class Ap if, and only
if, −1 < α < p− 1, (see [9]). Let 1 < p <∞ and −1 < α < p− 1. Then for any
k ∈ N

trRn−1W k
p (Rn, wα) = B

k−α+1
p

pp (Γ) = B
k−α+1

p
pp (Rn−1).

1. Weights and function spaces

This section collects basic notations and concepts. Let N be the collection of all
natural numbers. Furthermore, let N0 = N ∪ {0} stand for non-negative integers
. In the sequel let Nn0 denote the set of all multi-indices α = (α1, . . . , αn) with
αi ∈ N0 , |α| = α1 + . . .+ αn , and

Dα =
∂|α|

∂xα1
1 . . . ∂xαnn

, α ∈ Nn0 .

Let C stand for the complex numbers, and Zn denote the lattice of all points in
Rn . Let for m ∈ Zn and ν ∈ N0 , Qνm denote the n-dimensional cube with sides
parallel to the axes of coordinates, centered at 2−νm and with side length 2−ν .
We denote by D(Ω) the class of infinitely differentiable functions with compact
support in Ω. S(Rn) is the Schwartz class of all complex-valued, rapidly decreasing
C∞ -functions. The space of continuous linear functionals on D and S will be
denoted by D′ and S′ respectively. If ϕ ∈ S(Rn) then

Fϕ(ξ) := (2π)
−n
2

∫

Rn
e−ixξϕ(x) dx, ξ ∈ Rn, (1.1)

is the Fourier transform of ϕ where xξ denotes the scalar product in Rn . As
usual, F−1ϕ stands for the inverse Fourier transform, given by the right-hand side
of (1.1) with i in place of −i . Both F and F−1 are extended to S′ in standard
way. To obtain a smooth dyadic resolution of unity {ϕj}∞j=0 we choose a function
ϕ0 = ϕ ∈ S(Rn) such that

supp ϕ ⊂ {y ∈ Rn : |y| < 2} and ϕ(x) = 1 if |x| 6 1,

and for each j ∈ N , let ϕj be given by ϕj(x) = ϕ(2−jx)− ϕ(2−j+1x).
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For a real number t let [t] = max{a ∈ Z : a 6 t} , i.e. the greatest integer
less than or equal to t . The positive part of a real function f is given by f+(x) =
max(f(x), 0). In the sequel let both dx and | · | stand for the Lebesgue measure.

A positive function w ∈ Lloc
1 (Rn) belongs to the Muckenhoupt class Ap ,

1 < p <∞ if there exists a constant 0 < A <∞ such that for all balls B holds

(
1
|B|

∫

B

w(x)dx
)1/p

·
(

1
|B|

∫

B

w(x)−p
′/pdx

)1/p′

6 A, (1.2)

where p′ is the dual exponent to p given by 1/p′ + 1/p = 1.
Recall that these classes are monotonically ordered, Ap1 ⊂ Ap2 for p1 < p2 .

Moreover for p =∞ , the Muckenhoupt class A∞ is given by

A∞ =
⋃
p>1

Ap. (1.3)

We define
r0 := inf{r : w ∈ Ar} <∞, w ∈ A∞. (1.4)

These classes of weights function were introduced by B. Muckenhoupt in
[11]. A systematic study of Muckenhoupt classes was initiated by Garćıa-Cuerva
and Rubio de Francia in [7] and Strömberg, Torchinsky in [17]. We refer the reader
also to [16, Ch. V], for more details. Furthermore, Rychkov considered in [15] a
more general class of weights, the class Aloc

p that contains Muckenhoupt class as
well locally regular weights. But we shall not deal with this class in the present
paper.

Definition 1.1. Let 0 < d < n . A set Γ ⊂ Rn is called d-set, if there exists a
Borel measure µ in Rn such that suppµ = Γ and there are constants c1, c2 > 0
such that for arbitrary γ ∈ Γ and all 0 < r < 1 holds

c1r
d 6 µ(B(γ, r) ∩ Γ) 6 c2r

d.

Note that self-similar fractals, like the famous Cantor or Sierpinski triangle,
are special examples of d-sets. It is well-known that µ ∼ Hd , the d-dimensional
Hausdorff measure, see [21, Chapter 1].

Definition 1.2. Let Γ be a non-empty Borel set in Rn with |Γ| = 0. We say
that Γ satisfies the ball condition if there is a number 0 < η < 1 such that for any
ball B(x, r) centered at x ∈ Γ and of radius 0 < r < 1 there is a ball B(y, ηr)
centered at some y ∈ Rn , and of radius ηr with

B(y, ηr) ⊂ B(x, r) and B(y, ηr) ∩ Γ = ∅. (1.5)
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Note that any d- set possesses this feature, see [22, Proposition 9.18].
The Lebesgue space Lp(Γ) on the d-set Γ with 0 < p <∞ is the usual com-

plex Lp -space with respect to the d-dimensional Hausdorff measure µ equipped
with the quasi-norm

‖f |Lp(Γ)‖ =
(∫

Γ
|f(γ)|pµ(dγ)

)1/p

<∞.

For a weight w ∈ A∞ and 0 < p 6 ∞ we define the weighted Lebesgue
space Lp(Rn, w) as collection of all measurable functions such that

‖f |Lp(Rn, w)‖ =
(∫

Rn
|f(x)|pw(x)dx

)1/p

(1.6)

is finite. Obviously, for p =∞ one obtains the unweighted Lebesgue space, normed
by

‖f |L∞(Rn)‖ = esssup|f(x)|.
Thus we shall assume p <∞ in the sequel.

Definition 1.3. Let 0 < q 6 ∞ , 0 < p < ∞ , s ∈ R and {ϕj}∞j=0 a smooth
dyadic resolution of unity. Assume w ∈ A∞ . The weighted Besov space Bspq(Rn, w)
is the set of all distributions f ∈ S′(Rn) such that

∥∥f |Bspq(Rn, w)
∥∥ =



∞∑

j=0

2jsq
∥∥F−1(ϕjFf)|Lp(Rn, w)

∥∥q



1/q

(1.7)

is finite. In the limiting case q =∞ the usual modification is required.

Remark 1.4. The discussion on weighted Triebel-Lizorkin spaces F spq(Rn, w) with
0 < q 6∞ , 0 < p <∞ , s ∈ R and w ∈ A∞ will be postponed to the last section.
Note that for w ≡ 1 we get classical Besov spaces Bspq(Rn). For a systematic
treatment of the unweighted spaces we refer the interested reader to monographs
of H. Triebel [18], [19] and [20]. It turns out that the space Bspq(Rn, w) does not
depend on the particular choice of the resolution of unity (ϕj), see [13], [2]. This
space is a quasi-Banach space, and if p > 1 and q > 1 then Bspq(Rn, w) becomes
a Banach space. For p <∞ , q <∞ , S(Rn) is dense in Bspq(Rn, w).

We recall the counterpart of atomic decomposition in Besov spaces.

Definition 1.5. a) Suppose that K ∈ N0 and b > 1. The complex-valued func-
tion a ∈ CK(Rn) is said to be an 1K -atom (or simply an 1-atom) if the following
assumptions are satisfied

i) supp a ⊂ bQ0m for some m ∈ Zn ,
ii) |Dαa(x)| 6 1 for |α| 6 K , x ∈ Rn .
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b) Suppose that s ∈ R , 0 < p 6 ∞ , K ∈ N0 , L + 1 ∈ N0 and b > 1. The
complex-valued function a ∈ CK(Rn) is said to be an (s, p)K,L -atom (or simply
an (s, p) -atom) if for some ν ∈ N0 the following assumptions are satisfied

i) supp a ⊂ bQνm for some m ∈ Zn ,
ii) |Dαa(x)| 6 2−ν(s−np )+|α|ν for |α| 6 K , x ∈ Rn ,

iii)
∫
Rn x

βa(x) dx = 0 for |β| 6 L .

We will write aνm(x) instead of a(x) to indicate the localization and size
of an atom. Note that the moment condition b) (iii) can be reformulated as
Dβ(Fa)(0) = 0 for |β| 6 L which shows that a sufficiently strong decay of Fa
at the origin is required. If L = −1 then b) (iii) must be interpreted in the sense
that there is no moment condition.

Let χ(p)
νm(x) the p -normalized characteristic function of the cube Qνm defi-

ned by

χ(p)
νm(x) = 2

νn
p χνm(x) =

{
2
νn
p for x ∈ Qνm

0 for x /∈ Qνm,
(1.8)

such that ‖χ(p)
νm |Lp(Rn)‖ = 1.

Definition 1.6. Let 0 < p <∞ , 0 < q 6∞ , w ∈ A∞ , and put λ = {λνm ∈ C :
ν ∈ N0, m ∈ Zn} . We define

bpq(w) (1.9)

=



λ = {λνm} :

∥∥λ |bpq(w)
∥∥ =

( ∞∑
ν=0

∥∥∥
∑

m∈Zn
λνmχ

(p)
νm |Lp(Rn, w)

∥∥∥
q
)1/q

<∞


 .

Recall that for w ≡ 1 we have bpq(w) = bpq , see []Example 3.9(1)]nasza. In
[9] the following example of a weight function was considered.

Example 1.7. Let Γ be a d-set with 0 < d < n introduced in Definition 1.1 and
let κ ∈ R . We study the weight wΓ

κ(x), x ∈ Rn , given by

wΓ
κ(x) =

{
dist(x,Γ)κ dist (x,Γ) 6 1
1 otherwise,

(1.10)

[9, Proposition 2.8, Corollary 2.10]. In the same paper we have shown that wΓ
κ ∈

Ar , 1 < r <∞ if, and only if,

−(n− d) < κ < (n− d)(r − 1), (1.11)

thus wΓ
κ ∈ A∞ if, and only if,

κ > −(n− d). (1.12)

For the proof and more details we refer to [9, Proposition 2.8 (ii)].
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Atomic representation results provide an essential tool for studying trace
problems. For our purpose, we need an atomic decomposition of weighted Besov
spaces Bspq(Rn, wΓ

κ). It is proved in full generality in [9, Theorem 3.10], see also [1].
We use utilize the following abbreviation in the sequel

σp = n

(
1
p
− 1
)

+
.

Theorem 1.8. Let 0 < d < n and let Γ be a d-set in Rn in the sense of
Definition 1.1. Moreover let wΓ

κ be the weight introduced in (1.10) with κ >

−(n− d) , and r0 = max
(
κ
n−d + 1, 1

)
. Assume 0 < p < ∞ , 0 < q 6 ∞ , s ∈ R .

Let K,L+ 1 ∈ N0 with

K > (1 + [s])+, and L > max (−1, [σp/r0 − s]). (1.13)

Then f ∈ S′(Rn) belongs to Bspq(Rn, wΓ
κ) if, and only if, it can be represented as

f =
∞∑
ν=0

∑

m∈Zn
λνmaνm(x), converging in S′(Rn), (1.14)

where aνm(x) are 1K -atoms (ν = 0) or (s, p)K,L -atoms (ν ∈ N) and λ ∈ bpq(wκ) .
Furthermore, taking the infimum over all admissible representations (1.14) with

‖λ|bpq(wΓ
κ)‖ ∼



∞∑
ν=0

( ∑

m∈Zn
|λνm|pwΓ

κ(xν,m)

)q/p


1/q

, (1.15)

we obtain an equivalent quasi-norm in Bspq(Rn, wΓ
κ) , where xν,m ∼ 2−νm , ν ∈ N0 ,

m ∈ Zn are chosen such that wΓ
κ(xν,m) ∼ ‖χ(p)

νm |Lp(Rn, wΓ
κ)‖ . In particular, for

−(n− d) < κ 6 0 we can replace (1.13) by its unweighted counterpart,

K > (1 + [s])+, and L > max (−1, [σp − s]), (1.16)

such that for s > σp no moment conditions are necessary for the corresponding
atoms in (1.14) .

2. Traces of Besov spaces on fractals: a heuristic approach

There is a variety of literature on traces on Rn both for Besov and Triebel-Lizorkin
spaces, but the systematic study of trace problems in the framework of fractal
sets started rather recently in [21] only. This section contains results on traces of
Besov spaces with Muckenhoupt weights, on fractals. Let us start by summarizing
unweighted results in this direction. Recall that for x = (x′, xn) ∈ Rn with x′ ∈
Rn−1 the mapping

trRn−1 : f(x) 7→ f(x′, 0) (2.1)

is called trace of f on Rn−1 introduced in the standard way, see also the argument
below. The following theorem gives the complete answers to the trace problem in
the case of a hyperplane Rn−1 .
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Theorem 2.1. i) Let 0 < p, q 6∞ and s− 1
p > (n− 1)( 1

p − 1)+ . Then we get

trRn−1Bspq(Rn) = B
s− 1

p
pq (Rn−1). (2.2)

ii) Let n > 2 , 0 < p <∞ and 0 < q < min(1, p) . Then we get

trRn−1B
1
p
pq(Rn) = Lp(Rn−1). (2.3)

Classical references for trace problems in that case are [20, 4.4.1 and 4.4.2].
We shall now extend assertions of type (2.3) to the case of suitable compact
d-sets instead of hyperplanes in Rn−1 . In the sequel any function fΓ ∈ Lp(Γ),
1 6 p 6∞ , will be interpreted as a tempered distribution f ∈ S′(Rn) given by

f(ϕ) =
∫

Γ
fΓ(γ)(ϕ|Γ)(γ)µ(dγ), ϕ ∈ S(Rn),

where the restriction ϕ|Γ of ϕ is understood pointwise and µ is a Radon measure
on Γ. We explain the fractal counterpart of (2.1) now.

Let us temporarily consider a closed set Γ ⊂ Rn with |Γ| = 0 and assume
that there exists a Radon measure µ on Rn with supp(µ) = Γ. Therefore the
restriction trΓϕ = ϕ|Γ understood pointwise is well-defined for any ϕ ∈ S(Rn).
Moreover let us suppose that for s > 0 and 0 < p, q <∞ there is a constant c > 0
such that for all ϕ ∈ S(Rn),

‖trΓϕ|Lp(Γ)‖ 6 c‖ϕ|Bspq(Rn, wΓ
κ)‖. (2.4)

Since the Schwartz class S(Rn) is dense in Bspq(Rn, wΓ
κ), the inequality (2.4) may

be extended by completion to all f ∈ Bspq(Rn, wΓ
κ). The resulting limit of trΓϕ

will be denoted by trΓf . Note that it is independent of the approximation of
f ∈ Bspq(Rn, wΓ

κ) by S(Rn)-functions due to (2.4).
We first recall what is known on traces of unweighted Besov spaces on a

d-set Γ.

Theorem 2.2. Let Γ be a d-set with 0 < d < n . Moreover let 0 < p < ∞ and
0 < q 6 min(1, p) . Then

trΓB
n−d
p

pq (Rn) = Lp(Γ). (2.5)

The interpretation of the equality (2.5) is that trΓf ∈ Lp(Γ) for any f ∈ B
n−d
p

pq (Rn) ,

and that any fΓ ∈ Lp(Γ) is a trace of a suitable g ∈ B
n−d
p

pq (Rn) on Γ in the above
described sense with

‖fΓ|Lp(Γ)‖ ∼ inf ‖g |B
n−d
p

pq (Rn)‖,

where the infimum is taken over all g ∈ B
n−d
p

pq (Rn) such that trΓg = fΓ .
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For a complete discussion and proof we refer to [21, Theorem 18.6, Corollary
18.12] in connection with [22, Remark 9.19]. The interested reader will find there
also further references.

From now on let 0 < p < ∞ , 0 < q 6 ∞ , σ ∈ R . We will work in the
framework of a d-set Γ as introduced in Definition 1.1 with 0 < d < n . Moreover
let wκ be the weight according to Definition 1.10 and κ > −(n−d). Recall that by
Theorem 1.8 the question wheter a tempered distribution f ∈ S′(Rn) belongs to
the weighted Besov space Bσpq(Rn, wΓ

κ) can be equivalently expressed in terms of
sequence spaces, λ ∈ bpq(wΓ

κ), where we use the appropriate atomic decomposition
in the form

f =
∞∑
ν=0

∑

m∈Zn
λνmaνm(x) (2.6)

with suitable coefficients λνm and (σ, p)-atoms aνm . In the sequel we shall divide
the summation over m ∈ Zn in (2.6) with respect to the following ”remainder”
set

IΓ,ν =
{
m ∈ Zn : dist (Γ, supp aνm) > b2−ν

}
, ν ∈ N0, (2.7)

i.e. for m ∈ IΓ,ν the supports of the corresponding atoms have an empty inter-
section with Γ. To shorten the notation we utilize the following abbreviations for
respective sums,

∑

m∈Zn\IΓ,ν
=
∑Γ,ν

m∈Zn
and

∑

m∈IΓ,ν

=
∑

Γ,ν
m∈Zn

,

such that
∑Γ,ν collects all atoms with a support near to Γ, and

∑
Γ,ν the rema-

ining ones, that are less important for trace problems on Γ. This notation allows
us to write (2.6) as

f =
∞∑
ν=0

∑Γ,ν

m∈Zn
λνmaνm(x) +

∞∑
ν=0

∑
Γ,ν

m∈Zn
λνmaνm(x). (2.8)

Subsequently, we simplify the writing by denoting by fΓ and fΓ the first and
second sum, respectively, i.e.

fΓ =
∞∑
ν=0

∑Γ,ν

m∈Zn
λνmaνm and fΓ =

∞∑
ν=0

∑
Γ,ν

m∈Zn
λνmaνm.

A careful look at (2.7) shows that fΓ has no influence on the trace problem on
Γ. It implies that trΓaνm(x) = 0 for m ∈ IΓ,ν . For m ∈ Zn\IΓ,ν we obtain that
wΓ
κ(xν,m) ∼ 2−νκ . Consequently, f and fΓ possess the same trace on Γ,

trΓf = trΓf
Γ.
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Assume for the moment that f ∈ S(Rn) and the trace is taken pointwise;
recall that S(Rn) is dense in Bspq(Rn, wΓ

κ) for q <∞ .
Let us now consider the following reformulation of fΓ ,

fΓ =
∞∑
ν=0

∑Γ,ν

m∈Zn

(
λνm2−ν

κ
p

)(
2ν
κ
p aνm(x)

)
=
∞∑
ν=0

∑Γ,ν

m∈Zn
λ̃νmãνm(x), (2.9)

where λ̃νm = λνm2−ν
κ
p are new coefficients and ãνm = 2ν

κ
p aνm are (σ− κp , p)K,L -

-atoms, accordingly. Let f̃Γ be given by (2.9) and let λ̃νm = 0, m ∈ IΓ,ν , ν ∈ N0 .
Applying Theorem 1.8 jointly with its unweighted counterpart for w ≡ 1,

see also, [21, Theorem 3.8 p.75], to (2.9) yields

∥∥∥f̃Γ| Bσ−
κ
p

pq (Rn)
∥∥∥ 6

∥∥∥λ̃| bpq
∥∥∥ = c



∞∑
ν=0

(∑Γ,ν

m∈Zn
|λνm|p2−νκ

)q/p


1/q

(2.10)

6 c′
∥∥λ| bpq(wΓ

κ)
∥∥ 6 c′′

∥∥f | Bσpq(Rn, wΓ
κ)
∥∥ ,

for suitably chosen {λνm} ,i.e. f ∈ Bσpq(Rn, wΓ
κ) implies f̃Γ ∈ Bσ−

κ
p

pq (Rn).
Assume for the moment that σ − κ

p = n−d
p , i.e. σ = κ+n−d

p > 0, and

trΓf = fΓ = trΓf̃ . Then f ∈ Bσpq(Rn, wΓ
κ) leads to trΓf ∈ Lp(Γ),that is

trΓB
κ+n−d

p
pq (Rn, wΓ

κ) ⊂ Lp(Γ), see Theorem 3.1 below.

3. Traces on fractals of weighted Besov spaces

We can formulate the first main result of this paper, which extends Theorem 2.2
to the weighted case.

Theorem 3.1. Let 0 < d < n , κ > −(n− d) , 0 < p <∞ , 0 < q 6 min(1, p) and
let Γ be a d-set. Then we have

trΓB
κ
p +n−d

p
pq (Rn, wΓ

κ) = Lp(Γ), (3.1)

in the sense, that trΓf ∈ Lp(Γ) for any f ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) and any fΓ ∈ Lp(Γ)

is a trace of a suitable g ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) on Γ and

‖fΓ |Lp(Γ)‖ ∼ inf
∥∥∥∥g |B

κ
p +n−d

p
pq (Rn, wΓ

κ)
∥∥∥∥ ,

where the infimum is taken over all g ∈ B
κ
p +n−d

p
pq (Rn, wΓ

κ) such that trΓg = fΓ .

Proof. Our proof is based upon ideas found in [21, Theorem 18.6]. We essentially
make use of the atomic decomposition techniques from [9].
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Step 1. Let us assume that 0 < p <∞ , 0 < d < n and 0 < q 6 min(1, p).
We first prove that

trΓB
κ
p +n−d

p
pq (Rn, wΓ

κ) ⊂ Lp(Γ). (3.2)

We start with ϕ ∈ S(Rn). This causes no loss of generality, since the Schwartz

class S(Rn) is dense in B
κ
p +n−d

p (Rn, wΓ
κ), see [2]. We recall that for ϕ ∈ S(Rn) the

restriction operator trΓϕ = ϕ|Γ it meant pointwise. We consider an optimal atomic

decomposition according to Theorem 1.8 of ϕ ∈ S(Rn) in B
κ
p +n−d

p
pq (Rn, wΓ

κ),

ϕ =
∞∑
ν=0

∑

m∈Zn
λνmaνm(x), (3.3)

such that ∥∥∥∥ϕ| B
κ
p +n−d

p
pq (Rn, wΓ

κ)
∥∥∥∥ ∼

∥∥λ| bpq(wΓ
κ)
∥∥ . (3.4)

Here the coefficients λνm and the
(
n−d+κ

p , p
)

-atoms aνm have the same
meaning as explained in Definitions 1.5 and 1.6. In particular, according to Defi-
nition 1.5 we have that supp aνm ⊂ bQνm and

|aνm(x)| 6 2−ν(
n−d+κ

p −np ) = 2
ν(d−κ)

p , m ∈ Zn, ν ∈ N0. (3.5)

Proceeding exactly as in Section 2 let us consider a decomposition ϕ =
ϕΓ + ϕΓ , such that ϕΓ collects all atoms with a non-empty intersection of their
support with Γ, and ϕΓ the rest.

Assume first that 0 < p 6 1. In view of (3.4), to prove (3.2) we have to find
an estimate from above of the quasi-norm

‖trΓϕ| Lp(Γ)‖p =
∫

Γ
|ϕΓ(γ)|pµ(dγ) +

∫

Γ
|ϕΓ(γ)|pµ(dγ) (3.6)

by the quasi-norm ‖λ| bpq(wκ)‖ . Taking into account that aνm ∩ Γ = ∅ for all
atoms belonging to the representation of ϕΓ , we immediately get that the last
integral in (3.6) vanishes, since then

∫
Γ |ϕΓ(γ)|pµ(dγ) = 0. Hence we have

‖trΓϕ| Lp(Γ)‖p 6
∞∑
ν=0

∫

Γ

∣∣∣∣∣
∑Γ,ν

m∈Zn
λνmaνm(γ)

∣∣∣∣∣

p

µ(dγ) (3.7)

6 c

∞∑
ν=0

∑Γ,ν

m∈Zn
|λνm|p

∫

Γ
|aνm(γ)|pµ(dγ)

Recall that ∑

m∈Zn\IΓ,ν
=
∑Γ,ν

m∈Zn
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i.e. we consider only atoms with a support near Γ. The rest of atoms play no rle
for a trace problem on Γ.

Let us turn our attention to the last integral in (3.7). Since µ(Γ ∩ Qνm) ∼
2−νd by Definition 1.1, we obtain by (3.5),

∫

Γ
|aνm(γ)|pµ(dγ) 6 c2ν(d−κ)µ(Γ ∩Qνm) ∼ c2−νκ .

Plugging the above estimate into last term in (1.15) yields

‖trΓϕ| Lp(Γ)‖p 6 c′
∞∑
ν=0

∑Γ,ν

m∈Zn
|λνm|p2−νκ 6 c′′

∥∥λ| bpq(wΓ
κ)
∥∥p , (3.8)

where the last inequality holds by virtue of q 6 p and (1.15). Consequently, by
(3.4) for 0 < p 6 1 and q 6 p we have

‖trΓϕ |Lp(Γ)‖ 6 c′
∥∥λ | bpq(wΓ

κ)
∥∥ 6 c′′

∥∥∥∥ϕ |B
κ
p +n−d

p
pq (Rn, wΓ

κ)
∥∥∥∥ . (3.9)

For p > 1 we use the triangle inequality to get

‖trΓϕ| Lp(Γ)‖ 6 c′
( ∞∑
ν=0

∑Γ,ν

m∈Zn
|λνm|p2−νκ

)1/p

6 c′
∥∥λ |bp1(wΓ

κ)
∥∥ (3.10)

6 c′′‖λ |bpq(wΓ
κ)‖.

Again, the last inequality holds by virtue of q 6 1. Finally, we arrive at

‖trΓϕ| Lp(Γ)‖ 6 c

∥∥∥∥ϕ| B
κ
p +n−d

p
pq (Rn, wΓ

κ)
∥∥∥∥ with 0 < p <∞, 0 < q 6 min(p, 1),

(3.11)
which proves the inclusion (3.2).

Step 2. Let 0 < q 6 min(p, 1) and max
(
d−κ
n , 0

)
=
(
d−κ
n

)
+ < p < ∞ . We

give a proof of the reverse inclusion

Lp(Γ) ⊂ trΓB
κ
p +n−d

p
pq (Rn). (3.12)

We shall adapt the arguments used in Step 2 of the proof of Theorem 18.2 of
[21]. It is known that D|Γ is dense in Lp(Γ). Thus, we may work without loss
of generality with ϕ ∈ D(Rn). Moreover assume that ϕ|Γ 6= 0 and consider the
neighborhood of Γ given by

Γk =
{
x ∈ Rn : dist (x,Γ) < 2−k

}
.

By compactness of Γ together with properties of Hausdorff measure, there are
open balls B(xj , r) with j = 1, . . . , N centered at Γ with the same radius r > 0
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depending on the covering, that cover Γ. Note that Γh ⊂
⋃N
j=1B(xj , r), where h

depends on given covering.
Now, let {ϕj}Nj=1 be a smooth resolution of unity in a neighborhood Γk of

Γ ∩ suppϕ adapted to (B(xj , r))Nj=1 . In particular, we have
∑N
j=1 ϕj(x) = 1 for

x ∈ suppϕ and suppϕj ⊂ B(xj , r). Let us now put λj = maxx∈B(xj ,r) |ϕ(x)| .
Then, by the properties of the above defined resolution of unity we get

ϕ(x) =
N∑

j=1

ϕ(x)ϕj(x) =
N∑

j=1

λjr
d−κ
p

[
r−

d−κ
p λ−1

j ϕ(x)ϕj(x)
]
, (3.13)

where terms with λj = 0 are omitted. Let us define

λ̃j = λjr
d−κ
p and aj(x) = r−

d−κ
p λ−1

j ϕ(x)ϕj(x).

We obtain that supp aj ⊂ B(xj , r). Furthermore, choosing r > 0 small enough,
we get

|aj(x)| = |ϕ(x)|
λj

r−
d−κ
p |ϕj(x)| 6 c′r

n−d
p +κ

p−np

and analogous estimates for all Dαaj . We thus can consider aj as
(
n−d+κ

p , p
)
K,L

-

-atoms according to Definition 1.5. It follows from the assumption p >
(
d−κ
n

)
+

that n−d+κ
p > n

(
1
p − 1

)
+

. Therefore, moment conditions as needed in (1.16)

may be omitted. Once again, using the atomic decomposition method together
with properties of the weight wΓ

κ we may estimate the quasi-norm of (3.13) as
follows,

‖ϕ |B
n−d+κ

p
pq (Rn, wΓ

κ)‖ 6 ‖λ̃ |bpq(wΓ
κ)‖ (3.14)

6 c




N∑

j=1

|λj |prd−κ
∥∥∥χ(p)

B(xj ,r)
|Lp(Rn, wΓ

κ)
∥∥∥



1/p

.

Let us again choose r > 0 arbitrarily small. Straightforward computation shows
that ‖χ(p)

B(xj ,r)
|Lp(Rn, wΓ

κ)‖ ∼ rκ . Moreover we have µ(B(xj , r)) ∼ rd by Defi-
nition 1.1. Proceeding further as in the Riemann integral construction we arrive
at




N∑

j=1

|λj |prd−κ
∥∥∥χ(p)

B(xj ,r)
|Lp(Rn, wΓ

κ)
∥∥∥



1/p

6 c ‖trΓϕ |Lp(Γ)‖ . (3.15)

Hence, we have proved that

‖ϕ |B
n−d+κ

p
pq (Rn, wΓ

κ)‖ 6 c‖trΓϕ |Lp(Γ)‖, ϕ ∈ D(Rn). (3.16)
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The rest of the proof goes through as for [21, Theorem 18.6], with hardly any
changes: for convenience, we include the argument here. It follows from density of
D|Γ in Lp(Γ) that any f ∈ Lp(Γ) can be represented in the form

f(γ) =
∞∑

j=1

fj(γ), γ ∈ Γ, fj ∈ D(Rn) (3.17)

with
0 < ‖trΓfj |Lp(Γ)‖ 6 c 2−j‖f | Lp(Γ)‖, j ∈ N. (3.18)

Thus by (3.16) we have

‖fj |B
n−d+κ

p
pq (Rn, wΓ

κ)‖ 6 c′‖trΓfj |Lp(Γ)‖. (3.19)

Now we may define an extension operator in the following way,

extf =
∞∑

j=1

fj ∈ B
n−d+κ

p
pq (Rn, wΓ

κ), trΓextf = f. (3.20)

By virtue of (3.17) and (3.18) we obtain

‖extf |B
n−d+κ

p
pq (Rn, wΓ

κ)‖ 6 c′‖f |Lp(Γ)‖. (3.21)

This finishes the proof of (3.12).

Step 3. To complete our proof we have to extend the result of Step 2 to
p > 0, i.e. for κ < d . Let us assume now that 0 < q < p 6 d−κ

n . Analysis similar to

that in the proof of [21, Corollary, 18.12]Triebel97 shows that for
(
n−d+κ

p , p
)
K,L

-

atoms we do not have moment conditions for ϕϕj in (3.13) by property (1.13).
Let B(yj , ηr) be a ball with the condition (1.5) which can be written, after easy
reformulation, in the following form

dist(B(yj , ηr),Γ) > ηr. (3.22)

We follow the argument in Step 2 replacing ϕϕj by the function

ψj(x) = (ϕϕj)(x) + χj(x)

where supp χj ⊂ B(yj , ηr) and ψj is an
(
n−d+κ

p , p
)

-atom with moment condi-

tions according to Definition 1.5 with L > max(−1, σp/r0−s) . This is a somewhat
tricky construction and can be found in the proof of [24, Theorem 3.6]. The atoms
ϕϕj and ψj coincide in a neighbourhood of Γ due to (3.22). Now we can use the
argument of Step 2 again. The proof of Theorem 3.1 is thus complete.

In the concluding part of this section we shall work with Besov spaces intro-
duced in terms of traces on fractals, and recall their definition first.
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Definition 3.2. Let Γ be a d-set in Rn according to Definition 1.1 with
0 < d < n . Let s > 0, 0 < p 6∞ , and 0 < q 6∞ . Let us define

Bspq(Γ) = trΓB
s+n−d

p
pq (Rn). (3.23)

We equip this space with the quasi-norm

∥∥f |Bspq(Γ)
∥∥ = inf

∥∥∥∥g| B
s+n−d

p
pq (Rn)

∥∥∥∥ , (3.24)

where the infimum ranges over all g ∈ Bs+
n−d
p

pq (Rn) with trΓg = f .

In a natural way we extend this notation to weighted spaces Bspq(Rn, wΓ
κ): by

trΓB
s
pq(Rn, wΓ

κ) we mean the collection of all f ∈ Lp(Γ) such that there exists some
g ∈ Bspq(Rn, wΓ

κ) with trΓg = f , and ‖f |trΓB
s
pq(Rn, wΓ

κ)‖ = inf‖g |Bspq(Rn, wΓ
κ)‖ ,

the infimum is taken over all g ∈ Bspq(Rn, wΓ
κ) such that trΓg = f . To study the

fractal trace problem we get the following statement.

Theorem 3.3. Let 0 < d < n , 0 < p < ∞ , 0 < q 6 ∞ and −(n − d) < κ <
sp− (n− d) . Then

trΓB
s
pq(Rn, wΓ

κ) = B
s−n−dp −κp
pq (Γ)

Proof. Step 1. The idea of the proof is to use Definition 3.2 together with the
observation that

trΓB
s
pq(Rn, wΓ

κ) = trΓB
s−κp
pq (Rn), (3.25)

with the parameters given above. Afterwards we apply (3.23) to s′ = s− κp − n−d
p >

0, i.e. such that s′ + n−d
p = s− κ

p . This leads to

trΓB
s
pq(Rn, wΓ

κ) = Bs
′
pq(Γ),

that is, the desired result. Moreover, as will be clear from the argument below, it
is sufficient to deal with the inclusion

trΓB
s
pq(Rn, wΓ

κ) ↪→ trΓB
s−κp
pq (Rn) (3.26)

only, the converse assertion follows by parallel observations.
We consider some f ∈ trΓB

s
pq(Rn, wΓ

κ). Let ε > 0. By the definition of this
space there is some g ∈ Bspq(Rn, wΓ

κ) such that trΓg = f and

∥∥g| Bspq(Rn, wΓ
κ)
∥∥ 6

∥∥f | trΓB
s
pq(Rn, wΓ

κ)
∥∥+

ε

2
. (3.27)

We take the atomic decomposition of g in Bspq(Rn, wΓ
κ),

g =
∞∑
ν=0

∑

m∈Zn
λνmaνm(x), (3.28)
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where λνm ∈ C are coefficients and aνm(x) are (s, p)K,L -atoms in the sense of
Definition 1.5. In view of Theorem 1.8 we have to choose K > s , L > max(−1,
[σp/r0 − s]) with r0 = max( κ

n−d + 1, 1); so let us assume

K > max(s, s− κ
p

)

and (3.29)

L > max
(
−1,

[
σp/r0 − s

]
,

[
σp − s+

κ
p

])
.

Thus Theorem 1.8 implies that we find a corresponding atomic decomposition
(3.28) with (3.29) and

∥∥λ| bpq(wΓ
κ)
∥∥ 6

∥∥g| Bspq(Rn, wΓ
κ)
∥∥+

ε

2
. (3.30)

We now proceed similar to Section 2. Recall our notation

IΓ,ν =
{
m ∈ Zn : dist(Γ, suppaνm) > b2−ν

}
, ν ∈ N0,

and ∑

m∈Zn\IΓ,ν
=
∑Γ,ν

m∈Zn
,

∑

m∈IΓ,ν

=
∑

Γ,ν
m∈Zn

.

We decompose

g =
∞∑
ν=0

∑Γ,ν

m∈Zn
λνmaνm(x) +

∞∑
ν=0

∑
Γ,ν

m∈Zn
λνmaνm(x) := gΓ + gΓ

with trΓg = trΓg
Γ , trΓgΓ = 0. We extend gΓ by 0 outside,

g̃ =
∞∑
ν=0

∑Γ,ν

m∈Zn

(
λνm2−ν

κ
p

)(
2ν
κ
p aνm(x)

)
+
∞∑
ν=0

∑
Γ,ν

m∈Zn
0 ·
(

2ν
κ
p aνm(x)

)
(3.31)

=
∞∑
ν=0

∑

m∈Zn
λ̃νmãνm(x),

obtaining an atomic decomposition of g̃ with

λ̃νm =
{
λνm2−ν

κ
p for m ∈ Zn\IΓ,ν ,

0 otherwise.
(3.32)

Moreover ãνm = 2ν
κ
p aνm are

(
s− κ

p , p
)
K,L

-atoms. We benefit from our

assumption (3.29) and can apply the unweighted version of Theorem 1.8 (κ =
0, r0 = 1), see [20, Theorem 3.10], to obtain

∥∥∥g̃ |Bs−
κ
p

pq (Rn)
∥∥∥ 6

∥∥∥λ̃νm |bpq
∥∥∥ . (3.33)



Traces on fractals of function spaces with Muckenhoupt weights 111

On the other hand, trΓg̃ = trΓg
Γ = trΓg = f , and

∥∥∥λ̃νm |bpq
∥∥∥ 6

∥∥λνm |bpq(wΓ
κ)
∥∥ (3.34)

by (3.32) and (1.9), recall
∥∥∥χ(p)

νm |Lp(Rn, wΓ
κ)
∥∥∥ ∼ 2ν

κ
p , m ∈ Zn\IΓν , ν ∈ N0 .

Combining (3.27), (3.30), (3.33) and (3.34) we obtain

∥∥∥g̃ |Bs−
κ
p

pq (Rn)
∥∥∥ 6 c

∥∥f |trΓB
s
pq(Rn, wΓ

κ)
∥∥+ ε,

that is, we have found some g̃ ∈ Bs−
κ
p

pq (Rn) with trΓg̃ = f and the above norm

estimate. Hence, f ∈ trΓB
s−κp
pq (Rn), and for ε↘ 0,

∥∥∥f |trΓB
s−κp
pq (Rn)

∥∥∥ 6 c
∥∥f |trΓB

s
pq(Rn, wΓ

κ)
∥∥ .

This proves (3.26).

In view of (1.12) it is clear that the theory of Besov spaces with Muckenhoupt
weights covers only weights wΓ

κ from (1.10) with κ > −(n − d). Theorem 3.1
above concerns weights wΓ

κ with κ < sp − (n − d), s > 0, 0 < p < ∞ , where

f ∈ Bspq(Rn, wΓ
κ) possesses a trace trΓf ∈ Bs−

n−d
p −κp

pq (Γ).
Similarly for κ = sp−(n−d), 0 < q 6 min(1, p), see Theorem 3.1. A natural

question to ask is what happens for stronger weights, that is, κ > sp − (n − d)
or κ = sp − (n − d) with q > min(1, p), respectively? The final answer to this
question in the unweighted case is due H. Triebel [23, Theorem 1.174], see also [23,
Corollary 7.21]. Roughly speaking, the result given there states that for s < n−d

p ,

0 < p, q 6 ∞ , or s = n−d
p , q > min(p, 1), the trace space trΓB

s
pq(Rn) does not

exist. Below we show how to transfer this observation to our situation.

Corollary 3.4. Let 0 < d < n , s > 0 , 1 < p <∞ , 0 < q <∞ and κ > −(n−d) .
Then trΓB

s
pq(Rn, wΓ

κ) exists if, and only if,

κ < sp− (n− d) or κ = sp− (n− d) and 0 < q 6 1.

Moreover, if κ > sp− (n− d) , then D(Rn\Γ) is dense in Bspq(Rn, wΓ
κ) .

Proof. The sufficiency follows from Theorems 3.1 and 3.3, concerning the necessity
we refer to [23, Corollary 7.21] for the unweighted case and (3.25). Note that the
additional assumption κ < sp−(n−d) or 0 < q 6 min(p, 1) when κ = sp−(n−d)
are needed only later on to determine the trace space explicitly.

It remains to show the density of D(Rn\Γ) in Bspq(Rn, wΓ
κ) when κ >

sp− (n− d). Clearly, by the embeddings

Bs+εpp (Rn, wΓ
κ) ↪→ Bspq(Rn, wΓ

κ) ↪→ Bs−εpp (Rn, wΓ
κ)
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for all 0 < q <∞ , and ε > 0 small, it is enough to deal with spaces Bspp(Rn, wΓ
κ)

only, where κ > sp−(n−d) and 0 < p <∞ . Then S(Rn) is dense in Bspp(Rn, wΓ
κ)

and we can restrict ourselves to show that for all ε > 0 and all ψ ∈ S(Rn) there
is some ϕ ∈ D(Rn\Γ), i.e. ϕ ∈ C∞0 (Rn) with supp(ϕ) ⊂ Rn\Γ, such that

∥∥ψ − ϕ | Bspp(Rn, wΓ
κ)
∥∥ < ε. (3.35)

We continue by assuming that supp ψ∩Γ 6= ∅ . Otherwise, dist(Γ, supp ψ) = δ > 0
and we can take ϕ = ψ , appropriately modified if supp ψ is not compact. Let
Γk be some neighbourhood of Γ ∩ supp ψ . For j ∈ N , consider a covering of Γk
with balls centered at Γ and with radius 2−j . Since Γ is a compact d-set one
needs Mj ∼ 2jd balls to cover it. Let {ϕr}Mj

r=1 be an associated smooth partition
of unity such that ϕr ∈ C∞0 (Rn), supp ϕr ⊂ Br,j = B(γr, 2−j), γr ∈ Γ and∑Mj

r=1 ϕr(x) = 1 with x ∈ Γk . Recall that
∥∥∥χ(p)

Br,j
|Lp(Rn, wΓ

κ)
∥∥∥ ∼ 2−j

κ
p . Let

γ ∈ D(Rn) with γ = 1 on Γk/2 and supp γ ⊂ Γk . Taking into account Definition
1.5 and Theorem 1.8 we obtain

γ =
Mj∑
r=1

(ϕrγ)(x) =
Mj∑
r=1

2j(s−
n
p )2−j(s−

n
p )(ϕrγ)(x), x ∈ Γk. (3.36)

The sum on the right-hand side of (3.36) may be viewed as an atomic decomposi-
tion of γ in Bspp(Rn, wΓ

κ) with atoms given by 2−j(s−
n
p )(ϕrγ)(x) and coefficients

λr = 2j(s−
n
p ) . For convenience let us assume once more that we do not need

moment conditions, otherwise (3.36) has to be modified. Then Theorem 1.8 and
Definition 1.6 imply

∥∥γ |Bspp(Rn, wΓ
κ)
∥∥ 6



Mj∑
r=1

2j(s−
n
p )p
∥∥∥χ(p)

Br,j
| Lp(Rn, wΓ

κ)
∥∥∥
p




1/p

6 2j(s−
n
p )−j κp



Mj∑
r=1

1




1/p

= c2j(s−
n−d
p −κp ).

It follows from the assumption s < κ+n−d
p that

∥∥γ |Bspp(Rn, wΓ
κ)
∥∥ < ε,

choosing in our construction j sufficiently large. For ϕ ∈ S(Rn) we thus arrive at
∥∥ψ |Bspp(Rn, wΓ

κ)
∥∥ =

∥∥ψγ + (1− γ)ψ |Bspp(Rn, wΓ
κ)
∥∥

6
∥∥ψγ |Bspp(Rn, wΓ

κ)
∥∥+

∥∥(1− γ)ψ |Bspp(Rn, wΓ
κ)
∥∥

6
∥∥ψ |Ck(Rn)

∥∥∥∥γ |Bspp(Rn, wΓ
κ)
∥∥+

∥∥(1− γ)ψ |Bspp(Rn, wΓ
κ)
∥∥

< ε′ +
∥∥(1− γ)ψ |Bspp(Rn, wΓ

κ)
∥∥ ,
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where k ∈ N is chosen large enough. On the other hand, we obtain (1−γ)ψ ∈ S(Rn)
and dist (supp((1− γ)ψ),Γ) > 0. Hence, there exists some ϕ ∈ D(Rn\Γ) with

∥∥(1− γ)ψ − ϕ |Bspp(Rn, wΓ
κ)
∥∥ < ε.

This concludes the proof of (3.35).

Remark 3.5. The Corollary 3.4 explains, at least in some cases, the impossibility
to have a trace of f ∈ Bspq(Rn, wΓ

κ), κ > sp − (n − d) in the sense of Lp(Γ).
We only get the trivial counterpart of (2.4), i.e. for the dense subset D(Rn\Γ) in
Bspq(Rn, wΓ

κ) the left-hand side in (2.4) always vanishes unlike the right-hand side.
But then it is not possible to explain trΓf in a reasonable (standard) way, as the
independence of the approximating sequence fails. One would like to have a real
alternative in the sense that either trΓB

s
pq(Rn, wΓ

κ) exists or D(Rn\Γ) is dense in
Bspq(Rn, wΓ

κ). But this remains open so far - as in the unweighted case.

4. Traces on fractals of weighted Triebel-Lizorkin spaces and applica-
tions

In this section we discuss traces on fractals of weighted Triebel-Lizorkin spaces. Our
main aim here is to extend known results on traces of unweighted Triebel-Lizorkin
spaces to the weighted case. The last part of this section is devoted to give an
application of our results for F -spaces to traces of weighted Sobolev spaces on
(n− 1)-dimensional hyperplanes. Let us start by recalling needed definitions. The
best references here are [2] and [9].

Definition 4.1. Let 0 < p < ∞ , 0 < q 6 ∞ , s ∈ R and w ∈ A∞ . Moreover let
{ϕj}∞j=0 be a smooth partition of unity as introduced in Section 3. The weighted
Triebel - Lizorkin space F spq(Rn, w) is the collection of all tempered distributions
f ∈ S′(Rn) such that

∥∥f |F spq(Rn, w)
∥∥ =

∥∥∥∥∥∥∥



∞∑

j=0

2jsq|F−1(ϕjFf)(·)|q



1/q

|Lp(Rn, w)

∥∥∥∥∥∥∥
(4.1)

is finite. In the limiting case q =∞ the usual modification is required.

Note that in this case for 1 < p <∞ , s ∈ N0 and q = 2 we obtain classical
Sobolev spaces, i.e.

F sp2(Rn) = W s
p (Rn),

see [19, Section 2], [20, Section 1.2.5] and [21, Section 10.5].
The unweighted trace result due to H. Triebel [21, Corollary 18.12] reads as

follows.



114 Iwona Piotrowska

Theorem 4.2. Let Γ be a d-set, 0 < d < n . Let 0 < p 6 1 and 0 < q 6 ∞ .
Then we get

trΓF
n−d
p

pq (Rn) = Lp(Γ)

with the usual interpretation.

Next we define the corresponding Triebel-Lizorkin sequence spaces.

Definition 4.3. Let 0 < p <∞ , 0 < q 6∞ and w ∈ A∞ . Furthermore let χ(p)
νm

denote the p -normalized characteristic function of the cube Qνm defined by (1.8).
Then

fpq(w) =
{
λ = {λνm} : (4.2)

∥∥λ |fpq(w)
∥∥ =

∥∥∥
( ∞∑
ν=0

∑

m∈Zn

∣∣∣λνmχ(p)
νm(·)

∣∣∣
q)1/q∣∣∣Lp(Rn, w)

∥∥∥ <∞
}

(usual modification for q =∞).

In the sequel, we again consider the weight wΓ
κ as introduced in (1.10). We

now present a generalization of Theorem 4.2 to the weighted case.

Theorem 4.4. Let Γ be a d-set, 0 < d < n . Let 0 < p < ∞ , 0 < q 6 ∞ ,
−(n− d) < κ < sp− (n− d) , or κ = sp− (n− d) if 0 < p 6 1 . Then

trΓF
s
pq(Rn, wΓ

κ) = trΓB
s−κp
pp (Rn). (4.3)

In particular,

trΓF
κ
p +n−d

p
pq (Rn, wΓ

κ) = Lp(Γ) (4.4)

for 0 < p 6 1 , 0 < q 6∞ , and

trΓF
s
pq(Rn, wΓ

κ) = B
s−n−dp −κp
pp (Γ), (4.5)

provided that κ < sp− (n− d) , 0 < p <∞ and 0 < q 6∞ .

Proof. The proof is based on the argument given in the proof of Theorem 3.3
combined with [23, Proposition 9.22]. We only outline the main ideas of the proof
for

trΓF
s
pq(Rn, wΓ

κ) ⊂ trΓB
s−κp
pp (Rn). (4.6)

The proof of the converse inclusion is done analogously. Let f ∈ trΓF
s
pq(Rn, wΓ

κ).
Following the same consideration as in Step 1 of the proof of Theorem 3.3 we
arrive at the atomic decomposition of g in F spq(Rn, wΓ

κ) and its reformulation for

g̃ as in (3.31). We conclude that g̃ ∈ Bs−
κ
p

pp (Rn), since

∥∥∥g̃| Bs−
κ
p

pp (Rn)
∥∥∥ 6

∥∥∥λ̃| bpp
∥∥∥ 6 c

∥∥∥λ̃| fpq
∥∥∥ 6 c

∥∥λ| fpq(wΓ
κ)
∥∥ , (4.7)
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where the equation
∥∥∥λ̃| bpp

∥∥∥ ∼
∥∥∥λ̃| fpq

∥∥∥ follows from [23, Proposition 9.22 (i)]
since d-sets satisfy the ball condition what means that they are porous in the
notation used in [23]. Consequently we have for g̃ with trΓg̃ = f ,
∥∥∥g̃| Bs−

κ
p

pp (Rn)
∥∥∥ 6 c

∥∥g| F spq(Rn, wΓ
κ)
∥∥+

ε

2
6
∥∥f | trΓF

s
pq(Rn, wΓ

κ)
∥∥+ ε, (4.8)

which completes the proof.

Remark 4.5. It turns out that the index q plays no rle in the consideration of
traces on d-sets of F spq(Rn, wΓ

κ). More precisely, for 0 < q0 < q1 <∞ we get

trΓF
s
pq0(Rn, wΓ

κ) = trΓF
s
pq1(Rn, wΓ

κ),

as in the unweighted case, see [22, Theorem 9.21].

We have the following counterpart of Corollary 3.4 due to (4.3).

Corollary 4.6. Let 0 < d < n , s > 0 , 1 < p <∞ , 0 < q 6∞ and κ > −(n−d) .
Then trΓF

s
pq(Rn, wΓ

κ) exists if, and only if, κ < sp − (n − d) . Moreover, if κ >

sp− (n− d) , and 1 < p, q <∞ , then D(Rn\Γ) is dense in F spq(Rn, wΓ
κ) .

We conclude our paper with a well-known example for Sobolev spaces and a
d-set Γ with d = n− 1. We characterize traces on n− 1-dimensional hyperplanes
of Sobolev spaces. We first discuss a special case of the weight function wΓ

κ for
d = n− 1.

Example 4.7. Let α ∈ R and x ∈ Rn . Note that for d = n−1 and taking κ = α
the weight wΓ

κ transforms into

wα(x) =
{ |xn|α |xn| < 1

1 otherwise .
(4.9)

As shown in [9], wα(x) belongs to the Muckenhoupt class Ar if, and only if,
−1 < α < r − 1.

We recall briefly the definition of Sobolev spaces.

Definition 4.8. Let k ∈ N and 1 6 p < ∞ . The Sobolev Space W k
p (Rn, wα) is

the collection of all f ∈ Lp(Rn, wα) such that the norm

∥∥f | W k
p (Rn, wα)

∥∥ =


∑

|β|6k

∥∥Dβf | Lp(Rn, wα)
∥∥p



1/p

is finite.

It is well-known that for k ∈ N0 , 1 < p <∞ , and wα ∈ Ap , i.e. −1 < α <
p− 1, we have

F kp,2(Rn, wα) = W k
p (Rn, wα). (4.10)

This can be found, for instance in [15, Proposition 1.9]. We are now in a
position to state the last result of this paper.
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Proposition 4.9. Let 1 < p <∞ and −1 < α < p− 1 . Then for any k ∈ N

trRn−1W k
p (Rn, wα) = B

k−α+1
p

pp (Γ).

Proof. Using (4.10) and Remark 4.5 combined with Theorems 3.3 and 4.4, we
obtain

trRn−1W k
p (Rn, wα) = trRn−1F kp,2(Rn, wα) = trRn−1B

k−αp
pp (Rn)

= B
k−αp− 1

p
pp (Γ) = B

k−α+1
p

pp (Γ).

Note that our assumption for α to imply wα ∈ Ap , i.e. α < p−1, already ensures
α < kp− 1, k ∈ N , needed in Theorem 4.4.

Remark 4.10. This result was first proved in [18, Section 3.6] using tricky inter-
polation techniques.
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