
Functiones et Approximatio
XXXV (2006), 183–193

HECKE’S THEORY AND THE SELBERG CLASS

J. Kaczorowski, G. Molteni, A. Perelli, J. Steuding & J. Wolfart

Dedicated to Professor Eduard Wirsing
on the occasion of his 75th birthday

Abstract: Roughly speaking, we prove that the Hecke L -functions associated with the cusp
forms of the Hecke groups G(λ) belong to the extended Selberg class, and for λ 6 2 we charac-
terize the Hecke L -functions belonging to the Selberg class.
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1. Hecke theory

In 1936, Hecke proved in his famous work [5] a bijection between modular forms
and Dirichlet series satisfying a functional equation of Riemann type. We first
recall some of the basic facts of Hecke’s classical theory.

For a positive real number λ , the Hecke group G(λ) is defined as the sub-
group of PSL2(R) given by

G(λ) =
〈(

1
0

λ

1

)
,

(
0
−1

1
0

)〉
,

i.e. G(λ) is generated by the fractional linear transformations τ → τ + λ and
τ → − 1

τ . A modular form of G(λ) of weight k and multiplier ε ∈ {±1} is a
holomorphic function f : H → C , where H = {τ ∈ C : Im τ > 0} is the upper
half-plane, satisfying

f(τ + λ) = f(τ) and f(−1/τ) = ε(i/τ)−kf(τ),

and having a Fourier expansion

f(τ) =
∞∑
n=0

c(n)e2πinτ/λ (1)
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for all τ ∈ H . The latter series representation includes the λ-periodicity and shows
that f(τ) is holomorphic at ∞ . The complex vector space of such modular forms,
satisfying in addition the growth condition c(n) = O(nc) for some constant c , is
denoted by M0(λ, k, ε); a modular form of M0(λ, k, ε) is a cusp form if c(0) = 0.

Hecke proved a one-to-one correspondence between the elements of M0(λ, k, ε)
and the Dirichlet series

L(s) =
∞∑
n=1

c(n)
ns

satisfying c(n) = O(nc) for some constant c and having meromorphic continuation
to the whole complex plane such that

Φ(s) +
c(0)
s

+
εc(0)
k − s ,

where

Φ(s) :=
(
λ

2π

)s
Γ(s)L(s),

is entire and bounded on every vertical strip and satisfies the functional equation

Φ(s) = εΦ(k − s). (2)

Hecke’s theorem includes the case of the Riemann zeta function ζ(s) as L(s) =
ζ(2s), f(τ) being in this case the classical theta-function, λ = 2, ε = 1 and
k = 1/2. The Dirichlet series associated as above with the modular forms of
M0(λ, k, ε) are called the Hecke L-functions, and clearly form a vector space
isomorphic to M0(λ, k, ε).

The groups G(λ) operate discontinuously as groups of fractional linear trans-
formations on H if and only if either λ > 2 or

λ = λm := 2 cos
π

m
with 3 6 m ∈ N ∪ {∞}.

Note, for example, that the space M0(λm, k, ε) with λm < 2 is non-trivial, i.e.
6= {0} , if and only if k = 4`/(m − 2) + 1 − ε for some positive integer ` . In this
case

dim M0(λm, k, ε) = 1 +
[
`+ (ε− 1)/2

m

]
. (3)

The space of cusp forms is non-trivial if and only if dim M0(λm, k, ε) > 2; in view
of (3) this condition holds when k is suitably large (see also [20]).

For λm ∈ {1,
√

2,
√

3, 2} (i.e. m ∈ {3, 4, 6,∞}), the Hecke group G(λm) can
be defined arithmetically and in these cases G(λm) holds a structure comparable
to the full modular group Γ := G(1) = PSL2(Z). We briefly recall the main
properties of the Hecke L-functions associated with the cusp forms of Γ; such
properties depend heavily on the theory of the Hecke operators. First of all, a Hecke
L-function has a degree 2 Euler product if and only if the associated cusp form
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is a normalized (i.e. c(1) = 1) eigenfunction for the Hecke operators. Moreover,
the space of the cusp forms has a basis of normalized eigenfunctions, and such
eigenfunctions have real coefficients and satisfy the Ramanujan conjecture. The
situation is similar in the case of λm ∈ {

√
2,
√

3, 2} , thanks to the fact that the
groups G(λm) are conjugate to index 2 extensions of the congruence subgroups
Γ0(N) of levels N = 2, 3, 4 respectively. However, in these cases only the newforms
(i.e. the cusp forms not induced by cusp forms of lower level) have a basis of
normalized eigenfunctions (for the Hecke and Atkin-Lehner operators), and the
space of cusp forms splits as a direct sum of the newforms and the oldforms
(having c(1) = 0).

For the theory outlined above, and much more, we refer to Hecke’s origi-
nal paper [5], to the papers by Atkin-Lehner [1] and Leutbecher [13] and to the
monographs by Hecke [6], Ogg [17], Berndt [3], Miyake [14] and Iwaniec [7].

Wolfart [19] has shown that every space M0(λm, k, ε) with λm /∈{1,√2,
√

3, 2}
has a basis consisting of modular forms of type

f(τ) =
∞∑
n=0

r(n)ane2πinτ/λ, (4)

where
r(n) ∈ Q and a is transcendental; (5)

moreover, a depends only on the space M0(λm, k, ε) (and not on the modular
form f(τ)). Clearly, the same statement holds for the cusp forms.

In this note we are interested in the class of the L-functions associated with
Hecke’s cusp forms f ∈ M0(λ, k, ε), mainly with λ = λm , with respect to the
Selberg class. It will be shown that according to the arithmetic nature of the
Fourier coefficients, indicated by (5), such Dirichlet series have rather different
properties. In the sequel we will always assume that f(τ) is a non-trivial cusp
form.

2. The Selberg class

Selberg [18] defined a general class S of Dirichlet series having analytic continu-
ation, a functional equation of Riemann type and an Euler product, and formulated
some fundamental conjectures. More precisely, the Selberg class S consists of the
functions F (s) satisfying the following axioms:

(i) Dirichlet series:

F (s) =
∞∑
n=1

a(n)
ns

,

the series being absolutely convergent for σ > 1;
(ii) analytic continuation: there exists a non-negative integer c such that

(s− 1)cF (s) is an entire function of finite order;
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(iii) functional equation:
Φ(s) = ωΦ(1− s),

where

Φ(s) := Qs
r∏

j=1

Γ(λjs+ µj)F (s)

with |ω| = 1, Q > 0, λj > 0 and Reµj > 0;
(iv) Ramanujan conjecture: a(n) = O(nε);
(v) Euler product:

logF (s) =
∞∑
n=1

b(n)
ns

with b(n) = 0 unless n = pk , and b(n) = O(nθ) for some θ < 1
2 .

The first three axioms are of analytic nature while the last two are more related to
arithmetic. The extended Selberg class S] consists of the non-identically vanishing
functions satisfying the first three axioms; clearly, S ⊂ S] . It is conjectured that
the Selberg class coincides with the class of automorphic L-functions. It is also
expected that for every function in the Selberg class the analogue of the Riemann
Hypothesis holds, i.e. all non-trivial zeros lie on the critical line Re s = 1/2.

The degree of F ∈ S] is defined by

dF = 2
r∑

j=1

λj

and is well-defined (although the data of the functional equation are not unique).
It is conjectured that all F ∈ S] have integral degree. This conjecture is known for
the interval [0, 5/3) (dF = 0 means that there are no Γ-factors in the functional
equation):

F ∈ S] with 0 6 dF <
5
3

=⇒ dF = 0, 1 (6)

(see Conrey & Ghosh [4] for the range 0 < dF < 1 and Kaczorowski & Perelli [11]
for 1 < dF < 5/3). The class of functions F ∈ S with degree d is denoted by Sd ,
and analogously for S] . Kaczorowski & Perelli [9] characterized the functions of
S1 : these are the Riemann zeta function ζ(s) and the shifted Dirichlet L-functions
L(s + iθ, χ) with θ ∈ R and χ primitive. A characterization of the functions of
S]1 is also given in [9]; roughly speaking, these are linear combinations of suitable
Dirichlet L -functions with certain Dirichlet polynomials of degree 0 as coefficients.
An important tool in such characterizations is the conductor of F ∈ S] , defined
as

qF = (2π)dFQ2
r∏

j=1

λ
2λj
j . (7)

The conductor is multiplicative, i.e. qGF = qF qG , and it is conjectured that qF ∈ N
for every F ∈ S ; [9] shows that this is the case for every F ∈ S1 and even for



Hecke’s theory and the Selberg class 187

F ∈ S]1 , although in general the conductor of functions in S] is not integer. We
recall that in the case of L-functions associated with modular forms, the above
defined conductor coincides with the level of the form. We also recall that S has
the multiplicity one property, i.e. two distinct functions in S must have infinitely
many distinct Euler factors, see Murty & Murty [16].

Both classes S and S] are multiplicatively closed. An element F ∈ S is cal-
led primitive if it cannot be factored as a product of two elements non-trivially, i.e.
the equation F (s) = F1(s)F2(s) with F1, F2 ∈ S implies F1(s) = 1 or F2(s) = 1
identically. Conrey & Ghosh [4] proved that every function in S has a factoriza-
tion into primitive functions; furthermore, they showed that this factorization is
unique if the deep orthonormality conjecture of Selberg is true (see [18] or [10]).
The situation for the extended Selberg class S] is definitely more difficult since S]0
is larger than S0 = {1} (S]0 consists of certain Dirichlet polynomials, see [9]). An
element F ∈ S] is called almost-primitive if any factorization F (s) = F1(s)F2(s)
with F1, F2 ∈ S] implies dF1 = 0 or dF2 = 0; moreover, F ∈ S] is primitive
(in S] ) if for any such factorization, F1(s) is constant or F2(s) is constant. Ka-
czorowski & Perelli [12] proved that almost-primitivity implies primitivity up to
a factor of degree zero; more precisely, if F ∈ S] is almost-primitive, then there
exist F1, F2 ∈ S] such that F (s) = F1(s)F2(s) with dF1 = 0 and F2(s) primitive.
This implies that any element of the extended Selberg class S] can be factored
into primitive functions.

It is not clear whether one can expect unique factorization in S] ; further-
more, it is not clear whether an element which is primitive in S is necessarily
primitive in S] as well. The Riemann zeta function and the Dirichlet L-functions
are primitive in S and S] . Other examples of primitive elements in S are suita-
bly normalized L-functions associated with eigenfunction newforms for congru-
ence subgroups of PSL2(Z), as shown by M.R. Murty [15]. On the contrary, the
Dedekind zeta functions associated with cyclotomic fields 6= Q are not primitive.

For more details concerning the Selberg class we refer to the survey [10] of
Kaczorowski & Perelli.

3. Functions of degree 2 in S and S]

We first normalize the Hecke L -functions in order to satisfy a functional equation
close to the one in axiom (iii). For f ∈M0(λ, k, ε) we write

Lf (s) =
∞∑
n=1

c(n)n
1−k

2

ns
=
∞∑
n=1

a(n)
ns

, (8)

say, thus functional equation (2) becomes

( λ
2π

)s
Γ(s+

k − 1
2

)Lf (s) = ε
( λ

2π

)1−s
Γ(1− s+

k − 1
2

)Lf (1− s). (9)
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Note that (9) is not exactly of the form required by axiom (iii) since there is no
conjugation on the right hand side. Therefore, we consider the modified Selberg
classes S̄ and S̄] , where the conjugation is dropped in axiom (iii). However, it
is easy to see that if there exists a complex number |ξ| = 1 such that ξLf (s)
has real coefficients, then functional equation (9) has the form required by axiom
(iii). Moreover, it is clear that the basic definitions and properties of S and S]
carry over to S̄ and S̄] . For example, if Lf ∈ S̄] then its degree is 2, and the
multiplicity one property holds for S̄ as well (see e.g. the simple proof in [10]).

In this note we show that Lf ∈ S̄] for every cusp form f ∈M0(λ, k, ε) with
any λ > 0, and we completely characterize the Hecke L -functions Lf (s) belonging
to S (or to S̄ ), where f ∈M0(λm, k, ε) is a cusp form.

Theorem. (i) Let λ > 0 and f ∈ M0(λ, k, ε) be a non-trivial cusp form; then
Lf ∈ S̄] .

(ii) Let λm ∈ {1,
√

2,
√

3, 2} and f ∈ M0(λm, k, ε) be a cusp form; if f(τ)
is a normalized eigenfunction newform then Lf ∈ S ∩ S̄ , otherwise Lf /∈ S ∪ S̄ .

(iii) Let λm /∈ {1,√2,
√

3, 2} and f ∈ M0(λm, k, ε) be a cusp form; then
Lf /∈ S ∪ S̄ .

Statement (iii) is the most interesting part of the Theorem, and is based on
the Wolfart basis theorem described in Section 1. An interesting open problem
raised by Peter Sarnak is characterizing the functions Lf (s), f ∈ M0(λ, k, ε),
belonging to S (or to S̄ ) when λ > 2. In this case the space M0(λ, k, ε) has an
uncountable basis.

Proof. (i) In view of Hecke’s correspondence theorem, see Chapter I of Hecke [6],
we only need to prove that the Dirichlet series of Lf (s) is absolutely convergent
for σ > 1. To this end we follow a classical argument, reported in Theorem 5.1
and Corollary 5.2 of Iwaniec’s book [7]. Given a cusp form f(τ) and writing
τ = x + iy , we consider the function g(τ) = yk/2|f(τ)| . It is easy to check that
g(τ) is G(λ)-invariant, i.e. g(γ(τ)) = g(τ) for every γ ∈ G(λ). Since g(τ) decays
exponentially at the cusps, we conclude that g(τ) is bounded on the fundamental
domain of G(λ), and hence on H . Therefore, as y → 0+

f(x+ iy)� y−k/2

uniformly in x , hence by (1) and Parseval’s formula we get

∞∑
n=1

|c(n)|2e−4πny/λ =
1
λ

∫ λ

0
|f(x+ iy)|2dx� y−k

as y → 0+ . Choosing y = 1
X with X →∞ we obtain

∑

n6X
|c(n)|2 � Xk,
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thus by the Cauchy-Schwarz inequality
∑

n6X
|c(n)| � X(k+1)/2

and finally, in view of (8), by partial summation
∑

n6X
|a(n)| � X,

and (i) follows.
(ii) For λm = 1 it is clear from the description in Section 1 that if f(τ) is

a normalized eigenfunction (for λm = 1 all cusp forms are newforms), then Lf (s)
has real coefficients, has an Euler product and satisfies the Ramanujan conjecture
(thanks to Deligne’s work), so Lf ∈ S ∩ S̄ . Note that by [8] the functions in
S are linearly independent, hence in particular there are exactly g normalized
eigenfunctions cusp forms, where g is the dimension of the space of cusp forms.
Note also that the only property of S involved in the results of [8] is the multiplicity
one property, hence the same results hold for S̄ as well. Therefore Lf /∈ S ∪ S̄ if
f(τ) is not a normalized eigenfunction.

A similar argument applies to the subspace of the newforms in the cases
λm ∈ {

√
2,
√

3, 2} . We remark that Lf ∈ S ∩ S̄ for f(τ) normalized eigenfunction
newform since the eigenfunctions of the Hecke algebra are automatically eigenfunc-
tions for the conjugation operator K , see p.113, 114 and 118 of [7]. Moreover, the
L-functions associated with the oldforms do not belong to S ∪ S̄ since a(1) = 0
and hence the coefficients are not multiplicative. The general case of linear com-
binations of oldforms and newforms requires the following

Lemma 1. For m = 4, 6,∞ , the Hecke L-functions associated with the oldforms
of the space M0(λm, k, ε) are linear combinations over the ring of Dirichlet poly-
nomials of Hecke L-functions associated with newforms of strictly lower levels.

Proof. This is a L-functions reformulation of parts of Theorem 5 in Atkin-Lehner
[1]. Roughly speaking, the coefficients of such linear combinations are of type
cjm

−s
j with cj complex and mj integer, and the underlying philosophy is as

follows. The oldforms are linear combinations of newforms of strictly lower levels,
and the factors m−sj come from the lifting of the newform L-functions to a higher
level.

Denote by M(s) and N(s) the generic L-functions in M0(λm, k, ε) associa-
ted with oldforms and newforms, respectively, and let

L(s) = aM(s) + bN(s)

with ab 6= 0. Then by Lemma 1 we have

M(s) =
∑

j

cj(s)Nj(s)
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with cj(s) Dirichlet polynomials and Nj(s) newform L -functions of strictly lower
levels. Passing to the basis of normalized eigenfunction newforms, we finally have

L(s) =
∑

j

kj(s)Lj(s) (10)

with kj(s) non-trivial Dirichlet polynomials and Lj(s) being L-functions asso-
ciated with normalized eigenfunction newforms. Since the level of a form equals
the conductor of the associated L -function, and since in (10) there are at least
two Lj(s) of different levels, in (10) there are at least two different Lj(s). But
the Lj(s) belong to the Selberg class, so by the linear independence results in [8],
L(s) does not belong to the Selberg class (or to the modified Selberg class, for
which the same results as in [8] hold). Part (ii) is therefore proved.

(iii) We show that Lf /∈ S ∪ S̄ by proving that its coefficients are not multi-
plicative. We argue by contradiction, assuming that Lf ∈ S∪S̄ . We first note that
Lf (s) 6= 1 since the constant function 1 has degree 0. Hence, by the multiplicity
one property, the Euler product of Lf (s) must have infinitely many non-trivial
Euler factors. Thus by multiplicativity the coefficients a(n) satisfy infinitely many
equations of type

a(nm) = a(n)a(m) 6= 0 with (n,m) = 1. (11)

In view of Wolfart’s basis (4) and (5), the a(n)’s can be expressed as a linear
combination of the form

a(n) = an
∑

j

cjrj(n)

with a transcendental, rj(n) rational and cj complex. Let K be a finitely gene-
rated extension of the field Q of the algebraic numbers, containing the coefficients
cj ; then we can rewrite the above linear combination as

a(n) = R(n)an, (12)

where R(n) ∈ K . More precisely, denoting by V ⊂ K the finite dimensional
Q-vector space generated by the coefficients cj and their products cicj , the coef-
ficients R(n) and their products R(n)R(m), n,m ∈ N , belong to V .

Valuation theory (see Ch. V of Bachman [2]) implies the existence of a
non-archimedian exponential valuation ν on the field K(a) with the following
properties:

i) ν(x) = 0 for x ∈ Q∗
ii) ν(a) = −1.

Writing V ∗ := V \ {0} we have

Lemma 2. The valuation ν is bounded on V ∗ , i.e. there exist real numbers L,M
such that L 6 ν(x) 6 M for every x ∈ V ∗ .

Proof. By induction on dimV . For dimV = 1 the claim is obvious since all
x ∈ V ∗ are algebraic multiples cw1 , c ∈ Q , of a fixed vector w1 , hence ν takes
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only the value ν(w1) on V ∗ . Now suppose that dimV = n and let W be a
codimension 1 subspace of V such that L′ 6 ν(x) 6 M ′ for x ∈ W \ {0} .
Suppose also that V is generated by W and a vector wn , thus all elements of V
can be written in the form w+ cwn , w ∈W and c ∈ Q . Thanks to ν(c) = 0 and
the fact that ν is non-archimedian we deduce the lower bound

ν(w + cwn) > min(ν(w), ν(cwn)) > min(L′, ν(wn)) =: L.

For the upper bound we distinguish two cases. If all wn ∈ V −W satisfy already
ν(wn) 6 M ′ , set M := M ′ and the proof is complete. Otherwise, take wn such
that ν(wn) > M ′ and recall that in this case

ν(w + cwn) = min(ν(w), ν(wn)) 6 ν(wn) =: M

and the lemma is proved.

From (11) and (12) we obtain infinitely many non-vanishing equations of
type

anm−n−mR(nm) = R(n)R(m),

and applying the valuation ν we get

n+m− nm = ν
(
R(n)R(m)

)− ν(R(nm)
)

which contradicts Lemma 2 since the left hand side is unbounded, thus proving
(iii). The Theorem is therefore proved.

We conclude the paper by a brief and partial discussion of the primitivity
problem for the Hecke L-functions Lf (s). We first remark that if λ2 /∈ N and
f ∈ M0(λ, k, ε) is such that Lf ∈ S] , then Lf (s) is almost-primitive. Indeed,
in view of (6) we have to show that Lf (s) cannot be factored into a product of
elements of S]0 and S]1 . Since qLf = λ2 and the conductor of the degree 0 and 1
functions is integer, such a factorization is not possible since λ2 /∈ N . Moreover,
thanks to the special structure of the groups G(λm) for λm ∈ {1,

√
2,
√

3, 2} , see
Section 1, we have that if f ∈M0(λm, k, ε) , λm ∈ {1,

√
2,
√

3, 2} , is a normalized
eigenfunction newform, then Lf (s) is primitive in S . This follows from Murty’s
result in [15].
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