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SPACE OF NONNEGATIVELY CURVED METRICS
AND PSEUDOISOTOPIES

Igor Belegradek, F. Thomas Farrell & Vitali Kapovitch

Abstract

Let V be an open manifold with complete nonnegatively curved
metric such that the normal sphere bundle to a soul has no section.
We prove that the souls of nearby nonnegatively curved metrics
on V are smoothly close. Combining this result with some topo-
logical properties of pseudoisotopies we show that for many V the
space of complete nonnegatively curved metrics has infinite higher
homotopy groups.

1. Introduction

Throughout the paper “smooth” means C∞ , all manifolds are smooth,
and any set of smooth maps, such as diffeomorphisms, embeddings,
pseudoisotopies, or Riemannian metrics, is equipped with the smooth
compact-open topology.

Let RK≥0(V ) denote the space of complete Riemannian metrics of
nonnegative sectional curvature on a connected manifold V . The group
Diff V acts on RK≥0(V ) by pullback. Let MK≥0(V ) be the associ-
ated moduli space, the quotient space of RK≥0(V ) by the above Diff V
action.

Many open manifolds V for which MK≥0(V ) is not path-connected,
or even has infinitely many path-components, were found in [KPT05,
BKS11, BKS15, Otta]. On the other hand, it was shown in [BH15]
that RK≥0(R

2) is homeomorphic to the separable Hilbert space, and
the associated moduli space MK≥0(R

2) cannot be separated by a closed
subset of finite covering dimension.

Recall that any open complete manifold V of K ≥ 0 contains a
compact totally convex submanifold without boundary, called a soul ,
such that V is diffeomorphic to the interior of a tubular neighborhood
of the soul [CG72]. We call a connected open manifold indecomposable

if it admits a complete metric of K ≥ 0 such that the normal sphere
bundle to a soul has no section.

Let N be a compact manifold (e.g., a tubular neighborhood of a
soul). A key object in this paper is the map ιN : P (∂N) → Diff N
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that extends a pseudoisotopy from a fixed collar neighborhood of ∂N
to a diffeomorphism of N supported in the collar neighborhood. Here
P (∂N) and Diff N are the topological groups of pseudoisotopies of ∂N
and diffeomorphisms of N , respectively, see Section 5 for background.
Let πj(ιN ) be the homomorphism induced by ιN on the j th homotopy
group based at the identity. We prove the following:

Theorem 1.1. Let N be a compact manifold with indecomposable

interior. Then for every h ∈ RK≥0(IntN) and each k ≥ 2, the group

ker πk−1(ιN ) is a quotient of a subgroup of πk(RK≥0(IntN), h).

Prior to this result there has been no tool to detect nontrivial higher
homotopy groups of RK≥0(V ).

We make a systematic study of ker πj(ιN ) and find a number of mani-
folds for which ker πj(ιN ) is infinite and IntN admits a complete metric
of K ≥ 0. Here is a sample of what we can do:

Theorem 1.2. Let U be the total space of one of the following vector

bundles:

(1) the tangent bundle to S2d , CP d , HP d , d ≥ 2, and the Cayley

plane,

(2) the Hopf R4 or R3 bundle over HP d , d ≥ 1,
(3) any linear R4 bundle over S4 with nonzero Euler class,

(4) any nontrivial R3 bundle over S4 ,

(5) the product of any bundle in (1), (2), (3), (4) and any closed

manifold of K ≥ 0 and nonzero Euler characteristic.

Then there exists m such that every path-component of RK≥0(U ×Sm)
has some nonzero rational homotopy group.

It is well-known that each U in Theorem 1.2 admits a complete metric
of K ≥ 0: For bundles in (3), (4) this follows from [GZ00], and the
bundles in (1), (2) come with the standard Riemannian submersion
metrics, see Example 3.3 (2).

We can also add to the list in Theorem 1.2 some R4 and R3 bundles
over S5 and S7 and an infinite family of R3 bundles over CP 2 , which
admit a complete metrics of K ≥ 0 thanks to [GZ00] and [GZ11],
respectively. Other computations are surely possible. In fact, we are yet
to find N with indecomposable interior and such that ιN is injective
on all homotopy groups; the latter does happen when N = Dn , see
Remark 4.5.

We are unable to compute m in Theorem 1.21 . Given U we find
k ≥ 1 such that for every l � k there is σ ∈ {0, 1, 2, 3} for which
the group πk RK≥0(U × Sl+σ) ⊗ Q is nonzero. Here k and the bound
“l � k” are explicit, but σ is not explicit. The smallest k ≥ 1 for

1Explicit computations of m will appear in the upcoming work of the second
author, Jiang Yi and Mauricio Bustamante.
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which we know that the group is nonzero is k = 7, which occurs when
U is the total space of a nontrivial R3 bundle over S4 .

We do not yet know how to detect nontriviality of πk MK≥0(V ),
k ≥ 1. The nonzero elements in πk RK≥0(U×Sm) given by Theorem 1.2
lie in the kernel of the πk -homomorphism induced by the quotient map
RK≥0(U × Sm) → MK≥0(U × Sm).

Structure of the paper. In Section 2, we outline geometric ingredients
of the proof with full details given in Section 3. Theorem 1.1 is proved
in Section 4. In Section 9, we derive the results on kerπj(ιN ), and prove
Theorem 1.2. The proof involves various results on pseudoisotopy spaces
occupying the rest of the paper; many of these results are certainly
known to experts, but often do not appear in the literature in the form
needed for our purposes. Theorems 9.4 and Proposition 9.17 are key
ingredients in establishing nontriviality of ker πj(ιN ).

Acknowledgments. We are thankful to Ricardo Andrade for a sketch
of Theorem 6.1, to John Klein for Remark 4.5, and to the referee for
helping us find a sharper version of Theorem 1.1 and other useful com-
ments. The first two authors are grateful for NSF support: DMS-
1105045 (Belegradek), DMS-1206622 (Farrell). The third author was
supported in part by a Discovery grant from NSERC.

2. Geometric ingredients of Theorem 1.1

Open complete manifolds of K ≥ 0 enjoy a rich structure theory.
The soul construction of [CG72] takes as the input a basepoint of a
complete open manifold V of K ≥ 0, and produces a compact totally
convex submanifold S without boundary, the so called soul of g , such
that V is diffeomorphic to the total space of the normal bundle of S .
The soul need not contain the basepoint.

Different basepoints sometimes produce different souls, yet any two
souls can be moved to each other by an ambient diffeomorphism that
restricts to an isometry on the souls, see [Sha74]. On the other hand,
the diffeomorphism type and the ambient isotopy type of the soul may
depends on the metric, see [Bel03, KPT05, BKS11, BKS15, Otta,
Ottb].

The soul construction involves asymptotic geometry so there is no a
priori reason to expect that the soul will depends continuously on the
metric varying in the smooth compact-open topology. We resolve this by
imposing the topological assumption that V is indecomposable meaning
that V admits a complete metric of K ≥ 0 such that the normal sphere
bundle to a soul has no section. This occurs if the normal bundle to
a soul has nonzero Euler class, see Section 3 for other examples. Also
in Section 3, we explain that any indecomposable manifold V has the
following properties:
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(i) Any metric in RK≥0(V ) has a unique soul, see [Yim90].
(ii) If two metrics lie in the same path-component of RK≥0(V ), then

their souls are diffeomorphic, see [KPT05], and ambiently iso-
topic [BKS11].

(iii) The souls of any two metrics in RK≥0(V ) have nonempty inter-
section.

(iv) The normal sphere bundle to a soul S of any metric in RK≥0(V )
has no section. In particular, dim(V ) ≤ 2 dim(S).

If Q is a compact smooth submanifold of V , we let Emb(Q,V ) de-
note the space of all smooth embeddings of Q into V . By the isotopy
extension theorem the Diff(V )-action on Emb(Q,V ) by postcomposi-
tion is transitive on each path-component, and its orbit map is a fiber
bundle, see [Pal60, Cer61]. The fiber over the inclusion Q ↪→ V is
Diff(V, relQ), the subgroup of the diffeomorphisms that fix Q point-
wise.

The group Diff Q acts freely on Emb(Q,V ) by precomposing with
diffeomorphisms of Q . Let X (Q,V ) = Emb(Q,V )/Diff Q with the
quotient topology; the orbit map is a locally trivial principal bundle,
see [GBV14]. Let X (V ) =

∐
Q X (Q,V ), the space of compact sub-

manifolds of V with smooth topology. Here is the main geometric
ingredient of this paper.

Theorem 2.1. If V is indecomposable, the map RK≥0(V ) → X (V )
that associates to a metric its unique soul is continuous.

The proof is a modification of arguments in [KPT05,BKS11]. What
we actually use is the following version of Theorem 2.1 in which the soul
is replaced by its tubular neighborhood whose size depends continuously
on the metric. For an indecomposable V denote by ig the normal
injectivity radius of a unique soul of g ∈ RK≥0(V ).

Corollary 2.2. If V is indecomposable, the map RK≥0(V ) → (0,∞]
that associates ig to g is continuous, and given a continuous function

σ : RK≥0(V ) → R with 0 < σ(g) < ig , the map RK≥0(V ) → X (V )
that associates to g the closed σ(g)-neighborhood of its soul is continu-

ous.

Proof. Continuity of g → ig follows from Theorem 2.1 and Lemma 3.2
below. The other conclusion is immediate from Theorem 2.1. q.e.d.

3. Continuity of souls for indecomposable manifolds

Throughout this section we assume that V is indecomposable. Let
us first justify claims (i)–(iv) of Section 2.

If a metric g ∈ RK≥0(V ) has two distinct souls, then by a result of
Yim [Yim90] the souls are contained in an embedded submanifold, the
union of pseudosouls , that is diffeomorphic to Rl×S where l > 0, where
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any soul is of the form {v}×S . In particular, the normal bundle to any
soul of g has a nowhere zero section, so V cannot be indecomposable.
This implies (i).

Claim (ii) is proved in Lemma 3.1 and Remark 3.2 of [BKS11] build-
ing on an argument in [KPT05].

To prove (iii) and (iv) consider two vector bundles ξ , η with closed
manifolds as bases and diffeomorphic total spaces. The associated unit
sphere bundles S(ξ), S(η) are fiber homotopy equivalent, see [BKS11,
Proposition 5.1]. By the covering homotopy property a homotopy sec-
tion of a fiber bundle is homotopic to a section; thus having a section
is a property of the fiber homotopy type. Hence if ξ has a nowhere
zero section, then so does η . If the zero sections of ξ , η are disjoint
in their common total space, then the zero section of η gives rise to a
homotopy section of S(ξ), and hence to a nowhere zero section of ξ .
These remarks imply (iii) and (iv).

Proof of Theorem 2.1. Since RK≥0(V ) is metrizable, it suffices to show
that if the metrics gj converge to g in RK≥0(V ), then their (unique)
souls converge in X (Q,V ). Let Sj , S be souls of gj , g , respectively.
By Lemma 3.1 below it suffices to show that Sj converges to S in the
C0 topology. Arguing by contradiction pass to a subsequence such that
each Sj lies outside some C0 neighborhood of S . Let pj , p denote the
Sharafutdinov retractions onto Sj , S for gj , g , and let ǧj , ǧ denote the
metric on Sj , S induced by gj , g , respectively. By [BKS11, Lemma
3.1] pj|S : S → Sj is a diffeomorphism for all large j , and the pullback
metrics (pj |S)

∗ǧj converge to ǧ in the C0 topology. In particular, the
diameters of ǧj are uniformly bounded. Note that each Sj intersects S
else pj|S would give rise to a nowhere zero section of the normal bundle
to S . Let U be a compact domain in V such that the interior of U
contains the closure of ∪jSj ∪ S .

The embedding pj|S : (S, ǧ) → (V, g) can be written as the composi-
tion of id: (S, ǧ) → (S, (pj |S)

∗ǧj), the isometric embedding of
(S, (pj |S)

∗ǧj) onto a convex subset of (V, gj), and id : (V, gj) → (V, g).
Recall that C0 convergence of metrics implies Gromov–Hausdorff, and
hence Lipschitz convergence. Hence the above identity map of S has
bi-Lipschitz constants approaching 1 as j → ∞ . Also there are com-
pact domains Uj in V and homeomorphisms (Uj , gj) → (U, g) that
converge to the identity and have bi-Lipschitz constants approaching 1,
and hence the same is true for pj|S : (S, ǧ) → (V, g).

By the Arzelà–Ascoli theorem pj|S subconverge to p∞ : (S, ǧ) →
(V, g), which is an isometry onto its image (equipped with the metric
obtained by restricting the distance function of g ). Compactness of S
implies that p∞ is homotopic to pj for large j . Since p is 1-Lipschitz
map (V, g) → (S, ǧ) that is homotopic to the identity of V , we con-
clude that p ◦ p∞ is a 1-Lipschitz homotopy self-equivalence of (S, ǧ).
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Homotopy self-equivalences of closed manifolds are surjective, so p ◦p∞
is surjective, and hence compactness of S implies that p ◦ p∞ is an
isometry.

Set f = p∞ ◦ (p ◦ p∞)−1 . Then f(S) = p∞(S) and p ◦ f is the
identity of S . Note that f(S) and S intersect, else f would give rise
to a section of the normal sphere bundle to S . Fix x ∈ f(S)∩S . Since
every Sj lies outside a C0 neighborhood of S , there is y ∈ f(S)\S . Let
u be a unit vector at p(y) that is tangent to a segment from p(y) to y .
Parallel translate u along a segment joining x and p(y). By [Per94]
this vector field exponentiate to an embedded flat totally geodesic strip,
where x lies on one side of the strip and y , p(y) lie on the other side.
Finally, d(p(y), x) = d(y, x) contradicts y �= p(y). q.e.d.

Lemma 3.1. Given k ∈ [1,∞], let gi be a sequence of complete Rie-

mannian metrics on a manifold M that Ck -converge on compact sets

to a metric g . Suppose Si , S are totally geodesic compact submanifolds

of (M,gi), (M,g), respectively. If Si converges to S in C0 -topology,

then it converges in Ck−1 -topology.

Proof. Fix x ∈ S and pick r such that expg |x , expgi |x are diffeo-
morphisms on the 2r -ball centered at the origin of TxM for all suffi-
ciently large i . Since Si , S are totally geodesic, they are equal to the
images under expgi , expg of some linear subspaces Li , L of Txi

M ,
TxM , respectively, where xi is near x . Since k ≥ 1, the maps expgi ,

expg are C0 -close, so that C0 -closeness of Si , S implies that expg(Li)

is C0 -close to S in Bg(x, r). Thus Li, L are C0 -close in the r -disk
tangent bundle over B(x, r), but then they must be C∞ -close because
C0 -close linear subspaces are C∞ -close. Thus expg(Li), expg(L) = S

are C∞ -close in B(x, r). Since expgi is Ck−1 -close to expg , we con-

clude that Si is Ck−1 -close to expg(Li), and hence to S . q.e.d.

The following lemma generalizes the well-known fact that the injec-
tivity radius depends continuously on a point of a Riemannian manifold.

Lemma 3.2. Let gj be a sequence of Riemannian metrics on a mani-

fold M that converges smoothly to a Riemannian metric g . Let Sj → S
be a smoothly converging sequence of compact boundaryless submanifolds

of M . Then normal injectivity radii of Si in (M,gi) converge to the

normal injectivity radius of S in (M,g).

Sketch of the Proof. Denote by igj , ig the normal injectivity radii of
Sj in (M,gj), and S in (M,g), respectively. Recall that ig equals the
supremum of all t such that d(γ(t), S) = t for every unit speed geodesic
γ with γ(0) ∈ S and γ′(0) orthogonal to S .

Arguing by contradiction suppose igj does not converge to ig . By
passing to a subsequence we can assume that igj → I ∈ [0,∞] and
I �= ig . A standard rescaling argument implies that I > 0. We shall
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only treat the case I < ∞ ; the case I = ∞ is similar. Then there is an
ε > 0 such that either I − ε > ig or I + ε < ig .

If I − ε > ig , there is a unit speed geodesic γ starting on S and
orthogonal to S at γ(0) such that d(γ(I− ε), S) < I− ε . This geodesic
is the limit of unit speed gj -geodesics γj starting on Sj . Since igj tends
to I > I−ε we get dj(γj(I−ε), Sj) = I−ε for all large j . The distance
functions dj(·, Sj) converge to d(·, S), hence passing to the limit gives
d(γ(I − ε), S) = I − ε . This contradiction rules out the case I − ε > ig .

Assume I + ε < ig . Smooth convergence of metrics implies conver-
gence of Jacobi fields, so the gj -focal radii of Sj are > I+ε for large j .
Then by the well-known dichotomy there is a gj -geodesic γj of length
2igj starting and ending on Sj which is orthogonal to Sj at end points.
Geodesics γj subconverge to a g -geodesic of length 2I orthogonal to S
at the endpoints. Therefore, ig ≤ I which is a contradiction. q.e.d.

Example 3.3. Here are some examples of indecomposable manifolds.
(1) If the normal bundle to a soul has nonzero Euler class with Z

or Z2 coefficients, then V is indecomposable because Euler class is an
obstruction to the existence of a nowhere zero section.

(2) The simplest method to produce open complete manifolds of
K ≥ 0 is to start with a compact connected Lie group G with a
bi-invariant metric, a closed subgroup H ≤ G, and a representation
H → Om so that the Riemannian submersion metric on the quotient
(G × Rm)/H is a complete metric of K ≥ 0 with soul (G × {0})/H .
Any G-equivariant Euclidean vector bundle over G/H is isomorphic to
a bundle of this form: the representation is given by the H -action on
the fiber over eH . This applies to the tangent bundle T (G/H) with the
Euclidean structure induced by the G-invariant Riemannian metric on
G/H . When G/H is orientable we conclude that T (G/H) is indecom-
posable if and only if G/H has nonzero Euler characteristic (because
for orientable Rn bundles over n-manifolds the Euler class is the only
obstruction to the existence of a nowhere zero section).

(3) To be indecomposable the normal bundle to a soul need not have
a nontrivial Euler class. For example, all R3 bundles over S4 , S5 , S7

admit a complete metric of K ≥ 0, see [GZ00] and so do many R3

bundles over CP 2 [GZ11]. Their Euler classes lie in H3( base ;Z) = 0,
yet their total spaces are often indecomposable:

(3a) Nontrivial rank 3 bundles over Sn , n ≥ 3 do not have a nowhere
zero section else the bundle splits as a Whitney sum of a bundle of ranks
1 and 2 which must be trivial. Thus all nontrivial rank 3 bundles over
S4 , S5 , S7 have indecomposable total spaces.

(3b) By [DW59] oriented isomorphism classes of rank 3 vector bun-
dles over CP 2 are in a bijection via (w2, p1) with the subset of

H2(CP 2;Z2)×HP 4(CP 2) ∼= Z2 × Z,
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given by the pairs (0, 4k), (1, 4l + 1), k, l ∈ Z , and such a bundle
has a nowhere zero section if and only if p1 is a square of the integer
that reduces to w2 mod 2. It follows from [GZ11, Theorem 3] that
the total space of such a bundle is indecomposable with three excep-
tions: k is odd, k is a square, or l is the product of two consecutive
integers.

(3c) According to [GZ00, Corollary 3.13] there are 88 oriented iso-
morphism classes of R4 bundles over S7 that admit complete metrics
of K ≥ 0. If the total space of such a bundle is not indecomposable,
then it is the Whitney sum of an R bundle and an R3 bundle (as any
R2 bundle over S7 is trivial). Since there are only 12 oriented isomor-
phism classes of R3 bundles over S7 , we conclude that there are at
least 76 oriented isomorphism classes of R4 bundles over S7 with in-
decomposable total spaces. In fact, there are precisely 76 such bundles
because the inclusion SO(3) → SO(4) is injective on homotopy groups.
Similarly, [GZ00, Proposition 3.14] implies that there are 2 oriented
isomorphism classes of R4 bundles over S5 with indecomposable total
spaces.

(4) The product of any indecomposable manifold with a closed mani-
fold of K ≥ 0 is indecomposable. Indeed, suppose V is indecomposable
with a soul S and B is closed. If V ×B were not indecomposable, then
the normal bundle to S ×B in V ×B would have a nowhere zero sec-
tion. Restricting the section to a slice inclusion S ×{∗} gives a section
of the normal bundle of S in V .

Remark 3.4. The product of indecomposable manifolds need not
be indecomposable. Indeed, let ξ , η be oriented nontrivial rank two
bundle over S2 , RP 2 classified by Euler classes in H2(S2;Z) ∼= Z

and H2(RP 2;Z) ∼= Z2 . Suppose e(ξ)[S2] is even. Then the Euler
class of ξ × η equals e(ξ × η) = e(ξ) × e(η), which vanishes because
the cross product is bilinear. By dimension reasons the Euler class
is the only obstruction to the existence of a nowhere zero section of
ξ × η , so the total space of ξ × η is not indecomposable. In view
of (1) above in order to show that ξ , η have indecomposable total
spaces it is enough to give them complete metrics of K ≥ 0. The
case of ξ is well-known: Any plane bundle over S2 can be realized
as (S3 × R2)/S1 , see (2) above, so it carries a complete metric of
K ≥ 0. To prove the same for η we shall identify it with the quo-
tient of S2×R2 by the involution i(x, v) = (−x,−v) which is isometric
in the product of the constant curvature metrics. The quotient can
be thought of γ ⊕ γ where γ is the canonical line bundle over RP 2 ,
so its total Stiefel–Whitney class equals (1 + w1(γ))

2 = 1 + w1(γ)
2 �=

1. Thus γ ⊕ γ is orientable and nontrivial, and hence it is isomor-
phic to η which is the only orientable nontrivial plane bundle over
RP 2 .
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4. Topological restrictions on indecomposable manifolds

In this section, we prove Theorem 1.1. Let V = IntN be an inde-
composable manifold. Fix a homeomorphism ρ : (0,∞] → (0, 1] with
ρ(s) < s , e.g., ρ(s) := s

s+1 .

Fix an arbitrary metric h ∈ RK≥0(V ) with soul Sh of normal in-
jectivity radius ih . By a slight abuse of notation we identify N with
the ρ(ih)-neighborhood of Sh . Let θh be the orbit map of a met-
ric h ∈ RK≥0(V ) under the pullback (left) action of Diff V given by
θh(φ) :=φ−1∗h ; we sometimes denote φ−1∗h by hφ . Consider the dia-
gram

∗ � Diff(V, relN) �� Diff V

��

θh �� RK≥0(V )

δ

��

ΩX (N, V )
Ωf

�� Diff N �� Emb(N, V )
q

�� X (N, V )
f

�� BDiff N

The map q takes an embedding to its image. Note that q is a principal
bundle [GBV14], and f denotes its classifying map.

The leftmost vertical arrow is given by restricting to N , which is a
fiber bundle due to the parametrized isotopy extension theorem. Its
fiber over the inclusion Diff(V, relN) is contractible by the Alexander
trick towards infinity. (The fibers over other components of Emb(N,V )
might not be contractible, but we will only work in the component of
the inclusion).

The map δ taking g to the closed ρ(ig)-neighborhood of Sg is con-
tinuous by Corollary 2.2.

The above diagram commutes because the isometry φ : (V, h) →
(V, hφ) takes the ρ(ih)-neighborhood of Sh to the ρ(ihφ

)-neighborhood
of Shφ

.
Let πk(θh) be the homomorphism induced by θh on the k th homo-

topy groups based at the identity map of V , and similarly, let πk(q),
πk(f), πk(Ωf) be the induced maps of homotopy groups based at inclu-
sions. With these notations the commutativity of the diagram implies
that Imπk(q) is a quotient of a subgroup of Imπk(θh).

In the bottom row of the diagram every two consecutive maps form
a fibration, up to homotopy. This gives isomorphisms Imπk(q) ∼=
ker πk(f) ∼= ker πk−1(Ωf) for each k ≥ 1.

A collar neighborhood of ∂N defines the inclusion ιN : P (∂N) →
Diff N extending a pseudoisotopy on the collar neighborhood by the
identity outside the neighborhood. In Theorem 6.1 below we identify
the homomorphisms πk−1(Ωf) and πk−1(ιN ) for each k ≥ 2, where
πk−1(ιN ) is the map induced by ιN on the (k − 1)th homotopy group
with identity maps as the basepoints.

In summary, ker πk−1(ιN ) is quotient of a subgroup of Imπk(θh) for
k ≥ 2, which completes the proof of Theorem 1.1.
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Remark 4.1. For k = 0 and 1 the proof of Theorem 1.1 shows that
Imπk(q) is a quotient of a subgroup of Imπk(θh).

Notation. If πj(X) is abelian, we let πQ
j (X) := πj(X) ⊗ Q and

denote the dimension of this rational vector space by dimπQ
j (X).

Remark 4.2. Tensoring with the rationals immediately implies that

under the assumptions of Theorem 1.1 any subspace of ImπQ
k (q) embeds

into ImπQ
k (θh).

Remark 4.3. One may hope to use Theorem 1.1 to produce infin-
itely generated subgroups of Imπk(θh). This is somewhat of an illusion
because ker πk−1(ιN ) is a finitely generated abelian group if π1(∂N)
is finite and max{2k + 7, 3k + 4} < dimN . Indeed, ker πk−1(ιN ) can
be identified with a subgroup of πk+1A(∂N), see (7.1) below, which is
finitely generated [Dwy80, Bet86]. Note that all known computations
of kerπk−1(ιN ) are in the above stability range.

Remark 4.4. An integral cohomology class is called spherical if it
does not vanish on the image of the Hurewicz homomorphism. In many
of our examples of indecomposable V the normal bundle to the soul has
spherical Euler class, which forces the soul of any metric in RK≥0(V ) to
have infinite normal injectivity radius by a result of Guijarro–Schick–
Walschap [GSW02]. For such V the proof of Theorem 1.1 simpli-
fies: we need not consider ρ or ig , and instead can let δ(g) be the
1-neighborhood of Sg and identify δ(h) with N .

Remark 4.5. The map ι
Dn is injective for all homotopy groups. In-

deed, by Theorem 6.1 the map f in the diagram below is a delooping
of ι

Dn provided both maps are restricted to the identity components.
The leftmost horizontal arrow is given by precomposing with the inclu-
sion, the downward arrow is the inclusion, and the slanted arrow is their
composition

O(n)

���
�
�
�
�
�
�
�
�
�
�

��

Diff Dn �� Emb(Dn,Rn)
q

�� X (Dn,Rn)
f

�� BDiffDn

The slanted arrow is a homotopy equivalence: deform an embedding
e so that it fixes 0 via t → te(x) + (1 − t)e(0), then deform it to

the its differential at 0 via s → e(sx)
s

, and, finally, apply a deformation
retraction GL(n,R) → O(n). Hence the left bottom arrow has a section
which makes q trivial on the homotopy groups, so by exactness f is
injective on homotopy groups.
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5. Pseudoisotopy spaces, stability, and involution

A pseudoisotopy of a compact smooth manifold M is a diffeomor-
phism of M×I that is the identity on a neighborhood of M×{0}∪∂M×
I . Pseudoisotopies of M form a topological group P (M). Let P∂ (M)
denote the topological subgroup of P (M) consisting of diffeomorphisms
of M × I that are the identity on a neighborhood of ∂(M × I).

Igusa in [Igu88] discussed a number of inequivalent definitions of
pseudoisotopy, e.g., a pseudoisotopy is often defined as a diffeomorphism
of M × I that restricts to the identity of M × {0} ∪ ∂M × I . Igusa
in [Igu88, Chapter 1, Proposition 1.3] establishes a weak homotopy
equivalence of pseudoisotopy spaces arising from various definitions, and
in particular, the inclusion

P (M) → Diff(M × I, relM × {0} ∪ ∂M × I)

is a weak homotopy equivalence. The co-domain of the inclusion is ho-
motopy equivalent to a CW complex; in fact, for any compact manifold
L with boundary and any closed subset X of L , the space Diff(L, relX)
is a Fréchet manifold [Yag, Lemma 4.2(ii)] and hence is homotopy equiv-
alent to a CW complex [Yag, Lemma 2.1]. By contrast, we do not know
if P (M) is homotopy equivalent to a CW complex which necessitates
some awkward arguments in Section 6.

Defining a pseudoisotopy as an element of P (M) is convenient for our
purposes because it allows for easy gluing: A codimension zero embed-

ding of closed manifolds M0 → M induces a continuous homomorphism

P (M0) → P (M) given by extending a diffeomorphism by the identity

on (M \M0)× I . Similarly, the map ιN defined in the introduction is
a continuous homomorphism.

By Igusa’s stability theorem [Igu88] the stabilization map

(5.1) Σ: P (M) → P (M × I)

is k -connected if dimM ≥ max{2k + 7, 3k + 4}. Thus the iterated
stabilization is eventually a πi -isomorphism for any given i . The stable
pseudoisotopy space P(M) is the direct limit lim

m→∞
P (M × Im).

It is known, see the proof of [Hat78, Proposition 1.3], that P(−) is a
functor from the category of compact manifolds and continuous maps to
the category of topological spaces and homotopy classes of continuous
maps. Also homotopic maps M → M ′ induce the same homotopy
classes P(M) → P(M ′). Every k -connected map M → M ′ induces a
(k − 2)-connected map P(M) → P(M ′) [Igu, Theorem 3.5].

The space P (M) has an involution given by f → f̄ , where

f̄(x, t) = r(f(f−1(x, 1), 1 − t)) and r(x, t) = (x, 1 − t),

see [Vog85, p. 296]. We write the induced involution of πiP (M) as
x → x̄ .



356 I. BELEGRADEK, F. T. FARRELL & V. KAPOVITCH

Since P (M) is a topological group, the sum of two elements in
πiP (M) is represented by the pointwise product of the representatives
of the elements [Spa66, Corollary 1.6.10]. Hence the endomorphism of
πiP (M) induced by the map f → f ◦ f̄ is given by x → x+ x̄ .

Note that the image of the map f → f ◦ f̄ lies in P∂ (M). It follows
that any element x+x̄ ∈ πiP (M) is in the image of the inclusion induced
homomorphism πiP∂ (M) → πiP (M) for if f represents x , then x+ x̄
is represented by f ◦ f̄ . For future use we record the following lemma:

Lemma 5.2. Let M be a compact manifold with boundary, let i
be an integer with dim(M) ≥ max{2i + 9, 3i + 7}, and let ηmi be the

endomorphism of πQ
i P (M × Im) induced by the map f → f ◦ f̄ .

(1) If x ∈ πiP (M) has infinite order, then x + x̄ ∈ πiP∂ (M) and

Σx+Σx ∈ πiP∂ (M × I) cannot both have finite order.

(2) πQ
i P(M) embeds into Im ηmi ⊕ Im ηm+1

i . In particular, there is

ε ∈ {0, 1} such that 2 dim Im ηm+ε
i ≥ dimπQ

i P(M).

Proof. (1) The map f → f̄ homotopy anti-commutes with the stabi-
lization map (5.1), as proved in [Hat78, Appendix I]. By assumption i
is below Igusa’s stability range so Σ is a πi -isomorphism, and πiP (M)
contains an infinite order element x . Then either x+ x̄ or Σx+Σx has
infinite order for otherwise

2Σx = Σx+Σx+Σx− Σx = Σx+Σx+Σ(x+ x̄),

would have finite order, contradicting πi -injectivity of Σ.

(2) Let Σ ker ηmi denote the image of ker ηmi under the πQ
i -isomorphism

induced by Σ. The intersection of ker ηm+1
i and Σker ηmi is trivial, for

if x = −x̄ and Σx = −Σx , then Σx = −Σx̄ = Σx so that Σx = 0.
Thus ker ηmi injects into Im ηm+1

i , and the claim follows by observing

that πQ
i P(M) ∼= ker ηmi ⊕ Im ηmi . q.e.d.

6. Pseudoisotopies and the space of submanifolds

Let Diff0M , P0(M) denote the identity path-components of Diff M ,
P (M), respectively. Given a submanifold X of Y let Emb0(X,Y )
denote the component of the inclusion in the space of embeddings of
X → Y , and let Ω0X (X,Y ) be the component of the constant loop
based at the inclusion.

If f : E → B is a continuous map and Ef → B is the corresponding
standard fibration with a fiber F , then the associated homotopy fiber

map F → E is the composition of the inclusion F → Ef with the
standard homotopy equivalence Ef → E .

Theorem 6.1. Let M be a compact manifold with nonempty bound-

ary. Suppose U is obtained by attaching ∂M × [0, 1) to M via the
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identity map of the boundary. Let l : ΩX (M,U) → Diff M be the ho-

motopy fiber map associated with the map Diff M → Emb(M,U) given

by postcomposing diffeomorphisms with the inclusion. Then there is a

weak homotopy equivalence φ : Ω0X (M,U) → P0(∂M) such that ιM ◦φ
is homotopic to the restriction of l to Ω0X (M,U).

Proof. Let M0 be the complement of an open collar of ∂M in M .
Consider the following commutative diagram:

Diff0(M)
i ��

r

��

Emb0(M,U)

s

��

Emb0(M0, IntM)
j

�� Emb0(M0, U).

Here r and s are given by restriction to M0 , while i and j is induced
by precomposing with the inclusion M ↪→ U , and postcomposing with
the inclusion Int M ↪→ U .

First we show that s is a homotopy equivalence. Let us factor
the restriction Diff0 U → Emb0(M0, U) as the restriction Diff0 U →
Emb0(M,U) followed by s . By the parametrized isotopy extension
theorem [Pal60, Cer61] the above restrictions are fiber bundles with
fibers Diff0(U, relM0), Diff0(U, relM), respectively. The fibers are con-
tractible by the Alexander trick towards infinity, so s is a homotopy
equivalence.

The map j is also a homotopy equivalence. Note that the space of
smooth embeddings of a compact manifold into an open manifold is an
ANR because it is an open subset of a Fréchet manifold of all smooth
maps between the manifolds. Hence the domain and codomain of j are
homotopy equivalent to CW complexes and it suffices to show that j is
a weak homotopy equivalence. This easily follows from the existence of
an isotopy of U that pushes a given compact subset into IntM , e.g.,
given a map Sk → Emb0(M0, U) based at the inclusion we can use the
isotopy to push the adjoint Sk ×M0 → U of the above map into IntM
relative to the inclusion, so j is πk -surjective, and injectivity is proved
similarly.

By the parametrized isotopy extension theorem the map r is a fiber
bundle, and its fiber Fr over the inclusion equals the space of diffeo-
morphisms of M \ Int(M0) that restrict to the identity of ∂M0 and lie
in Diff0 M . The inclusion

(6.2) P (∂M) ∩Diff0 M → Fr

is a weak homotopy equivalence [Igu88, Chapter 1, Proposition 1.3].
The space Fr is a Fréchet manifold, see [Yag, Lemma 4.2(ii)], hence
it is an ANR. Therefore, the CW-approximation theorem gives a weak
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homotopy equivalence

hr : Fr → P (∂M) ∩Diff0M,

whose composition with the inclusion (6.2) is homotopic to the identity
of Fr .

Since s and j are homotopy equivalences, the homotopy fibers Fi , Fr

of i , r are homotopy equivalent, i.e., there is a homotopy equivalence
h : Fi → Fr which together with the homotopy fiber maps fi : Fi →
Diff0M , fr : F → Diff0 M forms a homotopy commutative triangle.
This gives homotopies ιM ◦ hr ◦ h ∼ fr ◦ h ∼ fi .

Look at the map of fibration sequences

ΩDiff0 M ��

��

ΩEmb0(M,U) ��

��

Fi
fi

��

g

��

Diff0 M ��

��

Emb0(M,U)

��

ΩDiff M �� ΩEmb(M,U) �� ΩX (M,U)
l �� Diff M �� Emb(M,U)

where the maps in the rightmost and the leftmost squares are inclusions,
and g is the associated map of homotopy fibers. The two rightmost ver-
tical arrows are inclusions of path-components. Hence the unlabeled ver-
tical arrows induce πk -isomorphisms for k > 0, and so does g by the five
lemma. The space X (M,U) is a Fréchet manifold [GBV14], and hence
its loop space is homotopy equivalent to a CW complex [Mil59]. Thus
the restriction of g to the identity component is a homotopy equivalence
whose homotopy inverse we denote by g′ . For the map φ := hr ◦ h ◦ g′

we have homotopies ιM ◦φ ∼ fi ◦ g
′ ∼ l ◦ g ◦ g′ ∼ l|Ω0X (M,U) as claimed.

q.e.d.

Remark 6.3. We do not know if the groups π0P (∂M), π0ΩX (M,U)
are isomorphic. Theorem 6.1 implies that any two path-components
of P (∂M), ΩX (M,U) are weakly homotopy equivalent. (If X is an
H -space whose H -multiplication induces a group structure on π0(X),
then all path-components of X are homotopy equivalent. This applies
to topological groups and loop spaces.)

7. Rational homotopy of the pseudoisotopy space

In this section, we review how to compute πQ
∗ P(M), work out the

cases when M is Sn , HP d , S4 × S4 , S4 × S7 , and explain that every
2-connected rational homotopy equivalence induces an isomorphism on

πQ
∗ P(−).

It turns out that if M is simply-connected, the computation of πQ
∗ P(M)

reduces to a problem in the rational homotopy theory.
There is a fundamental relationship between P(M) and the Wald-

hausen algebraic K -theory A(M). For our purposes a definition of
A(−) is not important, and it is enough to know that A(−) is a functor
from the category of continuous maps of topological spaces into itself,
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see [Wal78]. Let Af : A(X) → A(Y ) denote a map induced by a map
f : X → Y . For each i ≥ 0 there is a natural isomorphism

(7.1) πi+2A(M) ∼= πS
i+2(M+)⊕ πiP(M).

This result was envisioned in works of Hatcher and Waldhausen in
1970s, and a complete proof has, finally, appeared in [WJR13, Theorem
0.3], where the notations are somewhat different, see [Rog, section 1.15]
and [HS82, p.227] for relevant background.

Here πS
i+2(M+) is the (i+2)th stable homotopy group of the disjoint

union of M and a point, which after tensoring with the rationals be-
comes naturally isomorphic to the homology of M , i.e., πS

i+2(M+)⊗Q ∼=
Hi+2(M ;Q), see, e.g., [tD08, section 20.9].

Dwyer [Dwy80] showed that if X is simply-connected and each
πi(X) is finitely generated, then each πiA(X) is finitely generated.
Since compact simply-connected manifolds have finitely generated ho-
motopy groups [Spa66, Corollary 9.6.16], it follows from (7.1) that
P(M) have finitely generated homotopy groups for each compact simply-
connected manifold M .

The constant map M → ∗ induces retractions P(M) → P(∗) and
A(M) → A(∗), which give isomorphisms:

(7.2)
πiP(M) ∼= πiP(∗) ⊕ πi(P(M),P(∗)),

πiA(M) ∼= πiA(∗)⊕ πi(A(M), A(∗)).

Waldhausen computed the rational homotopy groups of A(∗), the
algebraic K -theory of a point [Wal78, p. 48], which gives

(7.3) πQ
q P(∗) ∼= πQ

q+2A(∗) =

{
Q if q ≡ 3 (mod 4 ),
0 else.

Thus the Poincaré series of πQ
∗ P(∗) is t3(1 − t4)−1 . Recall that the

Poincaré series of a graded vector space ⊕
i
Wi is

∑
i

ti dimWi .

The Poincaré series of πQ
∗ (P(M),P(∗)), where M = Sk with k > 1,

was computed in [HS82] as

(7.4)
t3n−4

1− t2n−2
if M = Sn where n ≥ 2 is even,

(7.5)
t4n−5

1− t2n−2
if M = S2n−1 where n ≥ 2 is an integer.

More precisely, [HS82, pp. 227–229] gives the Poincaré series of π∗A(S
k)

and (7.4)–(7.5) is obtained from the series by subtracting the Poincaré

series for H∗(S
k;Q) and πQ

∗ A(∗), and shifting dimensions by two.

The range of spaces X for which πQ
∗ A(X) is readily computable was

greatly extended after the discovery of a connection between πQ
∗ A(X)
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and HC∗(X;Q), the rational cyclic homology, see [Goo86], and refer-
ences therein.

By [Goo85, Theorem V.1.1] or [BF86, Theorem A] there is a nat-
ural isomorphism between HC∗(X;Q) and the equivariant rational ho-

mology HS1

∗ (LX;Q). The latter is defined as H∗(LX ×S1 ES1;Q),
where LX ×S1 ES1 is the Borel construction and LX is free loop
space of X , i.e., the space of continuous maps S1 → X with the
compact-open topology. Note that LX comes with the circle action
by pre-composition, and the post-composition with a continuous map
f : X → Y induces the S1 -equivariant continuous map Lf : LX → LY .

The free loop space of a point is a point, so HS1

∗ (∗;Q) = H∗(BS1).
The map X → ∗ induces a retraction LX×S1ES1 → ∗×S1ES1 = BS1 ,
which gives an isomorphism:

(7.6) HS1

i (LX;Q) ∼= HS1

i (∗;Q)⊕HS1

i (LX, ∗;Q).

In many cases HS1

∗ (LX;Q) can be computed due to

• the Künneth formula for rational cyclic homology HC∗(X;Q)
of [BF86];

• a Sullivan minimal model for LX×S1 ES1 developed in [VPB85]

for any simply-connected X such that dimπQ
i (X) is finite for

every i .

To state a result in [Goo86] we need a notation. Given a functor
F that associates to a continuous map g : X → Y a sequence of linear
maps of rational vector spaces gi : Fi(X) → Fi(Y ) indexed by i ∈ N , we
let Fi(g) denote a rational vector space that fits into an exact sequence

(7.7) . . . −→ Fi(X)
gi
−→ Fi(Y ) −→ Fi(g) −→ Fi−1(X)

gi−1
−→ . . .

so that Fi(g) is isomorphic to direct sum of ker gi−i and Fi(Y )/Im gi .

We apply the above when Fi is the rational homotopy πQ
i (−) or equi-

variant rational homology HS1

i (−;Q), while g is Af or Lf , respectively.

In particular, in these notations πQ
i (g) = 0 for all i ≤ k if and only if g

is rationally k -connected.
Goodwillie proved in [Goo86, p. 349] that any 2-connected continu-

ous map f : X → Y gives rise to an isomorphism for all i

(7.8) πQ
i (Af ) ∼= HS1

i−1(Lf ;Q).

Waldhausen proved that if f is k -connected with k ≥ 2, then so is
Af , see [Wal78, Proposition 2.3], and (7.8) gives a rational version of
this result:

Corollary 7.9. If f is 2-connected and rationally k -connected, then
so is Af .

Proof. If F is a homotopy fiber of f , then LF is a homotopy fiber
of Lf , see [Str11, Theorem 5.125]. It is easy to see that LF is also the
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homotopy fiber of the map LX ×S1 ES1 → LY ×S1 ES1 induced by
Lf . By assumption F is rationally (k−1)-connected, so the homotopy
exact sequence of the evaluation fibration ΩF → LF → F shows that

LF is rationally (k − 2)-connected. This implies that HS1

i−1(Lf ;Q) = 0
for i ≤ k , which proves the lemma thanks to (7.8). q.e.d.

Corollary 7.10. Any 2-connected rationally k -connected map of

simply-connected compact manifolds induces an isomorphism on

πQ
i P(−) for i < k − 2 and an epimorphism for i = k − 2.

Proof. This follows from naturality of (7.1) combined with Corol-
lary 7.9 and the Whitehead theorem mod the Serre class of abelian
torsion groups [Spa66, Theorem 9.6.22]. q.e.d.

If X is simply-connected, then X → ∗ is 2-connected, so that (7.8)
implies:

Corollary 7.11. If X is simply-connected, then πQ
i (A(X), A(∗)) is

isomorphic to HS1

i−1(LX, ∗;Q) for all i.

Proof. If f : X → ∗, then Af , Lf are retractions, so (7.7) splits into
short exact sequences. In view of (7.2) and (7.6), we get isomorphisms

HS1

i−1(LX, ∗;Q) ∼= HS1

i (Lf ;Q) ∼= πQ
i+1(Af ) ∼= πQ

i (A(X), A(∗)),

where the middle isomorphism is given by (7.8). q.e.d.

By (7.1) and Corollary 7.11 the Poincaré series of πQ
∗ (P(M),P(∗))

equals the difference of the Poincaré series of HC∗+1(M, ∗;Q) and
H∗+2(M ;Q). For future use we record some explicit computations of
HC∗(M).

If M is simply-connected and H∗(M ;Q) ∼= Q[α]/(αn+1) the Poincaré
series for HC∗(M ;Q) was found in [VPB85, Theorem B] giving the

following Poincaré series for πQ
∗ (P(M),P(∗)):

(7.12)
(1− t4n) t4n+4

(1− t4) (1 − t4n+2)
if α ∈ H4(M ;Q) ,

(7.13)
t2n

1− t2
if α ∈ H2(M ;Q) .

In particular, (7.12) applies to M = HPn , and (7.13) applies when
M is CPn or the total space of any nontrivial S2 -bundle over S4 ,
see [GZ00, Corollary 3.9], which, in fact, is rationally homotopy equiv-
alent to CP 3 .

Next we compute πQ
∗ (P(M),P(∗)) when M is S4 × S4 and S7 ×

S4 . The Poincaré series of HC∗(S
4, ∗;Q) equals t3(1− t6)−1 [VPB85,

Theorem B], so by dimension reasons HC∗(S
4;Q) is quasifree in the
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sense of [BF86, p.303]. Hence the Künneth formula of [BF86, Theorem
B(b)] applies and for any connected space X we have

HC∗(X × S4, ∗;Q) ∼= HC∗(X, ∗;Q) ⊕H∗(LX;Q) ⊗HC∗(S
4, ∗;Q).

Recall that taking the Poincaré series converts ⊕ to the sum and ⊗ to
the product of series.

Set X = S4 . The Poincaré series for H∗(LS
4;Q) is given in [VPB85,

Theorem B(2b)] and it simplifies to 1 + (t3 + t4)(1− t6)−1 . Therefore,
the Poincaré series for HC∗(S

4 × S4, ∗;Q) equals

2t3(1− t6)−1 + (t6 + t7)(1− t6)−2,

and we get the Poincaré series for πQ
∗ (P(S4 × S4),P(∗)):

(7.14)
2t2

1− t6
+

t5 + t6

(1− t6)2
− 2t2 − t6.

Set X = S7 . The Poincaré series for HC∗(S
7, ∗;Q), H∗(LS

7;Q)
equal t6(1− t6)−1 , (1 + t7)(1− t6)−1 , respectively. Hence the Poincaré
series for HC∗(S

7 × S4, ∗;Q) equals t6(1− t6)−1 + t3(1 + t7)(1− t6)−2 ,

and therefore, we get the Poincaré series for πQ
∗ (P(S7 × S4),P(∗)):

(7.15)
t5

1− t6
+

t2(1 + t7)

(1− t6)2
− t2 − t5 − t9.

8. Block automorphisms, pseudoisotopies, and surgery

Throughout this section M is a compact manifold with (possibly
empty) boundary.

Let G(M,∂) denote the space of all continuous self-maps (M,∂M)
that are homotopy equivalences of pairs that restrict to the identity on
∂M , and let Diff(M,∂) be the group of diffeomorphisms that restrict
to the identity of ∂M .

Let Ls
j(ZG) denote the Wall’s L-group of G for surgery up to simple

homotopy equivalence. These are abelian groups which are fairly well
understood when G is finite. In particular, if G is trivial, then Ls

j(Z)

is isomorphic to Z for j ≡ 0 (mod 4 ) and is finite otherwise.
The following is known to experts but we could not locate a reference.

Theorem 8.1. If M is a compact orientable manifold and i ≥ 1,

then the dimension of πQ
i Diff(M,∂) is bounded above by the dimension

of

Q⊗

(
πiG(M,∂) ⊕ πiP(M)⊕ Ls

q+1(Zπ1M)⊕
(

⊕
l∈Z+

Hq−4l(M)
))

,

provided 3i+ 9 < dimM and q = i+ 1 + dimM .
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Proof. Every topological monoid with the identity has abelian funda-
mental group so tensoring its ith homotopy group with Q makes sense
for i ≥ 1.

Let G̃(M,∂) be the topological monoid of block homotopy equiv-
alences of (M,∂M) that are the identity on the boundary, and let

D̃iff(M,∂) be the subgroup of block diffeomorphisms (see, e.g., [BM13]
for background on block automorphisms). The inclusion G(M,∂) →

G̃(M,∂) is a homotopy equivalence, see [BM13, p. 21] and there is a
fibration

G̃(M,∂)/D̃iff(M,∂) → BD̃iff(M,∂) → BG̃(M,∂),

whose homotopy sequence gives
(8.2)

dimπQ
i D̃iff(M,∂) ≤ dim

(
πQ
i G(M,∂) ⊕ πQ

i+1G̃(M,∂)/D̃iff(M,∂)
)
.

Hatcher [Hat78, Chapter 2] constructed a spectral sequence En
pq con-

verging to πp+q+1D̃iff(M,∂)/Diff(M,∂) with

E1
pq = πqP (M ×Dp) and E2

pq = Hp(Z2;πqP(M)),

for q � p+dim(M). All elements in Hp>0(Z2;−) have order 2 [Bro82,
Proposition III.10.1], so rationally only the terms E2

0q can be nonzero.

Hatcher’s arguments combined with Igusa’s stability theorem [Igu88]

show that πQ
q+1(D̃iff(M,∂),Diff(M,∂)) is a quotient of E1

0q ⊗ Q =

πQ
q P(M) provided max{10, 3q + 9} < dim(M). Thus the homotopy

exact sequence of the pair (D̃iff(M,∂),Diff(M,∂)) implies for i ≥ 1
and 3i+ 9 < dim(M):

(8.3) dimπQ
i Diff(M,∂) ≤ dim

(
πQ
i D̃iff(M,∂)⊕ πQ

i P(M)
)
.

Surgery theory allows us to identify πi+1G̃(M,∂)/D̃iff(M,∂) with the
relative smooth structure set S(M×Di+1, ∂), see [Qui70] and [BM13,
pp. 21–22]. Set Q = M×Di+1 and q = dimQ . If dimQ > 5 and i ≥ 0,
then the surgery exact sequence

(8.4) Ls
1+dimQ(Zπ1Q) → S(Q, ∂) → [Q/∂Q,F/O] → Ls

dimQ(Zπ1Q)

is an exact sequence of abelian groups, where F/O is the homotopy
fiber of the J -homomorphism BO → BF . Since BF is rationally
contractible, the fiber inclusion F/O → BO is a rational homotopy
equivalence, hence rationally F/O is the product of Eilenberg–MacLane
spaces K(Z, 4l), l ∈ Z+ . It follows that:

[Q/∂Q,F/O] ⊗Q ∼= ⊕
l∈Z+

H4l(Q/∂Q;Q),

where by the Poincaré–Lefschetz duality

H̃j(Q/∂Q;Q) ∼= Hj(Q, ∂Q;Q) ∼= HdimQ−j(Q;Q) ∼= HdimQ−j(M ;Q),

which completes the proof because of (8.2), (8.3), (8.4). q.e.d.
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Corollary 8.5. Let M be a compact simply-connected manifold and

let i ≥ 1 such that πQ
i G(M,∂) = 0 and 3i + 9 < dimM . Let q =

dimM + i+ 1. If one of the following is true:

• q equals 0 or 1 mod 4, and H̃∗(M ;Q) = H2r(M ;Q) for some

odd r ,
• q equals 1 or 2 mod 4, and H̃∗(M ;Q) ∼= ⊕

r∈Z+

H4r(M ;Q),

then dimπQ
i Diff(M,∂) ≤ dimπQ

i P (M).

Proof. The assertion is a consequence of Theorem 8.1 except when
q = 0 (mod 4). But in this case we can remove H0=q−4l(M) ∼= Z from
the right hand side of the inequality in the statement of Theorem 8.1 be-
cause in (8.4) the surgery obstruction map [Q/∂Q,F/O] → Ls

q(Z)
∼= Z

is nonzero. We could not find this stated in the literature, so here is a
proof. Recall that a normal map is a morphism of certain stable vec-
tor bundles whose restriction to the zero sections is a degree one map
that is a diffeomorphism on the boundary. By plumbing, see [Bro72,
Theorems II.1.3], for every integer n one can find a compact manifold
P and a degree one map (P, ∂P ) → (Dq=4l, ∂Dq) that restricts to a
homotopy equivalence ∂P → ∂Dq , is covered by a morphism from the
stable normal bundle of P to the trivial bundle over Dq , and whose
surgery obstruction equals n . The group of homotopy (q − 1)-spheres
is finite, so by taking boundary connected sums of this normal map
with itself sufficiently many, say k , times we can arrange that the ho-
motopy sphere ∂P is diffeomorphic to ∂Dq ; the surgery obstruction
then equals kn . The map ∂P → Dq preserves the orientation, so iden-
tifying ∂P with ∂Dq yields a self-map of ∂Dn that is homotopic to
the identity. Attaching the trace of this homotopy to P we can assume
that ∂P → ∂Dq is the identity. Let L be the manifold built by replac-
ing an embedded q -disk in IntQ with P , so that there is a degree one
map (L, ∂L) → (Q, ∂Q) that equals the identity outside the embedded
copy of P . The bundle data match because the restriction of the stable
normal bundle of P to ∂P is the stable normal bundle to ∂P , which is
trivial. The additivity of the surgery obstruction, see [Bro72, II.1.4],
shows that the surgery obstruction of the above normal map covering
(L, ∂L) → (Q, ∂Q) equals kn . q.e.d.

9. Manifolds for which ιN is not injective on rational
homotopy

In this section, we derive criteria of when ιN is not injective on ra-
tional homotopy groups and verify the criteria for manifolds in Theo-
rem 1.2. To apply results of Section 8 we need to bound the size of
πiG(M,∂).
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Proposition 9.1. If E is a compact simply-connected manifold with

πQ
l (E) = 0 for all l ≥ n , then πiG(E × Dm, ∂) is finite for all m ≥

max{0, n − i}.

Proof. Since E is compact simply-connected, πlE is finitely gener-
ated for all l , see [Spa66, Corollary 9.6.16], so πlE is finite for l ≥ n .
For any m ≥ max{0, n − i}

dim(E ×Dm) + i− n ≥ dimE +max{0, n − i}+ i− n ≥ dimE,

so Hj(E×Dm) = 0 for j > dim(E×Dm)+ i−n and the claim follows
by applying Lemma 9.3 below to M = E ×Dm . q.e.d.

Remark 9.2. To apply the above proposition we either fix any n ,
i and pick m large enough, or assume i ≥ n and let m be arbitrary.

Note that if M a rationally elliptic manifold, then πQ
i (M) = 0 for all

i ≥ 2 sup{l : Hl(M ;Q) �= 0}, see [FHT01, Theorem 32.15].

Lemma 9.3. Let M be a compact orientable manifold such that for

each l the group πlM is finitely generated and π1M acts trivially on

πl(M). If πl(M) is finite for all l ≥ n and Hj(M) is finite for all

j > dim(M) + i− n , then πiG(M,∂) is finite.

Proof. Arguing by contradiction suppose πiG(M,∂) contains an infi-
nite sequence of elements represented by maps fk : (Di, ∂Di) → G(M,∂).

The adjoint f̂k : M ×Di → M of the map fk restricts to the identity
of ∂(M × Di). Adjusting fk within its homotopy class and passing if

necessary to a subsequence we can find l ≥ 1 such that f̂k all agree on
the (l − 1)-skeleton and are pairwise non-homotopic on the l -skeleton
rel boundary. Denote by 1 the map sending (Di, ∂Di) to the identity

element of G(M,∂), and let 1̂ be its adjoint.
The rest of the proof draws on the obstruction theory as, e.g.,

in [MT68] which applies as π1(M) acts trivially on homotopy groups.

The difference cochain d(f̂k, 1̂) that occurs in trying to homotope f̂k
to 1̂ over the l -skeleton relative to the boundary is a cocycle repre-
senting a class in the group H l(M × Di, ∂(M × Di);πlM), which by
Poincaré–Lefschetz duality is isomorphic to HdimM+i−l(M×Di;πlM) ∼=
HdimM+i−l(M ;πlM).

Let us show that HdimM+i−l(M ;πlM) is finite. If l ≥ n , this fol-
lows from finiteness of πlM and compactness of M . If l < n , then
HdimM+i−l(M) is finite by assumption as dimM+i−l > dimM+i−n .
Since πlM is finitely generated for all l , the group HdimM+i−l(M ;πlM)
is finite by the universal coefficients theorem.

Hence passing to a subsequence we can assume that d(f̂k, 1̂) are all
cohomologous, which by additivity of difference cochains implies that
d(f̂k, f̂s) is a coboundary for all s, k . Thus all f̂k are homotopic on the
l -skeleton rel boundary, which contradicts the assumptions. q.e.d.
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The following result, combined with upper bounds on the rational
homotopy of the diffeomorphism group obtained in Section 8, yields a

lower bound on dimkerπQ
i (ιN ) in terms of rational homotopy groups

of stable pseudoisotopy spaces, which in many cases can be computed.

Theorem 9.4. If E is a compact manifold, and k , i are integers

such that k ≥ 0, i ≥ 1 and max{2i + 9, 3i + 7} < k + dim ∂E , then

there is ε = ε(E, i, k) ∈ {0, 1} such that

dimkerπQ
i

(
ι
E×Sk+ε

)
≥

dimπQ
i P(∂E)

2
− dimπQ

i Diff(E ×Dk+ε, ∂).

Proof. Set di = dimπQ
i P(∂E). Lemma 5.2(ii) applied to the mani-

fold Dk × ∂E shows the existence of ε ∈ {0, 1} such that the image of

πQ
i -homomorphism induced by the inclusion

P∂ (D
k+ε × ∂E) → P (Dk+ε × ∂E)

has dimension ≥ di
2 .

Set m = k + ε and N = E × Sm . Let Dm denote the upper hemi-
sphere of Sm , and set D = E × Dm with the corners smoothed. Let
DiffJ(D, ∂) be the subgroup of Diff(D, ∂) consisting of diffeomorphisms
whose ∞-jet at E×∂Dm equals the ∞-jet of the identity map. Follow-
ing [Igu88, Chapter 1, Proposition 1.3] one can show that the inclusion
DiffJ(D, ∂) → Diff(D, ∂) is a weak homotopy equivalence. Consider the
following commutative diagram of continuous maps:

(9.5) P (Dm × ∂E)

τ
���

�
�
�
�
�
�
�
�
�
�
�
�

P∂(D
m × ∂E)

σ
��

ι
�� DiffJ(Dm × E, ∂)

ρ

��

P (Sm × ∂E)
ιN �� Diff(Sm × E)

in which σ is the inclusion, the maps τ , ρ extend diffeomorphisms by
the identity, and ι is the restriction of ιN . The reason we have to deal
with ∞-jets is that the extension of a diffeomorphism in Diff(D, ∂) by
the identity of N is not a diffeomorphism.

The inclusions ∂E → Dm×∂E → Sm×∂E induce πQ
i -monomorphisms

of stable pseudoisotopy spaces as Sm × ∂E retracts onto ∂E → Dm .
The same is true unstably since i is in Igusa’s stable range. Thus there

is a subspace W of πQ
i P∂ (D

m×∂E) of dimension ≥ di
2 that is mapped

isomorphically to a subspace U of πQ
i P (Sm × ∂E) by τ ◦ σ . Hence the

kernel of πQ
i (ι)|W embeds into the kernel πQ

i (ιN )|U , and the kernel of

πQ
i (ι)|W clearly satisfies the claimed inequality. q.e.d.

Remark 9.6. Sadly, there is not a single example of E , i , k with
indecomposable IntE for which we know the value of ε .
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Proposition 9.7. Let E be the total space of a linear disk bundle

over a closed manifold such that E and ∂E are simply-connected, the

algebra H∗(E;Q) has a single generator, and the algebra H∗(∂E;Q)
does not have a single generator. Then there are sequences il , ml such

that the sequence dimker πQ
il

(
ι
E×S

ml

)
is unbounded.

Proof. By [VPB85, Corollary 2] the sequence dimHCi(E;Q) is
bounded while dimHCi(∂E;Q) is unbounded. Since 0 ≤

dimπQ
i P(∗) ≤ 1, we conclude (see Section 7) that the sequence

dimπQ
i P(E) is bounded and dimπQ

i P(∂E) is unbounded. The class
of rationally elliptic spaces contains all closed manifolds whose ratio-
nal cohomology algebra has ≤ 2 generators, and is closed under fi-
brations, see [FHT93], so E is rationally elliptic. Hence Proposi-
tion 9.1 applies for all sufficiently large i and any m , and we have

πQ
i G(E × Dm, ∂) = 0, which by Theorem 8.1 gives a uniform upper

bound on dimπQ
i Diff(E × Dm, ∂), and the result follows from Theo-

rem 9.4. q.e.d.

Remark 9.8. If in Proposition 9.7 the algebras H∗(∂E;Q), H∗(E;Q)

are singly generated, we can still compute the dimensions of πQ
i P(∂E),

πQ
i P(E) using [VPB85, Theorem B]. In view of Section 8 and Theo-

rem 9.4 this gives a computable lower bound on dimker πQ
i

(
ι
E×S

m

)
; of

course the bound might be zero.

Let us investigate when Proposition 9.7 does not apply.

Lemma 9.9. Let p : T → B be a linear Sk -bundle over a closed

manifold B with dimB > 0 such that T , B are simply-connected and

H∗(T ;Q) is singly generated, and let e be the rational Euler class of p.
Then k < dimB and the following holds:

(1) If B = Sd , then either e = 0 and d
2 = k is even,

or e �= 0 and d = k + 1 is even.

(2) If B = CP d with d ≥ 2, then k = 1 and e �= 0.
(3) If B = HP d with d ≥ 2, then either k = 2, or k = 3 and e �= 0.

Proof. This is a straightforward application of the Gysin sequence

(G) Hj−k−1(B;Q)
∪e

�� Hj(B;Q)
p∗

�� Hj(T ;Q) →

�� Hj−k(B;Q)
∪e

�� Hj+1(B;Q).

If dimB ≤ k , then e = 0 for dimension reasons, so p∗ is injec-
tive and Hk(T ;Q) surjects onto H0(B;Q) ∼= Q . If dimB = k , then
dimHk(T ;Q) = 2 contradicting that H∗(T ;Q) is singly generated. If
dimB < k and H∗(T ;Q) = 〈a〉 , then a has degree ≤ dimB < k
and hence a ∈ Im p∗ so that p∗ is a surjection of Hk(B;Q) = 0 onto
Hk(T ;Q) ∼= Q , which is a contradiction. Thus k < dimB .
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Let B = Sd . Then (G) implies Hj(T ;Q) = 0 except for j = 0 , k+d ,
and possibly for j = k, d . If e �= 0, then d = k+1 is even, and (G) gives
Hk(T ;Q) = 0 = Hd(T ;Q). If e = 0, then (G) shows that Hj(T ;Q) are
nonzero for j = k, d . Since H∗(T ;Q) is singly generated, k , d must be
even because an odd degree class is not a power of an even degree class,
and any odd degree class has zero square. As k < d , we have d = 2k
completing the proof of (1).

To prove (2) let B = CP d and note that simple connectedness of T
shows that if k = 1, then e �= 0. To rule out k ≥ 2 use (G) to conclude
that p∗ : H2(B) → H2(T ) is injective, hence as H∗(T ;Q) is singly
generated, the generator must come from B and hence its (n + 1)th
power is zero, but then it cannot generate the top dimensional class in
degree dimT = k + dimB ≥ 2 + 2n .

To prove (3) let B = HP d . Similarly to (2) if k ≥ 4, then H∗(T ;Q)
is not singly generated. The same holds for k = 1 as then T → B is
the trivial S1 -bundle because HP d is 2-connected. Thus k must equal
2 or 3. Finally, if e were zero for k = 3, then (G) gives that H3(T ;Q)
and H4(T ;Q) are nonzero, so H∗(T ;Q) could not be singly generated.

q.e.d.

Remark 9.10. (a) The exceptional cases above do happen. Exam-
ples are the unit tangent bundle to Sd with d even (whose total space
is a rational homology sphere), the Hopf bundles S1

→ S2d+1
→ CP d and

S3
→ S4d+3

→ HP d , and the canonical S1 quotient S2
→ CP 2d+1

→ HP d of
the latter bundle. All nontrivial S2 -bundles over S4 have singly gener-
ated total space, see [GZ00, Corollary 3.9]. Each of these total spaces
appears as ∂E where IntE admits a complete metric of K ≥ 0.

(b) The assumption that B = Sn, CPn or HPn is there only to
simplify notations by excluding some cases not relevant to our geometric
applications. The proof of Lemma 9.9 applies to some other bases, e.g.,
the Cayley plane or biquotients with singly generated cohomology, which
are classified in [KZ04]. In particular, the unit tangent bundle to the
Cayley plane does not have singly generated cohomology.

(c) One can use results of [Hal78] to give a rational characterization
of fiber bundles T → B such that T , B are simply-connected manifolds
and H∗(T ;Q) is singly generated. We will not pursue this matter be-
cause with the exception mentioned in (b) it is unclear if such bundles
arise in the context of nonnegative curvature.

Theorem 9.11. Let N = Sm × E and i ≤ m − 3 where E and i
satisfy one of the following:

1. E is the total space of a linear D2d -bundle over S2d , d ≥ 2, with
nonzero Euler class, and i = 8d−5+j(4d−2) for some odd j ≥ 1.

2. E is the total space of a linear D4 -bundle over HP d , d ≥ 1, with
nonzero Euler class, and i = 8d+3+j(4d+2) for some odd j ≥ 1.
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3. E is the total space a linear D3 -bundle over HP d , d ≥ 1 with

nonzero first Pontryagin class, and i = 4d+2+j(2d+1) for some

even j ≥ 0.
4. E is the product of S4 and the total space of a D4 -bundle over

S4 with nonzero Euler class, and i = 6j + 3 for some odd j ≥ 3.

Then πQ
i P(N) = 0, and furthermore, dimπQ

i P(∂N) = 1 in cases (1),

(2), (3) and dimπQ
i P(∂N) = j in case (4).

Proof. The inclusions E → N and ∂E → ∂N are (m−1)-connected,

so they induce isomorphisms on πQ
i P(−) for i ≤ m− 3.

Case 1. Here ∂E is the total space of S2d−1 -bundle over S2d , so
the homotopy sequence of the bundle shows that ∂E is 2-connected
while the Gysin sequence implies H∗(∂E;Q) ∼= H∗(S4d−1;Q). So any
degree one map ∂E → S4d−1 is a rational homology isomorphism, and
hence a rational homotopy equivalence. The map is 2-connected, so

by Corollary 7.10 it induces an isomorphism on πQ
i P(−). Now (7.3),

(7.4), (7.5) give the Poincaré polynomials

t3

1− t4
+

t6d−4

1− t4d−2
for πQ

∗ P(S2d) and

t8d−5

1− t4d−2
for πQ

∗ (P(S4d−1),P(∗)).

Reducing the exponents mod 4 yields the desired conclusion.
Case 2. Here ∂E is a simply-connected rational homology S4d+3 .

Then (7.3), (7.12), (7.5) give the Poincaré polynomials

t3

1− t4
+

(1− t4d) t4d+4

(1− t4) (1 − t4d+2)
for πQ

∗ P(HP d) ,

t8d+3

1− t4d+2
for πQ

∗ (P(S4d+3),P(∗)) .

Reducing the exponents mod 4 implies the claim.
Case 3. Nontriviality of the first Pontryagin class implies, see [Mas58,

pp. 273–274], that the algebra H∗(∂E;Q) is isomorphic to Q[α]/α2d+2

for some α ∈ H2(∂E;Q). Then (7.3), (7.12), (7.13) give the Poincaré
polynomials

(9.12)
t3

1− t4
+

(1− t4d) t4d+4

(1− t4) (1 − t4d+2)
for πQ

∗ P(HP d) ,

(9.13)
t2(2d+1)

1− t2
for πQ

∗ (P(∂E),P(∗)) .

The monomials with exponent i appear in (9.13) and do not occur
in the first summand of (9.12). The second summand can be written

as
∑d

s=1 t
4d+4s

∑
r≥0 t

(4d+2)r , hence the exponents of its monomials are

4d + 4s + (4d + 2)r which all lie in the union of the disjoint intervals
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[4d + 4 + (4d + 2)r, 8d + (4d + 2)r] . Each number 4d + 2 + (4d + 2)r
lies in the gap between the intervals, so letting j = 2r completes the
proof. In fact, many more values of i are allowed because the exponents
4d+ 4s+ (4d+ 2)r of distinct pairs (s, r) differ by 4 or 6 while (9.13)
contains every even exponent ≥ 4d+ 2.

Case 4. Here ∂E is 2-connected rational homology S4 × S7 . Then
(7.3), (7.14), (7.15) give the Poincaré polynomials

(9.14)
t3

1− t4
+

2t2

1− t6
+

t5 + t6

(1− t6)2
− 2t2 − t6 for πQ

∗ P(S4 × S4) ,

(9.15)
t5

1− t6
+

t2 + t9

(1− t6)2
− t2 − t5 − t9 for πQ

∗ (P(∂E),P(∗)) .

The term
t9

(1− t6)2
− t9 =

∑
j≥2

j t6j+3,

in (9.15) has exponents that reduce to 3 mod 6, so it has some common
exponents only with the term t3(1 − t4)−1 in (9.14). The exponents
corresponding to odd j reduce to 1 mod 4, so do not appear in (9.14).
For the same reasons the exponents do not appear elsewhere in (9.15),
which completes the proof. q.e.d.

Remark 9.16. Case 4 illustrates that the following proposition is
not optimal.

Proposition 9.17. Let M be a compact manifold with nonempty

boundary and let B be a closed b-dimensional manifold of nonzero Euler

characteristic. If max{2i+7, 3i+4} < dim∂M , then dimkerπQ
i

(
ι
M×B

)
≥

dimkerπQ
i

(
ι
M

)
.

Proof. Consider the following diagram:

P(∂M)

δ∞
��

P (∂M × Ib)��

δb
��

P (∂M)
Σb

��
ι
M

��

× idB

��

Diff(M)

× idB

��

P(∂M ×B) P (∂M ×B)��
×χ(B)

�� P (∂M ×B)
ι
M×B

�� Diff(M ×B)

where Ib is identified with an embedded disk in B and δb is the exten-
sion by the identity. The middle bottom arrow is the χ(B)-power map
with respect to the group composition. The unlabeled arrows are the
canonical maps into the direct limit, and δ∞ is the stabilization of δb .

The rightmost square commutes, while the middle one homotopy
commutes [Hat78, Appendix I]. Since δb homotopy commutes with
Σ, the leftmost square also homotopy commutes.

It suffices to show that the map × idB of pseudoisotopy spaces is

πQ
i -injective. Since we are in the pseudoisotopy stable range, Σb and the
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unlabeled arrows are πQ
i -isomorphisms. The χ(B)-power map induces

the multiplication by χ(B) on the rational homotopy group, see [Spa66,

Corollary 1.6.10]. Hence the power map is also πQ
i -isomorphism as

χ(B) �= 0. Finally, πQ
i -injectivity of δ∞ follows because P(−) is a

homotopy functor and δ∞ has a left homotopy inverse induced by the
coordinate projection ∂M ×B → ∂M . q.e.d.

Proof of Theorem 1.2. By Theorem 1.1 it suffices to check that the

group ker πQ
k−1(ιU×Sm ) is nonzero. A lower bound on dimker πQ

k−1(ιU×Sm )
is given by Theorem 9.4 and we wish to find cases when the bound is
positive.

If the sphere bundle associated with the vector bundle with total
space U does not have singly generated rational cohomology, then the
lower bound in Theorem 9.4 can be made arbitrary large by Proposi-
tion 9.7 and Theorem 8.1. This applies when U is the tangent bundle
to CP d , HP d , d ≥ 2, and the Cayley plane.

If U is the total space of a vector bundle over S2d , d ≥ 2, with
nonzero Euler class, then a positive lower bound in Theorem 9.4 comes
from Corollary 8.5 and the part 1 of Theorem 9.11. The same argument
works to the Hopf R4 bundle over HP d because it has nonzero Euler
class, so the part 2 of Theorem 9.11 applies.

A nontrivial R3 over HP d , d ≥ 1, cannot have a nowhere zero sec-
tion, so it must have nonzero Pontryagin class, see [Mas58, Theorem
V, p.281]. Then a positive lower bound in Theorem 9.4 comes from
Corollary 8.5 and the part 3 of Theorem 9.11. This applies to the Hopf
R3 bundle and the bundles in (4). Finally, (5) follows from Proposi-
tion 9.17. q.e.d.

References

[Bel03] I. Belegradek, Vector bundles with infinitely many souls, Proc. Amer. Math.
Soc. 131 (2003), no. 7, 2217–2221, MR1963770, Zbl 1027.53033.

[Bet86] S. Betley, On the homotopy groups of A(X) , Proc. Amer. Math. Soc. 98
(1986), no. 3, 495–498, MR0857948, Zbl 0613.55006.

[BF86] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraic K -

theory of spaces. II, Topology 25 (1986), no. 3, 303–317, MR0842427, Zbl
0639.55003.

[BH15] I. Belegradek and J. Hu, Connectedness properties of the space of complete

nonnegatively curved planes, Math. Ann., 362 (2015) nos 3–4, 1273–1286,
MR3368099, Zbl 06469777.

[BKS15] I. Belegradek, S. Kwasik, and R. Schultz, Codimension two souls and

cancellation phenomena, Adv. Math. 275 (2015), 1–46, MR3322927, Zbl
1314.53063.

[BKS11] I. Belegradek, S. Kwasik, and R. Schultz, Moduli spaces of nonnegative

sectional curvature and non-unique souls, J. Differential Geom. 89 (2011),
no. 1, 49–85, MR2863912, Zbl 1242.53035.



372 I. BELEGRADEK, F. T. FARRELL & V. KAPOVITCH

[BM13] A. Berglund and I. Madsen, Homological stability of diffeomorphism groups,
Pure Appl. Math. Q. 9 (2013), no. 1, 1–48, MR3126499, Zbl 1295.57038.

[Bro72] W. Browder, Surgery on simply-connected manifolds, Springer-Verlag, New
York-Heidelberg, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete,
Band 65, MR0358813, Zbl 0543.57003.

[Bro82] K. S. Brown, Cohomology of groups, Graduate Texts in Mathemat-
ics, vol. 87, Springer-Verlag, New York-Berlin, 1982, MR1324339, Zbl
0584.20036.

[Cer61] J. Cerf, Topologie de certains espaces de plongements, Bull. Soc. Math.
France 89 (1961), 227–380, MR0140120, Zbl 0101.16001.

[CG72] J. Cheeger and D. Gromoll, On the structure of complete manifolds of

nonnegative curvature, Ann. of Math. (2) 96 (1972), 413–443, MR0309010,
Zbl 0246.53049.

[DW59] A. Dold and H. Whitney, Classification of oriented sphere bundles over

a 4-complex, Ann. of Math. (2) 69 (1959), 667–677, MR0123331, Zbl
0124.38103.

[Dwy80] W. G. Dwyer, Twisted homological stability for general linear groups, Ann.
of Math. (2) 111 (1980), no. 2, 239–251, MR0569072, Zbl 0404.18012.

[FHT93] Y. Félix, S. Halperin, and J.-C. Thomas, Elliptic spaces. II, Enseign. Math.
(2) 39 (1993), nos 1–2, 25–32, MR1225255, Zbl 0786.55006.

[FHT01] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, Grad-
uate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001,
MR1802847, Zbl 0961.55002.

[GBV14] F. Gay-Balmaz and C. Vizman, Principal bundles of embeddings and non-

linear Grassmannians, Ann. Global Anal. Geom. 46 (2014), no. 3, 293–312,
MR3263203, Zbl 1318.46061.

[Goo85] T. G. Goodwillie, Cyclic homology, derivations, and the free loopspace,
Topology 24 (1985), no. 2, 187–215, MR0793184, Zbl 0569.16021.

[Goo86] T. G. Goodwillie, Relative algebraic K -theory and cyclic homology, Ann.
of Math. (2) 124 (1986), no. 2, 347–402, MR0855300, Zbl 0627.18004.

[GSW02] L. Guijarro, T. Schick, and G. Walschap, Bundles with spherical Eu-

ler class, Pacific J. Math. 207 (2002), no. 2, 377–391, MR1972251, Zbl
1065.53040.

[GZ00] K. Grove and W. Ziller, Curvature and symmetry of Milnor spheres, Ann.
of Math. (2) 152 (2000), no. 1, 331–367, MR1792298, Zbl 0991.53016.

[GZ11] K. Grove and W. Ziller, Lifting group actions and nonnegative curvature,
Trans. Amer. Math. Soc. 363 (2011), no. 6, 2865–2890, MR2775790, Zbl
1219.53051.

[Hal78] S. Halperin, Rational fibrations, minimal models, and fibrings of homoge-

neous spaces, Trans. Amer. Math. Soc. 244 (1978), 199–224, MR0515558,
Zbl 0387.55010.

[Hat78] A. E. Hatcher, Concordance spaces, higher simple-homotopy theory, and

applications, Algebraic and geometric topology (Proc. Sympos. Pure
Math., Stanford Univ., Stanford, Calif., 1976), Part 1, Proc. Sympos.
Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 3–21,
MR0520490, Zbl 0406.57031.

[Hat02] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge,
2002, MR1867354, Zbl 1044.55001.



NONNEGATIVELY CURVED METRICS AND PSEUDOISOTOPIES 373

[HS82] W. C. Hsiang and R. E. Staffeldt, A model for computing rational algebraic

K -theory of simply connected spaces, Invent. Math. 68 (1982), no. 2, 227–
239, MR0666160, Zbl 0505.57011.

[Igu] K. Igusa, Postnikov invariants and pseudoisotopy, 1975,
http://people.brandeis.edu/~igusa/Papers/PostnikovInvariantsComp2.pdf.

[Igu88] K. Igusa, The stability theorem for smooth pseudoisotopies, K -Theory 2

(1988), nos 1–2, vi+355, MR0972368, Zbl 0691.57011.

[KPT05] V. Kapovitch, A. Petrunin, and W. Tuschmann, Non-negative pinching,

moduli spaces and bundles with infinitely many souls, J. Differential Geom.
71 (2005), no. 3, 365–383, MR2198806, Zbl 1102.53020.

[KZ04] V. Kapovitch and W. Ziller, Biquotients with singly generated ratio-

nal cohomology, Geom. Dedicata 104 (2004), 149–160, MR2043959, Zbl
1063.53055.

[Mas58] W. S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech.
7 (1958), 265–289, MR0093763, Zbl 0089.39204.

[Mil59] J. Milnor, On spaces having the homotopy type of a CW -complex, Trans.
Amer. Math. Soc. 90 (1959), 272–280, MR0100267, Zbl 0084.39002.

[MT68] R. E. Mosher and M. C. Tangora, Cohomology operations and applications

in homotopy theory, Harper & Row, Publishers, New York–London, 1968,
MR0226634, Zbl 0153.53302.

[Otta] S. Ottenburger, A classification of 5-dimensional manifolds, souls of codi-

mension two and non-diffeomorphic pairs, arXiv:1103.0099.

[Ottb] S. Ottenburger, Simply and tangentially homotopy equivalent but non-

homeomorphic homogeneous manifolds, arXiv:1102.5708.

[Pal60] R. S. Palais, Local triviality of the restriction map for embeddings, Com-
ment. Math. Helv. 34 (1960), 305–312, MR0123338, Zbl 0207.22501.

[Per94] G. Perelman, Proof of the soul conjecture of Cheeger and Gromoll, J. Dif-
ferential Geom. 40 (1994), no. 1, 209–212, MR1285534, Zbl 0818.53056.

[Qui70] F. Quinn, A geometric formulation of surgery, Topology of Manifolds
(Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago,
Ill., 1970, pp. 500–511, MR0282375, Zbl 0284.57020.

[Rog] J. Rognes, Lecture notes on algebraic K-theory, 2010,
http://folk.uio.no/rognes/kurs/mat9570v10/akt.pdf.

[Sha74] V. A. Sharafutdinov, Complete open manifolds of nonnegative curvature,
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