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KÄHLER MANIFOLDS OF SEMI-NEGATIVE

HOLOMORPHIC SECTIONAL CURVATURE

Gordon Heier, Steven S. Y. Lu & Bun Wong

Abstract

In an earlier work, we investigated some consequences of the
existence of a Kähler metric of negative holomorphic sectional
curvature on a projective manifold. In the present work, we ex-
tend our results to the case of semi-negative (i.e., non-positive)
holomorphic sectional curvature. In doing so, we define a new in-
variant that records the largest codimension of maximal subspaces
in the tangent spaces on which the holomorphic sectional curva-
ture vanishes. Using this invariant, we establish lower bounds
for the nef dimension and, under certain additional assumptions,
for the Kodaira dimension of the manifold. In dimension two, a
precise structure theorem is obtained.

1. Introduction

One of the most basic questions posed by S.-T. Yau concerning the
geometry of a projective (or compact) Kähler manifold is the relation-
ship between its holomorphic sectional curvature and its Ricci curvature.
The former plays a key role in classical complex geometry (recall for ex-
ample the constant holomorphic sectional curvature characterization of
quotients of Bn, Cn and Pn), while the latter is the keystone of the mod-
ern theory of (projective) Kähler manifolds. Although it is known that
the holomorphic sectional curvature completely determines the curva-
ture tensor, there is no direct local link between its sign and that of the
Ricci curvature. In this paper, we provide results in this direction for
projective Kähler manifolds of semi-negative (i.e., non-positive) holo-
morphic sectional curvature by analyzing the structural implications of
the curvature assumption with the help of a new invariant that records
the largest codimension of maximal subspaces in the tangent spaces on
which the holomorphic sectional curvature vanishes.
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In our previous paper [HLW10], we investigated the implications
of negative holomorphic sectional curvature for the positivity of the
canonical line bundle KM on a projective Kähler manifold M . Our
main results in that paper can be summed up in the following theorem.
In Section 2 below, the reader will find the definitions of the notions
involved. We shall always work over the field of complex numbers.

Theorem 1.1 ([HLW10]). Let M be a projective manifold with a
Kähler metric of negative holomorphic sectional curvature. Then

i) the numerical dimension of M is positive, and
ii) the nef dimension of M is equal to the dimension of M .

It follows from a generalized Schwarz Lemma due to Ahlfors that on
a compact hermitian manifold M with negative holomorphic sectional
curvature there exists no non-constant holomorphic map from the com-
plex plane into M (i.e., M is Brody hyperbolic). In particular, there
exist no rational curves on M . It thus follows from Mori’s bend and
break technique that a projective manifold with a Kähler metric of neg-
ative holomorphic sectional curvature has nef canonical line bundle.

Furthermore, it is a consequence of the Abundance Conjecture that
for a projective manifold with nef canonical bundle, the Kodaira di-
mension equals the nef dimension (see the discussion at the beginning
of Section 4). Thus, under the assumption of the Abundance Conjec-
ture, Theorem 1.1 implies that M is of general type, i.e., its canonical
bundle is big. Additionally, due to [Kaw85a], a Brody hyperbolic pro-
jective manifold (or even one that is merely free of rational curves) has
ample canonical bundle if it is of general type. Thus, up to the validity
of the Abundance Conjecture, our work in [HLW10] proves the follow-
ing conjecture, which the third named author learned from S.-T. Yau
in personal conversations in the early 1970s.

Conjecture 1.2. Let M be a projective manifold with a Kähler
metric of negative holomorphic sectional curvature. Then its canonical
line bundle KM is ample.

Since the Abundance Conjecture in dimension three is known by the
works of Miyaoka and Kawamata (see [MP97, Lecture IV] for a nice
account), our previous work in particular establishes the three dimen-
sional case of Conjecture 1.2 ([HLW10, Theorem 1.1]).

After the publication of our paper [HLW10], another paper on this
topic appeared, namely [WWY12]. Its main result is as follows.

Theorem 1.3 ([WWY12]). Let M be a projective manifold of Pi-
card number one. If M admits a Kähler metric whose holomorphic
sectional curvature is semi-negative everywhere and strictly negative at
some point of M , then the canonical line bundle of M is ample.
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The proof of this theorem as given in [WWY12] is based on a re-
fined Schwarz Lemma. The purpose of the present work is to treat the
case of semi-negative holomorphic sectional curvature more comprehen-
sively and in line with our earlier approach, but with an integrated form
of the Schwarz Lemma (Proposition 2.2, see also Proposition 1.9). In
particular, we recover the above Theorem 1.3.

To state our first result, we make the following definitions. For p ∈M ,
let η(p) be the maximum of those integers k ∈ {0, . . . , n := dimM} such
that there exists a k-dimensional subspace L ⊂ TpM with H(v) = 0

for all v ∈ L\{�0}. Set ηM := minp∈M η(p) and rM := n − ηM . Note
that by definition rM = 0 if and only if H vanishes identically. Also,
rM = dimM if and only there exists at least one point p ∈M such that
H is strictly negative at p. Moreover, η(p) is upper-semicontinuous as
a function of p, and, consequently, the set

{p ∈M | η(p) = ηM}
is an open set in M (in the classical topology). Now, the first of our
results is the following.

Theorem 1.4. Let M be a projective manifold with a Kähler metric
of semi-negative holomorphic sectional curvature. Then M contains no
rational curves and the canonical line bundle KM is nef. Moreover, if
the holomorphic sectional curvature vanishes identically, then M is an
abelian variety up to a finite unramified covering. If the holomorphic
sectional curvature does not vanish identically, then

i) the numerical dimension of M is strictly positive, and
ii) the nef dimension of M is greater than or equal to rM ≥ 1.

For the proof, we follow the basic strategy used in [HLW10]. We re-
call that [HLW10] was partially inspired by an earlier work of Peternell
[Pet91] on Calabi–Yau and hyperbolic manifolds. Note that Theorem
1.3 is an immediate corollary of Theorem 1.4(i) due the following simple
lemma, applied to the case L = KM .

Lemma 1.5. Let M be a projective manifold of Picard number one.
Let L be a nef line bundle on M which is of positive numerical dimen-
sion. Then L is ample.

Proof. Let A be an ample divisor on M . Then L is numerically
equivalent to cA for some rational number c. Since L is nef, we have
c ≥ 0. If we had c = 0, then L would be numerically trivial, and thus
its numerical dimension would be equal to zero (see Remark 2.3) in
violation of the assumption. So we have c > 0, and L is ample by the
Nakai–Moishezon–Kleiman ampleness criterion. q.e.d.

Remark 1.6. It is of course an interesting question if it is ever possi-
ble to have a strict inequality in Theorem 1.4(ii). Even when dimM = 2
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and rM = 1, it is unclear whether M can be a surface of nef dimension
2, i.e., a surface of general type. Intuitively, a surface with rM = 1
should be a properly elliptic surface ([BPVdV84, p. 189]) at least in
the case when the metric is analytic.

In view of the Abundance Conjecture (see the discussion at the be-
ginning of Section 4), Theorem 1.4 suggests that rM should in fact be
a lower bound for the Kodaira dimension of M , which we denote by
kod(M). We offer the following two theorems that establish a partial
solution to the problem of Abundance under our curvature assumption.

Theorem 1.7. Let M be an n-dimensional projective manifold of
Albanese dimension d > n− 4. Let M possess a Kähler metric of semi-
negative holomorphic sectional curvature. Then

kod(M) ≥ rM − (n− d−max{0, rM − d}).
In particular, if M has maximal Albanese dimension (i.e., d = n), then
we have

kod(M) ≥ rM .

Theorem 1.8. Let M be an n-dimensional projective Kähler man-
ifold of semi-negative holomorphic sectional curvature. Suppose the
Abundance Conjecture holds up to dimension e (which is currently
known for e = 3). Suppose kod(M) ≥ n− e. Then

kod(M) ≥ rM .

We remark again that, by [Kaw85a], manifolds of maximal Kodaira
dimension without rational curves have ample canonical bundles. Hence
the above two theorems represent generalizations of the key theorems
of [HLW10], see Section 4.

Theorem 1.8 follows immediately from applying the subsequent
proposition to the Kodaira–Iitaka map of M . The proposition gen-
eralizes Proposition 2.2 and Lemma 3.1 and is a general integrated (and
non-equidimensional) form of the Schwarz Lemma which should be of
strong independent interest.

Proposition 1.9. Let M be a projective manifold with a Kähler met-
ric of semi-negative holomorphic sectional curvature. Let N be a k-
dimensional projective variety with at most canonical (or even klt) singu-
larities having pseudo-effective anti-canonical Q-Cartier divisor −KN .
Let f : N ��� M be a rational map that is generically finite, i.e., df has
rank k somewhere. Then KN is numerically trivial, and f is a holo-
morphic immersion that induces a flat metric on the smooth locus Nsm

of N and is totally geodesic along Nsm. In particular, if N is smooth,
then N admits an abelian variety as an unramified covering and f is
a totally geodesic holomorphic immersion that induces a flat metric on
N .
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In dimension two, we are able to obtain the precise structure theorem
below. Note that by the base point freeness of pluricanonical systems
in dimension two, we can and do take the Kodaira–Iitaka map to be the
morphism given by an appropriate pluricanonical map here.

Theorem 1.10. Let M be a smooth projective surface with a Kähler
metric of semi-negative holomorphic sectional curvature. Then one of
the following will hold true.

i) kod(M) = 0 : M is an abelian surface up to a finite unramified
covering, i.e., M is an abelian surface or a hyperelliptic surface.

ii) kod(M) = 1: The Kodaira–Iitaka map of M is an elliptic fibration
whose only singular fibers are multiple elliptic curves. The base
space is a smooth orbifold curve with ample orbifold canonical divi-
sor. Moreover, M admits a product of smooth curves C × F as a
finite unramified covering and the metric of M pulled back to C×F
is the product of a non-flat metric of semi-negative curvature on C
and a flat metric on F up to the addition of mixed terms each a
product of (anti)holomorphic one forms, one from C and one from
F as in Proposition 1.11.

iii) kod(M) = 2: The canonical line bundle of M is ample.

The proof of this theorem is partially based on the following general
metric decomposition result valid in arbitrary dimension.

Proposition 1.11. Let M = Y × F , where Y and F are projective
manifolds. Let π and p be the projections to Y and F respectively. Let
ω be a Kähler form on M whose restrictions to the fibers of π yield
Kähler–Einstein metrics on these fibers. Then these restrictions are in
fact the pullback of a Kähler–Einstein form ωF on F and

ω − p∗ωF = π∗ωY +
∑
i

(π∗μi ∧ p∗νi + π∗μi ∧ p∗νi),

for a Kähler form ωY on Y and holomorphic one forms μi on Y and νi
on F . In particular, if Y or F has zero irregularity, then ω corresponds
to the product of a Kähler–Einstein metric on F and a Kähler metric
on Y .

Remark 1.12. Under stronger curvature assumptions such as semi-
negative sectional or bisectional curvature, there is a considerable
amount of previous work that yields structural results stronger than
ours. Moreover, our invariant rM is similar to the more standard Ricci
rank, which comes with an associated Ricci kernel foliation. Our present
results regarding holomorphic sectional curvature can be seen as com-
plementary to those earlier results. We refer the reader to [Zhe95],
[WZ02], [Zhe02], [Liu14] for further details.

The contents of the sections of this paper can be summarized as
follows. In Section 2, we recall the key definitions and establish basic
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properties, in particular the incompatibility statement Proposition 2.2.
In Section 3, we shall prove Theorem 1.4. In Section 4, we discuss
implications of the Abundance Conjecture, which includes the statement
of corollaries to Theorem 1.4 in dimension no greater than three. In
Section 5, we discuss the case of positive Albanese dimension, where
our principal theorem is Theorem 1.7 (repeated as Theorem 5.3). In
Section 6, we prove Theorem 1.8 (repeated as Theorem 6.1) and the
related Proposition 1.9 (repeated as Proposition 6.2) of independent
interest. In Section 7, we prove the above structural theorem on the
decomposition of surfaces.

Acknowledgment. The first author would like to thank
CRM/CIRGET and the Département de Mathématiques at the
Université du Québec à Montréal for their hospitality during the
preparation of this paper. The second author would like to thank
NSERC for its financial support that allowed its write-up. He is also
indebted to Hongnian Huang for discussions related to Proposition 1.11.
We thank Fangyang Zheng for pointing out an issue with an earlier
definition of rM in a previous version of this paper.

2. Basic definitions and properties

LetM be an n-dimensional manifold with local coordinates z1, . . . , zn.
Let

g =

n∑
i,j=1

gij̄dzi ⊗ dz̄j

be a hermitian metric on M . The components Rij̄kl̄ of the curvature
tensor R associated with the metric connection are locally given by the
formula

Rij̄kl̄ = −
∂2gij̄
∂zk∂z̄l

+
n∑

p,q=1

gpq̄
∂gip̄
∂zk

∂gqj̄
∂z̄l

.

If g is Kähler, the Ricci curvature takes a particularly nice form. In
fact, we can define the Ricci curvature form to be

Ric = −√−1∂∂̄ log det(gij̄).

By a result of Chern, the class of the form 1
2π Ric is equal to c1(M) =

c1(−KM ), where KM is the canonical line bundle of M .
In Section 6, we also use the symbol Ric to denote the curvature form

of a hermitian metric on a line bundle.
The scalar curvature S of g is defined to be the trace of Ric with

respect to a unitary frame.
It follows from linear algebra and the definition of scalar curvature

that

Ric∧ωn−1 = 2
n
S ωn,
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where ω =
√−1
2

∑n
i,j=1 gij̄dzi ∧ dz̄j is the (1,1)-form associated to g. In

situations where there are several spaces, metrics, and associated forms
involved, the reader should assume that the unadorned symbols g and
ω pertain to M .

If ξ =
∑n

i=1 ξi
∂
∂zi

is a non-zero complex tangent vector at p ∈ M ,

then the holomorphic sectional curvature H(ξ) is given by

H(ξ) =

⎛
⎝2

n∑
i,j,k,l=1

Rij̄kl̄(p)ξiξ̄jξk ξ̄l

⎞
⎠ /

⎛
⎝ n∑

i,j,k,l=1

gij̄gkl̄ξiξ̄jξk ξ̄l

⎞
⎠ .

An important fact about holomorphic sectional curvature is the fol-
lowing. If M ′ is a submanifold of M , then the holomorphic sectional
curvature of M ′ does not exceed that of M . To be precise, if ξ is a
non-zero tangent vector to M ′, then

H ′(ξ) ≤ H(ξ),

whereH ′ is the holomorphic sectional curvature associated to the metric
on M ′ induced by g. For a short proof of this inequality see [Wu73,
Lemma 1]. Basically, the inequality is an immediate consequence of the
Gauss–Codazzi equation.

We have the following pointwise result due to Berger [Ber66] (see
[HM13] for a recent new approach).

Theorem 2.1 ([Ber66]). Let M be a compact manifold with a
Kähler metric of semi-negative holomorphic sectional curvature. Then
the scalar curvature function S is also semi-negative everywhere on M .
Moreover, let p ∈ M and assume that there exists w ∈ TpM\{�0} such
that H(w) < 0. Then S(p) < 0.

Berger’s theorem is proven using a pointwise formula expressing the
scalar curvature at a point in terms of the average holomorphic sectional
curvature on the unit sphere in the tangent space at that point. Based
on Berger’s theorem, we have the following proposition.

Proposition 2.2. Let M be a projective manifold whose first real
Chern class is zero. Let g be a Kähler metric on M whose holomorphic
sectional curvature is semi-negative. Then the holomorphic sectional
curvature of g vanishes identically and M is an abelian variety up to a
finite unramified covering.

Proof. Assume the holomorphic sectional curvature of g does not van-
ish identically. Then there exists a point p ∈M and w ∈ TpM\{�0} such
that H(w) < 0. By Theorem 2.1, the scalar curvature is non-positive
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everywhere, and S(p) < 0. Thus,

0 = 2π

∫
M

c1(−KM ) ∧ ωn−1

=

∫
M

Ric(g) ∧ ωn−1

=

∫
M

2

n
S ωn < 0,

which is a contradiction.
Having shown that the holomorphic sectional curvature of g does

vanish identically, it is immediate that M is an abelian variety up to a
finite unramified covering. Namely, it is a basic fact that the holomor-
phic sectional curvature of a Kähler metric completely determines the
curvature tensor R ([KN69, Proposition 7.1, p. 166]). In particular,
if H vanishes identically, then R vanishes identically. However, due to
[Igu54], a projective Kähler manifold with vanishing curvature tensor
admits a finite unramified covering by an abelian variety. q.e.d.

We conclude this section by defining the two notions of positivity of
the canonical line bundle that appear in Theorem 1.4. Let L be an
arbitrary nef line bundle on M . Then the numerical dimension of L,
which we denote ν(L), is max{k ∈ {0, 1, . . . ,dimM} : (cR1 (L))

k 	= [0]},
where cR1 (L) denotes the first real Chern class of L. We write ν(M)
for ν(KM ), the numerical dimension of M (aka the numerical Kodaira
dimension of M).

Remark 2.3. It is immediate that ν(L) = 0, i.e., cR1 (L) = [0], implies
that L is numerically trivial. The converse also holds true, which is
nicely explained in [Laz04, Remark 1.1.20].

The notion of nef dimension is based on the following theorem
([Tsu00], [BCE+02]).

Theorem 2.4. Let L be a nef line bundle on a normal projective
variety M . Then there exists an almost holomorphic dominant rational
map f : M ��� Y with connected fibers, called a “reduction map,” such
that

i) L is numerically trivial on all compact fibers F of f with dimF =
dimM − dimY , and

ii) for every general point x ∈M and every irreducible curve C passing
through x with dim f(C) > 0, we have L.C > 0.

The map f is unique up to birational equivalence of Y .

We call dimY the nef dimension of L. When we apply the above
theorem with L = KM , we call n(M) := dimY the nef dimension of
M .
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3. Proof of Theorem 1.4

3.1. The non-existence of rational curves and the nefness of the

canonical line bundle. If KM is not nef, then, by the bend and break
technique of Mori, M contains a rational curve, i.e., there exists a non-
constant holomorphic map P1 →M . Thus, it only remains to show the
non-existence of rational curves, which has been known at least since the
1970’s (e.g., via the disk condition in Shiffman’s [Shi71] or by [Roy80,
Corollary 2]). We state the absence of rational curves in the following
lemma, which actually is a slightly stronger result. Note in particular
that we require the hermitian manifold (M,h) to be neither complete nor
Kähler. The first proof is of an analytic nature and perhaps preferable
to some readers, since it avoids the use of saturations of subsheaves.
The second proof relies on an integrated version of the Schwarz Lemma
and thus is very much in line with the general theme of this paper.

Lemma 3.1. Let N be a compact Riemann surface of genus γ and
(M,h) a (not necessarily complete) hermitian manifold of semi-negative
holomorphic sectional curvature. If f : N → M is a non-constant
holomorphic map, then γ ≥ 1 and γ = 1 if and only if f is a totally
geodesic immersion inducing a flat metric on N .

Proof of Lemma 3.1 using analytic methods. We write ω for the (1, 1)-
form of the hermitian manifold (M,h) and ωKE for the (1, 1)-form of the
Kähler–Einstein metric on N with constant scalar curvature S = 2−2γ.
Then

u :=
f∗ω
ωKE

is a non-negative smooth function on N that is not identically vanishing
(otherwise df would be identically zero and thus f would be constant).
Consequently, df has at most a finite number of zeros. Outside of these
zeros, u is positive, and we have

√−1∂∂ log u = SωKE − kf∗ω,

where k is the holomorphic sectional curvature of the Kähler form f∗ω
induced by h. Due to the curvature decreasing property of subbundles
and submanifolds, we have k ≤ 0. We may assume that S ≥ 0 since the
theorem is vacuous otherwise. We see then that log u is a subharmonic
function and hence is constant since N is compact. This means that
u is a positive constant function and hence that df has no zeros. It
also implies that S − ku = 0, forcing both S = 0 and the everywhere
vanishing of k. We have thus shown that γ = 1 and that f is a to-
tally geodesic immersion inducing a flat metric f∗ω on N . Since the
converse of the last statement of the lemma is clear, the proof is now
complete. q.e.d.
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Proof of Lemma 3.1 using an integrated version of the Schwarz Lemma.
We abuse notation and denote (holomorphic) vector bundles and their
sheaves of (holomorphic) sections by the same symbols. Let L be the
saturation of the rank one subsheaf of f−1TM over N given by the
image of TN via the differential of f naturally given as section df
of HomN (TN, f−1TM). Then L is a subbundle of f−1TM with an
induced hermitian metric hL and df identifies with a section s of the
line bundle HomN (TN,L). Since L is holomorphically identified with
TN via s over the dense open subset N0 of N where s 	= 0 and since,
over N0, hL = f∗h is the induced metric on TN0, the metric hL has
semi-negative curvature on N by the curvature decreasing property.
Hence, the result follows from

2− 2γ = deg TN ≤ deg TN + deg(s) = degL =

∫
N

c1(L, hL) ≤ 0,

(which forces equality in the case γ = 1) and from the Gauss–Codazzi
equation. q.e.d.

3.2. The case of vanishing holomorphic sectional curvature. If
the holomorphic sectional curvature of M vanishes, then the argument
at the end of the proof of Proposition 2.2 shows that M must be an
abelian variety up to a finite unramified covering.

3.3. Positivity of the numerical dimension when H does not

vanish identically. Next, we show that the numerical dimension of M
is positive when H does not vanish identically. To this end, let us assume
that the numerical dimension of M is zero. By definition, this means
that the first real Chern class of F is trivial. By Proposition 2.2, this
implies that the holomorphic sectional curvature vanishes identically,
which is a contradiction to our assumption.

3.4. The bound on the nef dimension. Now, we prove that the nef
dimension n(M) is greater than or equal to rM . To this end, let us
denote by f : M ��� Y a nef reduction map with respect to KM , and
let I ⊂ M denote the set of points of indeterminacy of f . We write fh
for the holomorphic map f |M\I .

Now, let us assume that n(M) < rM and derive a contradiction. Since
M is smooth, we can apply the generic smoothness theorem [Har77,
Corollary III.10.7] and conclude that there exists an open and dense
subset V ⊂ Y such that fh : f−1

h (V ) → V is a smooth submersion.
Since a smooth submersion is an open map, the set

Ṽ := fh({p ∈M | η(p) = ηM}\I)
is a non-empty open subset (in the classical topology) of V . We pick a

point y ∈ Ṽ such that the fiber F of fh over y is compact and has the
expected dimension δ := n− n(M) > n− rM .
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By the adjunction formula, KM |F = KF , soKF is numerically trivial.
By [Laz04, Remark 1.1.20], this implies that cR1 (KF ) = [0]. Now, let
p ∈ F be such that η(p) = ηM . Due to δ > n − rM = ηM , there
exists a nonzero vector w in TpF ⊂ TpM with H(w) < 0. Due to the
curvature decreasing property mentioned in Section 2, the holomorphic
sectional curvatureH ′ of the Kähler metric g′ induced on F by g satisfies
H ′(w) < 0. Thus, H ′ is semi-negative and does not vanish identically.
By Proposition 2.2, we have obtained a contradiction.

4. Remarks related to the Abundance conjecture

On a projective manifold M with nef canonical line bundle KM , the
following chain of inequalities holds:

(1) kod(M) ≤ ν(M) ≤ n(M).

The first inequality was established by Kawamata in [Kaw85b, Propo-
sition 2.2] and the second inequality is in [BCE+02, Proposition 2.8].
The name Abundance Conjecture is commonly used to refer to the claim
that the first inequality is actually an equality, i.e., that Kodaira dimen-
sion and numerical dimension of M agree ([Kaw85b, Conjecture 7.2]).

Furthermore, it is known that the Abundance Conjecture actually
implies kod(M) = n(M), making (1) an all-around equality. The argu-
ment for this goes as follows.

If n(M) = 0, then 0 ≤ ν(M) ≤ n(M) = 0 implies ν(M) = 0. Due to
the Abundance Conjecture (which is actually [Kaw85a, Theorem 8.2]
in this case), kod(M) = ν(M) = 0 = n(M).

If n(M) > 0, then we observe first of all that ν(M) > 0 also (by
the definitions). The Abundance Conjecture now implies kod(M) =
ν(M) > 0. For our purposes, it is convenient to think of the Kodaira–
Iitaka map as represented by the map furnished by a large enough mul-
tiple of KM as described in [Laz04, Theorem 2.1.33]. Due to the semi-
ampleness of KM established in [Kaw85b, Theorem 1.1], this map is
holomorphic. A generic fiber F has kod(F ) = 0 and thus, again by
the Abundance Conjecture, ν(F ) = 0. Therefore, by construction of
the nef reduction map, kod(M) ≥ n(M). Together with (1), we obtain
the desired equality. In fact, what we have seen is that the map fur-
nished by a large enough multiple of KM can serve as a representative of
both the nef reduction map with respect to KM and the Kodaira–Iitaka
map (both of which are only defined up to birational equivalence) if the
Abundance Conjecture is valid.

Due to the above, an immediate corollary to Theorem 1.4 is the fol-
lowing.

Corollary 4.1. Let M be a projective manifold with a Kähler metric
of semi-negative holomorphic sectional curvature. If M satisfies the
Abundance Conjecture, which is the case if its dimension is no greater
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than three, then the Kodaira dimension of M satisfies

kod(M) ≥ rM .

In particular, a projective manifold M of dimension n ≤ 3 with a
Kähler metric of semi-negative holomorphic sectional curvature satisfy-
ing rM = n is of general type. Moreover, as we saw in Section 3.1, M
contains no rational curves, so that based on [Kaw85a], we obtain the
following improvement of [HLW10, Theorem 1.1].

Corollary 4.2. Let M be a projective manifold of dimension n = rM
satisfying the same hypotheses as in the above corollary. Then KM is
ample.

In light of this, it is rather clear that Conjecture 1.2 should be gen-
eralized as follows.

Conjecture 4.3. Let M be a projective manifold with a Kähler met-
ric of semi-negative holomorphic sectional curvature. Then the Kodaira
dimension of M satisfies kod(M) ≥ rM . In particular, if rM = dimM ,
then the canonical line bundle KM is ample.

We will see in the next section that if M is of high enough Albanese
dimension, then Conjecture 4.3 holds true for M (without any use of
the Abundance Conjecture). In Section 6, we will prove the conjecture
for the case when kod(M) is high enough.

We conclude this section by mentioning that a proof of the Abundance
Conjecture was announced in [Siu11], although complete details of this
proof seem to be not yet available.

5. Manifolds of positive Albanese dimension

For projective manifolds of positive Albanese dimension, we actually
can prove some versions of Conjecture 4.3. Our results are as follows.

Theorem 5.1. Let M be an n-dimensional projective manifold whose
Albanese dimension is maximal, i.e., equal to n. Let M possess a Kähler
metric of semi-negative holomorphic sectional curvature. Then

kod(M) ≥ rM .

Proof. By the definition of M being of maximal Albanese dimension,
M possesses a generically finite map to an abelian variety A, namely its
Albanese map a. Thus, the Kodaira dimension kod(M) ≥ 0, since one
can pull back a not identically zero holomorphic n-form from the abelian
variety under a, which will yield a not identically zero holomorphic n-
form on M .

To warm up (and avoid trivialities in the treatment of the general
case) we first deal with the case when kod(M) = 0. By [Kaw81, The-
orem 1], the Albanese map a : M → A is a fiber space. Since the
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Albanese dimension of M is maximal, the map a is generically finite.
Thus, we have so far established that a is a birational holomorphic map.
Since the Albanese torus A is smooth, the exceptional set of a is cov-
ered by rational curves due to [Abh56]. Since there are no rational
curves on M , a is injective. As an injective and onto holomorphic map
between manifolds, a is an isomorphism and M is an abelian variety.
By Proposition 2.2, rM = 0, and the theorem is proven in the case
kod(M) = 0.

We now treat the general case kod(M) > 0. Let π : M∗ → Y ∗ be a
holomorphic version of the Kodaira–Iitaka map of M and σ : M∗ →M
the pertaining modification of M . We have a diagram

M∗ π−−−−→ Y ∗

σ

⏐⏐

M

a−−−−→ A

.

Let G be a general fiber of π. Such a G is a submanifold of M∗
of dimension n − kod(M) with kod(G) = 0. The map a ◦ σ|G : G →
(a ◦ σ)(G) is a generically finite holomorphic map. We let B := (a ◦
σ)(G). Due to [Kaw81, Corollary 9], 0 = kod(G) ≥ kod(B). Moreover,
[Uen75, Lemma 10.1] yields kod(B) ≥ 0, so kod(B) = 0. By [Uen75,
Theorem 10.3], B is the translate of an abelian subvariety A0 of A.
Since there are only countably many abelian subvarieties of A, we can
assume that A0 does not depend on G. We write p : A→ A/A0 for the
canonical projection.

Next, we observe that the map σ|G : G → σ(G) is a birational holo-
morphic map. Now, note that A/A0 is again an abelian variety and
consider the map p ◦ a : M → A/A0. An irreducible component of a
general fiber of p ◦ a will be of the form σ(G), where G is a general
fiber of π. Due to generic smoothness, σ(G) will be smooth, and due
to birational invariance, kod(σ(G)) = 0. By definition of the Kodaira–
Iitaka map, the dimension of σ(G) is n − kod(M). In fact, σ(G) is an
abelian variety for the following reason. In our situation, it follows from
[KV80, Main Theorem] that σ(G) is birational to an abelian variety.
Since its image (a◦σ)(G) is smooth, the same argument as above based
on [Abh56] shows that σ(G) is isomorphic to an abelian variety.

To conclude the proof, assume that the general fiber G is chosen such
that the abelian variety σ(G) has non-empty intersection with the open
set {p ∈ M | η(p) = ηM}. By the curvature decreasing property and
Proposition 2.2, dimσ(G) = n − kod(M) can be no greater than ηM ,
i.e., kod(M) ≥ n− ηM = rM . q.e.d.

The above Theorem 5.1 states in particular that a projective mani-
fold M of maximal Albanese dimension with a Kähler metric of semi-
negative holomorphic sectional curvature satisfying rM = dimM is of
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general type. The established absence of rational curves, together with
[Kaw85a], then yields the following special case of Conjecture 4.3.

Corollary 5.2. Let M be a projective manifold with a Kähler metric
of semi-negative holomorphic sectional curvature. Assume that M is of
maximal Albanese dimension and that rM = dimM . Then the canonical
line bundle of M is ample.

The following theorem represents a generalization of [HLW10, The-
orem 1.2]. It contains Theorem 5.1 as the special case d = n, but since
the bound below may be somewhat hard to parse on a first reading and
since fewer deep results had to be cited in the earlier proof, we thought
it best to isolate the more concise Theorem 5.1 at the beginning of this
section.

Theorem 5.3. Let M be an n-dimensional projective manifold of
Albanese dimension d > n− 4. Let M possess a Kähler metric of semi-
negative holomorphic sectional curvature. Then

kod(M) ≥ rM − (n− d−max{0, rM − d}).
Proof. Under the assumption d > n− 4, the Albanese map a : M →

a(M) is a holomorphic map such that an irreducible component F
of a general fiber has dimension n − d ≤ 3. Since the Iitaka Con-
jecture holds in the case of fibers of dimension no greater than three
([Kaw85a], see also [Bir09] for some expository comments), we have
kod(M) ≥ 0. Moreover, by Corollary 4.1 and the curvature decreasing
property, kod(F ) ≥ rF . Again by the curvature decreasing property,
rF ≥ max{0, rM − d}.

We again consider the diagram as in the proof of Theorem 5.1. We
denote by F̃ the strict transform of F under σ, which satisfies kod(F̃ ) =
kod(F ) ≥ rF ≥ max{0, rM − d}.

The restriction of π to F̃ gives a holomorphic map π : F̃ → π(F̃ ). If
we denote an irreducible component of a general fiber of this map by
S, then the Easy Addition Formula (applied after a Stein factorization)
yields

(2) max{0, rM − d} ≤ rF ≤ kod(F̃ ) ≤ kod(S) + dimπ(F̃ ).

Moreover, it is clear that n− d = dim F̃ = dimS + dimπ(F̃ ).
On the other hand, let G be the fiber of π : M∗ → Y ∗ such that S is a

component of G∩ F̃ . By the standard properties of the Kodaira–Iitaka
map, when F and S are appropriately chosen, G is a projective manifold
with kod(G) = 0. Due to the resolved Iitaka Conjecture in the case of
fibers of dimension no greater than three,

0 = kod(G) ≥ kod(S) + kod(a(σ(G))).

By [Uen75, Lemma 10.1], we know that kod((a ◦ σ)(G)) is at least 0.
From (2), it is also clear that kod(S) ≥ 0. Hence, 0 = kod(S) = kod((a◦
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σ)(G)), and by [Uen75, Theorem 10.3], (a◦σ)(G) is the translate of an

abelian subvariety. Again from (2), we infer dimπ(F̃ ) ≥ max{0, rM−d}
and thus dim(S) ≤ n− d−max{0, rM − d}.

Next, observe that dim(a(σ(G))) is bounded below by

dim(G)− dim(S) ≥ dim(G) − (n − d−max{0, rM − d})
= n− kod(M)− (n− d−max{0, rM − d}).

We have now established that a(σ(G)) is the translate of an abelian
subvariety A0 of dimension at least n−kod(M)−(n−d−max{0, rM−d}).
We write p : A→ A/A0 for the canonical projection. As in the proof of
Theorem 5.1, this yields

n− kod(M)− (n− d−max{0, rM − d}) ≤ n− rM ,

i.e., kod(M) ≥ rM − (n− d−max{0, rM − d}). q.e.d.

Note that if n = rM , then rM − (n − d−max{0, rM − d}) = rM in the
statement of Theorem 5.3. Therefore, Corollary 5.2 can be strengthened
to the following.

Corollary 5.4. Let M be a projective manifold with a Kähler metric
of semi-negative holomorphic sectional curvature. Assume that rM =
dimM and that the Albanese dimension of M is greater than dimM−4.
Then the canonical line bundle of M is ample.

The following final theorem of this section applies in the case of arbi-
trary positive Albanese dimension. The assumption of non-negative Ko-
daira dimension is necessary, because based on the other assumptions,
we cannot prove the existence of any pluricanonical sections. Without
at least one pluricanonical section, there is no Kodaira–Iitaka map, and
our argument does not work.

Theorem 5.5. Let M be an n-dimensional projective manifold of
Kodaira dimension at least zero and Albanese dimension d > 0. Let M
possess a Kähler metric of semi-negative holomorphic sectional curva-
ture. Contingent on the validity of the Iitaka Conjecture for fibrations
with fiber dimension no greater than n− d, the following holds:

kod(M) ≥ rM − (n− d).

Proof. The proof is a simplified version of the proof of Theorem 5.3.
We let F , F̃ , S, G be as above. In the present situation, we cannot rule
out kod(F̃ ) = −∞ (although it is ruled out conjecturally by Conjecture
4.3), so the Easy Addition Formula (2) becomes vacuous. Instead, we
apply the Easy Addition Formula to a : σ(G)→ (a◦σ)(G), which yields

0 = kod(G) ≤ kod(S) + dim(a(σ(G))).
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Thus, kod(S) ≥ 0. Moreover, due to the Iitaka Conjecture in the case
of fibers of dimension no greater than n− d, we have

0 = kod(G) ≥ kod(S) + kod(a(σ(G))).

Again, we conclude kod(a(σ(G))) = 0. It remains to observe that
dim(a(σ(G))) is bounded below by dimG − dimS ≥ dimG − dimF =
n− kod(M)− (n− d). As before, we conclude

n− kod(M)− (n− d) ≤ n− rM ,

i.e., kod(M) ≥ rM − (n− d). q.e.d.

6. Manifolds of high Kodaira dimension

If we assume the validity of the Abundance Conjecture up to some
dimension e with 1 ≤ e ≤ n, then we can prove the desired inequality
kod(M) ≥ rM provided we may additionally assume that kod(M) ≥
n− e (which is of course a non-vacuous statement only if rM > n− e).

Theorem 6.1. Let M be an n-dimensional projective Kähler man-
ifold of semi-negative holomorphic sectional curvature. Suppose the
Abundance Conjecture holds up to dimension e (which is currently
known for e = 3). Suppose kod(M) ≥ n− e. Then

kod(M) ≥ rM .

The theorem follows readily from the following proposition applied
to the general fibers of the Kodaira–Iitaka map of M .

Proposition 6.2. Let M be a projective manifold with a Kähler met-
ric of semi-negative holomorphic sectional curvature. Let N be a k-
dimensional projective variety with at most canonical (or even klt) singu-
larities having pseudo-effective anti-canonical Q-Cartier divisor −KN .
Let f : N ��� M be a rational map that is generically finite, i.e., df has
rank k somewhere. Then KN is numerically trivial, and f is a holo-
morphic immersion that induces a flat metric on the smooth locus Nsm

of N and is totally geodesic along Nsm. In particular, if N is smooth,
then N admits an abelian variety as an unramified covering and f is
a totally geodesic holomorphic immersion that induces a flat metric on
N .

Proof. We will abuse notation and denote Cartier divisors and their
associated invertible sheaves as well as bundles and their sheaves of
sections with the same symbols, respectively. All metrics on complex
bundles are understood to be hermitian. For simplicity, we will not
distinguish a metric from its associated (1, 1)-form.

Since M has no rational curves, f is in fact a holomorphic map (see,
for example, [KM98]). By the hypothesis on f , it has rank k on a dense
Zariski open set of Nsm. Hence, det(df) gives rise to a nontrivial section
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sN0
of the locally free sheaf HomN0

(K∨
N0

, f−1
0 (ΛkTM)) on every Zariski

open subset N0 of Nsm, where f0 = f |N0
.

Let τ : X → N be a resolution of the singularities of N and F =
f ◦ τ : X →M . To avoid heavy notation, on the open subset N0 ⊂ Nsm

where the birational map τ−1 is holomorphic, we identify f |N0
with

F |τ−1(N0). As before, det(dF ) gives rise to a nontrivial section sX over X

of HomX(K∨
X , F−1(ΛkTM)) and sX |N0

= sN0
under the identification

of N0 with τ−1(N0). Here, the symbol F−1(ΛkTM) simply denotes the
pull-back of the vector bundle ΛkTM .

Since KX is invertible, after replacing X by some further blowup
of X if necessary, the same proof as in the resolution of the base lo-
cus of a linear system into only divisorial parts (for example by blow-
ing up the ideal sheaf given by the image by sX of the vector sheaf
HomX(K∨

X , F−1(ΛkTM))∨ in OX) allows us to assume that the sub-
scheme defined by sX = 0 is of pure codimension one, i.e., a divisor D.
This means that the saturation of the subsheaf sX(K∨

X) is given by a

line subbundle L of F−1(ΛkTM) and sX can be identified with a section
s of the line bundle KX ⊗L = HomX(K∨

X , L) over X. Clearly (s) = D
on X by construction and s|N0

= sN0
. Note that

KX = τ∗KN + E,

for an effective Q-divisor E supported on the exceptional locus of τ and
that both E and KN are Cartier outside the singular locus of N .

Let N00 ⊂ N0 be the Zariski open dense subset on which df : TN →
TM has maximal rank, i.e., on which f is an immersion. Theorem 2.1
applied to the induced metric ω00 = f∗

00ω on N00 where f00 = f |N00
to-

gether with the Gauss–Codazzi equation shows that the scalar curvature
Sω00

of ω00 is semi-negative on N00. Moreover, it vanishes identically
there if and only if f00 : (N00, ω00)→ (M,ω) is totally geodesic and ω00

is flat. We now proceed to show that not only the latter is the case
but that in fact df has maximal rank over Nsm so that f is a totally
geodesic immersion with the induced flat metric there and in particular
N0 = N00.

Since L is a subbundle of F−1(ΛkTM) and Λkω is a metric on ΛkTM ,
we see that L has an induced metric h which restricts to detω00 on
N00 and thus Ric(h) = Ric(ω00) on N00. Here, detω00 is a metric on
detTN00 identified with L|N00

via s. As the holomorphic sectional cur-
vature decreases on subvarieties and as ω00 is Kähler on N00, (N00, ω00)
has scalar curvature Sω00

≤ 0 by Berger’s theorem. Consequently, we
have∫

X

c1(L) ∧ F ∗ωk−1 =
1

2π

∫
X

Ric(h) ∧ F ∗ωk−1 =
1

nπ

∫
N00

Sω00
ωk
00 ≤ 0 ,

with equality in the inequality if and only if ω00 is flat and f00 totally
geodesic. But the first integral above is the sum of the following two
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integrals:∫
X

c1(KX ⊗ L) ∧ F ∗ωk−1 =

∫
X

c1(D) ∧ F ∗ωk−1 =

∫
D

i∗F ∗ωk−1,

where i is the inclusion of Dred in X, and (as E is τ -exceptional)∫
X

c1(−KX) ∧ F ∗ωk−1 =

∫
X

c1(−τ∗KN − E) ∧ τ∗f∗ωk−1

=

∫
N

c1(−KN ) ∧ f∗ωk−1,

both of which are semi-positive since D is effective and −KN pseudo-
effective. This forces all of the above integrals to vanish. In particular,
ω00 is flat on N00 and therefore, since Ric(h) = Ric(ω00) = 0 on N00,
Ric(h) = 0 on X. We then have, −KN being pseudo-effective, that for
a generic curve C cut out by hyperplanes on N :

0 ≤ D.τ∗C = KN .C ≤ 0,

forcing equality. Hence D is τ -exceptional and s is nowhere zero on N00.
By [Kle66, Ch. I, § 4, Prop. 3], it also follows that KN is numerically
trivial.

Finally, to see that f is totally geodesic along Nsm, we argue as
follows. Since the exceptional divisor E of τ is rationally connected, the
condition c1(L) = 0 implies that L is trivial on E and that its inclusion
into the trivial bundle F−1(ΛkTM)|E is constant. Hence the subbundle

L of F−1(ΛkTM) is the pullback of a subbundle L̃ of f−1(ΛkTM) on
N . This means that the inclusion of K∨

X in L over τ−1(Nsm) factors

through the inclusion s̃ of K∨
Nsm

in L̃|Nsm given by the section det(dfsm)

of Hom(K∨
Nsm

, f−1
sm(ΛkTM)), where fsm = f |Nsm . Since s̃ = s on N00,

where we have shown it is nowhere zero, and since the complement of
N00 in Nsm has codimension two or higher, the Cartier divisor (s̃|Nsm)
must be zero on Nsm and hence det(df) is nowhere zero on Nsm. We
may now conclude that f |Nsm is a totally geodesic immersion as before.

q.e.d.

Remark 6.3. The above proposition generalizes Proposition 2.2 and
Lemma 3.1. Observe that the case of kod(M) ≥ n − 2 and rM = n
can be obtained directly just from Lemma 3.1 since Kodaira dimension
zero minimal surfaces are dominated either by an abelian surface or by
families of elliptic curves by [MM83].

Remark 6.4. Although we do not need it in this paper, with a little
further work, N can be shown to be smooth. Also, it is clear from the
above proof that the projectivity assumption on M is unnecessary and
the singularity assumption on N is made only to guarantee that KN is
Q-Cartier if f is a morphism. Implications for M and its pluricanonical
systems will be discussed elsewhere.
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7. Structural decomposition theorem in dimension two

In this section, we prove Theorem 1.10. Under its assumptions, the
nef fibration is known to be a morphism given by a pluricanonical map,
which we take to be the Kodaira–Iitaka map. Out of the three possibil-
ities for the Kodaira dimension, the case kod(M) = 1 is the key one to
treat. In this case, we denote the Kodaira–Iitaka map by π : M → Y ,
where Y is a smooth curve. Now, π induces an orbifold structure on Y
by assigning the multiplicity m(q) to a point q on Y given by the mul-
tiplicity of the generic fiber of π above q. The orbifold Y ∂ so endowed
has the canonical Q-divisor KY ∂ = KY +

∑
i(1− 1

m(qi)
)qi following the

notation of [Lu02].

Proof of Theorem 1.10. It follows from Theorem 1.4 and the validity
of the Abundance Conjecture on surfaces that kod(M) ≥ 0. In case
kod(M) = 0, Theorem 1.4 states thatM has a finite unramified cover by
an abelian surface, so there is nothing to prove. Also, in case kod(M) =
2, we have already seen that KM is ample. So it remains to treat the
case kod(M) = 1.

Under the present assumptions, π is an elliptic fibration whose only
degenerate fibers are multiples of elliptic curves, as any other type of
degenerate fiber would contain rational curves (see [BPVdV84, p. 150,
Table 3. Kodaira’s table of singular elliptic fibers]). It follows that the
canonical divisor KM is the pullback of the orbifold canonical Q-divisor
KY ∂ of the base, see for example [BL00]. This means that KY ∂ is ample
and that Y ∂ is the quotient of the unit disk by a Fuchsian group. As
such a group has finite index torsion free subgroups by Selberg’s lemma
(see [Rat06]), there is a finite cover of Y by a smooth curve C of genus
at least two branched over Y to precisely the same multiplicity as that
given by π. After the base change to C and a normalization, we obtain
a fibration over C whose total space M̃ is an unramified covering of M
and a holomorphic fiber bundle over C (the j-invariant of the fibers gives
rise to a holomorphic map j : C → C and this forces j to be constant).
Replacing C by a finite unramified covering if necessary, we then have
M̃ = C × F where F is an elliptic curve and M̃ is a finite unramified
covering of M . The existence of such an unramified cover of C is proven
in [Bea96, Prop. VI.8] based on the existence and the affineness of the
fine moduli spaces for elliptic curves with level structure.

Proposition 1.11 now shows that the pull-back metric g̃ on M̃ =
C × F of g is the product of a flat metric on F with a metric gC
on C up to adding a term corresponding to a (1, 1)-form of the form∑

i(p
∗
1μi ∧ p∗2νi + p∗1μi ∧ p∗2νi) where p1, p2 are the projections and μi,

νi holomorphic one forms on C and F , respectively. But this additional
term vanishes if we pull back by a constant section of p1 (a fiber of p2)
so that gC corresponds to the induced metric by g̃ on this fiber. By
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the curvature decreasing properties on subvarieties, it follows that the
holomorphic sectional curvature of gC is semi-negative. q.e.d.

Before we prove Proposition 1.11, we note that its statement (and proof)
bears resemblance to Zheng’s theorem in [Zhe93, p. 672], which comes
with an assumption of semi-negative bisectional curvature. This as-
sumption is not present in our case, but instead we can invoke the
uniqueness of Kähler–Einstein metrics in a given Kähler class at a cru-
cial point of the proof.

Proof of Proposition 1.11. Since ω is Kähler, the Künneth formula for
(1, 1)-cohomology classes and the global ∂∂̄-lemma show that there exist
a real C∞ function φ on M , real (1, 1)-forms ωF on F and ωY on Y
such that

ω − p∗ωF −
√−1∂∂̄φ = π∗ωY +

∑
i

(π∗μi ∧ p∗νi + π∗μi ∧ p∗νi),

for holomorphic one forms νi on F and μi on Y . Now, the right hand
side pulls back to zero by each constant section sy : F → M since it
factors through the inclusion iy : My ↪→M of the fiber My = π−1(y). It
follows that s∗yω is cohomologous to ωF . Since the former is Einstein, by
the uniqueness of such (1, 1)-forms in a given cohomology class ([Cal57],
[Yau78]) we have i∗y

√−1∂∂̄φ = 0 for all y ∈ Y if we choose ωF to be
this unique Kähler form. With this choice, φ is a harmonic function on
My and, therefore, constant on My for all y ∈ Y . This means that φ is
a function of y only and thus the term

√−1∂∂̄φ above may be absorbed
into ωY . The (1, 1)-form so formed on Y is necessarily a Kähler form
since its pullback to a horizontal fiber (a fiber of p) is also the pullback
of the Kähler form ω. q.e.d.

Remark 7.1. It should be noted that the projectivity assumption
in Proposition 1.11 is merely made to make the proposition appear in
line with the overall setting of the paper. Its proof does not use it and
in fact works for Kähler manifolds.

Remark added in proof. After this paper had been completed and
gone to press at the Journal of Differential Geometry, a break-through
paper by Wu-Yau appeared, proving Conjecture 1.2. Subsequent work
by Tosatti-Yang, Wu-Yau and Diverio-Trapani established the result
even in the compact Kähler case and under the weaker assumption of
quasi-negative holomorphic sectional curvature.
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C.P. 8888, Succursale Centre-Ville

Montréal, Qc H3C 3P8

Canada

E-mail address: lu.steven@uqam.ca

Department of Mathematics

UC Riverside

900 University Avenue

Riverside, CA 92521

USA

E-mail address: wong@math.ucr.edu


