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THE FIRST JOHNSON SUBGROUPS

ACT ERGODICALLY ON

SU2-CHARACTER VARIETIES

Louis Funar & Julien Marché

Abstract

We show that the first Johnson subgroup of the mapping class
group of a surface Σ of genus greater than 1 acts ergodically on
the moduli space of representations of π1(Σ) in SU2. Our proof
relies on a local description of the latter space around the trivial
representation and on the Taylor expansion of trace functions.

1. Introduction and statements

Let Σ be a compact orientable surface and G a compact semi-simple
Lie group. The space of all homomorphisms Hom(π1(Σ), G) will be de-
noted R(Σ, G). We will consider then the quotient M(Σ, G) =
R(Σ, G)/G by the conjugacy G-action. Let Mod(Σ) denote the map-
ping class group of the surface Σ—namely, the group of isotopy classes
of homeomorphisms preserving the orientation of Σ fixing the bound-
ary. The group Aut+(π1(Σ)) of automorphisms of π1(Σ) preserving the
orientation acts on R(Σ, G) by left composition and induces an action
of the mapping class group Mod(Σ) on M(Σ, G).

Recall that if Σ is closed and orientable, then the dense and open
subset of non-singular points of M(Σ,SU2) has a Mod(Σ)-invariant
symplectic structure, which was defined by Goldman in [2]. This in-
duces a volume form on the non-singular part of M(Σ,SU2) and thus a
Mod(Σ)-invariant measure on M(Σ,SU2).

The main purpose of this paper is to understand the dynamical prop-
erties of the Mod(Σ) action, with respect to this invariant measure. The
first result in this direction is due to Goldman (see [3]), who proved that
Mod(Σ) acts ergodically on M(Σ,SU2). This ergodicity statement was
further extended to all compact connected Lie groups by Pickrell and
Xia [11].

Definition 1.1. The first Johnson subgroup K(Σ) is the subgroup
of Mod(Σ) generated by the Dehn twists along separating simple curves
on Σ.
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Johnson proved (see [9]) that K(Σ) is a normal subgroup of infi-
nite index of the Torelli subgroup of Mod(Σ), which is the subgroup
of mapping classes of homeomorphisms acting trivially on the surface
homology.

Theorem 1.1. Let Σ be a closed orientable surface of genus g ≥ 2.
Then the Johnson subgroup K(Σ) acts ergodically on M(Σ,SU2).

This solves affirmatively Conjecture 1.8 of Goldman from [4]. Previ-
ously, the conjecture has been proved only for surfaces of genus g = 1
with two boundary components (for almost all boundary monodromies)
following a different approach, by Goldman and Xia (see [8]).

Remark 1.1. It is sufficient to show that the lift of K(Σ) in Aut+

(π1(Σ)) acts ergodically on R(Σ,SU2), for a closed orientable surface Σ
of genus g ≥ 2.

The proof can be extended with only minor modifications to the case
where G = SU2 × SU2 × · · · × SU2 is the direct product of k factors.
Therefore we obtain the following theorem:

Theorem 1.2. Let Σ be a closed orientable surface of genus

g ≥ 2. Then the Johnson subgroup K(Σ) acts ergodically on M(Σ,SU2)×
M(Σ,SU2)×· · ·×M(Σ,SU2), by means of the diagonal action. In par-

ticular, the action of K(Σ) on M(Σ,SU2) is weakly mixing.

Remark 1.2. Although the result is stated here for G = SU2, the
proof could be adapted to simply connected compact groups. Observe
also that the action of K(Σ) on M(Σ,U1) is trivial, contrary to the
action of Mod(Σ), which is known to be ergodic.

Remark 1.3. One can ask if a similar result holds true when Σ is a
compact surface with boundary ∂Σ. In this case we consider the action
of K(Σ) on the symplectic leaves M(Σ,SU2; (αi)i∈H0(∂Σ)) ofM(Σ,SU2),
consisting of those classes of representations whose conjugacy classes on
each circle of ∂Σ are the fixed αi. We have to require that the genus
g ≥ 2 or g = 1 and the number of boundary components is at least
3. Our proof does not seem to extend to this case, as we need that the
trivial representation belongs to the space of representations considered.

Remark 1.4. The present proof heavily uses the symplectic struc-
ture on M(Σ,SU2). Notice that when Σ is closed but non-orientable the
space M(Σ,SU2) still admits an invariant volume form (actually it is
enough to have an invariant measure class) and the action of Mod(Σ)
was proved to be ergodic in [10] for all but a few explicit small sur-
faces. However, the present proof does not seem to extend to the non-
orientable case.

The proof of Theorem 1.1 and hence the paper is organized in the
following way. In the first section, we describe the local structure of the
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representation space around the trivial representation. Then we com-
pute the Taylor expansion of trace functions; in particular, we show
that the first non trivial term in the expansion of the trace function of
a separating curve has order 4. In Section 4, we show that these trace
functions are generating around the trivial representation, in the sense
that their differentials generate the cotangent space. Then we conclude
our proof in Section 5 by an argument similar to the one in [7].

Acknowledgments. The first author was supported by the ANR 2011
BS 01 020 01 ModGroup, and the second author was supported by the
ANR-08-JCJC-0114-01. The authors are indebted to W. Goldman for
valuable discussions.

2. Local structure of representation spaces around the trivial

representation

We recall the following result due to Goldman and Millson (see [6])
for general Kähler manifolds, which for the case of surfaces was already
obtained by Arms, Marsden, and Moncrief [1]. This case is detailed in
the appendix of [5].

Proposition 2.1. Let Σ be a compact Riemann surface and G a

compact Lie group.

Let P be flat principal G-bundle over Σ, and denote by F (P ) the

space of flat connections on P . Given a flat connection A on P , let

Z1(Σ,AdP ) denote the space of infinitesimal deformations of A inside

F (P ).
Then there exists an analytical diffeomorphism between a neighbor-

hood of A in F (P ) and a neighborhood of 0 in the subset of Z1(Σ,AdP )
consisting of AdP -valued 1-forms η such that [η, η] is exact.

We reformulate this result as it was stated in the corollary from [5]
p.143, by specializing to the case where P is the trivial bundle and A
the trivial connection.

Given a base point x in Σ, we denote by R(Σ, G) the variety
Hom(π1(Σ, x), G) and by Hol : F (P ) → R(Σ, G) the holonomy rep-
resentation.

Definition 2.1. We denote by C the tangent cone at the identity
representation—namely, the set of elements u in H1(Σ, g) satisfying
[u, u] = 0. Identifying H1(Σ, g) with Hom(H1(Σ,R), g) we define Cirr ⊂
C as the set of surjective maps.

We have then the following theorem:

Proposition 2.2. Let Σ be a compact Riemann surface and G a com-

pact Lie group. There is an analytic function F : H1(Σ, g) → Ω1(Σ, g)
that satisfies the following:
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1) F (0) = 0 and D0F (u) is closed and cohomologous to u.
2) If [u, u] = 0, then dF (u) + 1

2 [F (u), F (u)] = 0.
3) F maps Cirr to flat connections with irreducible monodromy.

4) The map Hol ◦F : C → R(Σ, G) is a real analytic diffeomorphism

in the neighborhood of 0.

5) The map F is equivariant with respect to the adjoint action of G.

Remark 2.1. The proof of this theorem uses harmonic theory and
is an application of the implicit function theorem to the Kuranishi map
in Ω1(Σ, g); see [5]. The space of 1-forms are topologized using Sobolev
s-norms where s is sufficiently large so that the connections are at least
C2.

3. Taylor expansion of trace functions

Let γ : R/Z → Σ a parametrized simple curve, and set G = SU2 ⊂
M2(C), where M2(C) denotes the algebra of 2-by-2 matrices with com-
plex entries.

From now on, we will identify H2(Σ, g) with g by the evaluation
on the fundamental class. We will denote by 〈·, ·〉 the pairing between
homology and cohomology. Choose once for all a norm | · | on H1(Σ, g).

Proposition 3.1. If γ is non-separating:

TrHolγ F (u) = 2 +
1

2
Tr〈γ, u〉2 +O(|u|3).

If γ is separating, it decomposes the surface in two parts Σ′ ∪γ Σ
′′. De-

note by u = u′ + u′′ the decomposition of u in H1(Σ, g) = H1(Σ′, g) ⊕
H1(Σ′′, g). We have

TrHolγ F (u) = 2 +
1

8
Tr[u′ ∧ u′]2 +O(|u|5).

Remark 3.1. Notice that the fourth order of the Taylor expansion
depends only on u′ and not on u. As [u, u] = [u′, u′] + [u′′, u′′] = 0, we
can replace u′ with u′′, as required by the fact that the two terms are
not distinguished.

Proof. Given a connexion form α ∈ Ω1(Σ, g), we consider the well-
known formula

Holγ α =
∑

n≥0

∫

∆n

(γ∗α)n,

where
∫

∆n ω
n =

∫

0<t1<···tn<1 β(t1) · · · β(tn)dt1 · · · dtn and ω = β(t)dt.
One can prove this formula in the following way: Replace the interval
[0, 1] by [0, t], and we get an element αt ∈ M2(C). One can show that it
satisfies the differential equation α′

t = αtω(t), and hence α1 represents
the holonomy of ω.
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From the identity Tr(Holγ α)
−1 = Tr(Holγ α), we observe that we can

invert the parametrization of γ without changing the result. Writing
β(t)dt = γ∗α, we compute:

Tr(Holγ α) =
∑

n≥0

Tr

∫

t1<···<tn

β(1 − t1) · · · β(1 − tn)dt1 · · · dtn

=
∑

n≥0

Tr

∫

t1<···<tn

β(tn) · · · β(t1)dt1 · · · dtn

=
∑

n≥0

(−1)n Tr

∫

t1<···<tn

β(t1) · · · β(tn)dt1 · · · dtn.

This implies that only the even values of n contribute to the sum. Ob-
serve that

Tr

∫

∆2

(γ∗α)2 =
1

2
Tr

∫

β(t1)β(t2)dt1dt2 =
1

2
Tr

(
∫

γ

α

)2

.

We now apply these formulas to α = F (u). Developing F (u) into
Taylor series we can write F (u) = F1(u)+F2(u)+O(|u|3), where F1(u)
and F2(u) are 1-forms satisfying the following:

1) dF1(u) = 0.
2) F1(u) is cohomologous to u.
3) dF2(u) +

1
2 [F1(u), F1(u)] = 0.

As F (u) = O(|u|), we derive the expression

Tr(Holγ F (u)) = 2 +
1

2
Tr

(
∫

γ

F (u)

)2

+Tr

∫

∆4

γ∗F (u) +O(|u|5).

As F1(u) is cohomologous to u, we have
∫

γ
F1(u) = 〈γ, u〉. This proves

the first part of the proposition. Suppose now that γ separates, and
denote by Σ′ the submanifold of Σ with ∂Σ′ = γ.

We have
∫

γ
F1(u) = 0 and

∫

γ
F2(u) =

∫

Σ′ dF2(u) = −1
2

∫

Σ′ [F1(u) ∧

F1(u)]. This shows the formula

Tr(Holγ F (u)) = 2 +
1

8
Tr

(
∫

Σ′

[F1(u) ∧ F1(u)]

)2

+ Tr

∫

∆4

γ∗F1(u)
4 +O(|u|5).

To conclude we observe that the left-hand side is invariant by a gauge
transformation; that is, we can replace F (u) by gF (u)g−1 − (dg)g−1 for
some g : Σ → G. Writing g = exp(ξ) for some ξ : Σ → g, we compute
that an infinitesimal gauge transformation maps F1(u) to F1(u)−dξ. We
conclude that the right-hand side is invariant by such transformations
and hence depends only on the cohomology class u of F1(u). Taking a
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1-form α′
1 cohomologous to u and such that γ∗α′

1 = 0, we get the result
of the proposition. q.e.d.

4. Non-separating trace functions around the trivial

representation

For any oriented separating curve γ ⊂ Σ, denote by gγ : H1(Σ, g) → R

the map defined by

gγ(u) = Tr[u′ ∧ u′]2

where Σ′ is the subsurface of Σ so that ∂Σ′ = γ and u = u′ + u′′ is the
decomposition of u in H1(Σ, g) = H1(Σ′, g)⊕H1(Σ′′, g).

Proposition 4.1. For any surface Σ of genus g > 1, there is a

finite set of separating curves S of cardinality g(2g + 1)(2g2 + g + 1)/2
and a neighborhood U of 0 in H1(Σ, g) such for all u in Cirr ∩ U and

v ∈ H1(Σ, g), we have

[v, u] = 0 and Dugγ(v) = 0,∀γ ∈ S ⇒ v = [ξ, u] for some ξ ∈ g.

This amounts to say that there is a neighborhood V of 0 in C/G such
that the derivatives of the functions gγ for γ in S generate the cotangent
space at every surjective u ∈ V . The reason is that for any u ∈ Cirr we
have:

Tu(Cirr/G) = {v ∈ H1(Σ, g) such that [u ∧ v] = 0}/{[ξ ∧ u]

for ξ ∈ H0(Σ, g)}.

Proof. Let ω denote the intersection product on H1(Σ,R). Let γ be
a separating curve, Σ′,Σ′′ the corresponding subsurfaces and write u =
P (u)+(u−P (u)) the decomposition of any u in H1(Σ, g) = H1(Σ′, g)⊕
H1(Σ′′, g).

A direct computation show:

Dugγ(v) = 4Tr([P (u) ∧ P (u)][P (u) ∧ P (v)]).

Suppose that this quantity vanishes for all curves γ bounding a 1-holed
torus Σ′. This implies that for all rank 2 lattices Λ ⊂ H1(Σ,Z) such
that Λ ⊕ Λ⊥ω = H1(Σ,Z) (where Λ⊥ω is the symplectic orthogonal of
Λ), we have

Tr([PΛ(u) ∧ PΛ(u)][PΛ(u) ∧ PΛ(v)]) = 0,

where PΛ is the projection on Hom(Λ, g) parallel to Hom(Λ⊥ω , g).
Take (x, y) a symplectic base of Λ, and denote by pΛ the symplectic

projection of H1(Σ,R) onto Λ ⊗ R. Identifying u and v to elements in
Hom(H1(Σ,R), g), PΛ(u) and PΛ(v) are identified with u◦pΛ and v◦pΛ,
respectively.
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Moreover, [u∧v] = c◦(u⊗v)◦ω−1 where ω−1 ∈ H1(Σ,R)
⊗2 represents

the inverse symplectic product and c : g ⊗ g → g stands for the Lie
bracket. We deduce from this formula the following identity:

[PΛ(u) ∧ PΛ(v)] = [u(x), v(y)] − [u(y), v(x)].

Let Qu,v : H1(Σ,R)×H1(Σ,R) → R be the map defined by

Qu,v(x, y) = Tr([u(x), u(y)] ([u(x), v(y)] − [u(y), v(x)])).

We use the following lemma to reduce the statement to prove the
vanishing of Qu,v. We postpone its proof to the end of the section, as
we could not find a proof of it avoiding computations.

Lemma 4.1. Let u, v ∈ H1(Σ, g) such that u is surjective, [u ∧ u] =
[u ∧ v] = 0 and Qu,v = 0. Then there exists ξ ∈ g so that v = [ξ ∧ u].

It remains to show that the vanishing of Qu,v can be detected by
a finite number of rank 2 symplectic lattices in H1(Σ,Z). This is the
content of the following lemma.

Let S = {xi ⊗ yi, i ∈ I} ⊂ S2H1(Σ,Z) be a set of vectors satisfying
ω(xi, yi) = 1 where S2H1(Σ,Z) stands for the symmetric square of
H1(Σ,Z). We say that S is quadratically generating if any quadratic
form on S2H1(Σ,R) vanishing on S vanishes everywhere.

Lemma 4.2. There exists quadratically generating sets S. Moreover,

one can find such sets with cardinality g(2g + 1)(2g2 + g + 1)/2.

Again we postpone the proof this lemma to the end of the section.
Observe that the proposition follows by considering any quadratically
generating set S. By the assumption of the proposition, we have for any
u, v and any xi ⊗ yi ∈ S the equality Qu,v(xi, yi) = 0. The generating
property implies that Qu,v = 0, and Lemma 4.1 implies the result.

q.e.d.

Proof of Lemma 4.1: Let (ξi)i∈Z3
be a basis of g so that [ξi, ξi+1] = ξi+2

and normalize the trace so that Tr(ξiξj) = δij for all i, j ∈ Z3.
Write u =

∑

i uiξi for ui ∈ H1(Σ,R). The hypothesis on u imply that
the ui are non-zero and mutually orthogonal. Fix a basis (ei)0≤i<n of
H1(Σ,R) so that ui = e∗i for i = 0, 1, 2. Then v =

∑

i∈Z3

∑

j<n v
l
ie

∗
l ⊗ ξi,

x =
∑

l xlel and y =
∑

l ylel.
From now on, i ∈ Z3 and 0 ≤ l < n. We have u(x) =

∑

i xiξi and

v(x) =
∑

i,l v
l
ixlξi, so that

[u(x), u(y)] =
∑

i

(xiyi+1 − xi+1yi)ξi+2,

[u(x), v(y)] =
∑

i

yl(xiv
l
i+1 − xi+1v

l
i)ξi+2.
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This gives the identity
∑

i,l

(

(xiyi+1 − xi+1yi)(xiylv
l
i+1 − xi+1ylv

l
i − xlyiv

l
i+1 + xlyi+1v

l
i)
)

= 0.

This biquadratic polynomial in x and y vanishes identically if and
only if all its coefficients vanish:

- The coefficient of x2i yi+1yl for l > 3 is vli+1, showing that vli = 0
for all i and l > 3.

- The coefficient of x2i y
2
i+1 is vi+1

i+1 + vii, showing that vii = 0 for all i.

- The coefficient of x2i yi+1yi−1 is vi−1
i+1 + vi+1

i−1 .

This show that the matrix vji is antisymmetric so that the set of solutions
have dimension 3 as the set of infinitesimal symmetries. q.e.d.

Proof of Lemma 4.2: The vector space Q of quadratic forms on
S2H1(Σ,R) has dimension N = g(2g+1)(2g2+g+1)/2. Each symplec-
tic lattice Λi = Span(xi, yi) acts linearly on Q by evaluation at xi ⊗ yi.
If these linear forms generate the dual of Q, then a subset of size N of
them will do.

It remains to prove that these linear forms indeed generate the dual
of Q. Let then Q ∈ Q such that, for any x, y ∈ H1(Σ,Z) satisfying
ω(x, y) = ±1, we have Q(x, y) = 0.

Let (x0, y0) be such an integral symplectic basis. Then the map
Sp(2g,R) → R sending A to Q(Ax0, Ay0) is algebraic. This map van-
ishes on Sp(2g,Z), which is Zariski dense in Sp(2g,R) and hence vanishes
identically. As the group Sp(2g,R) acts transitively on the set of pairs
(x, y) ∈ H1(Σ,R) satisfying ω(x, y) = 1, we get Q(x, y) = 0 for such
pairs. As Q is homogeneous, we have the same result for all (x, y) such
that ω(x, y) 6= 0. By density, we get Q = 0. q.e.d.

Let S be a set of simple curves γi bounding 1-holed tori in Σ. We
will say that this set is quadratically generating if the corresponding
2-dimensional symplectic lattices are quadratically generating.

Proposition 4.2. Let S be a quadratically generating set of curves,

and let fγ : M(Σ, G) → R be the associated trace functions.

For any conical neighborhood V of the subset of reducible representa-

tions in M(Σ, G) there is a neighborhood U of the trivial representation

in M(Σ, G) so that for any x ∈ U \ V the derivatives of fγ at x, with
γ ∈ S, generate the cotangent space T ∗

xM(Σ, G).

Remark 4.1. Observe that M(Σ, G) is locally modeled on the cone
C/G. By conical neighborhood V we mean that V contains some neigh-
borhood invariant by scaling in the model. This is indeed independent
on the real analytic diffeomorphism we choose.

Proof. The proposition is equivalent to saying that for ρ ∈ R(Σ, G)
close enough to the trivial representation but far enough from reducible
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representations, the intersection of the kernels of the derivatives of the
functions fγ , with γ ∈ S, is precisely the tangent space of the G action.
Recall that the map F : C → R(Σ, G) is a G-equivariant real analytic
diffeomorphism, and hence it is sufficient to prove the analogous claim
for fγ ◦ F . From Proposition 3.1, we have, at each point u of C,

fγ(F (u)) = 2 +
1

16
gγ(u) +O(|u|5).

As F is a smooth function of u, we have

(1) 16Du(fγ ◦ F ) = Dugγ +O(|u|4).

By Proposition 4.1, there is a neighborhood U of 0 in C such that for
all u in Cirr ∩ U , the derivatives of gγ , γ ∈ S, generate the cotangent
space of C at u, modulo the 3-dimensional space of elements of the
form [ξ, u], with ξ ∈ H0(Σ, g). This means that we can find a set S′ ⊂
S of cardinality 6g − 6, such that the derivatives of gγ , γ ∈ S′, are
linearly independent at u. This is an open condition and thus holds true
for some open neighborhood US′ containing u. In particular, {US′}, for
S′ ⊂ S (of cardinal 6g − 6) forms an open covering of Cirr ∩ U . Taking
an auxiliary euclidean structure in H1(Σ, g), this last condition can be
expressed by saying that the Gram determinant Gram(Dugγ)γ∈S′ of
(Dugγ)γ∈S′ relative to the euclidean structure is positive on US′ . Thus
Φ(u) =

∑

S′⊂S Gram(Dugγ)γ∈S′ is positive on Cirr ∩ U .
Define Ψ(u) =

∑

S′⊂S Gram(16Dufγ ◦F )γ∈S′ . By reversing the argu-
ment above, we need to prove that there is a neighborhood U ′ of 0 in
C so that for any u ∈ U ′ \ V one has Ψ(u) > 0.

We observe that Dugγ is cubic in u and so Φ(u) is homogeneous of
degree N = 36(g − 1). By using Equation (1) and expanding the Gram
determinant, we find that

(2) Ψ(u) = Φ(u) +O(|u|N+1).

Let V be the conic neighborhood of C \ Cirr given in the statement,
and let S be the compact set defined by S = {u ∈ C, |u| = 1}. As S \ V
is a compact subset of Cirr, there exists ǫ > 0 so that Φ > ǫ on S \ V .
By homogeneity we get |Φ(u)| > ǫ|u|N on Cirr \ V , which together with
Equation (2) proves the result.

q.e.d.

Remark 4.2. We will call an open set of the form U \V given by the
above proposition a ”neighborhood of the trivial representation.” We
can use these neighborhoods to define a topology on Mirr(Σ, G) ∪ {1}.
A crucial observation is that these open sets are connected, as Cirr is
locally connected around the trivial representation. In fact, according to
Lemma 4.1, a point of Cirr is given by a triple of pairwise orthogonal ele-
ments of H1(Σ;R) and the symplectic group Sp(2g,R) acts transitively
on the space of such triples.
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5. Ergodicity of the Johnson subgroup action on M(Σ,SU2)

Fix a set of separating curves S of genus 1 that are quadratically gen-
erating. Let K1(Σ;S) ⊂ K(Σ) denote the normal subgroup of Mod(Σ)
generated by the Dehn twists along the curves γ ∈ S. Further define,
for all n ≥ 1, Kn+1(Σ;S) as being the normal subgroup in Kn(Σ;S)
generated by the Dehn twists along curves in S. The result of Theorem
1.1 follows from the following more general proposition:

Proposition 5.1. For each n ≥ 1, the action of Kn(Σ, S) on

M(Σ,SU2) is ergodic.

Proof. For n ≥ 1, we denote by An(S) the set of orbits of curves in
S under the action of Kn−1(Σ;S), where K0(Σ;S) stands for Mod(Σ).
Define the following set:

Un = {ρ ∈ Mirr(Σ, G) such that Span{Dρfγ

for γ ∈ An(S)} = T ∗
ρM(Σ, G)}.

As this is an open condition, Un is open. Moreover, U1 is invariant
by the mapping class group.

We will prove the claim by recurrence on n by means of a bootstrap
argument. Consider first n = 1. Remark 4.2 directly implies that there is
a connected neighborhood V of the trivial representation in M(Σ, G) so
that V ∩Mirr(Σ, G) ⊂ U1. Let U

0
1 be the unique connected component of

U1 that contains V . The open set U0
1 is then non-empty and invariant

by the mapping class group. By the ergodicity of the mapping class
group on M(Σ,SU2), proved by Goldman in [3], the complement of
U0
1 has measure 0. The end of the proof for n = 1 follows from the

arguments of Goldman and Xia in [7]. Specifically, one key ingredient is
the infinitesimal transitivity Lemma 3.2 from [7], which we state here
for the sake of completeness:

Lemma 5.1. Let X be a connected symplectic manifold and F be

a set of functions such that their differential at all points of X span

the cotangent space. Then the group generated by the Hamiltonian flows

associated to the functions in F acts transitively on X.

The Hamiltonian flow associated to the trace function fγ is covered by
the Hamiltonian flow Φt

γ of hγ = arccos(fγ/2), the so-called Goldman
twist flow (see, e.g., [3, 7]) defined by γ. The flow Φγ gives a circle
action of period π on an open dense subset of M(Σ,SU2). The action
of the Dehn twist along the separating simple curve γ on M(Σ,SU2) is
identified with the time hγ of the Goldman twist flow.

This circle action is a rotation of angle hγ and therefore the Dehn
twist along γ acts ergodically on the orbit of ρ ∈ M(Σ,SU2) under the

Goldman twist flow defined by γ, for all ρ with irrational
hγ(ρ)
π

. Now,
this implies (see [7, Proposition 5.4]) that any measurable function on
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M(Σ,SU2) that is invariant by the action of the Dehn twist along γ
should be constant on the orbits of the Goldman twist flow defined by
γ outside a nullset of M(Σ,SU2). Therefore, any measurable function
on M(Σ,SU2) which is invariant by the group K1(Σ;S) should be in-
variant by the group generated by the Hamiltonian flows associated to
the functions fγ, for γ ∈ S, almost everywhere. Then, by Lemma 5.1
and Proposition 4.2, it must be constant on U0

1 almost everywhere. This
establishes the claim for n = 1.

Assume now that the claim holds for n. One can find a connected
neighborhood Vn of the trivial representation in M(Σ, G) so that Vn ⊂
Un, using again Remark 4.2. Let U0

n be the unique connected component
of Un that contains Vn. The open set U0

n is then non-empty and invariant
by the group Kn(Σ;S). By using the ergodicity of the Kn(Σ;S) action
on M(Σ,SU2), which is the induction hypothesis, the complement of
U0
n has measure 0. Then again the arguments from [7] imply that the

Kn+1(Σ;S) action is ergodic. q.e.d.

Remark 5.1. The subgroup Γ(S) generated by the Dehn twists along
curves in S is contained in the intersection ∩n≥1Kn(Σ;S), but we don’t
know whether the inclusion is strict. One also might speculate that Γ(S)
acts ergodically on M(Σ,SU2).

References

[1] J.M. Arms, J.E. Marsden & V.Moncrief, Symmetry and bifurcations of momen-
tum mappings, Comm. Math. Phys. 78 (1980/81), no. 4, 455–478, MR 0606458,
Zbl 0486.58008.

[2] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in
Math. 54 (1984), no. 2, 200–225, MR 0762512, Zbl 0574.32032.

[3] W.M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of
surface group representations, Invent. Math. 85 (1986), no. 2, 263–302, MR
0846929, Zbl 0619.58021.

[4] W.M. Goldman, Ergodic theory on moduli spaces, Ann. of Math. (2) 146 (1997),
no. 3, 475–507, MR 1491446, bl 0907.57009.

[5] W.M. Goldman & J.J. Millson, Deformations of flat bundles over Kähler man-
ifolds, Geometry and topology (Athens, Ga., 1985), 129–145, Lecture Notes
in Pure and Appl. Math. 105, Dekker, New York, 1987, MR 0873290, Zbl
0618.53051.

[6] W.M. Goldman & J.J. Millson, The deformation theory of representations of

fundamental groups of compact Kähler manifolds Inst. Hautes Études Sci. Publ.
Math. No. 67 (1988), 43–96, MR 0972343, Zbl 0678.53059.

[7] W.M. Goldman & E. Xia, Ergodicity of mapping class group actions on SU(2)-
character varieties, Geometry, rigidity, and group actions, 591–608, Chicago
Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, MR 2807844, Zbl
pre06077159.

[8] W.M.Goldman & E.Xia, Action of the Johnson-Torelli group on representation
varieties, arXiv:1003.2825.



418 L. FUNAR & J. MARCHÉ
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École Polytechnique

Route de Saclay
91128 Palaiseau Cedex, France

E-mail address: marche@math.polytechnique.fr


