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VOLUME ESTIMATES FOR KÄHLER-EINSTEIN

METRICS: THE THREE-DIMENSIONAL CASE

X.-X. Chen & S.K. Donaldson

Abstract

We obtain an estimate for the volumes of neighborhoods of sets
of large curvature in three-dimensional Kähler-Einstein manifolds.
The key technical step is to prove that a version of monotonicity
for L2 energy holds as long as the underlying region does not
“carry homology” (in the sense that the normalized energy in a
ball controls the normalized energy in an interior ball).

1. Introduction

This is the first of a series of papers in which we obtain estimates
for the volume of certain subsets of Kähler-Einstein manifolds. These
estimates form the main analytical input for an approach to general
existence questions [9]. Let (M,g) be any compact Riemannian manifold
and r > 0. We let Kr ⊂ M be the set of points x where |Riem| ≥
r−2 and write Zr for the r-neighborhood of Kr. Thus any point of the
complementM\Zr is the centre of a metric r-ball on which the curvature
is bounded by r−2. Rescaling lengths by a factor r−1, this becomes, in
the rescaled metric, a unit ball on which the curvature is bounded by
1. If in addition (as will be the case in our situation), we have control
of the local injectivity radius, we can say that, at the length scale r,
the complement M \ Zr consists of “good points” with neighborhoods
of bounded geometry. Our aim is to derive estimates for the volume of
the “bad” set Zr: the set where the geometry need not be standard at
this scale.

Let g be a Kähler-Einstein metric so Ric = λg for constant λ. Then
one can find in each complex dimension n constants an, bn, depending
only on n, so that pointwise on the manifold,

(1) |Riem|2dµ = (anc1(Riem)2 + bnc2(Riem)) ∧ ωn−2,

where we write ci(Riem) for the standard integrand defining the Chern
classes in Chern-Weil theory. (These constants do not depend on λ. As
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usual we write ω for the 2-form corresponding to g.) Thus on a compact
manifold M ,

(2)

∫

M
|Riem|2 = 〈anc21 ∪ ωn−2 + bnc2 ∪ ωn−2,M〉.

The right-hand side is a topological invariant, determined by the Chern
classes of M and the Kähler class, which we will denote for brevity by
E(M). This identity shows that the curvature of the Kähler-Einstein
metric cannot be very large on a set of large volume in M . More pre-
cisely, we have an obvious estimate for the volume of Kr,

Vol(Kr) ≤ E(M)r4.

The goal of our work is to estimate the volume of Zr rather than Kr.
We consider Kähler-Einstein metrics with nonnegative Ricci curvature
and in this first paper we restrict to complex dimension 3. We consider
a compact Kähler-Einstein 3-fold (M,g) with Ric = λg, λ ≥ 0. We
suppose that the metric satisfies the condition that

(3) VolM ≥ κ Diam(M)6

for some κ > 0. The Bishop-Gromov comparison theorem implies that
for all metric balls B(x, r) with r ≤ Diam(M),

(4) VolB(x, r) ≥ κr6.

Our main result is the following.

Theorem 1. In this situation,

Vol(Zr) ≤ C
(

E(M)r4 + b2(M)r6
)

where C depends only on κ and b2(M) is the second Betti number of M .

Notice that the statement here is scale invariant (as of course it has
to be). When c1 > 0 (which is the case we have mainly in mind), the
bound (3) follows from Myers’ Theorem, with a constant κ determined
by topological data. If we fix the scale by requiring that Ric = g, then
the content of the theorem is the bound

(5) Vol(Zr) ≤ Cr4.

We will also establish a small extension, which is probably not opti-
mal.

Theorem 2. With notation as in Theorem 1, there is a constant C ′

such that for all r there is a connected open subset Ω′ ⊂ M \ Zr with

Vol(M \Ω′) ≤ C(E(M)r18/5 + b2(M)r6).
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(In applications such as in [9], any bound O(rµ) with µ > 2 will
suffice.)

We can consider the same questions for Kähler-Einstein metrics in
any complex dimension n. When n = 2, the proofs are much easier
because of the scale invariance of the L2 norm of the curvature in that
dimension. In general for a ball B(x, r) (with r ≤ Diam(M)), we define
the “normalized energy”

(6) E(x, r) = r4−2n

∫

B(x,r)
|Riem|2dµ,

which is scale invariant. (When we want to emphasise the dependence
on the metric, we write E(x, r, g).) Notice that in our situation we have

κr2n ≤ Vol(B(x, r)) ≤ ω2nr
2n

where ω2n is the volume of the unit ball in R2n. So it is essentially
the same to normalise by the appropriate power of the volume of the
ball. Normalized energy functionals of this kind appear in many other
contexts in differential geometry, for example the theories of harmonic
maps and Yang-Mills fields. In these two theories a crucial monotonic-
ity property holds. This is the statement that with a fixed centre the
normalized energy is a decreasing function of r. If this monotonicity
property held in our situation for Kähler-Einstein metrics, the proof of
our theorem would be relatively straightforward. (Of course when n = 2,
the monotonicity is obviously true.) The main work in this paper is to
establish a result which can be seen as an “approximate monotonicity”
property. To state this cleanly, let us say that an open subset U ⊂ M
carries homology if the inclusion map H2(∂U,R) → H2(U,R) is not sur-
jective. Note that if V ⊂ U carries homology, then so does U , and that
if U1, U2, . . . , Up ⊂ M are disjoint domains which each carry homology,
then p cannot exceed the second Betti number of M .

Theorem 3. With the same hypotheses as Theorem 1, for each ǫ >
0 there is a δ > 0 such that if B(x, r) ⊂ M is a metric ball (r ≤
Diam(M)) which does not carry homology and E(x, r) ≤ δ, then for
any y ∈ B(x, r/2) and r′ ≤ r/2 we have E(y, r′) ≤ ǫ.

The function δ(ǫ) depends only on the non-collapsing constant κ.
In Section 2 of this paper we prove Theorem 3. The proof is an ap-

plication of the extensive theory, due to Anderson, Cheeger, Colding,
and Tian, of Gromov-Hausdorff limits of Riemannian manifolds with
lower bounds on Ricci curvature. In particular we make use of deep re-
sults of Cheeger, Colding, and Tian on codimension-4 singularities and
of Cheeger and Colding on tangent cones at infinity. Given Theorem
3, the deduction of Theorem 1, which we show in Section 3, is fairly
straightforward. We will first prove a “small energy” result, as follows.
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Proposition 1. With the same hypotheses as Theorem 1, there are
δ0,K such that if B(x, r) ⊂ M (with r ≤ Diam(M)) is a ball which
does not carry homology and E(x, r) ≤ δ0, then |Riem| ≤ Kr−2 on the
interior ball B(x, r/3).

Theorem 1 follows from a straightforward covering argument. In Sec-
tion 4 we conclude with some remarks and discussion.

In the sequel to this paper we will extend the results to all dimensions
using a rather different argument, making more use of the complex
structure and developing ideas of Tian in [13]. (Tian has informed us
that, using these ideas, he obtained related results some time ago.) This
argument also gives another approach to the three-dimensional case
here. But it appears to us worthwhile to write down both proofs.

The authors have had this paper in draft form since early 2010. Re-
cently Cheeger and Naber have posted a preprint [6] establishing these
volume estimates in all dimensions, and including results in a more gen-
eral Riemannian geometry setting. Their approach is somewhat different
and it seems valuable to have this variety of arguments in the literature.

Acknowledgments. The second author was partially supported by Eu-
ropean Research Council award No. 247331.

2. Proof of Theorem 3

2.1. Cones with small energy. One foundation of our proof of The-
orem 3 is a result of Cheeger, Colding, and Tian which states, roughly
speaking, that the formation of codimension-4 singularities requires a
definite amount of energy. Let G ⊂ U(2) be a finite group acting freely
on S3 and n ≥ 2. Consider the unit ball B in the metric product
Cn−2 ×

(

C2/G
)

centred at (0, 0). Let V be a Kähler manifold of com-
plex dimension n with nonnegative Ricci curvature and B′ be a unit ball
centred at p ∈ V . Write dGH(B,B′) for the based Gromov-Hausdorff
distance.

Proposition 2 ([5], Theorem 8.1). There are αn, ηn > 0 such that
if dGH(B,B′) ≤ αn and G is non-trivial, then

∫

B′

|Riem|2 ≥ ηn.

Using this, we now prove a result about metric cones in complex
dimension 3 with small energy.

Proposition 3. Let Y be a metric cone with vertex O. Suppose that
the based space (Y,O) is the Gromov-Hausdorff limit of based Kähler-
Einstein manifolds (of complex dimension 3) (Xn, gn, On) with Ric(gn) =
λngn, where λn ≥ 0 and λn → 0. Suppose that the Xn satisfy a non-
collapsing condition (4), with fixed κ > 0. Then there is a θ > 0 such
that if E(On, 2, gn) ≤ θ for all n, then Y is smooth away from the vertex.
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To see this, we argue by contradiction. Suppose there is a sequence of
such examples Ym, with fixed κ and with θm → 0. Taking a subsequence,
we can suppose these have a based Gromov-Hausdorff limit Y∞, and by
a diagonal argument this is the limit of a sequence of smooth based
manifolds Xn, as above, with E(On, 2, gn) → 0. The non-collapsing
condition means that, according to the Cheeger-Colding-Tian theory,
Y∞ is a smooth Ricci-flat Kähler manifold, of real dimension 6, outside
a set S ⊂ Y∞ of Hausdorff dimension at most 2. Further, because of the
complex structures present, if the dimension of S is strictly less than 2,
it must be 0, and this means that the singular set contains at most the
vertex O, since it is invariant under the dilation action on the cone. So
it suffices to show that dimS < 2. If, on the contrary, the dimension is
2 then, again by the general theory, there is some point with a tangent
cone of the form C × C2/G for a non-trivial G. (In fact this is true
for almost all points of the singular set, with respect to Hausdorff 2-
measure.) By the invariance under the dilation action, we can suppose
this point is at distance 1, say, from the vertex. By the definition of
tangent cone and of Gromov-Hausdorff convergence we can find a fixed
small ρ with the property that, for all large n, there is a point pn ∈ Xn

such that the distance in Xn from pn to On is approximately 1 and the
Gromov-Hausdorff distance between the ρ-ball in Xn centred at pn and
the ρ-ball in the model space C×C2/G is less than α3ρ. But, rescaling
the result above, this implies that the integral of |Riem|2 over this ρ-ball
in Xn is at least η3ρ

2, which gives a contradiction.

Proposition 4. With the same hypotheses as in Proposition 2, for
any σ,L we can choose θ so that for all large n and points x in Xn with
L−1 ≤ d(x,On) ≤ L, we have

|Riem| ≤ σd(x,On)
−2.

This follows from the same argument as above, and general theory.
(By results of Anderson [1], at points where the Gromov-Hausdorff limit
is smooth, the metrics converge in C∞.)

Proposition 5. With the same hypotheses as in Proposition 2, we
can choose θ so that the cone Y must have the form C3/Γ for some
Γ ⊂ U(3) acting freely on S5.

We know that Y has a Kähler metric with zero Ricci curvature, so
this follows from the rigidity of C3/Γ, among such cones. To give a direct
argument, we use the fact that the curvature tensor of a Kähler-Einstein
metric satisfies an identity of the form

(7) ∇∗∇Riem = Riem ∗ Riem,

for a certain bilinear algebraic expression ∗. With suitable normaliza-
tions, this gives a differential inequality

(8) ∆|Riem| ≥ −|Riem|2.
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(We use the “analysts convention” for the sign of ∆.) Now apply this to
our cone Y and set f = |Riem|. Write r for the radial function on the
cone. Clearly f is homogeneous of degree −2, so (in an obvious notation)

∂f

∂r
= −2

r
f

∂2f

∂r2
=

6

r2
f.

Consider the restriction of f to the cross-section r = 1 and a point
p where f attains its maximal value: m, say. If we write ∆Σ for the
Laplacian on the cross-section, we have the usual formula

∆ = r−5 ∂

∂r

(

r5
∂

∂r

)

+ r−2∆Σ.

By the homogeneity of f we have, at the point p,

∆f = −4f +∆Σf,

and ∆Σf ≤ 0 at p by the maximum principle. So we deduce that 4m ≤
m2, and if m < 4, we must have m = 0.

2.2. The main argument. The second foundation of our proof is the
existence, due to Cheeger and Colding [3], of “tangent cones at infinity,”
under suitable hypotheses, as metric cones. It is convenient to first state
an alternative form of Theorem 3.

Proposition 6. With the same hypotheses as in Theorem 3. for all
ǫ > 0 there is an A(ǫ) such that if the ball B(x, r) ⊂ M does not carry
homology and E(x, r) ≤ ǫA(ǫ)−2, then for all ρ ≤ r we have E(x, ρ) ≤ ǫ.

To see that this statement implies Theorem 3, let B(y, r′) ⊂ B(x, r)
be a ball of the kind considered there. The r/2 ball B(y, r/2) centred at
y lies in B(x, r) and the corresponding normalized energy is at most 22

times E(x, r). It suffices to take δ(ǫ) = ǫ(2A(ǫ))−2 and apply Proposition
6 to B(y, r/2).

Now we start the proof of Proposition 6. Notice that in proving the
result, we can obviously assume that ǫ is as small as we please, and we
will always suppose that ǫ is less than the constant θ of Proposition
5. First fix ǫ,A and suppose that the statement is false for these pa-
rameters, so we have a point x in a manifold M and radii ρ < r with
E(x, ρ) ≥ ǫ, E(x, r) ≤ ǫA−2. This implies that ρ < A−1r. Choose the
largest possible value of ρ, so E(x, s) < ǫ for s ∈ (ρ, r] but E(x, ρ) = ǫ.
Still keeping ǫ fixed, we suppose that we have such violating examples
for a sequence An → ∞, and data Mn, gn, xn, ρn, rn. Rescale the (Rie-

mannian) metrics by the factor ρ
−1/2
n : without loss of generality there

is a pointed Gromov-Hausdorff limit

(Mn, ρ
−1/2
n gn, xn) → (Z,O).

Here Z may be singular. Let Rm be any sequence with Rm → ∞.
Then we can rescale the metric on Z by factors R−1

m , and the general
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theory of [3] (using the noncollapsing condition (4)) tells us that a sub-
sequence converges to a “tangent cone at infinity” Y which is a metric
cone. The convergence is again in the sense of pointed Gromov-Hausdorff
limits.

Now go back to the smooth Riemannian manifolds Mn and consider
the rescalings (Rmρn)

−1/2gn, indexed by n,m. If we choose a suitable
function n(m) which increases sufficiently rapidly, then the correspond-
ing sequence of Riemannian manifolds converges to the cone Y . Call
these based manifold Mm, g̃m, xm. We can also suppose n(m) increases
so rapidly that An(m)/Rm tends to infinity with m. The choice of pa-

rameters means that E(xm, s, g̃m) < ǫ < θ if s ≤ An/Rm and s > R−1
m .

In particular this holds for s = 2, and we are in the position considered
in Theorem 2. Thus we deduce that the tangent cone Y is smooth (away
from its vertex) and of the form C3/Γ. It follows easily that Z is smooth
outside a compact set and that the curvature of Z satisfies a bound

(9) |Riem| ≤ σr−2
Z ,

(outside a compact set) where rZ denotes the distance in Z to the base
point and the constant σ can be made as small as we like by choosing ǫ
small.

The further result that we need is that the curvature actually decays
faster.

Proposition 7. There is a γ > 3 and K > 0 such that outside a
compact subset of Z.

|Riem| ≤ Kr−γ
Z .

In fact our proof will establish the result for any γ < 4. The decay
rate r−4 arises as that of the Green’s function in real dimension 6. We
postpone the proof of Proposition 7, which is somewhat standard, and
move on to complete the proof of Theorem 3, assuming this.

Consider the general situation of a domain U ⊂ M with smooth
boundary ∂U and a Kähler metric on M . Suppose that

• The cohomology class of ω in H2(∂U) is zero.
• U does not carry homology.
• H1(∂U) = 0.

The first two conditions imply that the class of ω in H2(U) also
vanishes, so we can write ω = da for a 1-form a on U . Now let p be the
invariant polynomial corresponding to the characteristic class a3c

2
1 +

b3c2, as discussed in the Introduction. Thus p(Riem) is a closed 4-form
on U and if the metric is Kähler-Einstein, we have

∫

U
|Riem|2 =

∫

U
p(Riem) ∧ ω.
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Then

(10)

∫

U
p(Riem) ∧ ω =

∫

∂U
p(Riem) ∧ a.

Further, the third condition implies that if ã is any 1-form on ∂U with
dã = ω|∂U , then

(11)

∫

∂U
p(Riem) ∧ a =

∫

∂U
p(Riem) ∧ ã.

Thus the integral of p(Riem) ∧ ω over U is determined by data on the
boundary, and if the metric is Kähler-Einstein, this coincides with the
integral of |Riem|2 over U . In particular we get an inequality

(12)

∫

U
|Riem|2 ≤ cmax

∂U
|Riem|2

∫

∂U
|a|,

for some fixed constant c.
To apply this, consider first the flat cone C3/Γ and let Σr be the

cross-section at radius r. Then the real cohomology of Σr vanishes in
dimensions 1 and 2 and we can obviously write

ω|Σr = dar

with |ar| = O(r). In fact we can take ar to be one-half the contraction
of ω with the vector field r ∂

∂r , so |ar| = r. Let VΓ r5 be the 5-volume
of Σr.

Now choose R0 so large that cK2R6−2γ
0 VΓ < ǫ/2. By our discussion of

the cone at infinity in Z, we can choose R ≥ R0 such that near the level
set rZ = R in Z there is a hypersurface Σ′ with the property that the
geometry of ωZ restricted to Σ′ is very close to that of the cone metric
restricted to ΣR, in an obvious sense. In particular we can suppose that
ωZ |Σ′ = da′ where

∫

Σ′

|a′| ≤ 3

2
VΓR

6,

say. The bound on the curvature in Proposition 7 implies that

(13) cmax
Σ′

|Riem|2
∫

Σ′

|a′| ≤ 3ǫ

4
.

From now on R is fixed. We go back to the manifoldsMn with rescaled

metrics ρ
−1/2
n gn converging to Z. We choose n so large that there is

hypersurface Σ′′ ⊂ Mn on which the geometry is close to that of Σ′.
Then Σ′′ is the boundary of an open set U ⊂ Mn which does not carry
homology by hypothesis. By taking n large, we can make the boundary
term in (10) as close as we like to that estimated in (12), (13). So we
can suppose that

∫

U
|Riem|2 ≤ 5ǫ

6
,
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say. But the U contains the unit ball centred at xn over which the inte-
gral of |Riem|2 is ǫ by construction. This gives the desired contradiction.

2.3. Curvature decay. Here we prove Proposition 7. The proof ex-
ploits the differential inequality

∆|Riem| ≥ −|Riem|2 ≥ −σr−2
Z |Riem|.

To explain the argument, consider first a slightly different problem in
which we work on a cone Y (of real dimension 6) with radial function
r, and we have a smooth positive function f on the set r ≥ 1 with
∆f ≤ σr−2f and f ≤ σr−2. We have

(14) (∆ +
σ

r2
)rλ = (λ(λ+ 4) + σ)rλ−2.

Let α = −2 −
√
4− σ, β = −2 +

√
4− σ: the roots of the equation

λ(λ + 4) + σ = 0. We suppose σ is small, so α is close to −4 and β is
close to 0. Then any linear combination

g = Arα +Brβ

satisfies the equation (∆ + σ
r2
)g = 0. Fix R > 1 and let m1, mR be the

maximum values of f on the cross-sections r = 1, r = R respectively.
We choose constants A,B so that g(1) ≥ m1, gR ≥ mR. If we solve for
the case of equality, we get

A0 =
Rβm1 −mR

Rβ −Rα
, B0 =

mR −Rαm1

Rβ −Rα
.

Since Rβ > Rα it certainly suffices to take

A =
Rβm1

Rβ −Rα
, B =

mR

Rβ −Rα
.

Then set u = f−g so that u ≤ 0 when r = 1 or r = R and (∆+σr−2)u ≥
0. We claim that u ≤ 0 throughout the region 1 ≤ r ≤ R. For if we write
u = hr−2, calculation gives

(15) (∆ +
σ

r2
)u = r−2(∆h− 2r−1∂h

∂r
− (4− σ)r−2h)

and (since 4 − σ > 0) we see that there can be no interior positive
maximum of h.

We see then that for 1 < r < R we have

f ≤ Arα +Brβ

where A,B are given by the formulae above. Using the information
m1 ≤ θ,mR ≤ σR−2, we get

Arα ≤ crα, Brβ ≤ cR−β+2rβ

for some fixed c. Taking R very large compared to r, we get f ≤ 2crα,
say.
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We want to adapt this argument to the function f = |Riem| on Z.
Recall that Z has base point O and rZ is the distance to O. We write

A(r1, r2) = {z ∈ Z : r1 < rZ(z) < r2}

with r2 = ∞ allowed.
There are several complications. One minor difficulty is that f may

not be smooth, but this is handled by standard approximation argu-
ments. The second is that the manifold is not exactly a cone, even at
large distances, and the radius function rZ need not be smooth.

Lemma 1. For any τ > 0 we can find an Rτ > 0 and a smooth
function r on the region A(Rτ ,∞) ⊂ Z such that

• | rrZ − 1| ≤ τ,

• ||∇r| − 1| ≤ τ ,
• |∆r2 − 12| ≤ τ .

We only sketch the proof. It is clear that we can choose Rτ so that
we can find such a function on any annulus A(2pRτ , 2

p+1Rτ ) for p =
1, 2, . . . . This just uses the convergence of the rescaled metric to the
cone. If we extend these annuli slightly, we get a sequence of overlap-
ping annuli and a function defined on each. To construct r we glue
these together using cut-off functions. Notice that we only have to glue
adjacent terms so that the gluing errors do not accumulate.

Now think of σ and τ as fixed small numbers. (It will be clear from the
discussion below that one could calculate appropriate values explicitly:
for example σ = τ = 1/100 will do.) We want to adapt the preceding
argument to prove Proposition 7. There is no loss in supposing that in
fact Rτ = 1/2 and that |Riem| ≤ σ|Riem|2 on r ≥ 1. Let α, β be the
roots as above and choose α′, β′ with α′ slightly greater than α and β′

slightly less than β. Then if τ is small, we will have

(16) (∆ + σr−2)rα
′

, (∆ + σr−2)rβ
′ ≤ 0.

We want to choose A,B such that g(r) = Arα
′

+Brβ
′

has ∆+σr−2 ≤ 0
and g(1) ≥ m1, g(R) ≥ mR where m1,MR are the maxima of f on
r = 1, r = R respectively. We take

A =
m1R

β′

Rβ′ −Rα′
, B =

mR

Rβ′ −Rα′
.

Then A,B ≥ 0, so the differential inequality follows from (16). Now
consider u = f − g and argue as before to show that u has no interior
maximum. We have

∆r−2 = r−4(8|∇r|2 −∆r2) ≤ (−4 + 9δ)r−4,

and the same argument goes through.
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3. Proof of Theorem 1

We begin with a standard result.

Proposition 8. Given κ > 0 there is a χ > 0 such that if B is any
unit ball in a Kähler-Einstein manifold (of real dimension 6) and

1) |Riem| = 1 at the center of B;
2) |Riem| ≤ 4 throughout B;
3) Vol(B) ≥ κ,

then
∫

B |Riem|2 ≥ χ.

One way to prove this is to apply the Moser iteration technique to
|Riem|, using the differential inequality (8) and the fact that in this
situation the Sobolev constant is bounded. Another method is to use
elliptic estimates in harmonic coordinates.

Proposition 9. Suppose M is a Kähler-Einstein manifold as con-
sidered in Theorem 1. There is an ǫ > 0 with the property that, if U is
any domain such that the normalized energy of any ball contained in U
is less than ǫ, then |Riem| ≤ 4d−2, where d denotes the distance to the
boundary of U .

To see this, we let S be the maximum value of d−2|Riem| over U
and suppose that this is attained at p. If S > 4, then d(q) ≥ d(p)/2 for

any point q in the ball of radius d(p)S−1/2 centred at p. Rescale this
ball to unit size and we are in the situation considered in the preceding
proposition. If we take ǫ to be the constant χ appearing there, we get a
contradiction, so in fact S ≤ 4.

We can now prove Proposition 1. Take ǫ as above and let δ(ǫ) be the
value given by Theorem 3. Suppose that B(x, r) is a ball of normalized
energy less than δ and let U be the half-sized ball. Then Theorem 3 tells
us that the normalized energy of any ball in U is at most ǫ and we can
apply the result above to see that |Riem| ≤ 4.62r−2 in B(x, r/3).

Of course some of the constants appearing in the statements above
(such as the value 4 in Proposition 8) are rather arbitrary. The essential
point is that there is a definite threshold value, so that if the normalized
energy is below this threshold, on a ball which does not carry homology,
then we get complete control of the metric on interior regions.

Now we prove Theorem 1. Given r and a Kähler-Einstein metric
(M,g) as considered there, we pick a maximal collection of point xa, a ∈
I in M such that the distance between any pair is at least r. Then the
r-balls B(xa, r) cover M . Consider a ball B(xa, 12r). If this ball does
not carry homology and its normalized energy is less than δ, then by
the result above we have |Riem| ≤ 1 on B(xa, 2r). Thus no point in Zr

can lie in B(xa, r), and thus Zr is covered by balls B(xa, r) where either
E(xa, 12r) > δ or B(xa, 12r) carries homology. Let I ′ ⊂ I denote the
indices of the first kind and I ′′ ⊂ I those of the second.
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Suppose that N balls of the form B(xa, 12r) have a non-empty com-
mon intersection. Let q be a point in the intersection, so theN centres xa
all lie in the 12r ball centred at q. By construction the balls B(xa, r/2)
are disjoint and have volume at least (κ/26)r6. Since the volume of
B(q, 12.5r) is bounded above by a fixed multiple of r6, this gives a fixed
bound on N , independent of r. Thus

∑

a∈I′

∫

B(xa,12r)
|Riem|2 ≤ N

∫

M
|Riem|2.

On the other hand, by definition, E(xa, 12r) ≥ δ for a ∈ I ′, so we see
that the number of elements of I ′ is at most

|I ′| ≤ N

δ(12r)2

∫

M
|Riem|2 = C1r

−2,

say.
By a similar argument there is a fixed upper bound N ′ on the number

of balls B(xa, 12r) which can meet any given one. It follows that the
number of these balls which carry homology is bounded by N ′ times the
second Betti number of M . So |I ′′| is bounded by a fixed number. Then

Vol(Zr) ≤ constant r6(|I ′|+ |I ′′|) ≤ C1r
4 + C2r

6.

Now we turn to Theorem 2. Recall that this states that we can find
a connected open subset Ω′ ⊂ M \ Zr so that the volume of the com-

plement of Ω′ is bounded by a multiple of r18/5.
To prove this, we recall that in our situation there is a bound on

the isoperimetric constant, due to Croke [8]. If H ⊂ M is a rectifiable
hypersurface dividing M into two components M1,M2 with Vol(M1) ≤
Vol(M2), then

(17) Vol(M1)
1/6 ≤ kVol(H)1/5

for a fixed constant k. By the construction in the proof of Theorem 1
above, the set Zr is contained in W , which is a union of P balls of
radius r with P ≤ C(r−2 + 1). By the Bishop comparison theorem the
5-volume of the boundary of one of these balls is bounded by Cr5. The
boundary ∂W ofW is a rectifiable set of 5-volume at most the sum of the
boundaries of the balls, thus Vol(∂W ) ≤ C(r3+r5). We can normalise so
that the volume of M is 1 and then, without loss of generality, suppose
that r is so small that Vol(W ) ≤ 1/10 and k5Vol(∂W ) ≤ 9/10. Let
Ωi be the connected components of M \ W . If a component Ω1 has
volume greater than 1/2 (i.e. one half the volume of M), then by (14)

its complement has volume less than k6Vol(∂W )6/5 = k6C6/5r18/5 and
we can take Ω′ = Ω1. So suppose that all components Ωi have volume
less than 1/2. Then it is clear that

∑

i

Vol(∂Ωi) = Vol(∂W )
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while
∑

i

Vol(Ωi) ≥ 9/10.

The second equation implies that
∑

i Vol(Ωi)
5/6 ≥ 9/10 and then (17)

gives
∑

i

Vol(∂Ωi) ≥ 9k−5/10,

so
Vol(∂W ) ≥ 9k−5/10,

contrary to our assumptions.

4. Discussion

1) Proposition 5 and the ensuing arguments in 2.2 above are closely
related to a result of Cheeger, Colding, and Tian ([5], Theorem
9.26). Let X be a complete, noncompact Ricci-flat Kähler man-
ifold of complex dimension n with base point p. Suppose that
Vol(B(p,R)) ≥ κR2n and

R4−2n

∫

B(p,R)
|Riem|2 → 0

as R → ∞. Tian conjectured in [12] that in this situation X is
an ALE manifold, with tangent cone at infinity of the form Cn/Γ.
When n = 3, this conjecture was established in the result quoted
above. Our statements are a little different since we establish a
definite “small asymptotic energy threshold” which implies that
the manifold is ALE.

2) In our situation the tangent cone Y of Z at infinity is unique.
In general, positive Ricci curvature does not imply uniqueness of
tangent cones, even when |Riem| ≤ cr−2. See the discussion in [4]
of examples, including an unpublished example due to Perelman.

3) Theorem 3 becomes false if we omit the condition that the ball
does not carry homology. To see this, one can consider for example
the quotient M = T 6/Γ of a complex torus by a group Γ of order
3, acting with isolated fixed points. Then M has a resolution M
with c1(M) = 0. According to Joyce [11], there is a family of ALE
metrics on the resolution of C3/Γ, parametrised by the Kähler
class. For suitable Kähler classes on M , the Calabi-Yau metric
is approximately given by gluing rescaled versions of these ALE
metrics to the flat metric on M , just as in the familiar picture
of the Kummer construction for K3 surfaces. For any δ > 0, we
can use this scaling to find a Ricci-flat metric on M , a unit ball
B(x, 1) ⊂ M on which the normalized energy is less than δ, and
an interior ball B(x, ρ) on which the normalized energy exceeds
c, for some fixed c. The arguments in our forthcoming paper will
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show that this is essentially the only way in which approximate
monotonicity can fail; see also [13].

4) It is interesting to ask if similar results to those proved above can
be established for constant scalar curvature and extremal Kähler
metrics. For this it might be sensible to assume a bound on the
Sobolev constant. Perhaps some of the techniques used in [14], [7]
can be applied to this problem.

5) Another question is whether a result like Theorem 3 holds for gen-
eral 6-dimensional Einstein metrics (with nonnegative Ricci curva-
ture and a non-collapsing condition). It might be that a different
topological side condition is appropriate.

6) The function δ(ǫ) in Theorem 3 depends only on the collapsing
constant κ. It would be interesting to determine the function ef-
fectively, but our method cannot do this. One suspects that, in re-
ality, it may be possible to take δ(ǫ) not much smaller than ǫ, and
that the constant C in Theorem 1 can (in reality) be taken not too
large. Some results on the numerical analysis of Kähler-Einstein,
and more generally extremal, metrics seem to give evidence for
this suspicion ([2], [10]) but a theoretical derivation of realistic
estimates seems a long way off.
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