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A NORMAL FORM THEOREM

AROUND SYMPLECTIC LEAVES

Marius Crainic & Ioan Mǎrcuţ

Abstract

We prove the Poisson geometric version of the Local Reeb Sta-
bility (from foliation theory) and of the Slice Theorem (from equi-
variant geometry), which is also a generalization of Conn’s lin-
earization theorem.

Introduction

Recall that a Poisson structure on a manifold M is a Lie bracket
{·, ·} on the space C∞(M) of smooth functions on M which acts as a
derivation in each entry

{fg, h} = f{g, h} + {f, h}g, (∀)f, g, h ∈ C∞(M).

A Poisson structure can be given also by a bivector π ∈ X2(M), involu-
tive with respect to the Schouten bracket, i.e. [π, π] = 0; one has:

〈π, df ∧ dg〉 = {f, g}, (∀)f, g ∈ C∞(M).

To each function f ∈ C∞(M) one assigns the Hamiltonian vector field

Xf = {f, ·} ∈ X(M).

The flows of the Hamiltonian vector fields give a partition of M into
symplectic leaves; they carry a canonical smooth structure, which
makes them into regular immersed submanifolds, whose tangent spaces
are spanned by the Hamiltonian vector fields; each leaf S is a symplectic
manifold, with the symplectic structure:

ωS(Xf ,Xg) = {f, g}.

In this paper we prove a normal form theorem around symplectic leaves,
which generalizes Conn’s linearization theorem [5] (for 1-point leaves)
and is a Poisson geometric analogue of the local Reeb stability from
foliation theory and of the slice theorem from group actions. We will
use the Poisson homotopy bundle of a leaf S, which is the analogue of
the holonomy cover from foliation theory

Px −→ S
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(x ∈ S a base point), whose “structural group” is the Poisson homotopy
group Gx.

Main Theorem 1. Let (M,π) be a Poisson manifold and let S be a
compact leaf. If the Poisson homotopy bundle over S is a smooth com-
pact manifold with vanishing second DeRham cohomology group, then,
in a neighborhood of S, π is Poisson diffeomorphic to its first order
model around S.

A detailed statement and reformulations appear in section 2. The
proof uses ideas similar to the ones in [11]: a Moser-type argument re-
duces the problem to a cohomological one (Theorem 4.1); a Van Est
argument and averaging reduces the cohomological problem to an in-
tegrability problem (Theorem 5.1) which, in turn, can be reduced to
the existence of special symplectic realization (Theorem 5.2); the sym-
plectic realization is then built by working on the Banach manifold of
cotangent paths (subsection 5.4). For an outline of the paper, we advise
the reader to go through the introductory sentence(s) of each section.

There have been various attempts to generalize Conn’s linearization
theorem to arbitrary symplectic leaves. While the desired conclusion
was clear (the same as in our theorem), the assumptions (except for the
compactness of S) are more subtle. Of course, as for any (first order)
local form result, one looks for assumptions on the first jet of π along
S. Here are a few remarks on the assumptions.

1. Compactness assumptions. It was originally believed that such a
result could follow by first applying Conn’s theorem to a transversal to
S. Hence the expected assumption was, next to the compactness of S,
that the isotropy Lie algebra gx (x ∈ S) is semi-simple of compact type.
The failure of such a result was already pointed out in [12]. A refined
conjecture was made in [9], revealing the compactness assumptions that
appear in our theorem. The idea is the following: while the condition
that gx is semi-simple of compact type is equivalent to the fact that
all (connected) Lie groups integrating the Lie algebra gx are compact,
one should require the compactness (and smoothness) of only one group
associated to gx: the Poisson homotopy group Gx. This is an important
difference because

• Our theorem may be applied even when gx is abelian.
• Actually, under the assumptions of the theorem, gx can be semi-
simple of compact type only when the leaf is a point!

2. Vanishing of H2(Px). The compactness condition on the Poisson
homotopy bundle is natural also when drawing an analogy with other
local normal form results like local Reeb stability or the slice theorem.
However, compactness alone is not enough (see Example 2.4). The subtle
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condition is H2(Px) = 0 and its appearance is completely new in the
context of normal forms:

• In Conn’s theorem, it is not visible (it is automatically satisfied!).
• In the classical cases (foliations, actions) such a condition is not
needed.

What happens is that the vanishing condition is related to integrability
phenomena [7, 8]. In contrast with the case of foliations and of group
actions, Poisson manifolds give rise to Lie algebroids that may fail to
be integrable. To clarify the role of this assumption, we mention here:

It implies integrability. The main role of this assumption is that it
forces the Poisson manifold to be (Hausdorff) integrable around the
leaf. Actually, under such an integrability assumption, the normal form
is much easier to establish, and the vanishing condition is not needed; see
our Proposition 2.1, which can also be deduced from Zung’s linearization
theorem [32]. Note, however, that such an integrability condition refers
to the germ of π around S (and not the first order jet, as desired!); and,
of course, Conn’s theorem does not make such an assumption.

It implies vanishing of the second Poisson cohomology. Next to inte-
grability, the vanishing condition also implies the vanishing of the second
Poisson cohomology group H2

π(U) (of arbitrarily small neighborhoods U
of S), which is known to be relevant to infinitesimal deformations (see
e.g. [9]). We would like to point out that the use of H2

π(U) = 0 only
simplifies our argument but is not essential. A careful analysis shows
that one only needs a certain class in H2

π(U) to vanish, and this can be
shown using only integrability. This is explained at the end of subsection
5.1, when concluding the proof of Proposition 2.1 mentioned above.

Acknowledgments. We would like to thank Rui Loja Fernandes, David
Martinez Torres, and Ezra Getzler for their very useful comments. This
research was supported by the NWO Vidi Project “Poisson topology.”

1. A more detailed introduction

In this section we give more details on the statement of the main
theorem. We start by recalling some classical normal form theorems
in differential geometry. Then we discuss the local model associated to
a principal bundle over a symplectic manifold. Next we describe the
Poisson homotopy bundle in detail, and we finish the section with an
overview of the notion of integrability of Poisson manifolds.

1.1. The Slice Theorem. Let G be a Lie group acting on a manifold
M , x ∈ M , and denote by O the orbit through x. The Slice Theorem
([14]) gives a normal form for the G-manifold M around O. It is built
out of the isotropy group Gx at x and its canonical representation Vx =
TxM/TxO. Explicitly, the local model is:

G×Gx Vx = (G× Vx)/Gx,
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which is a G-manifold and admits O as the orbit corresponding to 0 ∈
Vx.

Theorem 1.1. If G is compact, then a G-invariant neighborhood of
O in M is diffeomorphic, as a G-manifold, to a G-invariant neighbor-
hood of O in G×Gx Vx.

It is instructive to think of the building pieces of the local model as
a triple (Gx, G −→ O, Vx) consisting of the Lie group Gx, the principal
Gx-bundle G over O, and a representation Vx of Gx. This triple should
be thought of as the first order data (first jet) along O associated to
the G-manifold M , and the associated local model as the first order
approximation.

1.2. Local Reeb stability. Let F be a foliation on a manifold M ,
x ∈ M , and denote by L the leaf through x. The Local Reeb Stability
Theorem ([25]) gives a normal form for the foliation around L (we

state below a weaker version). Denote by L̃ the universal cover of L,
and consider the linear holonomy representation of Γx := π1(L, x) on

Nx = TxM/TxL. The local model is L̃×Γx Nx with leaves L̃×Γx (Γxv)
for v ∈ Nx; L corresponds to v = 0.

Theorem 1.2. If L is compact and Γx is finite, then a saturated
neighborhood of L in M is diffeomorphic, as a foliated manifold, to a

neighborhood of L in L̃×Γx Nx.

Again, the local model is build out of a triple (Γx, L̃ −→ L,Nx),

consisting of the discrete group Γx, the principal Γx-bundle L̃, and a
representation Nx of Γx. The triple should be thought of as the first
order data along L associated to the foliated manifold M , and the local
model as the first order approximation.

1.3. Conn’s Linearization Theorem. Let (M,π) be a Poisson man-
ifold and x ∈M be a zero of π. Conn’s theorem [5] gives a normal form
for (M,π) near x, built out of the isotropy Lie algebra gx. Recall that
gx = T ∗

xM with the bracket:

(1) [dxf, dxg] = dx{f, g}, f, g ∈ C∞(M).

Conversely, there is a canonical Poisson structure πlin on the dual g∗ of
any Lie algebra:

πlin(X,Y )ξ := 〈ξ, [X,Y ]〉, (∀)ξ ∈ g∗, X, Y ∈ g = T ∗
ξ g

∗.

Theorem 1.3. If gx is semi-simple of compact type, then a neigh-
borhood of x in M is Poisson diffeomorphic to a neighborhood of the
origin in (g∗x, πlin).

Again, the local data (the Lie algebra gx) should be viewed as the
first order data at x associated to the Poisson manifold, and the local
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model as the first order approximation. To make the analogy with the
previous two theorems, we replace the Lie algebra gx by Gx := G(gx),
the 1-connected Lie group integrating gx. The local data is then

(Gx, Gx −→ {x}, g∗x)

and the local model is defined on Gx×Gx g
∗
x = g∗x. The most convincing

argument for bringingGx into the picture is the fact that the assumption
of the theorem is equivalent to the fact that Gx is compact.

1.4. The local model. In this subsection we explain the local model.
The construction given below is standard in symplectic geometry and
goes back to the local forms of Hamiltonian spaces around the level sets
of the moment map (cf. e.g. [18]) and also shows up in the work of
Montgomery [26] (see also [17]).

The starting data is again a triple consisting of a symplectic manifold
(S, ωS), which will be our symplectic leaf, a principal G-bundle P over
S, which will be the Poisson homotopy bundle, and the coadjoint action
of G on g∗:

(G,P −→ (S, ωS), g
∗).

As before, G acts diagonally on P×g∗. As a manifold, the local model is:

P ×G g∗ = (P × g∗)/G.

To describe the Poisson structure, we choose a connection 1-form on
P , θ ∈ Ω1(P, g). The G-equivariance of θ implies that the 1-form θ̃ on
P × g∗ defined by

θ̃(q,µ) = 〈µ, θq〉

is G-invariant. Consider now the G-invariant 2-form

Ω := p∗(ωS)− dθ̃ ∈ Ω2(P × g∗).

The open set M ⊂ P × g∗ where it is non-degenerate contains P ×{0};
therefore (M,Ω) is a symplectic manifold on which G acts freely, in a
Hamiltonian fashion, with moment map given by the second projection.
Hence N = M/G ⊂ P ×G g∗ inherits a Poisson structure πN . Notice
that S sits as a symplectic leaf in (N,πN ):

(S, ωS) = (P × {0},Ω|P×{0})/G.

Definition 1.4. A Poisson neighborhood of S in P ×G g∗ is any
Poisson structure of the type just described, defined on a neighborhood
N of S.

Note that different connections induce Poisson structures which have
Poisson diffeomorphic open neighborhoods of S. Also, intuitively, πN is
constructed by combing the canonical Poisson structure on g∗ with the
pullback of the symplectic structure ωS to P . For instance, if P is trivial,
using the canonical connection the resulting model is (S, ωS)×(g∗, πlin).
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Note also that, when P is compact, one can find small enough Poisson
neighborhoods of type:

N = P ×G V

with V ⊂ g∗ a G-invariant open containing 0. Moreover, the resulting
symplectic leaves do not depend, as manifolds, on θ. Denoting by Oξ :=
Gξ, these are:

P/Gξ ∼= P ×G Oξ ⊂ P ×G V, ξ ∈ V.

Example 1.5. To understand the role of the bundle P , it is instruc-
tive to look at the case when G = T q is a q-torus. As a foliated manifold,
the local model is:

P ×G g∗ = S × Rq =
⋃

t

S × {t}.

To complete the description of the local model as a Poisson manifold, we
need to specify the symplectic forms ωt on S, and this is where P comes
in. Principal T q-bundles are classified by q integral cohomology classes
c1, . . . , cq ∈ H2(S); the choice of the connection θ above corresponds
to the choice of representatives ω1, . . . , ωq ∈ Ω2(S), and the resulting
Poisson structure corresponds to

ωt = ωS + t1ω1 + · · ·+ tqωq (t = (t1, . . . , tq) ∈ Rq)

Remark 1. Dirac geometry (see [3] for the basic definitions) pro-
vides further insight into our construction. Recall that one of the main
features of Dirac structures is that, although they generalize closed 2-
forms, they can be pushed forward. In particular, our 2-form Ω can
be pushed forward to give a Dirac structure L(θ) on the entire space
P×Gg

∗. Another feature of Dirac structures is that they generalize Pois-
son bivectors; actually, for a general Dirac structure L ⊂ TM ⊕ T ∗M
on M , one can talk about the largest open on which L is Poisson (the
Poisson support of L):

sup(L) := {x ∈M : pr2(Lx) = T ∗
xM}.

Our local model arises from the fact that S is inside the support of
L(θ). Also the independence on θ fits well in this context: if θ′ is another
connection, then L(θ′) is the gauge transform of L(θ) with respect to

d(θ̃− θ̃′). A simple version of Moser’s Lemma can be used to show that
L(θ) and L(θ′) are isomorphic around S.

1.5. The Poisson homotopy bundle I: via cotangent paths. For
the statement of the main theorem, we still have to discuss the Poisson
homotopy bundle over a symplectic leaf. In this subsection we provide
a first description, completely analogous to the construction of the uni-
versal cover of a manifold. It is based on the idea that Poisson geometry
is governed by “contravariant geometry”—for which we use [8, 15] as
references. We recall here a few basic facts. The overall idea is that, in
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Poisson geometry, the relevant directions are the “cotangent ones,” i.e.
for a Poisson manifold (M,π), one should replace the tangent bundle
TM by the cotangent one T ∗M . The two are related by

π♯ : T ∗M −→ TM, π♯(α)(β) = π(α, β).

Of course, T ∗M should be considered together with the structure that
allows us to treat it as a “generalized tangent bundle,” i.e. with its
canonical structure of Lie algebroid: the anchor is π♯, while the Lie
bracket is given by

(2) [α, β]π = Lπ♯(α)(β) − Lπ♯(β)(α)− dπ(α, β), (∀)α, β ∈ Γ(T ∗M).

According to this philosophy, the analogue of the universal cover of a
manifold should use “cotangent paths” instead of paths. Recall that a
cotangent path in (M,π) is a path a : [0, 1] −→ T ∗M , above some
path γ : [0, 1] −→M , such that

π♯(a(t)) =
d

dt
γ(t).

Similarly, one can talk about cotangent homotopies and define the

Poisson homotopy groupoid of (M,π), denoted Σ(M,π) (also called
the Weinstein groupoid [7, 8]), as the space consisting of cotangent ho-
motopy classes of paths:

Σ(M,π) =
cotangent paths

cotangent homotopy
.

The source/target maps s, t : Σ(M,π) −→ M take a cotangent path
into the initial/final point of the base path.

Definition 1.6. The Poisson homotopy bundle of (M,π) at x is
Px := s−1(x) (the set of cotangent homotopy classes of cotangent paths
starting at x).

Recall that Σ(M,π) is a groupoid, where the composition is given
by concatenation of cotangent paths (here, to stay within the class of
smooth paths, the concatenation is slightly perturbed using a bump
function; however, up to cotangent homotopy, the result does not de-
pend on the choice of the bump function—again, see [8] for details).
In particular, Gx := s−1(x) ∩ t−1(x) is a group, which we will call the
Poisson homotopy group of (M,π) at x. Also, the composition de-
fines a free action of Gx on Px, and the quotient is identified with the
symplectic leaf Sx through x, via the target map

Px −→ Sx, [a] 7→ γ(1).

Regarding the smoothness of Σ(M,π), one remarks that it is a quo-
tient of the (Banach) manifold of cotangent paths of class C1. We are
interested only in smooth structures that make the corresponding quo-
tient map into a submersion. Of course, there is at most one such smooth



424 M. CRAINIC & I. MǍRCUŢ

structure on Σ(M,π); when it exists, one says that Σ(M,π) is smooth,
or that (M,π) is integrable. Note that in this case Σ(M,π) will be a
finite dimensional manifold, but may fail to be Hausdorff. If the Haus-
dorffness condition is also satisfied, we say that (M,π) is Hausdorff in-

tegrable. Completely analogously, one makes sense of the smoothness
of Px and of Gx. Note however that, whenever smooth, these two will be
automatically Hausdorff. Moreover, the smoothness of Px is equivalent
to that of Gx, and this is controlled by the monodromy map at x,
which is a group homomorphism

(3) ∂ : π2(S) −→ G(gx)

into the 1-connected Lie group G(gx) integrating gx. Intuitively, ∂ en-
codes the variation of symplectic areas, while in the smooth case, ∂
can also be identified with the boundary in the homotopy long exact
sequence associated to Px −→ Sx. From [8], we mention here:

Proposition 1.7. The Poisson homotopy bundle Px at x is smooth
if and only if the image of ∂x is a discrete subgroup of G(gx).

In this case Px is a smooth principal Gx-bundle over Sx, the Lie
algebra of Gx is gx, π0(Gx) ∼= π1(S), and the identity component G0

x is
isomorphic to G(gx)/Im(∂x).

Coming back to our normal forms:

Definition 1.8. Assuming that Px is smooth, the first order lo-

cal model of (M,π) around S = Sx is defined as the local model (in
the sense of subsection 1.4) associated to the Poisson homotopy bundle.
The Poisson structure on the local model (well-defined up to diffeomor-
phisms) is denoted j1Sπ and is called the first order approximation

of π along S.

The fact that the Poisson homotopy bundle encodes the first jet of
π along S will be explained in the next subsection; the fact that j1Sπ
deserves the name of first order approximation of π along S is explained
in section 3 (subsection 3.2).

1.6. The Poisson homotopy bundle II: via its Atiyah sequence.

In this subsection we present a slightly different point of view on the
Poisson homotopy bundle Px. The main remark is that Px is not visible
right away as a smooth principal bundle, but through its infinitesimal
data, i.e. an “abstract Atiyah sequence.”

This point of view has several advantages. For instance, it will allow
us to see that, indeed, Px encodes the first order jet of π along the sym-
plectic leaf Sx. It also implies that the local model can be constructed
without the smoothness assumption on Px. Also, this approach to Px
does not really require the use of [7] (integrability of Lie algebroids);
actually, (abstract) Atiyah sequences appeared outside the theory of Lie
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algebroids, as the infinitesimal counterparts of principal bundles. How-
ever, we will appeal to the language of Lie algebroids, as it simplifies
the discussion. In particular, an abstract Atiyah sequence over a
manifold S is simply a transitive Lie algebroid A over S, thought of as
the exact sequence of Lie algebroids:

(4) 0 −→ Ker(ρ) −→ A
ρ

−→ TS −→ 0,

where ρ is the anchor map of A. Any principal G-bundle p : P −→ S
gives rise to such a sequence, known as the Atiyah sequence associ-
ated to P :

0 −→ P ×G g∗ −→ TP/G
(dp)
−→ TS −→ 0.

Here, the Lie algebroid is A(P ) := TP/G and the bracket on Γ(A(P ))
comes from the Lie bracket of G-invariant vector fields on P , via the
identification

Γ(A(P )) = X(P )G.

Given an abstract Atiyah sequence (4) over S, one says that it is
integrable if there exists a principal G-bundle P (for some Lie group
G) such that A is isomorphic to A(P ); one also says that P integrates
(4). This notion was already considered in [1] without any reference to
Lie algebroids. However, it is clear that this condition is equivalent to
the integrability of A as a transitive Lie algebroid (see also [20, 21, 7]).
In particular, as for Lie groups, if (4) is integrable, then there exists a
unique (up to isomorphism) 1-connected principal bundle integrating it.

Remark 2. The fact that abstract Atiyah sequences are the infini-
tesimal counterparts of principal bundles also follows from the fact that
transitive groupoids are essentially the same thing as principal bundles:
any principal G-bundle p : P −→ S induces a transitive Lie groupoid
over S—the quotient of the pair groupoid of P modulo the diagonal
action of G (called the gauge groupoid of P ); conversely, any transi-
tive Lie groupoid G over S arises in this way: just choose x ∈ S and
choose t : Px = s−1(x) −→ S, with structural group the isotropy group
Gx = s−1(x) ∩ t−1(x).

Back to our Poisson manifold (M,π), one has an abstract Atiyah
sequence

(5) 0 −→ ν∗S −→ T ∗
SM

π♯

−→ TS −→ 0

above any symplectic leaf S = Sx. Of course, T ∗
SM is just the restriction

to S of the cotangent Lie algebroid (see the previous subsection). The
description of Px in terms of paths can also be seen as the general
construction of [7] applied to this Lie algebroid. We conclude (using the
above mentioned references):
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Proposition 1.9. Given x ∈ S, the Poisson homotopy bundle Px
is smooth if and only if the abstract Atiyah sequence (5) is integrable.
Moreover, in this case Px is the unique integration of (5) which is 1-
connected.

Next, we show that the abstract Atiyah sequence (5) (hence also the
Poisson homotopy bundle) encodes the first jet of π along S. Consider
the differential graded Lie algebra X•(M) of multivector fields on M ,
the sub-algebra X•

S(M) consisting of multivector fields whose restriction
to S belongs to X•(S), and the square I2(S) ⊂ C∞(M) of the ideal I(S)
of smooth functions that vanish on S. The first order jets along S are
controlled by the map of graded Lie algebras

j1S : X•
S(M) −→ X•

S(M)/I2(S)X•(M).

We see that, for the symplectic (S, ωS), first jets along S of Poisson
structures that have (S, ωS) as a symplectic leaf correspond to elements

τ ∈ X2
S(M)/I2(S)X2(M) satisfying [τ, τ ] = 0

and with the property that the restriction map

rS : X2
S(M)/I(S)2X2(M) −→ X2(S)

sends τ to ω−1
S . We denote by J1

(S,ωs)
Poiss(M) the set of such elements

τ . It is interesting that any such τ comes from a Poisson structure π
defined on a neighborhood of S in M (this follows from the discussion
below). Note that, starting with (S, ωS), one always has a short exact
sequence of vector bundles over S:

(6) 0 −→ ν∗S −→ T ∗
SM

ρωS−→ TS −→ 0, with ρωS
(ξ) = ω−1

S (ξ|TS).

Proposition 1.10. Given a submanifold S of M and a symplec-
tic form ωS on S, there is a 1-1 correspondence between elements τ ∈
J1
(S,ωS)

Poiss(M) and Lie brackets [·, ·]τ on T ∗
SM , making (6) into an

abstract Atiyah sequence.

Remark 3. The local model (from our main theorem) can be de-
scribed without using the smoothness Px. This was explained by Vorob-
jev (see [27, 28] and our section 3). Here we indicate a different approach
using Dirac structures. We start with a symplectic manifold (S, ωS) and
an abstract Atiyah sequence over S

0 −→ K −→ A
ρ

−→ TS −→ 0,

and we construct a Poisson structure around the zero section of the dual
K∗ of the vector bundle K, generalizing the integrable case (note that,
if A ∼= A(P ), then K∗ ∼= P ×G g∗). Choose a splitting θ : A −→ K. As
for Lie algebras, one has a “fiberwise linear Poisson structure” πlin on
A∗. Using θ∗ : K∗ −→ A∗, we can pull back πlin to a Dirac structure
Lθ on K

∗. Let ω ∈ Ω2(K∗) be the pull back of ωS along the projection.
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The gauge transform of Lθ of with respect to ω, L(θ) := Lωθ , gives the
local model in full generality (here, again, S ⊂ supp(L(θ)). Indeed, one
checks that, when A comes from a principal bundle P , this is precisely
the Dirac structure mentioned in Remark 1; for full details, see [23].

1.7. More on integrability. There are a few more aspects of Σ(M,π)
that deserve to be recalled here. We use as references [7, 4, 8, 22, 24].

First of all, while Σ(M,π) uses the cotangent Lie algebroid T ∗M of
the Poisson manifold, a similar construction applies to any Lie algebroid
A. The outcome is a topological groupoid G(A) whose smoothness is
equivalent to the integrability of A. For instance, when A = g is a Lie
algebra, G(g) is the unique 1-connected Lie group with Lie algebra g.
When A = TM , then G(TM) is the usual homotopy groupoid of M .
Implicit in the discussion above is the fact that, for a symplectic leaf
S of a Poisson manifold (M,π), G(T ∗M |S) = G(T ∗M)|S is encoded by
the Poisson homotopy bundle (see Remark 2).

The second point is that, while G(A) makes sense for any Lie algebroid
A, in the Poisson case, G(T ∗M) = Σ(M,π) is a symplectic groupoid,
i.e. it comes endowed with a symplectic structure ω compatible with the
groupoid composition (i.e. is multiplicative). There are two uniqueness
phenomena here:

• ω is the unique multiplicative form for which s : Σ −→ M is a
Poisson map.

• For a general symplectic groupoid (Σ, ω) over a manifoldM , there
is a unique Poisson structure π on M such that s : Σ −→ M is a
Poisson map.

Combining with Lie II for Lie algebroids, we deduce that, for a Poisson
manifold (M,π), if (Σ, ω) is a symplectic Lie groupoid with 1-connected
s-fibers, and if s : (Σ, ω) −→ (M,π) is a Poisson map, then Σ is isomor-
phic to Σ(M,π). For us, this gives a way of computing Poisson homotopy
bundles more directly.

Example 1.11. Consider the linear Poisson structure (g∗, πlin) on the
dual of a Lie algebra g. Let G = G(g). We have that T ∗G, endowed with
the canonical symplectic structure, is the s-fiber 1-connected symplectic
groupoid integrating πlin. Using the identifying T ∗G = G× g∗, given by
left translations, the groupoid structure is that of the action groupoid
of G on g∗. It follows that, for any ξ ∈ g∗, the symplectic leaf through ξ
is the coadjoint orbit Oξ and the associated Poisson homotopy bundle
is precisely the Gξ-bundle G −→ Oξ.

2. The main theorem again: Reformulations and

some examples

In this section we give a complete statement of the main theorem,
two equivalent formulations, and several examples.
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As a summary of the previous section: given (M,π) and the symplec-
tic leaf S through x, the first order jet of π along S is encoded in the
Poisson homotopy bundle Px −→ S; out of it we produced the local
model Px ×Gx g∗x which, around S, is a Poisson manifold admitting S
as a symplectic leaf.

Main Theorem 1 (complete version). Let (M,π) be a Poisson mani-
fold, S a compact symplectic leaf and x ∈ S. If Px, the Poisson homotopy
bundle at x, is smooth, compact, with

(7) H2(Px;R) = 0,

then there exists a Poisson diffeomorphism between an open neighbor-
hood of S in M and a Poisson neighborhood of S in the local model
Px ×Gx g

∗
x associated to Px, which is the identity on S.

Remark 4. The open neighborhood of S in M can be chosen to be
saturated. Indeed, by the comments following Definition 1.4, the open
in the local model can be chosen of the type Px ×Gx V , and this is a
union of compact symplectic leaves.

Comparing with the classical results from foliation theory and group
actions, the surprising condition is (7). As we shall soon see, this condi-
tion is indeed necessary and it is related to integrability. However, as the
next proposition shows, this condition is not needed in the Hausdorff
integrable case.

Proposition 2.1. In the main theorem, if S admits a neighborhood
which is Hausdorff integrable, then the assumption (7) can be dropped.

Note also that, in contrast with the proposition, ifM is compact, then
the conditions of our main theorem cannot hold at all points x ∈ M
(since it would follow that Σ(M,π) is compact and its symplectic form
is exact; see [9]).

Next, since the conditions of the theorem may be difficult to check in
explicit examples, we reformulate them in terms of the Poisson homo-
topy group Gx at x.

Proposition 2.2. The conditions of the main theorem are equivalent
to:

(1) The leaf S is compact.
(2) The Poisson homotopy group Gx is smooth and compact.
(3) The dimension of the center of Gx equals the rank of π2(S, x).

Proof. We already know that the smoothness of Px is equivalent to
that of Gx while, under this smoothness condition, compactness of Px
is clearly equivalent to that of S and Gx. Hence, assuming (1) and (2),
we still have to show that (3) is equivalent to H2(Px) = 0. Since Gx
is compact, gx is a product of a semi-simple Lie algebra H of compact
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type with its center ζ. Therefore G(gx) = H × ζ, with H compact 1-
connected, and ∂x takes values in Z × ζ, where Z = Z(H) is a finite
group. Since π2(Px) can be identified with Ker(∂x), we have an exact
sequence

0 −→ π2(Px)⊗Z R −→ π2(S)⊗Z R
∂R−→ ζ

where, since Px is 1-connected, the first term is canonically isomorphic
to H2(Px;R). Finally, since the connected component of the identity in
Gx is (H × ζ)/Im(∂x), its compactness implies that ∂R is surjective.
Hence a short exact sequence

0 −→ H2(Px;R) −→ π2(S)⊗Z R
∂R−→ ζ −→ 0.

Therefore, condition (3) is equivalent to the vanishing of H2(Px;R).
q.e.d.

Next, using the monodromy group, one can also get rid of the Gx.
Recall [8, 7] that the monodromy group of (M,π) at x, denoted by Nx,
is the image of ∂x (see (3)) intersected with the connected component
of the center of G(gx). Using the exponential, it can be viewed as a
subgroup of the center of gx,

Nx ⊂ Z(gx).

Proposition 2.3. The conditions of the main theorem are equivalent
to:

(1) The leaf S is compact with finite fundamental group.
(2) The isotropy Lie algebra gx is of compact type.
(3) Nx is a lattice in Z(gx).
(4) The dimension of Z(gx) equals the rank of π2(S, x).

Proof. Let ζ = Z(gx) and denote by Ñx the image of ∂x. The discrete-

ness of Nx is equivalent to that of Ñx [8], and hence to the smoothness
of Gx. The compactness of Gx is equivalent to the following two con-
ditions: π0(Gx) is finite and the connected component of the identity
G◦
x is compact. From Proposition 1.7, the first condition is equivalent

to π1(S)-finite, and the second one to (Z × ζ)/Ñx being compact. The
last condition is equivalent to ζ/Nx being compact (hence to Nx being a

lattice in ζ). For this, note that ζ/Nx injects naturally into (Z × ζ)/Ñx

and there is a surjection of Z × ζ/Nx onto (Z × ζ)/Ñx. Condition (4)
is equivalent to (3) from Proposition 2.2. q.e.d.

Example 2.4. We now give an example in which all conditions of
the theorem are satisfied, except for the vanishing of H2(Px), and in
which the conclusion of the theorem fails. Consider the 2-sphere S2,
with coordinates denoted (u, v, w), endowed with the Poisson structure
πS2 which is the inverse of the area form

ωS2 = (udv ∧ dw + vdw ∧ du+ wdu ∧ dv).
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Consider also the linear Poisson structure on so(3)∗ ∼= R3 = {(x, y, z)}:

πlin = x
∂

∂y
∧
∂

∂z
+ y

∂

∂z
∧
∂

∂x
+ z

∂

∂x
∧
∂

∂y
.

Its symplectic leaves are the spheres of radius r > 0, S2
r , with the

symplectic form

ωr =
1

r2
(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy),

and the origin. Finally, let (M,π0) be the product of these two Poisson
manifolds

M = S2 × R3, π0 = πS2 + πlin.

The symplectic leaves are: (S, ωS) := (S2×{0}, ωS2) and, for r > 0, (S2×
S2
r , ωS2+ωr). The abstract Atiyah sequence above S is the product of the

Lie algebroids TS and so(3). Hence, for x ∈ S, Gx equals to G(so(3)) =
Spin(3) and the Poisson homotopy bundle is Px = S2 × Spin(3) ∼=
S2 × S3. Using the trivial connection on Px, one finds that (M,π0)
coincides with the resulting local model. Note that all the conditions of
the theorem are satisfied, except for the vanishing of H2(Px).

Let us now modify π0 without modifying j1Sπ0; we consider

π = (1 + r2)πS2 + πlin.

Note that π has the same leaves as π0, but with different symplectic
forms:

(S, ωS), (S2 × S2
r ,

1

1 + r2
ωS2 + ωr), r > 0.

We claim that π is not Poisson diffeomorphic, around S, to π0. Assume
it is. Then, for any r small enough, we find r′ and a symplectomorphism

φ : (S2 × S2
r ,

1

1 + r2
ωS2 + ωr) −→ (S2 × S2

r′ , ωS2 + ωr′).

Comparing the symplectic volumes, we find r′ = r/(1+r2). On the other
hand, φ sends the first generator γ1 of π2(S

2 × S2
r ) into a combination

mγ1 + nγ2 with m and n integers. Computing the symplectic areas of
these elements, we obtain:

∫

γ1

(
1

1 + r2
ωS2 + ωr) =

∫

mγ1+nγ2

(ωS2 + ωr′),

and thus 1/(1 + r2) = m + nr′ = m + nr/(1 + r2). This cannot be
satisfied for all r (even small enough), because it forces r to be an
algebraic number.

Also, the monodromy group of the leaf S2 × S2
r is the subgroup of R

generated by 4π and 4π(−2r)/(1 + r2)2; therefore, if it is discrete, then
again r is algebraic. This shows that π is not integrable on any open
neighborhood of S.
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Example 2.5 (the regular case). Assume that (M,π) is regular and
fix a symplectic leaf S. Then the resulting normal form is a refinement of
local Reeb stability: the model for the underlying foliation is the same,
while our theorem also specifies the leafwise symplectic forms. To see
this, let

Γ = π1(S, x), νx = TxM/TxS.

In this case gx = ν∗x is abelian and Proposition 1.7 gives a short exact
sequence

G◦
x −→ Gx −→ Γ.

Hence G◦
x is abelian, and the Poisson homotopy bundle is a principalG◦

x-

bundle over the universal cover S̃; in conclusion, as a foliated manifold,
the local model is

Px ×Gx νx
∼= S̃ ×Γ νx.

The Poisson structure comes from a family of symplectic forms ωt on S̃
of the form:

ωt = p∗(ωS) + t1ω1 + · · ·+ tqωq, t = (t1, . . . , tq) ∈ νx,

where we have chosen a basis of νx, p : S̃ −→ S is the projection and

ωi ∈ Ω2(S̃) are representatives of the components of the monodromy
map ∂ : π2(S) −→ ν∗x, i.e.

∂(σ) = (

∫

σ

ω1, . . . ,

∫

σ

ωq), [σ] ∈ π2(S, x).

Note that this condition determines uniquely the cohomology classes

[ωi] ∈ H2(S̃). Since the rank of π2(S) equals the b2(S̃), by Proposition

2.3, the assumptions of the theorem become: S̃ is compact (so local Reeb

stability applies) and [ω1], . . . , [ωq] is a basis of H2(S̃).
Also the description of the monodromy map simplifies as shown in [8].

Let σ be a 2-sphere in S, with north pole PN at x and t ∈ νx. Consider
a smooth family σǫ, defined for ǫ small, of leafwise 2-spheres such that
σ0 = σ and the vector σ̇0(PN ) represents t. Then the monodromy map
on σ is:

(8) ∂(σ)(t) =
d

dǫ |ǫ=0

∫

σǫ

ωǫ.

For instance, when S is simply connected, then by Reeb stability
M = S × Rq with the trivial foliation so that the Poisson structure on
M is determined by a family {ωt} of symplectic forms with ω0 = ωS .
Then ωk is simply

ωk =
∂

∂tk |t=0
ωt.

This class of examples reveals again the necessity of the condition (7).
In order to see this, observe that the other conditions of the theorem are
equivalent to the first three conditions of Proposition 2.3, whereas the
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first two are automatically satisfied in this case. By the third condition,
that Nx is a lattice in ν∗x, we can choose a basis of ν∗x that is also
a Z-basis of Nx. As a result, the [ωi]’s belong to H2(S;Z) and are
linearly independent. If the fourth condition is not satisfied, we can find
a closed 2-form λ, with [λ] ∈ H2(S;Z), and which is not in the span
of [ω1], . . . , [ωq]. The Poisson structure corresponding to the family of
2-forms

ωt := ωS + t1ω1 + · · ·+ tqωq + t21λ

satisfies all the conditions of the theorem except for (7), but it is not
linearizable around S. Otherwise, we could find a diffeomorphism of the
form (x, t) 7→ (φt(x), τ(t)) with τ(0) = 0, φ0(x) = x, and such that

φ∗tωS +
∑

τi(t)φ
∗
tωi = ωS +

∑
tiωi + t21λ.

Since φ∗t is the identity in cohomology, we get a contradiction.
Related to our Proposition 2.1, we see that this Poisson structure is

not integrable on any open neighborhood of S. This follows by comput-
ing the monodromy groups using (8) at (t1, . . . , tq); they are discrete if
and only if t1 ∈ Q.

Example 2.6 (Duistermaat-Heckman variation formula). Next, we
indicate the relationship of our theorem with the theorem of Duister-
maat and Heckman from [13]. We first recall their result. Let (M,ω) be
a symplectic manifold endowed with a Hamiltonian action of a torus T
with proper moment map J :M −→ t∗ and let ξ0 ∈ t∗ be a regular value
of J . Assume that the action of T on J−1(ξ0) is free. Let U be a ball
around ξ0 consisting of regular values of J . The symplectic quotients

Sξ := J−1(ξ)/T

come with symplectic forms denoted σξ, ξ ∈ U . There are canonical
isomorphisms

H2(Sξ) ∼= H2(Sξ0)

for ξ ∈ U and the Duistermaat-Heckman theorem asserts that, in coho-
mology,

[σξ] = [σξ0 ] + 〈c, ξ − ξ0〉,

where c is the Chern class of the T -bundle J−1(ξ0) −→ Sξ0 . This is
related to our theorem applied to the Poisson manifold N/T , where
N := J−1(U). The symplectic leaves of N/T are precisely the Sξ’s and
N/T is integrable by the symplectic groupoid (see Proposition 4.6 in
[16])

G := (N ×J N)/T ⇉ N/T,

with symplectic structure induced by pr∗1(ω) − pr∗2(ω) ∈ Ω2(N × N).
The isotropy groups of G are all isomorphic to T and the s-fibers are
isomorphic (as principal T -bundles) to the fibers of J . As shown in [13],
if U is small enough, all fibers of J are diffeomorphic as T -bundles, so if
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we are assuming that J−1(ξ0) is 1-connected, then G is the 1-connected
symplectic groupoid integrating N/T . In particular the Poisson homo-
topy bundle corresponding to Sξ0 is the T -bundle J−1(ξ0) −→ Sξ0 ;
hence the Chern class c is the same appearing in the construction of
the local model (see Example 1.5) and is also the monodromy map (8),
interpreted as a cohomology class with coefficients in νx = t. In this
case the condition H2(J−1(ξ0)) = 0 is not required, since we can apply
Proposition 2.1 directly.

Example 2.7. Consider (g∗, πlin), the dual of a Lie algebra g, en-
dowed with the linear Poisson structure. Let ξ ∈ g∗. As we have seen
in Example 1.11, the leaf through ξ is the coadjoint orbit Oξ and the
corresponding Poisson homotopy bundle is Pξ = G, the 1-connected Lie
group integrating g. So the hypothesis of our theorem reduces to the
condition that g is semi-simple of compact type. Note also that the re-
sulting local form aroundOξ implies the linearizability of the transversal
Poisson structure [30] to Oξ, which fails for general Lie algebras ([30],
Errata).

Of course, one may wonder about a direct argument. This is possible—
and actually reveals a slightly weaker hypothesis: one needs that Oξ is
an embedded submanifold and that ξ ∈ g is split in the sense that there
is a Gξ-invariant projection p : g −→ gξ. For the details, we use [17] and
[26]. Observe that the normal bundle of Oξ is isomorphic to G×Gξ

g∗ξ .
The projection p induces a tubular neighborhood:

ϕ : G×Gξ
g∗ξ → g∗, [g, η] → Ad∗g−1(ξ + p∗(η)),

and a G-invariant principal connection on G −→ Oξ:

θ ∈ Ω1(G; gξ), θg = l∗g−1(p).

Let Ω ∈ Ω2(G × g∗ξ) be the resulting 2-form (see subsection 1.4). The
nondegeneracy locus of Ω can be described more explicitly. Let N ⊂ g∗ξ
be the set of points η ∈ g∗ξ , for which the coadjoint orbit through ξ+p∗(η)

and the affine space ξ+p∗(g∗ξ) are transversal at ξ+p
∗(η). Section 2.3.1

and Theorem 2.3.7 in [17] show that:

• G×N is the open in G× g∗ξ on which Ω is non-degenerate,
• G×Gξ

N is the open in G×Gξ
g∗ξ on which the differential of ϕ is

invertible.

Let πξ denote the Poisson structure on G×Gξ
N obtained by reduction.

Theorem 1 from section 1.3 in [26] shows that ϕ is a Poisson map,

ϕ : (G×Gξ
N , πξ) −→ (g∗, πlin).

We deduce that, around the embedded Oξ, ϕ provides a Poisson diffeo-
morphism.
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3. Poisson structures around a symplectic leaf:

The algebraic framework

In this section we discuss the algebraic framework that encodes the
behavior of Poisson structures around symplectic leaves (an improve-
ment of the framework of [10]). This will allow us to regard the local
model as a first order approximation and to produce smooth paths of
Poisson bivectors (to be used in the next section).

Since we are interested in the local behavior of Poisson structures
around an embedded symplectic leaf, we may restrict our attention to a
tubular neighborhood. Throughout this section p : E −→ S is a vector
bundle over a manifold S. Consider the vertical sub-bundle and the
space of vertical multivector fields on E denoted

V := ker(dp) ⊂ TE, X•
V(E) = Γ(Λ•V ) ⊂ X•(E).

We have that X•
V(E) is a graded Lie sub-algebra of the space X•(E) of

multivector fields on E, with respect to the Schouten bracket. The Lie
algebra grading is:

deg(X) := |X| − 1 = q − 1 for X ∈ Xq(E).

Given a vector bundle F over S, denote the space of F -valued forms on
S by:

Ω•(S,F ) := Γ(Λ•T ∗S ⊗ F ) = Ω•(S)⊗C∞(S) Γ(F ).

More generally, for any C∞(S)-module X, denote by

Ω•(S,X) := Ω•(S)⊗C∞(S) X

the space of antisymmetric forms on S with values in X.

3.1. The graded Lie algebra (Ω̃E, [·, ·]⋉) and horizontally non-

degenerate Poisson structures. We first recall the graded Lie alge-
bra ΩE of [10]. We introduce ΩE as the bi-graded vector space whose
elements of bi-degree (p, q) are p-forms on S with values in the C∞(S)-
module X

q
V(E):

Ωp,qE = Ωp(S,XqV(E)).

The Z-grading is deg = p+ q − 1 on Ωp,qE , and the bracket is

[ϕ⊗X,ψ ⊗ Y ] = (−1)|ψ|(|X|−1)ϕ ∧ ψ ⊗ [X,Y ].

We will need an enlargement Ω̃E of ΩE. As a bi-graded vector space,
it is

Ω̃E = Ω•(S,X•
V(E)) + Ω•(S,XP(E)) ⊂ Ω•(S,X•(E)),

where XP(E) is the space of projectable vector fields on E, i.e.
vector fields X ∈ X(E) with the property that there is a vector field
on S, denoted pS(X) ∈ X(S), such that dp(X) = pS(X). Hence, in
bi-degree (p, q) we have

Ω̃p,qE =

{
Ωp(S,XqV(E)) if q 6= 1
Ωp(S,XP(E)) if q = 1

.
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The relationship between Ω̃E and ΩE is similar to the one between
the Lie algebras XV (E) and XP(E): we have a short exact sequence of
vector spaces:

0 −→ ΩE −→ Ω̃E
pS−→ Ω(S, TS) −→ 0.

Next, we show that this is naturally a sequence of graded Lie algebras.
On Ω(S, TS) we consider the Fröhlicher-Nijenhuis-Bracket, denoted
[·, ·]F , which we recall using section 13 of [19]. The key point is that
Ω(S, TS) can be identified with the space of derivations of the graded
algebra Ω(S), which commute with the DeRham differential, and, as a
space of derivations, it inherits a natural Lie bracket. In more detail, for
u = α⊗X ∈ Ωr(S, TS), the operator Lu := [iu, d] on Ω(S) is given by:

Lu(ω) = α ∧ LX(ω) + (−1)rdα ∧ iX(ω).

The resulting commutator bracket on Ω(S, TS) is:

[u, v]F = Lu(β)⊗ Y − (−1)rsLv(α)⊗X + α ∧ β ⊗ [X,Y ]

for u = α ⊗ X ∈ Ωr(S, TS), v = β ⊗ Y ∈ Ωs(S, TS). With these
(Ω(S, TS), [·, ·]F ) is a graded Lie algebra, where the grading deg = r on
Ωr(S, TS). Consider the element corresponding to the identity map of
TS, denoted by:

γS ∈ Ω1(S, TS).

Then γS is central in (Ω(S, TS), [·, ·]F ), and it represents the DeRham
differential:

(9) LγS = d : Ω•(S) −→ Ω•+1(S).

Next, the operations involving Ω(S, TS) have the following lifts to E:

• With the short exact sequence

0 −→ Ω(S,XV(E)) −→ Ω(S,XP(E))
pS−→ Ω(S, TS) −→ 0

in mind, there is a natural lift of [·, ·]F to the middle term, which
we denote by the same symbol. Actually, realizing

Ω(S,XP(E))
p∗

→֒ Ω(E,TE),

this is just the restriction of the Fröhlicher-Nijenhuis-Bracket on
Ω(E,TE).

• The action L of Ω(S, TS) on Ω(S) induces an action of Ω(S,XP(E))
on ΩE; for u = α ⊗ X ∈ Ω(S,XP(E)) and v = ω ⊗ Y ∈ ΩE, we
have:

Lu(v) = LpS(u)(ω)⊗ Y + α ∧ ω ⊗ [X,Y ].

Putting everything together, the following is straightforward:
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Proposition 3.1. The following bracket defines a graded Lie algebra

on Ω̃E:

[u, v]⋉ =





[u, v] for u, v ∈ ΩE,
Lu(v) for u ∈ Ω(S,XP(E)), v ∈ ΩE,
[u, v]F for u, v ∈ Ω(S,XP(E)).

Moreover, we have a short exact sequence of graded Lie algebras:

0 → (Ω•
E , [·, ·]) → (Ω̃•

E , [·, ·]⋉)
pS→ (Ω•(S, TS), [·, ·]F ) → 0.

We encode a bit more of the structure of the algebra (Ω̃E , [·, ·]⋉) in
the following lemma, whose proof is also straightforward:

Lemma 3.2. Identifying Ω(S) ∼= p∗(Ω(S)) ⊂ Ω̃E, Ω(S) is a central

ideal in ΩE. The induced representation of Ω̃E on Ω(S) factors through
pS, i.e.

[u, ω]⋉ = Lu(ω) = LpS(u)(ω), (∀) u ∈ Ω̃E , ω ∈ Ω(S).

As an illustration of the use of Ω̃E , we look at Ehresmann con-

nections on E. Viewing such a connection as a C∞(S)-linear map that
associates to a vector field X on S its horizontal lift to E, we see that it

is the same thing as an element in Γ ∈ Ω̃1,1
E which satisfies pS(Γ) = γS .

Also the curvature RΓ of Γ is just RΓ = 1
2 [Γ,Γ]⋉ ∈ Ω2,1

E .
We introduce the following generalization of flat Ehresmann connec-

tions (the terminology will be explained in Remark 5 below).

Definition 3.3. A Dirac element on p : E −→ S is an element

γ ∈ Ω̃2
E, satisfying

[γ, γ]⋉ = 0, pS(γ) = γS.

We use the following notations for the components of γ:

• γv for the (0, 2) component, an element in X2
V(E).

• Γγ for the (1, 1) component, an Ehresmann connection on E.
• Fγ for the (2, 0) component, an element in Ω2(S,C∞(E)).

The Poisson support of γ is the set of points e ∈ E at which Fγ is
non-degenerate.

The relevance of such elements to the study of Poisson structures
around a symplectic leaf comes from the fact that, while E plays the
role of small tubular neighborhoods, on such E’s the following condition
will be satisfied.

Definition 3.4. A bivector θ ∈ X2(E) is called horizontally non-

degenerate if

Ve + θ♯(V ◦
e ) = TeE, (∀) e ∈ E,

where V ◦
e ⊂ T ∗

eE is the annihilator of Ve in T
∗
eE.
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Moreover, Vorobjev’s Theorem 2.1 in [27] can be summarized in the
following:

Proposition 3.5. There is a 1-1 correspondence between

1) Dirac elements γ ∈ Ω̃2
E with support equal to E.

2) Horizontally non-degenerate Poisson structures θ on E.

The explicit construction of the 1-1 correspondence is important as
well; we recall it below. The main point of our proposition is that the
list of complicated equations from [27] now takes the compact form
[γ, γ]⋉ = 0. So, let θ be a horizontally non-degenerate Poisson structure
on E. The non-degeneracy implies that

Hθ = θ♯(V ◦)

gives an Ehresmann connection on E; we denote it by Γθ ∈ Ω̃1,1
E . With

respect to the resulting decomposition of TE, the mixed component of
θ vanishes, i.e.

θ = θv + θh ∈ Λ2V ⊕ Λ2Hθ.

The first term is the desired (0, 2)-component. The second one is non-
degenerate; thus, after passing from Hθ to TS and then taking the
inverse, we get an element

Fθ ∈ Γ(p∗Λ2T ∗S).

This will be the desired (2, 0)-component. Explicitly,

(10) Fθ(dpe(θ
h♯η), dpe(θ

h♯µ)) = −θh(η, µ), (∀) η, µ ∈ p∗(T ∗S)e.

Altogether, the 1-1 correspondence associates to θ the element

γ = θv + Γθ + Fθ ∈ Ω̃2
E

with Fθ non-degenerate at all points of E and pS(γ) = pS(Γθ) = γS .

Proof (of the proposition). Conversely, it is clear that we can recon-
struct θ from γ. One still has to check that [θ, θ] = 0 is equivalent
to the equation [γ, γ]⋉ = 0. By Vorobjev’s formulas (Theorem 2.1 in
[27]) and their interpretation using ΩE from [10] (Theorem 4.2), the
Poisson equation is equivalent to:

[θv, θv] = 0, [Γθ, θ
v]⋉ = 0, RΓθ

+ [θv,Fθ] = 0, [Γθ,Fθ]⋉ = 0.

Here we have used the remark that the covariant exterior derivative
(denoted in [10, 27] by dΓθ

, ∂Γθ
respectively) can be given by adΓθ

=
[Γθ, ·]⋉ : ΩE → ΩE. Finally,

0 = [γ, γ]⋉ = ([θv, θv]) + 2([Γθ, θ
v]⋉) + 2(RΓθ

+ [θv,Fθ]) + 2([Γθ,Fθ]⋉) ∈

∈ Ω0,3
E ⊕ Ω1,2

E ⊕ Ω2,1
E ⊕ Ω3,0

E = Ω3
E.

q.e.d.
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Remark 5. Generalizing the case of Poisson structures, recall [2,
29] that a Dirac structure L ⊂ TE ⊕ T ∗E is called horizontally non-
degenerate if L ∩ (V ⊕ V ◦) = {0}. The previous discussion applies with
minor changes to such structures. The integrability conditions (the four
equations above) have been extended to horizontally non-degenerate
Dirac structures (Corollary 2.8 in [2] and Theorem 2.9 in [29]). We find
out that there is a 1-1 correspondence between

• Dirac elements γ ∈ Ω̃2
E .

• Horizontally non-degenerate Dirac structures on E.

Moreover, in this correspondence, the support of L (cf. Remark 1) co-
incides with the Poisson support of γ. Explicitly, the Dirac structure
corresponding to γ is

Lγ = Graph(γv♯ : H◦ → V )⊕Graph(F♯γ : H → V ◦),

where we use the decomposition TE = V ⊕H induced by the connection
Γγ .

Finally, we identify the Poisson cohomology complex (X•(E), dθ),
where dθ = [θ, ·].

Proposition 3.6. Let θ be a horizontally non-degenerate Poisson
structure on E with corresponding Dirac element γ. Then there is an
isomorphism of complexes

τθ : (X
•(E), dθ) −→ (Ω•

E , adγ), where adγ = [γ, ·]⋉.

Again, this is a reformulation of a result of [10], namely of Proposition
4.3, with the remark that the operator dΓθ

in loc. cit. is simply our adγ .
For later use, we also give the explicit description of τθ. Identifying
ΩE = Γ(Λ(p∗T ∗S ⊕ V )),

(11) τθ = ∧•fθ,∗ : X
•(E) −→ Ω•

E ,

where fθ is the bundle isomorphism

fθ := (−F
♯
θ, IdV ) : Hθ ⊕ V = TE −→ p∗T ∗S ⊕ V.

3.2. The dilation operators and jets along S. For t ∈ R, t 6= 0,
let mt : E −→ E be the fiberwise multiplication by t. Pullback by mt

induces an automorphism

m∗
t : (Ω̃E, [·, ·]) −→ (Ω̃E , [·, ·]).

It preserves ΩE and acts as the identity on Ω(S). Define the dilation

operators:

ϕt : Ω̃E −→ Ω̃E, ϕt(u) = tq−1m∗
t (u), for u ∈ Ω̃•,q

E .
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Remark 6. It is useful to describe this operation in local coordinates.
Choose (xi) coordinates for S and (ya) linear coordinates on the fibers
of E. An arbitrary element in Ωp(S,Xq(E)) is a sum of elements of type

a(x, y)dxI ⊗ ∂xJ ∧ ∂yK

where I, J , and K are multi-indices with |I| = p, |J | + |K| = q and
a = a(x, y) is a smooth function. Such an element is in ΩE if and only if

it only contains terms with |J | = 0. The elements in Ω̃E are also allowed
to contain terms with |J | = 1, but those terms must have |K| = 0, and
the coefficient a only depending on x. Applying ϕt to such an element,
we find

t|J |−1a(x, ty)dxI ⊗ ∂xJ ∧ ∂yK .

Lemma 3.7. ϕt preserves the bi-degree, is an automorphism of the

graded Lie algebra Ω̃E, and preserves ΩE.

Proof. Due to its functoriality, m∗
t has similar properties. Due to the

shift by 1 in the Lie degree, the multiplication by tq−1 has the same
properties as well. Hence also the composition of the two operations,
i.e. ϕt, has the desired properties. q.e.d.

Together with ϕt we also introduce the following subspaces of Ω̃E for
l ∈ Z:

grl(Ω̃E) = {u ∈ Ω̃E : ϕt(u) = tl−1u} ⊂ Ω̃E,

J lS(Ω̃E) = gr0(Ω̃E)⊕ · · · ⊕ grl(Ω̃E) ⊂ Ω̃E .

These spaces vanish for l < 0. The elements in gr0 are called constant,
those in gr1 are called linear, and those in grl are called homogeneous

of degree l. One defines grl(ΩE) similarly; one has (e.g. using local
formulas—see Remark 6)

(12) grl(Ω
p,q
E ) = Ωp(S,ΛqE ⊗ SlE∗),

where we regard the sections of E as fiberwise constant vertical vector
fields on E and those of SlE∗ as degree l homogeneous polynomial

functions on E. Moreover, grl(Ω̃
p,q
E ) coincides with grl(Ω

p,q
E ) except for

the case l = 1, q = 1 when

gr1(Ω̃
p,1
E ) = Ωp(S,Xlin(E)),

where Xlin(E) is the space of linear vector fields on E, i.e. projectable
vector fields whose flow is fiberwise linear.

Our next aim is to introduce the partial derivative operators along
S,

dlS : Ω̃E −→ grl(Ω̃E).
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To define and handle them, we use the formal power series expansion of
tϕt(u) with respect to t. Although ϕt is not defined at t = 0, it is clear

(again use Remark 6) that, for any u ∈ Ω̃E, the map

R∗ ∋ t 7→ tϕt(u) ∈ Ω̃E

admits a smooth prolongation to R. Hence the following definition makes
sense.

Definition 3.8. For u ∈ Ω̃E, define the n-th order derivatives

of u along S, denoted by dnSu, as the coefficients of the formal power
expansion around t = 0:

ϕt(u) ∼= t−1u|S + dSu+ td2Su+ · · · .

In other words,

dnS(u) =
1

n!

dn

dtn
|t=0tϕt(u) ∈ Ω̃E.

For n = 0, we also use the notation u|S . Define the n-th order jet of
u along S as

jnS(u) =
n∑

k=0

dkS(u).

Lemma 3.9. We have that dnS(u) ∈ grn(Ω̃E) and j
n
S(u) ∈ JnS (Ω̃E).

Proof. Since ϕr◦ϕs = ϕrs, we have that ϕr(sϕs(u)) = r−1[ξϕξ(u)]|ξ=rs.
Taking the n-th derivative at s = 0, we obtain the first part, which im-
plies the second. q.e.d.

The properties of ϕt, together with the power series description, are
also very useful in avoiding computations. For instance, using that ϕt
preserves [·, ·]⋉, we obtain:

Lemma 3.10. For any u, v ∈ Ω̃E, d
l
S [u, v]⋉ =

∑
p+q=l+1[d

p
Su, d

q
Sv]⋉.

As an illustration of our constructions, let us look again at connec-
tions. We have already seen that an Ehresmann connection on E can

be seen as an element Γ ∈ Ω̃1,1
E . Hence we can talk about its restriction

to S
Γ|S ∈ Ω1(S,E).

This construction was introduced in [10] in a more ad-hoc fashion. Also,

Γ is linear as an element of Ω̃E if and only if it is a linear connection.
For the direct implication: the properties of ϕt immediately imply that

the ⋉- bracket with Γ preserves gr0(Ω̃
•,1
E ) = Ω•(S,E); hence it induces

a covariant derivative dΓ := [Γ, ·]⋉ : Ω•(S,E) −→ Ω•+1(S,E).

From now on we will restrict our attention to Poisson structures that
admit S as a symplectic leaf. The following is immediate (see also Propo-
sition 5.1 of [10]).
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Lemma 3.11. Let π be a horizontally non-degenerate Poisson struc-

ture on E with corresponding Dirac element γ ∈ Ω̃2
E (cf. Proposition

3.5). Then S is a symplectic leaf if and only if γ|S lives in bi-degree
(2, 0). In this case the symplectic form is

ωS := −γ|S ∈ gr0(Ω̃
2,0
E ) = Ω2(S).

For the first order approximation along S, we have:

Proposition 3.12. Let π be a horizontally non-degenerate Poisson
structure on E that admits S as a symplectic leaf, with corresponding

Dirac element γ ∈ Ω̃2
E. Then

j1Sγ ∈ J1
S(Ω̃

2
E) ⊂ Ω̃2

E

is a Dirac element whose Poisson support N is an open neighborhood of
S in E. In particular, on N , it is associated with a Poisson structure,
denoted

j1Sπ ∈ X2(N).

Proof. The non-trivial part of the proposition (which uses the fact
that S is a symplectic leaf) is to show that [j1Sγ, j

1
Sγ]⋉ = 0. This follows

using the Newton formula of Lemma 3.10 to compute the first order
consequences of [γ, γ]⋉ = 0 and then using the fact that Ω(S) is in the
center of ΩE (Lemma 3.2) to delete the term [γ|S , d

2
Sγ]⋉. q.e.d.

Definition 3.13. The Poisson bivector j1Sπ from the previous propo-
sition is called the first order approximation of π along S.

Remark 7. We explain how this definition is compatible with Propo-
sition 1.10 (which says that the first order information of π along S is
encoded in the Atiyah sequence of AS) and with Definition 1.8 (the lo-
cal model). Let us fix the symplectic structure ωS of the leaf. Since the
entire discussion depends only on j1Sπ, we may assume that π = j1Sπ,
i.e. the corresponding Dirac element is the sum of

πv ∈ gr1(Ω̃
0,2
E ) = Γ(Λ2E ⊗ E∗),

Γ = Γπ ∈ gr1(Ω̃
1,1
E ) = Ω1(S,Xlin(E)),

−ωS + σ = Fπ ∈ gr0(Ω̃
2,0
E )⊕ gr1(Ω̃

2,0
E ) = Ω2(S)⊕ Ω2(S,E∗).

On the other hand, the algebroid structure is defined on AS = TS⊕E∗,
with anchor the first projection. What are needed in order to describe
such a Lie algebroid structure are precisely the elements πv, Γ, and σ.
Explicitly, identifying

Γ(E∗) = gr1(Ω
0,0
E ),

one obtains the following formulas for the bracket [·, ·]A on AS :

[α, β]A = [β, [πv, α]], [α,X]A = [Γ, α]⋉(X), [X,Y ]A = [X,Y ]+σ(X,Y ),
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where α, β ∈ Γ(E∗), X,Y ∈ X(S). This describes the 1-1 correspon-
dence between first jets of π’s, with (S, ωS) as a symplectic leaf, and
Lie algebroid structures on AS with anchor the first projection: as the
explicit version of our Proposition 1.10 and a more compact description
of Theorem 4.1 in [27].

To explain the compatibility with Definition 1.8, we first use Remark
3, which describes the local model as a Dirac structure on the dual
K∗ of the kernel of AS , using a splitting θ : AS −→ K. In our case,
K = E∗ (hence the Dirac structure is on E), one can use as splitting
the canonical projection and, since all the objects involved are given by
explicit formulas, it is straightforward to compute and compare the re-
sulting Dirac structure (coming from Remark 3) and the Dirac structure
corresponding to j1Sπ: the two coincide!

The following proposition is important for the Moser path method.
We connect π to its first order approximation j1Sπ by a smooth path of
Poisson structures.

Proposition 3.14. Let π be a horizontally non-degenerate Poisson

structure on E that admits S as a symplectic leaf. Let γ ∈ Ω̃2
E be the

corresponding Dirac element. Then, on a small enough neighborhood N
of S, there exists a smooth path of Poisson structures

πt ∈ X2(N), with π1 = π|N , π0 = j1S(π).

More precisely, πt can be chosen via the smooth path of Dirac elements

γt = γ|S +
tϕt(γ)− γ|S

t
∀ t ∈ (0, 1],

and N is the intersection of the Poisson supports of these elements.

Proof. Note first that γt extends smoothly at t = 0 as γ0 = j1Sγ.
We will perform the computations for t 6= 0 and extended to t = 0 by
continuity. We write:

γt = ϕt(γ) + (t−1 − 1)ωS = ϕt(γ + (1− t)ωS).

Using that ϕt commutes with the bracket, γ is a Dirac element, and
[ωS , ωS]⋉ = 0:

[γt, γt]⋉ = ϕt([γ + (1− t)ωS, γ + (1− t)ωS]⋉) = 2(1− t)ϕt([γ, ωS ]⋉).

By Lemma 3.2, formula (9), and the fact that ωS is closed, we have

[γ, ωS ]⋉ = LpS(γ)(ωS) = LγS(ωS) = dωS = 0.

This proves that [γt, γt]⋉ = 0. It is also clear that pS(γt) = pS(ϕt(Γπ)) =
pS(Γπ) = γS . Finally, note that γt|S = −ωS, hence (S, ωS) is a symplec-
tic leaf for all γt’s. This also shows that S ⊂ N . To see that N is indeed
open, we apply the topological tube lemma: from the smoothness of the
family γt, the set N , consisting of pairs (t, e) with e in the support of γt,
is open in [0, 1] × E; also, e ∈ N means [0, 1] × {e} ⊂ N and hence, by
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the tube lemma, [0, 1]×W ⊂ N (hence W ⊂ N) for some open W ∋ e.
q.e.d.

4. Proof of the main theorem. Step 1: Moser path method

In this section we use the Moser path method to reduce the proof of
the main theorem to some cohomological equations. The main outcome
is Theorem 4.1 below.

Let (M,π) be a Poisson manifold and let (S, ωS) be a symplectic leaf.
We start by describing the relevant cohomologies. They are all rela-
tives of the Poisson cohomology groups H•

π(M), defined by the complex
(X•(M), dπ) where dπ = [π, ·]. The first one is, intuitively, the Poisson
cohomology of the germ of (M,π) around S:

H•
π(M)S = lim

S⊂U
H•
π|U

(U),

where the limit is the direct limit over all the open neighborhoods U
of S in M . The next relevant cohomology, the Poisson cohomology

restricted to S, denoted
H•
π,S(M),

is defined by the complex (X•
|S(M), dπ|S), where X|S(M) = Γ(Λ•TM |S).

The last relevant cohomology is a version of H•
π,S(M) with coeffi-

cients in the conormal bundle of S, which is best described using Lie
algebroids. Given a Lie algebroid A and a representation (V,∇) of A,
the cohomology of A with coefficients in V , denoted H•(A,V ), is defined
by the complex Ω•(A,V ) = Γ(Λ•A∗ ⊗ V ) endowed with the differential
dA,∇ given by the classical Koszul formula (see [21]). When V is the
trivial 1-dimensional representation, one obtains the DeRham cohomol-
ogy of A. For instance, H•

π(M) is just the cohomology of the cotangent
algebroid T ∗M , while H•

π,S(M) is just the cohomology of the restriction

AS := T ∗M |S .

The conormal bundle ν∗S of S is a representation of AS with ∇α(β) =
[α, β] (where [·, ·] is the bracket of AS). The last relevant cohomology is

H•
π,S(M,ν∗S) := H•(AS , ν

∗
S).

Theorem 4.1. Let S be an embedded symplectic leaf of a Poisson
manifold (M,π) and let j1Sπ be the first order approximation of π along
S associated to some tubular neighborhood of S in M . If

H2
π(M)S = 0, H1

π,S(M) = 0, H1
π,S(M,ν∗S) = 0,

then, around S, π and j1Sπ are Poisson diffeomorphic, by a Poisson
diffeomorphism which is the identity on S.

The rest of this section is devoted to the proof of the theorem, followed
by a slight improvement that will be used in order to prove Proposition
2.1.
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First of all, by using a tubular neighborhood, we may assume that
M = E is a vector bundle over S and π is horizontally non-degenerate.

Let γ ∈ Ω̃2
E be the associated Dirac element. We first rewrite in terms

of E and γ the complexes computing the last two cohomologies in the
statement of the theorem.

Lemma 4.2. For any l ≥ 0, the complex (Ω•(AS , S
lE∗), dA) comput-

ing the cohomology of AS with coefficients in the l-th symmetric power
of ν∗S = E∗ is canonically isomorphic to the complex (grl(Ω

•
E), [d

1
Sγ, ·]).

Proof. We use the notations and the explicit formulas from Remark
7. With the identification AS = TS⊕E∗ and the identification (12), we
see that

grl(Ω
•
E) = Ω•(AS , S

lE∗).

Hence we still have to show that the two differentials coincide. Let dl
be the differential for the cohomology of AS with coefficients in SlE∗.
Denote

δ := d1Sγ = πv + Γ + σ.

Since both dl and adδ act as derivations and dl is the l-th symmetric
power of d1, it is enough to prove that for ω ∈ Ω(S), V ∈ Γ(E), and
ψ ∈ Γ(E∗), we have that

(13) d0(ω) = [δ, ω]⋉, d0(V ) = [δ, V ]⋉, d1(ψ) = [δ, ψ]⋉.

For the first equation, observe that by Lemma 3.2 and (9), we have
that [δ, ω]⋉ = LγSω = dω and since the anchor is a Lie algebroid map,
we also have that d0ω = dω.

In the computations below, we use that, for W ∈ Γ(Λ•E) and η ∈
Γ(E∗), we have that W (η, ·) = −[η,W ], where on the left-hand side we
just contract W with η and on the right-hand side we regard W and η
as elements in ΩE. Let V ∈ Γ(E). For η, ψ ∈ Γ(E∗), using that C∞(S)
commutes with ΩE and that the only term in [δ, V ]⋉ that is nonzero on
Γ(E∗)× Γ(E∗) is [πv, V ], we have:

d0(V )(η, ψ) = −V ([η, ψ]A) = [[ψ, [πv, η]], V ]

= [ψ, [[πv, V ], η]] + [ψ, [πv, [η, V ]]] + [[ψ, V ], [πv, η]]

= [πv, V ](η, ψ) − [ψ, [πv, V (η)]] − [V (ψ), [πv, η]]

= [πv, V ](η, ψ) = [δ, V ]⋉(η, ψ).

For X ∈ X(S) and η ∈ Γ(E∗), we have that

d0(V )(X, η) = [X,V (η)] − V ([X, η]A) = [X, [V, η]] − [V, [horΓ(X), η]]

= [horΓ(X), [V, η]] − [V, [horΓ(X), η]] = [horΓ(X), V ](η)

= [Γ, V ]⋉(X, η) = [δ, V ]⋉(X, η),
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where we have used the fact that the only term in [δ, V ]⋉ that is nonzero
on X(S) × Γ(E∗) is [Γ, V ]⋉. Consider now X,Y ∈ X(S). We have that

d0(V )(X,Y ) = −V ([X,Y ]A) = −V (σ(X,Y )) = −[σ(X,Y ), V ]

= [V, σ](X,Y ) = [δ, V ]⋉(X,Y ),

where we have used the fact that the only term in [δ, V ]⋉ that is nonzero
on X(S) × X(S) is [σ, V ]⋉. Hence we have proven the second equation
in (13).

Let ψ ∈ Γ(E∗). For η ∈ Γ(E∗) and respectively X ∈ X(S), we have
that

d1(ψ)(η) = −[ψ, η]A = −[η, [πv, ψ]] = [πv, ψ](η) = [δ, ψ]⋉(η),

d1(ψ)(X) = [X,ψ]A = [horΓ(X), ψ] = [Γ, ψ]⋉(X) = [δ, ψ]⋉(X),

and this proves the last equation in (13). q.e.d.

We now return to the proof of Theorem 4.1. We will use the path of
Poisson structures πt provided by Proposition 3.14 and the associated
Dirac elements γt, with γ1 = γ corresponding to π and γ0 = j1Sγ. The
first part of the proof holds for general paths γt. We are looking for a
family µt of diffeomorphisms defined on a neighborhood of S in E, for
all t ∈ [0, 1], such that µt = IdS on S, µ0 = Id, and

(14) µ∗tπt = j1Sπ

for all t ∈ [0, 1]. Then µ1 will be the desired isomorphism. We will define
µt as the flow of a time-dependent vector field Zt, i.e. as the solution of:

d

dt
µt(x) = Zt(µt(x)), µ0(x) = x.

Hence we are looking for the time-dependent Zt defined on a neighbor-
hood of S in E. The first condition we require is that Z = 0 along S.
This implies that µt = IdS on S and that µt is well-defined up to time 1
on an open neighborhood U of S, i.e. [0, 1] × U is inside the domain D
of the flow of Zt. For the last assertion, one uses again the tube lemma:
for each x ∈ S, since [0, 1]×{x} ⊂ D, one can find an open Ux ∋ x with
[0, 1] × Ux ⊂ D and one takes U = ∪xUx.

Finally, since (14) holds at t = 0, it suffices to require its infinitesimal
version:

(15) LZt(πt) + π̇t = 0.

The next step is to rewrite this equation in terms of the Dirac elements
γt. For each t we consider the isomorphism induced by γt (see Proposi-
tion 3.6):

τt : (X
•(E), dπt) −→ (Ω•

E, adγt).

Strictly speaking, the map τt is defined only on the open N from Propo-
sition 3.14, but since the discussion is local around S, we allow ourselves



446 M. CRAINIC & I. MǍRCUŢ

this notational sloppiness. Finding the Zt’s is equivalent to finding

Vt := τt(Zt) ∈ Ω1
E.

The following is our compact version of Proposition 2.14 of [28].

Lemma 4.3. The homotopy equation (15) is equivalent to the fol-
lowing equation:

(16) [γt, Vt]⋉ = γ̇t (∀) t ∈ [0, 1]

required to hold on a neighborhood of S in E.

Proof. If we decompose Zt = Xt + Yt into its Γπt-horizontal and
vertical components, then, using the explicit form of τt from (11), it
follows that Vt is the sum of two elements of bi-degree (0, 1) and (1, 0)
respectively:

Vt = Yt − F♯πt(Xt).

Therefore (16) breaks down into the following list of equations, of various
degrees:

[πvt , Yt]⋉ = π̇vt , [Γπt , Yt]⋉ − [πvt ,F
♯
πt(Xt)]⋉ = Γ̇πt ,

[Fπt , Yt]⋉ − [Γγt ,F
♯
πt(Xt)]⋉ = Ḟπt .

These are precisely the equations appearing in Proposition 2.14 of [28].
q.e.d.

In conclusion, we are looking for elements Vt ∈ Ω1
E, defined for all

t ∈ [0, 1] on some open neighborhood of S in E, with the property that
Vt|S = 0 and satisfying the equations (16). There is one equation for
each t but, since γt is of a special type, one can reduce everything to a
single equation.

Lemma 4.4. Assume that there exists X ∈ Ω1
E such that j1SX = 0

and

(17) [γ,X]⋉ = γ̇1.

Then Vt := t−1ϕt(X) satisfies the homotopy equations (16).

Proof. The condition that the first jet of X along S vanishes ensures
that Vt is a smooth family defined also at t = 0 and that Vt vanishes
along S. We check the homotopy equations at all t ∈ (0, 1]. For the
left-hand side:

[γt, Vt]⋉ = [ϕt(γ) + (1− t−1)ωS , Vt]⋉ = ϕt([γ, ϕt−1(Vt)]⋉)

= t−1ϕt([γ,X]⋉),

where we have used the fact that ωS lies in the center of ΩE and that
ϕt commutes with the brackets. Using the assumption on X, we find

[γt, Vt]⋉ = t−1ϕt(γ̇1).
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Hence (16) will follow for t ∈ (0, 1] if we prove the following equation:

(18) t−1ϕt(γ̇1) = γ̇t.

Note first that the explicit formula for γt implies that

ϕt(γs) = γts + (1− t−1)ωS .

Taking the derivative of this equation at s = 1, we obtain the result.
q.e.d.

The equation forX in the last lemma lives in the cohomology of (Ω•
E, adγ).

Note that the right-hand side of the equation is indeed closed. This fol-
lows by taking the derivative with respect to t at t = 1 in [γt, γt]⋉ = 0.
Using Proposition 3.6 and the first assumption of Theorem 4.1, we see
that, after eventually shrinking its domain of definition, γ̇1 is exact. This
ensures the existence of X. To conclude the proof of the theorem, we
still have to show that X can be corrected so that j1SX = 0. We will do
so by finding F ∈ Ω0

E = C∞(E), such that

j1S([γ, F ]⋉) = j1S(X).

Then X ′ = X − [γ, F ]⋉ will be the correction of X. Since the condition
only depends on j1SF , it suffices to look for F of type

F = F0 + F1 ∈ gr0(Ω
0
E)⊕ gr1(Ω

0
E) = C∞(S)⊕ Γ(E∗).

So F |S = F0, d
1
SF = F1. To compute j1S([γ, F ]⋉), we write:

ϕt([γ, F ]⋉) = [ϕt(γ), ϕt(F )]⋉ = [−t−1ωS + d1Sγ + td2Sγ + t2(. . .),

t−1F0 + F1]⋉ = t−1[d1Sγ, F0]⋉ + [d1Sγ, F1]⋉ + t(. . .),

where we have used that ωS and F0 commute with ΩE (Lemma 3.2). So
we have to solve the following cohomological equations:

(19) [d1Sγ, F0]⋉ = X|S , [d1Sγ, F1]⋉ = d1SX.

By Lemma 4.2, the relevant cohomologies are precisely the ones assumed
to vanish in the theorem. So it is enough to show that X|S and d1SX are
closed with respect to the differential [d1Sγ, ·]⋉. These are precisely the
first order consequences of the equation (17) that X satisfies. By (18),
we have that ϕt(γ̇1) = tγ̇t; hence j

1
S(γ̇1) = 0. So the Newton formula of

Lemma 3.10 applied to (17) gives:

(20) [d1Sγ,X|S ]⋉ = 0, [d1Sγ, d
1
SX]⋉ + [d2Sγ,X|S ]⋉ = 0.

Hence X|S is closed, and so we can find F0 satisfying the first equation
in (19). In particular, using also Lemma 3.2, this shows that

X|S = [d1Sγ, F0]⋉ = dF0 ∈ Ω(S).

Hence X|S commutes with ΩE, and since d2Sγ ∈ ΩE , the second equation
of (20) becomes [d1Sγ, d

1
SX]⋉ = 0. This finishes the proof.
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Remark 8. The previous arguments reveal a certain cohomology
class related to the linearization problem, which we will describe now
more explicitly. First of all, π itself defines a class [π] ∈ H2

π(M)S . Con-
sider a tubular neighborhood p : E −→ S. Since any two tubular neigh-
borhoods are isotopic, it follows that the class

[p∗(ωS)] ∈ H•
dR(M)S = lim

S⊂U
H•

dR(U)

is independent of p. On the other hand, π gives a chain map between
the complexes

∧•π♯|U : (Ω•(U), d) −→ (X•(U), dπ).

Let [π|S ] ∈ H2
π(M)S be the image of [p∗(ωS)] under the induced map in

cohomology.

Definition 4.5. The linearization class associated to an embedded
leaf S of a Poisson manifold (M,π) is defined by

lπ,S := [π]− [π|S ] ∈ H2
π(M)S .

It would be interesting to study this class in more detail.

Corollary 4.6. In the previous theorem, the condition H2
π(M)S = 0

can be replaced by the condition lπ,S = 0.

Proof. In the proof above we only used the vanishing of [γ̇1]; hence,
by Proposition 3.6, it suffices to show that [τ−1

π (γ̇1)] = lπ,S. By the
definition of ϕt, we have that

γt = (t−1 − 1)ωS + t−1m∗
t (Fπ) +m∗

t (Γπ) + tm∗
t (π

v).

Since met is the flow of the Liouville vector field E =
∑
yi

∂
∂yi

, we obtain

γ̇1 = −ωS − Fπ + πv + [E , γ1]⋉.

Using (10), (11), and the fact that πv is vertical, we obtain the conclusion

τ−1
π (πv − Fπ − ωS) = πv + πh − ∧2π♯(ωS) = π − ∧2π♯(ωS).

q.e.d.

5. Proof of the main theorem. Step 2: Integrability

In this section we show that the conditions of our main theorem imply
the integrability of the Poisson structure around the symplectic leaf.
This, in turn, implies that the cohomological conditions from Theorem
4.1 are satisfied. As in [11], this step will be divided into three sub-steps
(the three subsections of this section):

• Step 2.1: Integrability implies the needed cohomological condi-
tions.

• Step 2.2: Existence of a “nice” symplectic realization implies inte-
grability.
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• Step 2.3: Proof of the existence of such “nice” symplectic realiza-
tions.

In the first sub-step we will also finish the proof of Proposition 2.1.

5.1. Step 2.1: Reduction to integrability. As promised:

Theorem 5.1. Let (M,π) be a Poisson manifold, x ∈ M , and S be
the symplectic leaf through x. If Px, the homotopy bundle at x, is smooth
and compact, then

H1
π,S(M) = 0, H1

π,S(M,ν∗S) = 0.

If moreover H2(Px) = 0 and S admits an open neighborhood U whose
associated groupoid Σ(U, π|U ) is smooth and Hausdorff, then also

H2
π(M)S = 0.

Proof. The first part of the proof is completely similar to that of The-
orem 2 in [11]: a consequence of the Van Est isomorphism and the van-
ishing of differentiable cohomology for proper groupoids. More precisely:
the conditions on Px imply that the groupoid G(AS) of AS = T ∗M |S
is smooth and compact (hence the differentiable cohomology with coef-
ficients vanishes). Since its s-fibers are 1-connected, the Van Est map
with coefficients is an isomorphism in degree 1; hence the cohomology
of AS with any coefficients vanishes in degree 1.

For the second part, let Σ(U) = Σ(U, π|U ) be the symplectic groupoid
integrating (U, π|U ). It suffices to show that, for any open W ⊂ U con-

taining S, there exists a smaller one V such that H2
π(V ) = 0. Proceeding

as in the first part, it suffices to produce V ’s for which Σ(V ) = Σ(V, π|V )
has s-fibers that are compact and cohomologically 2-connected. Let
G ⊂ Σ(U) be the set of arrows with source and target inside W and for
which both the s-fiber and the t-fiber are diffeomorphic to Px. By local
Reeb stability applied to the foliation by the s-fibers (and t-fibers re-
spectively), we see that all four conditions are open; therefore G ⊂ Σ(U)
is open, and by assumption, all arrows above S are in G. By the way
G was defined, we see that it is an open subgroupoid over the invariant
open V := s(G). So G = Σ(V ) and it has all the desired properties.
q.e.d.

End of the proof of Proposition 2.1. We will adapt the previous proof,
making use of Remark 8. We have to show that

[π]− [π|S ] = 0 ∈ H2
π(M)S .

We show that, for any tubular neighborhood p : W −→ S of S with
W ⊂ U , there exists a smaller one V such that

[π]− [π|S ] = 0 ∈ H2
π(V ).

Let V be as in the previous proof. We may assume that V is connected;
if not, we replace it by the component containing S. Since Σ(V ) is still
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proper, it suffices to show that the class above is in the image of the
Van Est map of Σ(V ) (in degree 2). By Corollary 2 in [6], this image
consists of elements [ω] ∈ H2

π(V ) for which
∫
γ
ω = 0, for all 2-spheres γ

in the s-fibers of Σ(V ). Hence it suffices to show that [π]− [π|S ] satisfies
this condition. Let ω̃S = p∗ωS and consider the symplectic form Ω on
the symplectic groupoid. The right invariant 2-form on the s-fibers of
Σ(V ) corresponding to ω̃S is t∗(ω̃S|V ) restricted to the s-fibers. The
right invariant 2-form on the s-fibers of Σ(V ) corresponding to π is the
pullback by t to the s-fibers of the symplectic structure on the leaves
of (V, π|V ); on the other hand, it is also the restriction to the s-fibers
of Ω. In particular, the two coincide on the s-fibers above S. For the
correspondence between Poisson cocycles and right invariant, foliated
2-forms on the symplectic groupoid, see [31]. Consider

ω := Ω− t∗(ω̃S|V ).

Let γ be a 2-sphere in an s-fiber of Σ(V ). Since V is connected, we can
find a homotopy between γ and a 2-sphere γ1 that lies in an s-fiber over
S. Since ω is closed, we have that

∫
γ
ω =

∫
γ1
ω, and since the restriction

of ω to s-fibers over S vanishes, it follows that
∫
γ1
ω = 0. This implies

the conclusion. q.e.d.

5.2. Step 2.2: Reduction to the existence of “nice” symplectic

realizations. Next, we show that the integrability condition required in
the last theorem is implied by the existence of a symplectic realization
with some specific properties.

We will use the following notation. Given a symplectic realization
µ, we denote by F(µ) the foliation defined by µ, identified also with
the involutive distribution Ker(dµ). Its symplectic orthogonal is a new
distribution F(µ)⊥. Since µ is a Poisson map, it is well-known (and
follows easily) that F(µ)⊥ is also involutive.

Theorem 5.2. Let (M,π) be a Poisson manifold and let S be a
symplectic leaf. Assume that there exists a symplectic realization

µ : (Σ,Ω) −→ (U, π|U )

of some open neighborhood U of S in M such that any leaf of the folia-
tion F⊥(µ) that intersects µ−1(S) is compact and 1-connected.

Then there exists an open neighborhood V ⊂ U of S such that the
Weinstein groupoid Σ(V, π|V ) is Hausdorff and smooth.

Proof. We may assume that all leaves of F(µ)⊥ are compact and 1-
connected. Otherwise, we replace Σ by Σ′ and U by U ′ = µ(Σ′), where
Σ′ is defined as the set of points y ∈ Σ with the property that the leaf
of F(µ)⊥ through y is compact and 1-connected. Local Reeb stability
implies that Σ′ is open in Σ. The hypothesis implies that µ−1(S) ⊂ Σ′

and, since µ is open, U ′ is an open neighborhood of S.
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Clearly, we may also assume that U =M . Hence we have a symplectic
realization

µ : (Σ,Ω) −→ (M,π)

with the property that all the leaves of F(µ)⊥ are compact and 1-
connected. We claim that Σ(M,π) has the desired properties. By The-
orem 8 in [8], if the symplectic realization µ is complete, then Σ(M,π)
is smooth. The compactness assumption on the leaves of F(µ)⊥ implies
that µ is complete since the Hamiltonian vector fields of type Xµ∗(f) are
tangent to these leaves. For Hausdorffness, we take a closer look at the
argument of [8]. It is based on a natural isomorphism of groupoids

Σ(M,π)×M Σ ∼= G(F(µ)⊥),

where the left-hand side is the fibered product over s and µ, and the
right-hand side is the homotopy groupoid of the foliation F(µ)⊥. Since
homotopy groupoids are always smooth, [8] concluded that Σ(M,π) is
smooth. In our case, the leaves of F(µ)⊥ are 1-connected; hence the
homotopy groupoid is a subgroupoid ofM×M . So it is Hausdorff, from
which it follows easily that Σ(M,π) is also Hausdorff. q.e.d.

5.3. Constructing symplectic realizations from transversals in

the manifold of cotangent paths. In this subsection we describe
a general method for constructing symplectic realizations; it will be
used in the next subsection to produce a symplectic realization with the
properties required to apply Theorem 5.2.

In this and the next subsection we will use the same notations as in
the proofs of the main results of [7, 8, 11]. (Some familiarity with those
also might be useful.)

Throughout this subsection, (M,π) is an arbitrary Poisson manifold.
We know that if (M,π) is integrable, then the source map of Σ(M,π)
produces a complete symplectic realization. It may be helpful to have
in mind that, although (M,π) may fail to be integrable, i.e. Σ(M,π)
may fail to be smooth, there is always a “local groupoid” Σloc(M,π)
that is smooth and produces a symplectic realization of (M,π) (but
fails to be complete). The plan is to analyze more closely the explicit
construction of Σ(M,π) and of its symplectic form to produce other
symplectic realizations sitting in-between Σ(M,π) and Σloc(M,π). They
will have a better chance of both being smooth and having the desired
properties.

We will use the same notations as in [7, 8]. We consider:

• X̃ = P̃ (T ∗M) is the space of all C1-paths in T ∗M . Recall [7] that

X̃ has a natural structure of Banach manifold.
• X = P (T ∗M) is the space of all cotangent paths which, by Lemma

4.6 in [7], is a Banach submanifold of X̃ .
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• F = F(T ∗M) is the foliation on X given by the equivalence rela-
tion of cotangent homotopy; it is a smooth foliation on X of finite
codimension. In (24) we will recall the description of F via its
involutive distributions.

Thinking of X̃ as the cotangent bundle of the space of paths in M , it

comes with a canonical symplectic structure denoted by Ω̃. To avoid
issues regarding symplectic structures on Banach manifolds, let us just

define Ω̃ explicitly:

Ω̃(Xa, Ya) =

∫ 1

0
ωcan(Xa, Ya)dt, for a ∈ X̃ ,Xa, Ya ∈ TaX̃ ,

where Xa, Ya are interpreted as paths in T (T ∗M) sitting above a and
where ωcan is the canonical symplectic form on T ∗M . It can be checked

directly that Ω̃ is closed; we only need its restriction to X :

Ω := Ω̃|X ∈ Ω2(X ).

We will prove that the kernel of Ω is precisely F and that Ω is invariant
under the holonomy of F ; this ensures that Ω descends to a symplec-
tic form on the leaf space Σ(M,π) (whenever smooth). Our strategy is
a variation of this idea: we look at transversals T of the foliation and
equivalence relations ∼ on T that are weaker than the holonomy; by the
same arguments, Ω descends to a symplectic form on T/ ∼, provided
this quotient is smooth. Our job will be to produce ∼.

We fix a torsion-free connection ∇ onM . Then a tangent vector X to
T ∗M can be interpreted as a pair (X, θX), where X = (dp)(X) ∈ TM
and θX ∈ T ∗M is the vertical component with respect to ∇. For torsion-
free connections, the horizontal distribution on T ∗M is Lagrangian with
respect to ωcan; it follows that:

ωcan(X,Y ) = 〈θY ,X〉 − 〈θX , Y 〉.

Similarly, a tangent vector X ∈ TaX̃ is represented by a pair (X, θX),
where X is a C1-path in TM , θX in T ∗M , both sitting above the base
path γ = p ◦ a; also,

Ω̃(X,Y ) =

∫ 1

0
(〈θY ,X〉 − 〈θX , Y 〉)dt.

To describe TX using∇, one uses two T ∗M -connections: one on T ∗M
and one on TM , both denoted ∇: for α, β ∈ Ω(M) and X ∈ X(M),

∇α(β) = ∇π♯(β)(α) + [α, β]π, ∇α(X) = π♯(∇X(α)) + [π♯(α),X].

Recall that [·, ·]π is given by (2). Note that the two connections are
related by

(21) ∇α(π
♯(β)) = π♯(∇α(β)).
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Since ∇ is torsion-free, it follows that they also satisfy the duality rela-
tion:

(22) 〈∇α(β),X〉 + 〈β,∇α(X)〉 = π♯(α)(〈β,X〉).

Given a cotangent path a with base path γ and a C2-path U in T ∗M or
TM above γ, one has the induced derivative ∇a(U) of U along a; this
is a C1-path above γ, sitting in the same space as U (T ∗M or TM).

Explicitly, choosing a time-dependent section Ũ of class C2 such that
Ũt(γ(t)) = U(t),

∇a(U)t = ∇aŨt(x) +
dŨt
dt

(x), at x = γ(t).

With these, the tangent space

TaX ⊂ TaX̃

corresponds to those pairs (X, θX) satisfying (see [7]):

∇a(X) = π♯(θX).

Note that the condition that X and θX are of class C1, together with
the equation above, forces X to be of class C2. Using equation (22), it
is straightforward to show that for a ∈ X , the two derivatives ∇a on
TM and T ∗M are related by:

(23) 〈∇a(θ), V 〉+ 〈θ,∇a(V )〉 =
d

dt
〈θ, V 〉,

for all paths θ in T ∗M and V in TM , both sitting over γ = p ◦ a.
To finally define the distribution F ⊂ TX , let a ∈ X with base path γ

and let Eγ be the space of all paths β in T ∗M of class C2 with base path
γ. Each such path induces a tangent vector in TaX , with components
given by

Xβ := (π♯(β),∇a(β)) ∈ TaX .

With these, the foliation F can be described as follows (see [7]):

(24) Fa = {Xβ : β ∈ Eγ , β(0) = 0, β(1) = 0}.

Next, we give a very useful formula for Ω.

Lemma 5.3. Let a ∈ X with base path γ. For X = (X, θX), Y =
(Y , θY ) ∈ TaX choose βX , βY ∈ Eγ such that θX = ∇a(βX) and θY =

∇a(βY ). Then

Ω(X,Y ) = 〈βY ,X〉|10 − 〈βX , Y 〉|10 − π(βX , βY )|
1
0.

In particular, for Y = Xβ , with β ∈ Eγ we have that Ω(X,Xβ) =

〈β,X〉|10.
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Proof. Using formulas (23) and (21), we compute:

Ω(X,Y ) =

∫
1

0

(〈θY , X〉 − 〈θX , Y 〉)dt =

∫
1

0

(〈∇a(βY ), X〉 − 〈∇a(βX), Y 〉)dt

=

∫
1

0

d

dt
(〈βY , X〉 − 〈βX , Y 〉)dt−

∫
1

0

(〈βY ,∇a(X)〉 − 〈βX ,∇a(Y )〉)dt

= 〈βY , X〉|1
0
− 〈βX , Y , 〉|

1

0
−

∫
1

0

(〈βY , π
♯(θX)〉 − 〈βX , π

♯(θY )〉)dt,

∫
1

0

〈βY , π
♯(θX)〉dt =

∫
1

0

〈βY , π
♯(∇a(βX))〉dt =

∫
1

0

〈βY ,∇a(π
♯(βX))〉dt

= −

∫
1

0

〈∇a(βY ), π
♯(βX)〉dt+

∫
1

0

d

dt
(〈βY , π

♯(βX)〉)dt

= −

∫
1

0

〈θY , π
♯(βX)〉dt+ 〈βY , π

♯(βX)〉|1
0
=

∫
1

0

〈βX , π
♯(θY )〉dt + π(βX , βY )|

1

0
.

q.e.d.

Corollary 5.4. Let a ∈ X with base path γ. Then

ker(Ωa) = Fa = {Xβ : β ∈ Eγ , β(0) = 0, β(1) = 0}.

Proof. Consider X = (X, θX) ∈ ker(Ωa). It follows that for all ξ ∈ Eγ
we have that Ωa(X,Xξ) = 0, hence by the previous lemma X(0) = 0

and X(1) = 0. Let β ∈ Eγ be the unique solution to the equation

θX = ∇a(β) with β(0) = 0. Observe that by (21), both X and π♯(β)
satisfy the equation

∇a(Z) = π♯(θX), Z(0) = 0.

Therefore they must be equal, and thus X = Xβ. So, again by the

lemma, for all Y = (Y , θY ) ∈ TaX , we have that 〈Y (1), β(1)〉 = 0. On
the other hand, Y (1) can be chosen arbitrarily (see Lemma 5.5 below),
thus β(1) = 0 and this shows that X ∈ Fa. The other inclusion follows
directly from Lemma 5.3. q.e.d.

Consider now the maps s̃, t̃ : X −→M , which assign to a path a the
starting (respectively ending) point of its base path γ.

Lemma 5.5. s̃ and t̃ are submersions and their fibers are orthogonal
with respect to Ω. More precisely, denoting by ⊥ the orthogonal with
respect to Ω, we have that

(ker ds̃a)
⊥ = ker dt̃a, (ker dt̃a)

⊥ = ker ds̃a.

Proof. To prove the first part, note that

ker ds̃a = {(X, θX) : X(0) = 0}, ker dt̃a = {(X, θX) : X(1) = 0}.

Then, for V0 ∈ Tγ(0)M , the path V above γ that satisfies

∇a(V ) = 0, V (0) = V0
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induces V = (V , 0) ∈ TaX with ds̃a(V ) = V0; so s̃, and similarly t̃, is a
submersion.

For X = (X, θX) ∈ ker dt̃a, Y = (Y , θY ) ∈ ker ds̃a, let βX , βY ∈ Eγ
be so that

∇a(βX) = θX , βX(1) = 0, ∇a(βY ) = θY , βY (0) = 0.

Lemma 5.3 implies that Ωa(X,Y ) = 0. Conversely, let X = (X, θX) ∈
(ker ds̃a)

⊥. For all ξ ∈ Eγ , such that ξ(0) = 0, we have that Xξ ∈ ker ds̃a,
therefore; by assumption, Ωa(X,Xξ) = 0. Thus, by Lemma 5.3 we have
that

0 = Ωa(X,Xξ) = 〈ξ(1),X(1)〉.

Since ξ(1) is arbitrary, X(1) = 0, i.e. X ∈ ker dt̃a. So (ker ds̃a)
⊥ =

ker dt̃a. q.e.d.

We collect the main properties of Ω that are needed in the next
subsection.

Proposition 5.6. Let T be a transversal to F . Then the following
hold:

(a) Ω|T is symplectic and is invariant under the holonomy action of
F on T .

(b) The sets Us = s̃(T ) and Ut = t̃(T ) are open in M , and

σ = s̃|T : (T ,Ω|T ) → (Us, π|Us
) is a Poisson map and

τ = t̃|T : (T ,Ω|T ) → (Ut, π|Ut
) is anti-Poisson.

(c) ker(σ)⊥ = ker(τ) and ker(τ)⊥ = ker(σ).

Proof. Since F is of finite codimension [7], there are no issues re-
garding the meaning of symplectic forms on our T , and Ω|T is clearly
symplectic. Actually, the entirety of (a) is a standard fact about kernels
of closed two-forms, at least in the finite dimensions; it applies to our
situation as well: From the construction of holonomy by patching to-
gether foliation charts, the second part is a local issue: given a product
B × T of a ball B in a Banach space and a finite dimensional manifold
T (for us a small ball in a Euclidean space) and a closed two-form Ω on
B × T , if

ker(Ωx,y) = TxB × {0y} ⊂ TxB × TyT , ∀ (x, y) ∈ B × T ,

then Ωx = Ω|{x}×T ∈ Ω2(T ) does not depend on x ∈ B (since Ω is
closed).

For part (b) we will prove the statement for σ; for τ it follows similarly.
Since

ds̃a : TaX = TaT ⊕ Fa → Tγ(0)M

is surjective and Fa ⊂ ker ds̃a, it follows that s̃|T is a submersion onto
the open s̃(T ) = Us. To show that σ is a symplectic realization, we
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will describe the Hamiltonian vector fields of σ∗(f), for f ∈ C∞(Us).
Consider the vector field on X :

H̃f,a := X(1−t)dfγ(t) = (∇a((1 − t)dfγ(t)), (1 − t)π♯(dfγ(t))) ∈ TaX .

Then we have that ds̃(H̃f ) = π♯(df), and by Lemma 5.3 it also satisfies

Ω(H̃f , Y )a = 〈dfγ(0), Y (0)〉 = d(s̃∗f)(Y ), (∀) Y ∈ TaX .

Thus Ω(H̃f , ·) = d(s̃∗f). Decomposing H̃f |T := Hf + Vf , where Hf is
tangent to T and Vf is tangent to F , and using the fact that F = ker Ω,
it follows that

Ω|T (Hf , ·) = d(σ∗f), dσ(Hf ) = π♯(df).

This shows that σ is Poisson. Part (c) follows from Lemma 5.5 and
Corollary 5.4. q.e.d.

5.4. Step 2.3: The needed symplectic realization. Back to the
main theorem, to finish the proof, we still have to prove the existence
of a symplectic realization as in Theorem 5.2. We will do that using the
methods from the previous subsection; in particular, we keep the same
notations. We consider:

• Y = s̃−1(S) ⊂ X , the submanifold of X sitting above S. Note that
this is the same as the manifold P (A) of A-paths of the algebroid
A = AS .

• The restriction of F to Y, FY = F|Y . Again, this is the foliation
F(A) associated to the algebroid A [7], and Y/F is the groupoid
G(A) of A.

From the assumptions of the theorem, G(A) is compact. We denote it
by B here.

As in the appendix in [11], we will use the following technical lemma:

Proposition 5.7. Let F be a foliation of finite codimension on a
Banach manifold X and let Y ⊂ X be a submanifold that is saturated
with respect to F (i.e. each leaf of F which hits Y is contained in Y).
Assume that:

(H0) The holonomy groups of the foliation F at the points of Y are
trivial.

(H1) FY := F|Y is induced by a submersion p : Y → B, with B-compact.
(H2) The fibration p : Y → B is locally trivial.

Then one can find:

(i) a transversal T ⊂ X to the foliation F such that TY := Y ∩T is a
complete transversal to FY (i.e. intersects each leaf of FY at least
once),

(ii) a retraction r : T → TY ,
(iii) an action of the holonomy of FY on r : T → TY along F .
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Moreover, the quotient of T by the action of FY is a smooth (Hausdorff)
manifold.

In our case, once we make sure that the lemma can be applied, the
resulting quotient Σ of T will produce the desired symplectic realization.
This follows from Proposition 5.6 and the fact that, by construction,
σ−1(S) = G(A) ⊂ Σ.

(H1) is clear since Px is smooth and compact. For (H2), we need the
following:

Lemma 5.8. Let M be a finite dimensional manifold, x0 ∈ M , and
denote by Path(M,x0) the Banach manifold of C2 paths in M starting
at x0. Then

ǫ : Path(M,x0) −→M, γ 7→ γ(1)

is a locally trivial fiber bundle.

Proof. Consider x ∈M . For U ⊂ V small enough open neighborhoods
of x ∈M , we will construct a smooth family of diffeomorphisms

φy,t :M −→M, for y ∈ U, t ∈ R,

such that φy,t is supported inside V , φy,0 = IdM , and φy,1(x) = y. Then
the required trivialization over U is given by

τU : ǫ−1(x)× U −→ ǫ−1(U), τU (γ, y)(t) = φy,t(γ(t)),

with inverse

τ−1
U (γ)(t) = (φ−1

γ(1),t(γ(t)), γ(1)).

The construction of such diffeomorphisms is clearly a local issue; thus we
may assume that M = Rm, with x = 0 and U = B1(0), V = B2(0), the
balls of radii 1 and 2 respectively. Consider f ∈ C∞(Rm), supported
inside B2(0), with f|B1(0) = 1. Let φy,t be the flow at time t of the

compactly supported vector field Xy := f−→y , where −→y represents the
constant vector field on Rm corresponding to y ∈ B1(0). Then it is easy
to see that φy,t satisfies all requirements. q.e.d.

Next, for a groupoid G over a manifold S, we denote by Paths(G, 1)
the Banach manifold of C2-paths γ in G starting at some unit 1x and
satisfying s ◦ γ = x. For G = G(A), Proposition 1.1 of [7] identifies our
bundle p : Y −→ B with the bundle

(25) ǫ̃ : Paths(G, 1) −→ G, γ 7→ γ(1).

Hence the following implies (H2).

Lemma 5.9. For a source locally trivial Lie groupoid G, the map ǫ̃
(25) is a locally trivial fiber bundle.



458 M. CRAINIC & I. MǍRCUŢ

Proof. Consider g0 ∈ G, x0 = s(g0). Consider a local trivialization
of s over U ∋ x0, τ : s−1(U) ∼= U × s−1(x0). Since the unit map is
transversal to s, we may assume that τ(1x) = (x, 1x0) for all x ∈ U .
Left composing with τ induces a diffeomorphism τ∗ : ǫ̃−1(s−1(U)) −→
U × Path(s−1(x0), 1x0), under which ǫ̃ becomes

Id× ǫ : U × Path(s−1(x0), 1x0) −→ U × s−1(x0).

Since ǫ is trivial over V ⊂ s−1(x0) around g0, ǫ̃ is trivial over τ
−1(U×V ).

q.e.d.

We still have to check (H0).

Lemma 5.10. For any leaf L of F inside Y, π1(L) ∼= π2(Px).

Proof. The foliation FY is given by the fibers of p : Y −→ B, which,
as remarked before, is isomorphic to the bundle ǫ̃ : Paths(G(A), 1) −→
G(A). So a leaf L will be identified with ǫ̃−1(g), for some g ∈ G(A).
Denote by y := s(g) and Py := s−1(y). Then L is a fiber of ǫ :
Path(Py, 1y) −→ Py, which, by Lemma 5.8, is a locally trivial fiber
bundle. Since Path(Py, 1y) is contractible, by a standard argument, we
find that π1(L) ∼= π2(Py). Since G(A) is transitive, Py and Px are dif-
feomorphic. q.e.d.

Of course, if π2(Px) were assumed to be trivial, then condition (H0)
follows automatically. Note that the hypothesis that H2(Px) = 0 is
equivalent to π2(Px) being finite; we show that this is enough to ensure
triviality of the holonomy groups.

Lemma 5.11. The holonomy group of the foliated manifold (X ,F)
is trivial at any point a ∈ Y.

Proof. Let a ∈ Y and let Γ be the holonomy group at a. Let T be a
transversal of (X ,F) through a. Since Γ is finite, T can be chosen small
enough so that the holonomy transformations holu define an action of Γ
on T . Denote by TY := T ∩ Y. Since the holonomy of (Y,FY ) is trivial,
by making T smaller, we may assume:

C1: the action of Γ on TY is trivial.

Note also that the submersion σ : T −→M satisfies:

C2: σ is Γ-invariant.
C3: σ−1(σ(a)) ⊂ TY .

C1 is clear. For C2: a′ and holu(a
′) are always in the same leaf, i.e.

cotangent-homotopic, for a′ ∈ T , and hence the starting point is the
same. We have to show that the action of Γ is trivial in a neighborhood of
a in T . Since Γ is finite, it suffices to show that the induced infinitesimal
action of Γ on TaT is trivial. At the infinitesimal level, we have a short
exact sequence

ker(dσ)a
i

−→ TaT
(dσ)a
−→ Tσ(a)M.
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This is a sequence of Γ-modules, where Γ acts trivially on the first and
the last term. For the last map, this follows from C2. For the first map,
C3 implies that ker(dσ)a ⊂ TaTY on which Γ acts trivially by C1. Since
Γ is finite, the action on the middle term must be trivial as well (use
e.g. an equivariant splitting). q.e.d.
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