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THE ATTENUATED RAY TRANSFORM

ON SIMPLE SURFACES

Mikko Salo & Gunther Uhlmann

Abstract

We show that the attenuated geodesic ray transform on two
dimensional simple surfaces is injective. Moreover, we give a sta-
bility estimate and develop a reconstruction procedure.

1. Introduction

The geodesic ray transform, that is, the integration of a function
along geodesics, arises as the linearization of the problem of determin-
ing a conformal factor of a Riemannian metric on a compact Riemannian
manifold with boundary from the boundary distance function. This is
the boundary rigidity problem; see [31] for a recent review. The stan-
dard X-ray transform, where one integrates a function along straight
lines, corresponds to the case of the Euclidean metric and is the basis
of medical imaging techniques such as CT and PET. The case of inte-
gration along more general geodesics arises in geophysical imaging in
determining the inner structure of the Earth since the speed of elastic
waves generally increases with depth, thus curving the rays back to the
Earth’s surface. It also arises in ultrasound imaging. Uniqueness and
stability for the case of integration along geodesics on simple manifolds
(see precise definition below) was shown by Mukhometov [22] in the
two dimensional case. Explicit inversion formulas in the two dimen-
sional case were given in [26] for the case of constant curvature, and in
the general case Fredholm type inversion formulas were given.

In this paper we consider the case of the attenuated geodesic ray
transform in two dimensions that we proceed to define.

Let (M,g) be a compact 2D Riemannian manifold with boundary.
The geodesics going from ∂M into M can be parametrized by the set
∂+S(M) = {(x, ξ) ∈ TM ; x ∈ ∂M, |ξ| = 1, 〈ξ, ν〉 ≤ 0} where ν is
the outer unit normal vector to ∂M . For any (x, ξ) ∈ ∂+S(M) we let
t 7→ γ(t, x, ξ) be the geodesic starting from x in direction ξ. We assume
that (M,g) is nontrapping, which means that the time τ(x, ξ) when the
geodesic γ(t, x, ξ) exits M is finite for each (x, ξ) ∈ ∂+S(M).
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If a ∈ C∞(M) is the attenuation coefficient, consider the attenuated
ray transform of a function f ∈ C∞(M),

Iaf(x, ξ) =

∫ τ(x,ξ)

0
f(γ(t, x, ξ)) exp

[

∫ t

0
a(γ(s, x, ξ)) ds

]

dt.

Here (x, ξ) ∈ ∂+S(M).
A compact Riemannian manifold with boundary is said to be simple

if given any two points in the boundary there is a unique minimizing
geodesic joining the two points, and if the boundary is strictly convex.
The notion of simplicity arises naturally in the context of the boundary
rigidity problem [21].

Our first result shows that the attenuated ray transform on simple
surfaces is injective for any attenuation coefficient.

Theorem 1.1. Let (M,g) be a simple 2D manifold, and let a be any
smooth complex function on M . If f is a smooth complex function on
M such that Iaf ≡ 0, then f ≡ 0.

Moreover, we will give stability estimates and a reconstruction pro-
cedure to recover f from its attenuated ray transform Iaf .

In the case where M = R
2 with the Euclidean metric, the corre-

sponding injectivity result for the attenuated X-ray transform has been
proved by different methods in Arbuzov, A. L. Bukhgeim, and Kazant-
sev [2]; Novikov [25]; Natterer [23], and Boman and Strömberg [6].
These methods also come with inversion formulas. If M is the unit disc
in R

2 with Euclidean metric, a direct inversion formula was given by
Kazantsev and A. A. Bukhgeim [14]. See Finch [10], Kuchment [17],
and Kuchment and Quinto [18] for surveys of these and other develop-
ments in Euclidean space. The Euclidean attenuated X-ray transform
is the basis of the medical imaging modality SPECT.

The attenuated geodesic ray transform arises in inverse transport
problems with attenuation [19, 20], when the index of refraction is
anisotropic and represented by a Riemannian metric. It also arises in
geophysics where there is attenuation of the elastic waves. Rather un-
expectedly, this transform also appeared in the recent works [8], [15]
in the context of Calderón’s inverse conductivity problem in anisotropic
media (see [5], [11] for other relations between the inverse conductivity
problem and integral geometry).

Although the attenuated ray transform is well understood in Eu-
clidean space, much less is known about this transform on manifolds.
Bal [4] proves injectivity and gives an inversion formula in the hyper-
bolic disc H

2. Frigyik, Stefanov, and Uhlmann [12] prove injectivity
when (M,g) is simple and g and a are real analytic, or close to real an-
alytic. Sharafutdinov proves injectivity of the attenuated ray transform
on manifolds with a condition involving a modified Jacobi equation in
[28], and the size and curvature of the manifold in [29]. Dos Santos
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Ferreira, Kenig, Salo, and Uhlmann [8] prove the analog of Theorem
1.1 on any simple manifold if ‖a‖L∞(M) is small. A similar result, with
a slightly different smallness condition, also follows from the general
stability theory of [12]. In these last results, the smallness condition
arises since the methods involve a perturbation about the unattenuated
case where a = 0.

The inversion results for R2 and H
2, which assume no smallness con-

dition for a, are based on complex analysis and holomorphic functions.
We will give a geometric version of these complex analysis arguments
for simple surfaces, thus establishing injectivity of the ray transform
for arbitrary attenuation coefficients. One of the key tools will be the
commutator formula for the geodesic vector field and angular Hilbert
transform, established in [27] in the study of the boundary rigidity
problem in two dimensions.

At this point, let us give some other results which follow from the
methods presented here. The next theorem considers the attenuated
ray transform for combinations of functions and 1-forms. If F (x, ξ) =
f(x) + α(ξ) for some smooth function f and 1-form α, where α(ξ) =
αj(x)ξ

j , the attenuated ray transform of F is defined by

IaF (x, ξ) =

∫ τ(x,ξ)

0
F (γ(t, x, ξ), γ̇(t, x, ξ)) exp

[

∫ t

0
a(γ(s, x, ξ)) ds

]

dt

where (x, ξ) ∈ ∂+S(M). It is easy to see that this transform has nontriv-
ial kernel since Ia(ap + dp(ξ)) = 0 for any p ∈ C∞(M) with p|∂M = 0.
The injectivity result, which also extends the corresponding result for
functions, states that these are the only elements in the kernel.

Theorem 1.2. Let (M,g) be a simple 2D manifold and let a ∈
C∞(M) be a complex function. Suppose that f is a smooth function
and α is a smooth 1-form on M , and let F (x, ξ) = f(x) + αj(x)ξ

j . If
IaF ≡ 0, then F = ap + dp(ξ) for some function p ∈ C∞(M) with
p|∂M = 0.

Note in particular that if f = 0 and a is nonvanishing, then any 1-
form is uniquely determined by its attenuated ray transform. Results of
this type were given in the unit disc in R

2 in [14], for simple manifolds
with ‖a‖L∞ small in [8], and for simple manifolds with g and a close
to real analytic in [13]. For inversion formulas in R

2 see also [3], [24],
[32].

Once injectivity of Ia is known, the general principle that the normal
operator Na = (Ia)∗Ia is an elliptic pseudodifferential operator and
the arguments in [12], [13] yield a stability result. To state this result
properly, we use the solenoidal decomposition of a smooth 1-form α in
M ,

α = αs + dp,
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where αs is solenoidal (meaning that δαs = 0), and p|∂M = 0. Here
δ is the codifferential. This decomposition is uniquely determined by
taking p = G(δα) where G is the inverse of the Dirichlet Laplacian on
M . We also choose a simple manifold (M1, g) which is slightly larger
than (M,g) and extend smooth functions and 1-forms in M by zero to
M1. In this way, Na can be viewed as a pseudodifferential operator
acting on functions in M1. The stability result is as follows.

Theorem 1.3. Let (M,g) be a simple 2D manifold and let a ∈
C∞(M) be a complex function. Suppose that f is a smooth function
and α is a smooth 1-form in M . Then

‖f − aG(δα)‖L2(M) + ‖αs‖L2(M) ≤ C‖Na(f + αjξ
j)‖H1(M1).

Finally, we outline a reconstruction procedure to determine a function
f from Iaf . For simplicity, we will assume that f is compactly supported
in M int and all quantities are real valued (the complex valued case is
discussed in Section 6). The reconstruction procedure consists of several
steps, and we refer to Section 2 for a more precise explanation of the
notations used in the result.

Theorem 1.4. Let (M,g) be a simple 2D manifold, and let a ∈
C∞(M) be real valued. A real valued function f ∈ C∞

c (M int) can be
determined from the knowledge of Iaf using the following procedure:

1. Define a function d on ∂S(M) by

d(x, ξ) =

{

Iaf(x, ξ), (x, ξ) ∈ ∂+S(M),
0, otherwise.

2. Find an odd holomorphic function w such that Hw = −a.
3. Let β = (Id− iH)(e−wd) on ∂S(M).

4. Let v = β ◦ ψ + u(I
0)−1(A∗

−
β) in SM , where A∗

−β = β − β ◦ ψ on

∂+S(M) and (I0)−1 is the inverse of the geodesic ray transform in
(M,g), in the sense that

(I0)−1I0(φ+ αjξ
j) = φ+ αjξ

j

for a smooth function φ and a solenoidal 1-form α.
5. Define m̂ = 1

2Re[(Id− iH)(ewv)] and û = m̂− m̂0.

6. Define q = (d− û)0 ◦ ψ + (u(Hû+aû)−)0, and let u = q + û.
7. Let f = −(Hu+ au)0.

There are two nontrivial steps (Steps 2 and 4) in the above result:
they require finding a holomorphic integrating factor w to the transport
equation (H+a)u = 0, and inverting the geodesic ray transform I0 with
zero attenuation. Both these steps can be achieved in an explicit way
if (M,g) has constant curvature, or if (M,g) is a small perturbation of
a constant curvature manifold (see Section 6). However, it is not clear
how to carry out these steps explicitly in a general simple 2D manifold.
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It seems that even when M is a domain in R
2 with Euclidean metric,

the reconstruction procedure does not reduce to a simple formula such as
in [14], [25]. It would be interesting to give a reconstruction procedure
which would reduce to such a simple formula on constant curvature
manifolds.

The structure of the paper is as follows. Section 2 establishes nota-
tion and preliminaries related to geodesic flow, Hilbert transform, and
functions which are holomorphic in the angular variable. In Section 3
we explain the strategy of the injectivity proof, starting with a sim-
ple inversion scheme based on holomorphic solutions of the transport
equation, and discussing the modifications to this scheme required in
the attenuated case. The first main step in the proof, the construc-
tion of holomorphic integrating factors, is achieved in Section 4 using
pseudodifferential arguments. The second main step consists in proving
that solutions of certain transport equations are necessarily holomor-
phic. This is done in Section 5, where also Theorems 1.1 to 1.3 are
proved. The final Section 6 gives a reconstruction procedure and proves
Theorem 1.4.

Acknowledgements. M.S. is partly supported by the Academy of Fin-
land. G.U. is supported in part by NSF and a Walker Family Endowed
Professorship.

2. Preliminaries

We refer to [26], [27], [28] for the following facts. Assume that (M,g)
is a compact oriented 2D Riemannian manifold with boundary ∂M . We
will also assume that (M,g) is nontrapping and ∂M is strictly convex
(see below). We denote the inner product on tangent vectors and other
tensors by 〈 · , · 〉 and the corresponding norm by | · |.

2.1. Geodesics. We will mostly work on the unit sphere bundle given
by

SM =
⋃

x∈M

Sx, Sx = {(x, ξ) ∈ TM ; |ξ| = 1}.

The manifold SM has boundary ∂S(M) = {(x, ξ) ∈ SM ; x ∈ ∂M}.
The outer unit normal vector of ∂M is denoted by ν, and the sets of
inner and outer vectors on ∂M are given by

∂±S(M) = {(x, ξ) ∈ SM ; x ∈ ∂M, ±〈ξ, ν〉 ≤ 0}.

If (x, ξ) is a point in SM , we denote by γ(t, x, ξ) the geodesic on M
satisfying γ(0, x, ξ) = x and γ̇(0, x, ξ) = ξ. The geodesic flow is the map

ϕt : SM → SM, ϕt(x, ξ) = (γ(t, x, ξ), γ̇(t, x, ξ))

if t is such that the right hand side is well defined. The nonnegative time
when a geodesic γ( · , x, ξ) exits M is denoted by τ(x, ξ). The manifold
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(M,g) is said to be nontrapping if τ(x, ξ) is finite for any (x, ξ) ∈ SM .
The boundary ∂M is said to be strictly convex if its second fundamental
form is positive definite.

Since (M,g) is nontrapping and has strictly convex boundary, the
next result holds by [28, section 4.1].

Lemma 2.1. τ is continuous in SM and smooth in SM r S(∂M),
and further the function τ− : ∂S(M) → R defined by

τ−(x, ξ) =

{

1
2τ(x, ξ), (x, ξ) ∈ ∂+S(M),

−1
2τ(x,−ξ), (x, ξ) ∈ ∂−S(M)

is smooth.

2.2. Scattering relation. The scattering relation α maps an inner
unit vector (x, ξ) ∈ ∂+S(M) to the outer vector ϕτ(x,ξ)(x, ξ). Thus, α
takes the starting point on the boundary and direction of a geodesic
and gives out the endpoint and direction of that geodesic. It is possible
to define α as a smooth map on all of ∂S(M) by

α(x, ξ) = ϕ2τ−(x,ξ)(x, ξ), (x, ξ) ∈ ∂S(M).

Then α is a diffeomorphism ∂S(M) → ∂S(M) and α2 = Id.

2.3. Geodesic vector field. The geodesic vector field H is the vector
field on SM which acts on smooth functions u on SM by

Hu(x, ξ) =
∂

∂t
u(ϕt(x, ξ))

∣

∣

∣

t=0
.

We consider two boundary problems related to H. If F is a smooth
function on SM , then the problem

Hu = −F in SM, u|∂−S(M) = 0

has the solution u = uF where

uF (x, ξ) =

∫ τ(x,ξ)

0
F (ϕt(x, ξ)) dt.

If w is a smooth function on ∂+S(M), then the problem

Hu = 0 in SM, u|∂+S(M) = w

has the solution u = wψ given by

(2.1) wψ = w ◦ α ◦ ψ

where ψ is the end point map ψ(x, ξ) = ϕτ(x,ξ)(x, ξ), and α is the
scattering relation.

Since τ is continuous on SM and smooth on SM rS(∂M), the same
is true for uF and wψ. It is a minor inconvenience that these functions
are not smooth on SM in general. The space of those w for which wψ
is smooth in SM is denoted by

C∞
α (∂+S(M)) = {w ∈ C∞(∂+S(M)) ; wψ ∈ C∞(SM)}.
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This space was characterized in [27] in terms of the operator A+ of even
continuation with respect to α, acting on w ∈ C∞(∂+S(M)) by

A+w(x, ξ) =

{

w(x, ξ), (x, ξ) ∈ ∂+S(M),
w(α(x, ξ)), (x, ξ) ∈ ∂−S(M).

Lemma 2.2. C∞
α (∂+S(M)) = {w ∈ C∞(∂+S(M)) ; A+w ∈

C∞(∂S(M))}.

As for uF , sometimes we can work under the extra assumption that F
vanishes near ∂M , in which case uF is smooth on SM . At other times,
we can use the fact that the odd part of uF is smooth in SM provided
that F is even. If u is a function on SM , the even and odd parts are
defined by

u±(x, ξ) =
1

2
(u(x, ξ) ± u(x,−ξ)).

Of course, u is called even (resp. odd) if u = u+ (resp. u = u−).

Lemma 2.3. If F is an even smooth function on SM , then uF− is a

smooth function in SM and satisfies HuF− = −F .

Proof. The last statement follows since R∗Hu = −HR∗u where R is
the map R(x, ξ) = (x,−ξ). This implies that (Hu)+ = Hu−.

We will reduce the smoothness statement to Lemma 2.2. Let (M̃ , g)
be a nontrapping manifold with strictly convex boundary so that M ⊆
M̃ int (this can be achieved by embedding (M,g) to a compact manifold
(S, g) without boundary and by looking at a small neighborhood of M

in S). If τ̃(x, ξ) is the exit time of geodesics in (M̃ , g), we know that τ̃

is smooth in S(M̃ int).

Extend F as a smooth even function into SM̃ , and define

ũ(x, ξ) =

∫ τ̃(x,ξ)

0
F (ϕt(x, ξ)) dt

where ϕt is the geodesic flow in (M̃, g). Then ũ ∈ C∞(SM) and Hũ =
−F in SM .

Let w = (ũ−uF−)|∂+S(M). Since H(ũ−uF−) = 0 in S(M int) and ũ−uF−
is continuous in SM , we obtain ũ − uF− = wψ. Thus, to show that uF−
is smooth in SM , it is enough by Lemma 2.2 to prove that A+w is in
C∞(∂S(M)). A short computation, using that F is even, gives that for
(x, ξ) ∈ ∂S(M)

A+w(x, ξ) =
1

2

∫ τ̃(x,ξ)

0
F (ϕt(x, ξ)) dt +

1

2

∫ τ̃(x,ξ)

2τ−(x,ξ)
F (ϕt(x, ξ)) dt.

We know that 2τ− is smooth in ∂S(M) by Lemma 2.1; hence also A+w
is smooth. q.e.d.
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2.4. Hilbert transform. To discuss functions which are (anti)holo-
morphic in the angular variable, we introduce the fiberwise Hilbert
transform which acts on smooth functions on SM by

Hu(x, ξ) =
1

2π

∫

Sx

1 + 〈ξ, η〉

〈ξ⊥, η〉
u(x, η) dSx(η), (x, ξ) ∈ SM.

The integral is understood as a principal value. Here (ξ⊥)j = εjkξ
k

where ε is the clockwise rotation by 90 degrees:

ε =
√

det g

(

0 1
−1 0

)

.

If H0 is the usual Hilbert transform on the unit circle S1, and if Fx
is any orientation preserving isometry from Sx onto S1 (such a map is
unique up to rotation on S1), one has for fixed x

(2.2) H = F ∗
xH0(F

−1
x )∗.

The last identity allows us to transfer standard properties of the Hilbert
transform on the unit circle to the present setting (see also [30, section
8]).

A crucial ingredient for our arguments is a commutator formula proved
in [27], which gives a connection between the geodesic vector field and
the fiberwise Hilbert transform.

Proposition 2.4. If u is a smooth function on SM , then

(2.3) [H,H]u = H⊥u0 + (H⊥u)0.

Here u0 is the average of u over the angular variable:

u0(x) =
1

2π

∫

Sx

u(x, ξ) dSx(ξ), x ∈M.

We have used the vector field H⊥ = (ξ⊥)
j∇j on SM . Here ∇ is the

horizontal derivative on SM [28]. In local coordinates it is given by

∇ju(x, ξ) =
∂

∂xj
(u(x, ξ/|ξ|)) − Γljkξ

k ∂

∂ξl
(u(x, ξ/|ξ|)).

We collect some further basic properties of the Hilbert transform
[27]. These involve even and odd functions with respect to the angular
variable.

Proposition 2.5. The Hilbert transform maps even (resp. odd)
functions with respect to ξ to even (resp. odd) functions. If u is a
function on SM , then Hu± = H±u where

H+u(x, ξ) =
1

2π

∫

Sx

〈ξ, η〉

〈ξ⊥, η〉
u(x, η) dSx(η),

H−u(x, ξ) =
1

2π

∫

Sx

1

〈ξ⊥, η〉
u(x, η) dSx(η).
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Also, if u is a function on SM , then (Hu)0 = 0, and if u = u(x), then
Hu ≡ 0.

2.5. Holomorphic functions. The arguments below will be based on
the ability to find (anti)holomorphic solutions to transport equations.
Here, (anti)holomorphic refers to the angular variable. The precise def-
inition uses the Hilbert transform and is as follows.

Definition. A function u on SM is called holomorphic if

(Id− iH)u = u0.

We say that u is antiholomorphic if

(Id + iH)u = u0.

The next result, which follows by (2.2), will be used many times
below.

Lemma 2.6. The product of two (anti)holomorphic functions is
(anti)holomorphic, and ew is (anti)holomorphic if w is (anti)holomorphic.

As an example, and to obtain some intuition into the arguments
below, we will discuss the above notions in the case where M is an
open set in R

2 with Euclidean metric. Then SM = M × S1, and any
function u on SM may be written as Fourier series

u(x, eiθ) =

∞
∑

k=−∞

uk(x)e
ikθ.

Here uk(x) are the Fourier coefficients

uk(x) =
1

2π

∫ 2π

0
e−ikθu(x, eiθ) dθ.

Then the even and odd parts of u are obtained by just taking the even
or odd Fourier coefficients,

u+(x, e
iθ) =

∑

k even

uk(x)e
ikθ,

u−(x, e
iθ) =

∑

k odd

uk(x)e
ikθ.

Also, with the convention sgn(0) = 0,

H(eikθ) = −sgn(k)ieikθ.

Therefore

(Id + iH)u = u0(x) + 2

∞
∑

k=1

uk(x)e
ikθ,

(Id− iH)u = u0(x) + 2

−1
∑

k=−∞

uk(x)e
ikθ.
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Now (Id± iH)u = u0 means that the negative or positive Fourier coef-
ficients vanish. Thus, u is holomorphic (antiholomorphic) if and only if
for any x in M , u(x, · ) extends into a holomorphic (antiholomorphic)
function in the unit disc.

3. Strategy of proof

Our proof of Theorem 1.1 reduces the attenuated ray transform to
the analysis of solutions of a transport equation. Let H be the geodesic
vector field on the unit sphere bundle SM . Then Iaf = u|∂+SM where
u satisfies

(H + a)u = −f in SM, u|∂−SM = 0.

Holomorphic solutions of certain transport equations will be crucial in
the proof. To explain why such solutions might be useful, we first discuss
a simple scheme which would imply injectivity and which turns out to
work in the unattenuated case. In the end of the section we outline the
strategy for the attenuated case.

First inversion scheme. Let a and f be real valued, and let u be the
solution given above. Motivated by the earlier result [14] in R

2, it turns
out that injectivity of Ia would be a consequence of the following idea:

Produce a function u∗, which is holomorphic (or antiholo-
morphic) in the angular variable, such that (u∗)0 = 0 and

(3.1) (H + a)u∗ = −f

and such that u∗|∂S(M) is determined by u|∂S(M).

To see how the above statement could be used to invert the attenuated
ray transform, it is enough to take the imaginary part of (3.1) to obtain

(H + a)(Im u∗) = 0.

Since H + a = eu
a
−He−u

a
− (recall that ua− is smooth in SM by Lemma

2.3) this shows that e−u
a
−Imu∗ is constant on geodesics, and therefore

Imu∗ is determined by its boundary values on ∂+S(M). But u∗ is
(anti)holomorphic with zero average so its real part is determined by
the imaginary part, and we obtain that u∗ in SM is determined by
u|∂+S(M) = Iaf . Then f can be reconstructed from Iaf ; for instance,
by taking averages over the angular variable in (3.1):

f = −((H + a)u∗)0.

This would give an inversion formula for the attenuated ray transform.

The unattenuated case. The above scheme actually works in the case
a = 0 where no attenuation is present, and results in a similar inversion
formula as in [26]. Let (M,g) be a simple surface, and assume for
simplicity that f ∈ C∞

c (M int) is real valued. We would like to recover
f from the knowledge of the geodesic ray transform I0f |∂+S(M).
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Let u be the solution of

Hu = −f in SM, u|∂−S(M) = 0.

Then u = uf and u|∂+S(M) = I0f . To obtain a holomorphic solution
with zero average, the first idea is to take

u∗ = (Id + iH)u−.

To see if u∗ solves the transport equation, we use the fact that Hu− =
−f and compute by (2.3)

Hu∗ = (Id + iH)Hu− − i[H,H]u− = −f − i(H⊥u)0.

The last expression on the right was analyzed in [26, section 5].

Proposition 3.1. If (M,g) is simple, then the operators

Wf = (H⊥u
f )0,

W ∗f = (uH⊥f )0

have smooth integral kernels and extend as maps from L2(M) to C∞(M).
Also, W ∗ is the adjoint ofW , and if (M,g) has constant curvature, then
W ≡ W ∗ ≡ 0 (this last statement is also true in the presence of conju-
gate points).

It follows that

(3.2) Hu∗ = −f − iWf.

Thus, if (M,g) has constant curvature, then Wf = 0 and u∗ is the
required holomorphic solution with zero average. Note that

u∗|∂S(M) = (Id + iH)u−|∂S(M)

so u∗|∂S(M) is indeed determined by u|∂S(M). The scheme above now

gives an inversion formula for the geodesic ray transform I0.
In the case where (M,g) does not have constant curvature, the quan-

tity Wf may be nonzero, but one can still obtain a Fredholm type
inversion formula as in [26]. The right hand side in (3.2) is complex, so
splitting into real and imaginary parts is not immediately useful. How-
ever, one can iterate once more and introduce the antiholomorphic odd
function

(3.3) u∗∗ = (Id− iH)uf+iWf
− .

This satisfies by (2.3) and the fact that Huf+iWf
− = −f − iWf

Hu∗∗ = (Id− iH)Huf+iWf
− + i[H,H]uf+iWf

−

= −f − iWf + i(H⊥u
f+iWf )0

= −f −W 2f.
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Now f +W 2f is real and the inversion scheme above can be used to
recover f+W 2f from I0f . Thus we have constructed f up to a Fredholm
error.

The attenuated case. If (M,g) is a simple 2D manifold and a is a
real attenuation coefficient, we will use a modification of this inversion
scheme which still involves holomorphic solutions. We explain the idea
for proving injectivity. Suppose that f ∈ C∞

c (M int) is real valued and
Iaf ≡ 0. Then the corresponding solution u of the transport equation
satisfies

(H + a)u = −f in SM, u|∂SM = 0.

The first step in the proof is to find a holomorphic integrating factor : an
odd holomorphic function w ∈ C∞(SM) such that one has the operator
identity

ewHe−w = H + a.

We derive a characterization for the existence of such w, and we will
employ pseudodifferential arguments to show that one can always find
a holomorphic integrating factor. Given such w, the function e−wu
satisfies

H(e−wu) = −e−wf in SM, e−wu|∂SM = 0.

The second main step is to show that any solution which satisfies such a
transport equation with holomorphic right hand side and which vanishes
on ∂SM is necessarily holomorphic. This uses the commutator formula
(2.3) for H and H, and boils down to the injectivity of the unattenuated
ray transform on 1-forms [1]. We obtain that e−wu is a holomorphic
function, and since ew is holomorphic, then so is u.

This argument shows that whenever Iaf ≡ 0, the solution u of the
transport equation must be holomorphic. Since u is real, it is also
antiholomorphic, which shows that u only depends on x. Thus u = u0,
and the transport equation reads

du0(ξ) + au0 = −f in SM, u0|∂SM = 0.

Evaluating at ±ξ shows that du0 = 0, and consequently u0 = 0 and
f = 0.

4. Holomorphic integrating factors

Let (M,g) be a simple surface and let a be a smooth function on
M . We consider the problem of finding holomorphic integrating factors
for the operator H + a. More precisely, we are looking for smooth
holomorphic functions w on SM such that

(H + a)v = ewH(e−wv)

for all smooth functions v on SM . An equivalent condition is that w
should satisfy

Hw = −a.



THE ATTENUATED RAY TRANSFORM ON SIMPLE SURFACES 173

The main result of this section shows that holomorphic integrating fac-
tors always exist.

Proposition 4.1. Let (M,g) be a simple 2D manifold and let a be
any smooth complex function on M . There exist a holomorphic w ∈
C∞(SM) and an antiholomorphic w̃ ∈ C∞(SM), both odd functions,
such that Hw = Hw̃ = −a.

One smooth solution to the equation Hw = −a is given by w =
ua−. We begin with the simple observation that on constant curvature
manifolds, the projection of ua− to holomorphic functions also satisfies
this condition.

Lemma 4.2. Consider the operators Γ, Γ̃ acting on functions on M
by

Γa = (Id + iH)ua−, Γ̃a = (Id− iH)ua−.

Then Γ (resp. Γ̃) maps C∞(M) to odd functions in C∞(SM) which are
holomorphic (resp. antiholomorphic) in the angular variable. One has

HΓa = −a− iWa, HΓ̃a = −a+ iWa.

If Wa = 0, then

HΓa = HΓ̃a = −a.

Proof. The function ua− is smooth by Lemma 2.3; hence Γa and Γ̃a
are odd and smooth. By the commutator formula (2.3),

HΓa = (Id + iH)Hua− − i[H,H]ua− = −a− i(H⊥u
a)0 = −a− iWa.

The computation for Γ̃ is analogous. q.e.d.

Corollary 4.3. If a ∈ Ran(Id+iW )∩Ran(Id−iW ), then there exist
smooth holomorphic w and antiholomorphic w̃ such that Hw = Hw̃ =
−a.

Proof. If a satisfies the given condition, there are b, b̃ ∈ C∞(M) such

that a = b+ iWb = b̃− iW b̃. Letting w = Γb and w̃ = Γ̃b̃, we have

Hw = −b− iWb = −a

and similarly for w̃. q.e.d.

The corollary shows that on any manifold for which Id + iW and
Id − iW are surjective, one can find holomorphic integrating factors.
This includes constant curvature manifolds (since W = 0) and small
perturbations of these (since W has small norm [16]). However, for
general simple manifolds we do not know if Id± iW are surjective and
one needs to work harder.

First we give a characterization of those a for which Hw = −a for
some (anti)holomorphic function w.
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Lemma 4.4. Let a be a smooth complex function on M . The fol-
lowing conditions are equivalent:

(1) There exists a holomorphic (resp. antiholomorphic) odd function
w in C∞(SM) such that

Hw = −a.

(2) There exists a function h ∈ C∞
α (∂+S(M)) and an antiholomorphic

(resp. holomorphic) even function b ∈ C∞(SM) so that

a = b0 + i(H⊥u
b)0 + i(H⊥hψ)0

(resp. a = b0 − i(H⊥u
b)0 − i(H⊥hψ)0).

Proof. Let w first be a holomorphic odd function with Hw = −a (the
case of antiholomorphic functions is analogous). Then w = (Id + iH)ŵ
for some odd ŵ ∈ C∞(SM); in fact, one may take ŵ = 1

2w.
Now by the commutator formula (2.3),

−a = Hw = H(Id + iH)ŵ

= (Id + iH)Hŵ − i[H,H]ŵ

= (Id + iH)Hŵ − i(H⊥ŵ)0.

This shows that (Id + iH)Hŵ only depends on x. Consequently, the
function b = −Hŵ is antiholomorphic and even, and we have (Id +
iH)Hŵ = −b0. The equality Hŵ = −b implies that H(ŵ − ub−) = 0;

hence ŵ = ub− + hψ for some h ∈ C∞
α (∂+S(M)) by Lemma 2.3. Thus

a = b0 + i(H⊥u
b)0 + i(H⊥hψ)0.

We have proved (2).
Conversely, assume a is of the form given in (2) with b antiholomor-

phic and even. Define ŵ = ub− + (hψ)−. Then ŵ is odd, Hŵ = −b,
and

a = b0 + i(H⊥ŵ)0 = −(Id + iH)Hŵ + i(H⊥ŵ)0.

Define w = (Id + iH)ŵ. It follows that w is holomorphic and odd, and

Hw = (Id + iH)Hŵ − i[H,H]ŵ = (Id + iH)Hŵ − i(H⊥ŵ)0

= −a

as required. q.e.d.

We will study the operator appearing in Lemma 4.4,

(4.1) S : C∞
α (∂+S(M)) → C∞(M), Sh = (H⊥hψ)0.

The main point is the following result.

Lemma 4.5. The operator S : C∞
α (∂+S(M)) → C∞(M) is surjec-

tive.

Given this, it is easy to see that any attenuation coefficient admits
holomorphic and antiholomorphic integrating factors.
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Proof of Proposition 4.1. Given the attenuation a, we can take b to be
any antiholomorphic even function in C∞(SM) (for instance, b = 0).
Choose h ∈ C∞

α (∂+S(M)) such that iSh = a− b0 − i(H⊥u
b)0. Then

b0 + i(H⊥u
b)0 + i(H⊥hψ)0 = a

and Lemma 4.4 shows that Hw = −a for some odd holomorphic w. The
antiholomorphic case is analogous. q.e.d.

It remains to prove Lemma 4.5. We will establish the surjectivity
of S by proving that its adjoint is injective and has closed range. In
fact, the adjoint involves the unattenuated ray transform I0 on 1-forms.
Recall the space L2

µ(∂+S(M)) where µ(x, ξ) = −〈ξ, ν(x)〉 and

(h, h′)L2
µ(∂+S(M)) =

∫

∂+S(M)
hh′µd(∂S(M)),

and d(∂S(M)) is the natural volume form on ∂S(M) [7, appendix A.4].

Lemma 4.6. If h ∈ C∞
α (∂+S(M)), f ∈ C∞

c (M int), then

(Sh, f)L2(M) = (h,−
1

2π
I0H⊥f)L2

µ(∂+S(M)).

Proof. We claim that for any v ∈ C∞(SM) one has

(4.2)

∫

SM
(H⊥f)v d(SM) = −

∫

SM
f(H⊥v) d(SM).

If this holds, then we obtain by Santaló’s formula [7, appendix A.4] that

∫

M
(Sh)f dM =

1

2π

∫

SM
(H⊥hψ)f d(SM) = −

1

2π

∫

SM
hψ(H⊥f) d(SM)

= −
1

2π

∫

∂+S(M)

∫ τ(x,ξ)

0
hψ(ϕt(x, ξ))H⊥f(ϕt(x, ξ))µdt d(∂S(M))

= −
1

2π

∫

∂+S(M)
h(x, ξ)I0H⊥f(x, ξ)µd(∂S(M)),

which is the required result.
To prove (4.2), it is enough to show that

∫

SM
H⊥v d(SM) = 0

for any v ∈ C∞(SM) with v = 0 near ∂M . Using the isometry F :
SM → SM , (x, ξ) 7→ (x,−ξ⊥) and the invariance of ∇, a change of
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variables and Santaló’s formula imply that
∫

SM
H⊥v d(SM) =

∫

SM
(ξ⊥)

j∇jv d(SM)

=

∫

SM
ξjF ∗(∇jv) d(SM) =

∫

SM
ξj∇j(F

∗v) d(SM)

=

∫

SM
H(F ∗v) d(SM)

=

∫

∂+S(M)

∫ τ(x,ξ)

0
H(F ∗v)(ϕt(x, ξ))µdt d(∂S(M)).

Since H(F ∗v)(ϕt(x, ξ)) = ∂
∂t [(F

∗v)(ϕt(x, ξ))] and F ∗v vanishes near
∂M , the last integral vanishes. q.e.d.

Note that H⊥f(x, ξ) = (ξ⊥)
j ∂f
∂xj

(x) = ∗df(ξ), where we write α(ξ) =

αjξ
j for a 1-form α and tangent vector ξ, and ∗ is the Hodge star

operator. Thus the formal adjoint of S is given by

S∗ : C∞
c (M int) → C∞

α (∂+S(M)), S∗f = −
1

2π
I0(∗df(ξ)).

The injectivity of S∗ follows immediately: if S∗f ≡ 0, then the ray
transform of the solenoidal 1-form ∗df vanishes, which implies that f ≡
0 by [1]. To prove surjectivity of S, it would then be enough to show
that S∗ has closed range in proper spaces. The actual proof of the
surjectivity will be slightly different, and we will proceed as in [26,
theorem 4.3].

Proof of Lemma 4.5. We may assume that (M,g) is embedded in a com-
pact surface (N, g) without boundary, and that there is a finite open
cover {U1, . . . , Uk} of N such that M ⊆ U1, M ∩ U j = ∅ for j ≥ 2, and

each (U j , g) is simple. Let ϕj ∈ C
∞
c (Uj) be a partition of unity so that

ϕj ≥ 0,
∑k

j=1 ϕ
2
j = 1 in N , and ϕ1 = 1 near M . Let also Ij be the

geodesic ray transform (with zero attenuation) on 1-forms in (U j, g).
Define the operator acting on smooth 1-forms on N ,

P : C∞(N,Λ1) → C∞(N,Λ1), Pα =
k

∑

j=1

ϕjI
∗
j Ij(ϕjα).

For the following details, see [26, theorem 4.3]. The principal symbol
of P is given by the following expression, where c2 is a constant:

σ(P )ji = c2(δ
j
i /|ξ| − ξjξi/|ξ|

3).

If −∆ is the Laplace-Beltrami operator on N mapping smooth functions
to smooth functions whose integral over N vanishes, define the operator

Λ : C∞(N,Λ1) → C∞(N,Λ1), Λα = −c2d(−∆)−3/2δα.
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Then P +Λ is an elliptic pseudodifferential operator of order −1 acting
on 1-forms in N .

Consider the operator

(4.3) T : C∞(N,Λ1) → C∞(M), Tα = rMS1I1(ϕ1α).

Here rM is the restriction to M , and S1 is the operator (4.1) in (U1, g).
We wish to show that T is surjective. Assuming this, we can easily
finish the proof of the lemma: If f ∈ C∞(M) is given, there is a smooth
1-form α in N with rMS1I1(ϕ1α) = f . Define

h(x, ξ) = (I1(ϕ1α))ψ1
(x, ξ), (x, ξ) ∈ ∂+S(M),

where wψ1
is the map (2.1) in (U 1, g). Since M is strictly contained in

U1, we have h ∈ C∞
α (∂+S(M)), and it follows that Sh = rMS1I1(ϕ1α) =

f as required.
It remains to prove surjectivity of (4.3). In order to do this, we

express T as the adjoint of an operator involving P . The dual of C∞(M)
may be identified with the set D′

M (N) = {v ∈ D′(N) ; supp(v) ⊆ M}.
Given v ∈ D′

M (N), choose vj ∈ C∞(N) with vj → v in D′(N) and
supp(vj) ⊆ {ϕ1 = 1}. Then for α ∈ C∞(N,Λ1), in the dual pairing in
the indicated manifolds, by Lemma 4.6 we have

(Tα, v)M = lim (ϕ1S1I1(ϕ1α), vj)U1

= −
1

2π
lim (I1(ϕ1α), I1(∗d(ϕ1vj)))L2

µ(∂+S(U1))

= −
1

2π
lim (α,P (∗dvj))N = −

1

2π
(α,P (∗dv))N

since P is continuous on D′(N). Now Λ(∗dv) = 0, so we consider

Q : D′(N) → D′(N,Λ1), Qv = −
1

2π
(P + Λ)(∗dv).

It follows that T = rMQ
∗, since for α ∈ C∞(N,Λ1) and v ∈ C∞

c (M int)

(Tα, v)M = (α,Qv)N = (Q∗α, v)N = (rMQ
∗α, v)M .

Thus T in (4.3) is a continuous linear map between Fréchet spaces. Its
adjoint is given by

T ∗ = Q|D′

M
(N) : D

′
M (N) → D′(N,Λ1).

The operator T ∗ is injective. To see this, let v ∈ D′
M (N) satisfy T ∗v = 0.

Then also (P +Λ)(∗dv) = 0, showing that dv is smooth by elliptic reg-
ularity for P + Λ. Thus v is smooth and ϕ1I

∗
1I1(ϕ1 ∗ dv) = 0. Conse-

quently, I1(ϕ1 ∗ dv) = 0 in ∂+S(U1), and the uniqueness result for I1
[1] implies that ∗dv = dp near M for some smooth function p. Since v
is smooth and supported in M , this is only possible if v = 0.

Using that Q is an elliptic pseudodifferential operator, a standard
argument (see for instance [9, proof of theorem 6.3.1]) shows that the
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range of T ∗ is weak* closed in D′(N,Λ1). It follows that T is a con-
tinuous linear map between Fréchet spaces, and T ∗ is injective with
weak* closed range. Then T is surjective by [33, theorem 37.2], which
concludes the proof. q.e.d.

5. Holomorphic solutions and uniqueness

In this section we will prove the uniqueness result establishing injec-
tivity of the attenuated ray transform. By using Proposition 4.1, the
boundary problem

(H + a)u = −f in SM, u|∂S(M) = 0

is equivalent with the problem

H(e−wu) = −e−wf in SM, e−wu|∂S(M) = 0.

Here w is holomorphic, so also the right hand side e−wf is holomorphic.
The next main ingredient in the uniqueness proof is the following

result, showing that in this situation also the solution e−wu is necessarily
holomorphic.

Proposition 5.1. Let (M,g) be a 2D simple manifold, and let f̃ be
a smooth function on SM holomorphic (resp. antiholomorphic) in the
angular variable. Suppose that v is a smooth function on SM satisfying

Hv = −f̃ in SM, v|∂S(M) = 0.

Then v is holomorphic (resp. antiholomorphic) in the angular variable,
and v0 = 0.

Proof. We only consider the holomorphic case. It is enough to show
that (Id− iH)v = 0. The commutator identity (2.3) shows that

H(Id− iH)v = (Id− iH)Hv + i[H,H]v

= −(Id− iH)f̃ + iH⊥v0 + i(H⊥v)0.

We have (Id− iH)f̃ = f̃0 since f̃ is holomorphic. Now

(5.1) H(Id− iH)v = −h− αjξ
j

where h = f̃0 − i(H⊥v)0 is a function and α = ∗d(−iv0) is a solenoidal
1-form (∗ is the Hodge star operator).

What is important here is that there is no ξ-dependence in h and
α. In fact, since (Id − iH)v vanishes on ∂S(M), (5.1) implies that the
unattenuated ray transform of h+αjξ

j vanishes identically. Uniqueness
in the unattenuated case [1], using that α is solenoidal, implies that
h = 0 and α = 0. We have proved that

H(Id− iH)v = 0,

and (Id− iH)v = 0 since v|∂S(M) = 0. q.e.d.
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It is now easy to give a proof of the injectivity result for the attenuated
ray transform of functions.

Proof of Theorem 1.1. Let first f ∈ C∞
c (M int), and assume that Iaf ≡

0. Then the function

u(x, ξ) =

∫ τ(x,ξ)

0
f(γ(t, x, ξ))e

∫ t

0
a(γ(s,x,ξ)) ds dt

is smooth in SM and satisfies

(H + a)u = −f in SM, u|∂S(M) = 0.

By Proposition 4.1, there is a holomorphic w ∈ C∞(SM) and an anti-
holomorphic w̃ ∈ C∞(SM) such that

H(e−wu) = −e−wf,

H(e−w̃u) = −e−w̃f.

Now Proposition 5.1 shows that e−wu is holomorphic and e−w̃u is
antiholomorphic. Multiplying by ew and ew̃, it follows that u itself is
both holomorphic and antiholomorphic. This is only possible when u
does not depend on ξ; that is, u ≡ u0. Now the transport equation
reads

du0(ξ) + au0 = −f in SM, u0|∂S(M) = 0.

Evaluating this at ±ξ and subtracting the resulting expressions gives
that du0 ≡ 0; hence u0 ≡ 0 by the boundary condition. Consequently,
f ≡ 0.

It remains to prove the result when f ∈ C∞(M) may have support
extending up to the boundary. In fact, this case can be reduced to the
result for compactly supported functions by using the general principle
that (Ia)∗Ia is an elliptic pseudodifferential operator.

Suppose f ∈ C∞(M) and Iaf ≡ 0. We consider more generally the
weighted ray transform with weight ρ ∈ C∞(SM),

Iρf(x, ξ) =

∫ τ(x,ξ)

0
ρ(ϕt(x, ξ))f(γ(t, x, ξ)) dt, (x, ξ) ∈ ∂+S(M).

With the choice ρ = e−u
a
− , we obtain Iρf ≡ 0. Let (M̃ , g) ⊃⊃ (M,g) be

another simple manifold which is so small that any M̃ -geodesic starting
at a point of ∂−S(M) never enters M again. We extend a to M̃ as a

smooth function and f by zero to M̃ , and denote by Ĩρ the corresponding

weighted ray transform in M̃ .
It is easy to see that Ĩρf(y, η) = 0 for all (y, η) ∈ ∂+S(M̃ ), since either

the geodesic starting from (y, η) never touches M or else Ĩρf(y, η) =
Iρf(x, ξ) for some (x, ξ) ∈ ∂+S(M). By [12, proposition 2], since ρ is

nonvanishing, Ĩ∗ρ Ĩρ is an elliptic pseudodifferential operator of order −1

in M̃ int. Now Ĩ∗ρ Ĩρf = 0, and elliptic regularity shows that f is smooth.
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Thus f ∈ C∞
c (M̃ int) and Ĩρf ≡ 0, showing that Ĩaf ≡ 0. The result

above implies that f ≡ 0 as required. q.e.d.

We proceed to the attenuated ray transform of 1-forms. In this case,
the required generalization of Proposition 5.1 is as follows.

Proposition 5.2. Let (M,g) be a 2D simple manifold and let ρ ∈
C∞(SM) be holomorphic (resp. antiholomorphic) in the angular vari-
able. Suppose F (x, ξ) = f(x) + αj(x)ξ

j where f is a smooth function
and α is a smooth 1-form on M . If v ∈ C∞(SM) satisfies

Hv = −ρF in SM, v|∂S(M) = 0,

then v is holomorphic (resp. antiholomorphic) in the angular variable.

Proof. We only prove the holomorphic case. As in Proposition 5.1,
we study the function (Id− iH)v and note that

H(Id− iH)v = (Id− iH)Hv + i[H,H]v

= −(Id− iH)(ρF ) + iH⊥v0 + i(H⊥v)0.(5.2)

We would like to show that (Id− iH)(ρF ) is a first order polynomial in
ξ.

The first step is to prove that

(5.3) (Id− iH)((ρ− ρ0)F ) = h̃

for some h̃ = h̃(x). This can be reduced to elementary facts about
Fourier coefficients. Fix a point x in M , and choose an orientation
preserving isometry Φ : Sx → S1. If H0 is the Hilbert transform on S1,
it is enough to prove the equivalent statement

(5.4) (Id− iH0)((Φ
−1)∗(ρ− ρ0)F ) = h̃(x).

But (Id − iH0)((Φ
−1)∗(ρ − ρ0)) = 0 since ρ is holomorphic, meaning

that one has the Fourier series

(Φ−1)∗(ρ− ρ0) =

∞
∑

k=1

ake
ikθ.

Also, since F is a first order polynomial in ξ, one has the Fourier series
(Φ−1)∗F = b0 + b1e

iθ + b−1e
−iθ. Multiplying these Fourier series gives

(5.4).
By (5.2) and (5.3), we obtain

H(Id− iH)v = −ρ0(Id− iH)F − F̃

where F̃ = h̃− i(H⊥v)0− i∗dv0(ξ) is a first order polynomial in ξ. Next
we employ a Hodge decomposition α = dp + ∗dq where p, q ∈ C∞(M).
One has the antiholomorphic projections

(Id− iH)(dp(ξ)) = (Id− iH)Hp = H(Id− iH)p − i[H,H]p

= (H− iH⊥)p
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and similarly

(Id− iH)(∗dq(ξ)) = (Id− iH)H⊥q = (Id− iH)[H,H]q = (Id− iH)HHq

= HHq + i(Hq − (Hq)0) = i(Id− iH)Hq

= i(H− iH⊥)q,

the last line using the above computation for p.
Putting these results together, we have proved that

H(Id− iH)v = −F̂ in SM, (Id− iH)v|∂S(M) = 0,

where F̂ is the first order polynomial in ξ given by

F̂ = ρ0f + h̃− i(H⊥v)0 + ρ0(d− i ∗ d)(p + iq)(ξ)− i ∗ dv0(ξ).

This shows that the geodesic ray transform of F̂ vanishes. Therefore
F̂ (ξ) = dp̂(ξ) for some p̂ ∈ C∞(M) with p̂|∂M = 0, and the equation for
(Id− iH)v implies that

(Id− iH)v = −p̂.

This proves that v is holomorphic. q.e.d.

The injectivity result for 1-forms is now proved in a similar way as
the corresponding result for functions.

Proof of Theorem 1.2. Let f be a smooth function and α a smooth 1-
form on M , and let F = f + αjξ

j . Assume first that f and α are
compactly supported in M int. Then the function

u(x, ξ) =

∫ τ(x,ξ)

0
F (ϕt(x, ξ))e

∫ t

0
a(γ(s,x,ξ)) ds dt

is smooth in SM and satisfies the equation

(H + a)u = −F in SM, u|∂S(M) = 0.

As before, we use Proposition 4.1 to find a holomorphic function w and
an antiholomorphic function w̃ such that

H(e−wu) = −e−wF,

H(e−w̃u) = −e−w̃F.

Proposition 5.2 implies that e−wu is holomorphic and e−w̃u is antiholo-
morphic, and consequently u is both holomorphic and antiholomorphic.
Thus u ≡ u0, and the transport equation can be written as

(du0 + α)(ξ) + au0 = −f in SM, u0|∂S(M) = 0.

Consequently, α = −du0 and f = −au0, which is the required result.
Again the general case where f ∈ C∞(M) and α is a smooth 1-form

inM may be reduced to the previous case by elliptic regularity. Assume
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that Ia(f + αjξ
j) ≡ 0. If ρ = e−u

a
− , this implies that Iρ(f + αjξ

j) ≡ 0
where

IρF (x, ξ) =

∫ τ(x,ξ)

0
ρ(ϕt(x, ξ))F (ϕt(x, ξ)) dt.

Consider the solenoidal decomposition α = αs + dp, where δαs = 0 and
−∆p = δα with p|∂M = 0. An integration by parts shows that we have
Iρ(f − ap+ αsjξ

j) ≡ 0.

Let (M̃ , g) ⊃⊃ (M,g) be a simple manifold as in the proof of Theorem

1.1, and extend a smoothly to M̃ and f, p, αs by zero to M̃ . It follows
that Ĩρ(f − ap + αsjξ

j) ≡ 0. By [13, proposition 1] (where we make
the choices w = ρ and α = ρ, so that the modified elliptic condition
in [13, remark 1] is satisfied), Ĩ∗ρ Ĩρ is a pseudodifferential operator of

order −1 in M̃ int which is elliptic in the sense that whenever f ′, α′ are
in L2(M̃ int) and Ĩ∗ρ Ĩρ(f

′ + α′
jξ
j) ≡ 0 and δα′ ≡ 0, then f ′ and α′ are

smooth. Thus, f − ap and αs are smooth and compactly supported in
M̃ int and Ĩρ(f − ap+αsjξ

j) ≡ 0, showing that f − ap = ap̃ and αs = dp̃

for some smooth p̃ with p̃|∂M̃ = 0. Since αs is zero outsideM , it follows
that p̃ vanishes outsideM , and one obtains f = a(p+p̃) and α = d(p+p̃)
in M with p+ p̃ vanishing on ∂M . q.e.d.

Finally we give a proof of the stability result in the introduction.

Proof of Theorem 1.3. We make the same preparations as in the end
of the proof of Theorem 1.2. Thus, we consider the decomposition
α = αs + dp with p = G(δα) in M , choose a slightly larger manifold

(M̃, g), and extend a to M̃ and f, p, αs by zero to M̃ . Let Ñ = Ĩ∗ρ Ĩρ
with ρ = e−u

a
− . Since the modified elliptic condition of [13, remark 1]

is satisfied, [13, proposition 2] implies the estimate

(5.5) ‖f − ap‖L2(M) + ‖αs‖L2(M) ≤ C(‖Ñ (f − ap+ αsjξ
j)‖H1(M̃)

+ ‖f − ap‖H−1(M̃) + ‖αs‖H−1(M̃ )).

Let L2
s(M) = {φ+βjξ

j ; φ ∈ L2(M), β is a 1-form inL2(M) and δβ =
0} be the space of solenoidal pairs, assumed to be extended by zero to

M̃ . As in the end of the proof of Theorem 1.2, one can use the ellip-
ticity of Ñ and injectivity of Ĩρ to see that Ñ : L2

s(M) → H1(M̃ ) is a
bounded injective operator. We can then use [13, lemma 1] with the

choices X = L2
s(M), Y = H1(M̃), and Z = H−1(M̃) (the latter two be-

ing the natural Sobolev spaces for solenoidal pairs), and conclude from
(5.5) that

‖f − ap‖L2(M) + ‖αs‖L2(M) ≤ C̃‖Ñ(f − ap+ αsjξ
j)‖H1(M̃).

The stability result follows by noting that Ñ(f + αjξ
j) = Ñ(f − ap +

αsjξ
j) and by taking M1 = M̃ . q.e.d.
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6. Reconstruction procedure

Let (M,g) be a simple 2D manifold and let a be a smooth complex
function on M . In this section we give a procedure for determining a
smooth function f in M from the knowledge of Iaf .

There are two nontrivial parts in the procedure: computing the in-
verse of the unattenuated ray transform I0 in (M,g), and the construc-
tion of (anti)holomorphic integrating factors for the equation (H+a)u =
0. If (M,g) has constant curvature, these operations can be done explic-
itly (since the W operator vanishes; see [26] and Corollary 4.3). Also,
if (M,g) is a small perturbation of a constant curvature manifold, then
the W operator has small norm on L2(M) and these two operations
can be expressed in terms of convergent Neumann series; see [16] and
Corollary 4.3 again. However, for general simple (M,g) it is not clear
how to carry out these operations in an explicit way.

For simplicity, we will assume below that f ∈ C∞
c (M int), since in this

case all the functions will be smooth up to ∂M and we do not need to
worry about regularity issues. Theorem 1.4 immediately follows from
the next result.

Proposition 6.1. Under the stated assumptions, a function f ∈
C∞
c (M int) can be determined from the knowledge of Iaf using the fol-

lowing procedure:

1. Define a function d on ∂S(M) by

d(x, ξ) =

{

Iaf(x, ξ), (x, ξ) ∈ ∂+S(M),
0, otherwise.

2. Find a holomorphic function w and an antiholomorphic function
w̃, both smooth odd functions on SM , such that Hw = Hw̃ = −a.

3. Let β = (Id− iH)(e−wd) and β̃ = (Id + iH)(e−w̃d) on ∂S(M).

4. Let v = β ◦ ψ + u(I
0)−1(A∗

−
β) and ṽ = β̃ ◦ ψ + u(I

0)−1(A∗

−
β̃) in SM ,

where A∗
−β = β − β ◦ ψ on ∂+S(M) and (I0)−1 is the inverse of

the geodesic ray transform in (M,g), in the sense that

(I0)−1I0(φ+ αjξ
j) = φ+ αjξ

j

for a smooth function φ and a solenoidal 1-form α.
5. Define m̂ = 1

4(Id− iH)(ewv) + 1
4 (Id + iH)(ew̃ ṽ) and û = m̂− m̂0.

6. Define q = (d− û)0 ◦ ψ + (u(Hû+aû)−)0, and let u = q + û.
7. Let f = −(Hu+ au)0.

Proof. Let u be the solution of Hu+au = −f in SM with u|∂−S(M) =
0, so that u|∂+S(M) = Iaf . If w and w̃ are as described, then one has
the two equations

H(e−wu) = −e−wf,

H(e−w̃u) = −e−w̃f.
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The right hand side in the first equation is holomorphic in the angular
variable. We will show that v = (Id− iH)(e−wu), the antiholomorphic
part of the solution e−wu, is determined by Iaf . In fact, the computa-
tion in Proposition 5.1 shows that

Hv = −φ− αjξ
j

where φ = f−i(H⊥(e
−wu))0 and α = ∗d(−i(e−wu)0). Here we used that

(e−w)0 = 1 since w is odd. We have that v−v◦ψ|∂+S(M) = I0(φ+αjξ
j).

Here α is solenoidal, so I0 is invertible and

φ+ αjξ
j = (I0)−1(v − v ◦ ψ|∂+S(M)).

This proves that v is the function given in Step 4 above. A similar
argument shows that ṽ = (Id+ iH)(e−w̃u) is the other function in Step
4.

We have obtained two decompositions

e−wu = h+
1

2
v,

e−w̃u = h̃+
1

2
ṽ

where h is holomorphic, h̃ is antiholomorphic, and v and ṽ can be de-
termined from the attenuated ray transform of f . This results in two
decompositions for the solution u,

u = ewh+
1

2
ewv,

u = ew̃h̃+
1

2
ew̃ṽ,

where again ewh is holomorphic, ew̃h̃ is antiholomorphic, and ewv and
ew̃ṽ are known. This determines u up to a term which is constant in ξ,
which can be seen by writing

u =
1

2
(Id + iH)u+

1

2
(Id− iH)u =

1

2
(ewh)0 +

1

2
(ew̃h̃)0 + m̂

with m̂ given in Step 5.
Write u = q + û where û0 = 0. Then q = u0 and û = m̂ − m̂0.

To find the term q, we note that q|∂M = u − û|∂M = (d − û)0|∂M ,
where necessarily u− û is independent of ξ. Taking the odd part in the
equation Hu+ au = −f implies that

Hq = −(Hû+ aû)−.

Therefore q is given by the quantity in Step 6. We have determined the
solution u in SM from the knowledge of Iaf . Now f = −Hu− au, and
taking averages proves the formula in Step 7. q.e.d.
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