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Abstract

We prove that the second positive Neumann eigenvalue of a
bounded simply-connected planar domain of a given area does
not exceed the first positive Neumann eigenvalue on a disk of half
this area. The estimate is sharp and attained by a sequence of do-
mains degenerating to a union of two identical disks. In particular,
this result implies the Pólya conjecture for the second Neumann
eigenvalue. The proof is based on a combination of analytic and
topological arguments. As a by-product of our method we obtain
an upper bound on the second eigenvalue for conformally round
metrics on odd-dimensional spheres.

1. Introduction and main results

1.1. Neumann eigenvalues of planar domains. Let Ω be a bounded
planar domain. The domain Ω is said to be regular if the spectrum of
the Neumann boundary value problem on Ω is discrete. This is true,
for instance, if Ω satisfies the cone condition, that is there are no out-
ward pointing cusps (see [NS] for more refined conditions and a detailed
discussion).

Let 0 = µ0 < µ1(Ω) ≤ µ2(Ω) ≤ · · · ր ∞ be the Neumann eigenvalues
of a regular domain Ω. According to a classical result of Szegő ([Sz], see
also [SY, p. 137], [Hen, section 7.1]), for any regular simply-connected
domain Ω

(1.1.1) µ1(Ω)Area(Ω) ≤ µ1(D)π ≈ 3.39π,

where D is the unit disk, and µ1(D) is the square of the first zero of the
derivative J ′

1(x) of the first Bessel function of the first kind. The proof
of Szegő’s theorem relies on the Riemann mapping theorem and hence
works only if Ω is simply-connected. However, inequality (1.1.1) holds
without this assumption, as was later shown by Weinberger [We].
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The Pólya conjecture for Neumann eigenvalues [Po1] (see also [SY,
p. 139]) states that for any regular bounded domain Ω

(1.1.2) µk(Ω)Area(Ω) ≤ 4k π

for all k ≥ 1. This inequality is true for all domains that tile the plane,
e.g., for any triangle and any quadrilateral [Po2]. It follows from the
two-term asymptotics for the eigenvalue counting function ([Iv], [Me])
that for any domain there exists a number K such that (1.1.2) holds for
all k > K.

Inequality (1.1.1) implies that (1.1.2) is true for µ1. The best one
could show for k ≥ 2 was µk ≤ 8πk ([Kro]). In the present paper we
consider the case k = 2. Our main result is

Theorem 1.1.3. Let Ω be a regular simply-connected planar domain.

Then

(1.1.4) µ2(Ω)Area(Ω) ≤ 2µ1(D)π ≈ 6.78π,

with the equality attained in the limit by a family of domains degener-

ating to a disjoint union of two identical disks.

The second part of the theorem immediately follows from (1.1.4).
Indeed, if Ω is a disjoint union of two identical disks then (1.1.4) is an
equality. Joining the two disks by a passage of width ǫ we can construct
a family of simply-connected domains such that the left-hand side in
(1.1.4) converges to 2µ1(D)π as ǫ→ 0.

Theorem 1.1.3 gives a positive answer to a question of Parnovski
[Par], motivated by an analogous result proved in [Na] for the second
eigenvalue on a sphere. Note that (1.1.4) immediately implies (1.1.2)
for k = 2 for any regular simply-connected planar domain.

Remark 1.1.5. It would be interesting to check the bound (1.1.4)
for non-simply connected domains. We believe it remains true in this
case as well.

Remark 1.1.6. All estimates discussed in this section have analogues
in the Dirichlet case. For example, (1.1.1) is the Neumann counterpart
of the celebrated Faber-Krahn inequality ([Fa, Kra1], see also [Hen,
section 3.2]), which states that among all bounded planar domains of a
given area, the first Dirichlet eigenvalue is minimal on a disk. Similarly,
Theorem 1.1.3 can be viewed as an analogue of the result due to Krahn
and P. Szego ([Kra2], [Hen, Theorem 4.1.1]), who proved that among
bounded planar domains of a given area, the second Dirichlet eigenvalue
is minimized by the union of two identical disks.

1.2. Eigenvalue estimates on spheres. Let (Sn, g) be a sphere of
dimension n ≥ 2 with a Riemannian metric g. Let

0 < λ1(S
n, g) ≤ λ2(Sn, g) ≤ · · · ր ∞
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be the eigenvalues of the Laplacian on (Sn, g). Hersch [Her] adapted
the approach of Szegő to prove that λ1(S

2, g)Area(S2, g) ≤ 8π for any
Riemannian metric g, with the equality attained on a sphere with the
standard round metric g0. In order to obtain a similar estimate in
higher dimensions, one needs to restrict the Riemannian metrics to a
fixed conformal class [EI]. Indeed, in dimension ≥ 3, if one only restricts
the volume, λ1 is unbounded [CD]. In particular, it was shown in [EI]
(see also [MW]) that for any metric g in the class [g0] of conformally
round metrics,

(1.2.1) λ1(S
n, g)Vol(Sn, g)

2
n ≤ nω2/n

n ,

where

ωn =
2π

n+1
2

Γ
(
n+1
2

)

is the volume of the unit round n-dimensional sphere. This result can
be viewed as a generalization of Hersch’s inequality, since all metrics on
S2 are conformally equivalent to the round metric g0.

A similar problem for higher eigenvalues is much more complicated.
It was proved in [CE, Corollary 1] that

(1.2.2) λck(S
n, [g0]) := sup

g∈[g0]
λk(S

n, g)Vol(Sn, g)
2
n ≥ n (k ωn)

2/n,

The number λck(S
n, [g0]) is called the k-th conformal eigenvalue of (Sn,

[g0]). It was shown in [Na] that for k = 2 and n = 2 inequality (1.2.2)
becomes an equality, and the supremum is attained by a sequence of
surfaces degenerating to a union of two identical round spheres. We
conjecture that the same is true in all dimensions:

Conjecture 1.2.3. The second conformal eigenvalue of (Sn, [g0])
equals

(1.2.4) λc2(S
n, [g0]) = n (2ωn)

2/n

for all n ≥ 2.

As a by-product of the method developed for the proof of Theorem
1.1.3, we prove an upper bound for λc2(S

n, [g0]) when the dimension n is
odd (this condition is explained in Remark 4.3.8). Our result is in good
agreement with Conjecture 1.2.3.

Theorem 1.2.5. Let n ∈ N be odd and let (Sn, g) be a n-dimensional

sphere with a conformally round metric g ∈ [g0]. Then

(1.2.6) λ2(S
n, g)Vol(Sn, g)

2
n < (n+ 1)

(

4π
n+1
2 Γ(n)

Γ(n2 )Γ(n+ 1
2)

)2/n
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Remark 1.2.7. Note that the Dirichlet energy is not conformally in-
variant in dimensions n ≥ 3. Therefore, to prove Theorem 1.2.5 we have
to work with the modified Rayleigh quotient (see [Ber, pp. 141–142],
[FN]), which is strictly greater than the usual one unless the gradient of
the test function has constant norm. This is the main reason why we do
not believe the bound (1.2.6) is sharp. At the same time, the estimate
(1.2.6) is just a little bit weaker than the conjectured bound (1.2.4): one
can check numerically that the ratio of the constants at the right-hand
sides of (1.2.6) and (1.2.4) is contained in the interval (1, 1.04) for all
n. Moreover, the difference between the two constants converges to 0
as the dimension n → ∞, and hence (1.2.6) is “asymptotically sharp”
as follows from (1.2.2).

Remark 1.2.8. It was conjectured in [Na] that if n = 2 then (1.2.2)
is an equality for all k ≥ 1, with the maximizer given by the union of
k identical round spheres. One could view this as an analogue of the
Pólya conjecture (1.1.2) for the sphere. Note that a similar “naive”
guess about the maximizer of the k-th Neumann eigenvalue of a planar
domain is false: a union of k equal disks can not maximize µk for all
k ≥ 1, because, as one can easily check, this would contradict Weyl’s
law. For the same reason, (1.2.2) can not be an equality for all k ≥ 1
in dimensions n ≥ 5.

1.3. Plan of the paper. The paper is organized as follows. In sections
2.1–2.5 we develop the “folding and rearrangement” technique based on
the ideas of [Na] and apply it to planar domains. The topological
argument used in the proof of Theorem 1.1.3 is presented in section 2.6.
In section 2.7 we complete the proof of the main theorem using some
facts about the subharmonic functions. In sections 3.1 and 3.2 we prove
the auxiliary lemmas used in the proof of Theorem 1.1.3. In section 4.1
we present a somewhat stronger version of the classical Hersch’s lemma
([Her]). In sections 4.2 and 4.3 we adapt the approach developed in
sections 2.1-2.7 for the case of the sphere. In section 4.4 we use the
modified Rayleigh quotient to complete the proof of Theorem 1.2.5.

Acknowledgments. We are very grateful to L. Parnovski for a stim-
ulating question that has lead us to Theorem 1.1.3, and to M. Levitin
for many useful discussions on this project. We would also like to thank
B. Colbois and L. Polterovich for helpful remarks.

2. Proof of Theorem 1.1.3

2.1. Standard eigenfunctions for µ1 on the disk. Let

D =
{
z ∈ C

∣
∣ |z| < 1

}

be the open unit disk. Let J1 be the first Bessel function of the first
kind, and let ζ ≈ 1.84 be the smallest positive zero of its derivative J ′

1.
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Set
f(r) = J1(ζr).

Given R ≥ 0 and s = (R cosα,R sinα) ∈ R2, define Xs : D→ R by

(2.1.1) Xs(z) = f(|z|)z · s|z| = Rf(r) cos(θ − α),

where r = |z|, θ = arg z, and z · s denotes the scalar product in R2.
The functions Xs are the Neumann eigenfunctions corresponding to the
double eigenvalue

µ1(D) = µ2(D) = ζ2 ≈ 3.39.

The functions Xe1 and Xe2 form a basis for this space of eigenfunctions
(where the vectors {e1, e2} form the standard basis of R2).

2.2. Renormalization of measure. We say that a conformal trans-
formation T of the disk renormalizes a measure dν if for each s ∈ R2,

∫

D

Xs ◦ T dν = 0.(2.2.1)

Finite signed measures on D can be seen as elements of the dual of
the space C(D) of continuous functions. As such, the norm of a measure
dν is

(2.2.2) ‖dν‖ = sup
f∈C(D),|f |≤1

∣
∣
∣
∣

∫

D

f dν

∣
∣
∣
∣
.

The following result is an analogue of Hersch’s lemma (see [Her], [SY]).

Lemma 2.2.3. For any finite measure dν on D there exists a point

ξ ∈ D such that dν is renormalized by the automorphism dξ : D → D

defined by

dξ(z) =
z + ξ

ξz + 1
.

Proof. Set M =
∫

D
dν and define the continuous map C : D→ D by

C(ξ) =
1

M f(1)

∫

D

(Xe1 ,Xe2) (dξ)∗dν

=
1

M f(1)

∫

D

(Xe1 ◦ dξ,Xe2 ◦ dξ) dν.

Let eiθ ∈ S1 = ∂D. For any z ∈ D,

lim
ξ→eiθ

dξ(z) = eiθ.

This means that the map C can be continuously extended to the closure
D by C = id on ∂D. By the same topological argument as in Hersch’s
lemma (and as in the proof of the Brouwer fixed point theorem), a
continuous map C : D → D such that C(ξ) = ξ for ξ ∈ ∂D must be
onto. Hence, there exists some ξ ∈ D such that C(ξ) = 0 ∈ D. q.e.d.
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Lemma 2.2.4. For any finite measure dν the renormalizing point ξ
is unique.

Proof. First, let us show that if the measure dν is already renormal-
ized then ξ = 0. Suppose that D ∋ η 6= 0 renormalizes dν. Without loss
of generality assume that η is real and positive (if not, apply a rotation).
Setting s = 1, by Lemma 3.1.1 we get that Xs(dη(z)) > Xs(z) for all
z ∈ D and hence

∫

D

Xs ◦ dη dν >
∫

D

Xs dν = 0,

which contradicts the hypothesis that η renormalizes dν.
Now let dν be an arbitrary finite measure which is renormalized by

ξ ∈ D. Assume η ∈ D also renormalizes dν. Let us show that η = ξ.
Taking into account that d−ξ ◦ dξ = d0 = id, we can write

(dη)∗dν = (dη ◦ d−ξ)∗ (dξ)∗ dν.

A straightforward computation shows that

dη ◦ d−ξ =
1− ηξ̄
1− η̄ξ dα,

where α = d−ξ(η) and
∣
∣
∣
1−ηξ̄
1−η̄ξ

∣
∣
∣ = 1. This implies that dα renormalizes

(dξ)∗ dν which is already renormalized. Hence, as we have shown above,
α = d−ξ(η) = 0, and therefore ξ = η. q.e.d.

Given a finite measure, we write Γ(dν) ∈ D for its unique renormalizing
point ξ ∈ D.

Corollary 2.2.5. The renormalizing point Γ(dν) ∈ D depends con-

tinuously on the measure dν.

Proof. Let (dνn) be a sequence of measures converging to the measure
dν in the norm (2.2.2). Without loss of generality suppose that dν is
renormalized. Let ξn ∈ D ⊂ D be the unique element such that dξn
renormalizes dνn. Let (ξnk

) be a convergent subsequence, say to ξ ∈ D.
Now, by definition of ξn there holds

0 = lim
k→∞

|
∫

D

Xs (dξnk
)∗dνnk

| = |
∫

D

Xs (dξ)∗dν|,

and hence dξ renormalizes dν. Since we assumed that dν is normalized,
by uniqueness we get ξ = 0. Therefore, 0 is the unique accumulation
point of the set ξn ∈ D and hence by compactness we get ξn → 0. This
completes the proof of the lemma. q.e.d.

Corollary 2.2.5 will be used in the proof of Lemma 2.5.3, see section
3.2.
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2.3. Variational characterization of µ2. It follows from the Rie-
mann mapping theorem and Lemma 2.2.3 that for any simply-connected
domain Ω there exists a conformal equivalence φ : D → Ω, such that
the pullback measure

dµ(z) = φ∗(dz) = |φ′(z)|2 dz
satisfies for any s ∈ S1

∫

D

Xs(z) dµ(z) = 0.(2.3.1)

Using a rotation if necessary, we may also assume that
∫

D

X2
e1(z) dµ(z) ≥

∫

D

X2
s (z) dµ(z)(2.3.2)

for any s ∈ S1. The proof of Theorem 1.1.3 is based on the following
variational characterization of µ2(Ω):

µ2(Ω) = inf
E

sup
06=u∈E

∫

D
|∇u|2 dz
∫

D
u2 dµ

(2.3.3)

where E varies among all two-dimensional subspaces of the Sobolev
space H1(D) that are orthogonal to constants, that is for each f ∈ E,
∫

D
f dµ = 0. Note that the Dirichlet energy is conformally invariant

in two dimensions, and hence the numerator in (2.3.3) can be written
using the standard Euclidean gradient and the Lebesgue measure.

2.4. Folding of hyperbolic caps. It is well-known that the group of
automorphisms of the disk coincides with the isometry group of the
Poincaré disk model of the hyperbolic plane [Bea, section 7.4]. There-
fore, for any ξ ∈ D, the automorphism

dξ(z) =
z + ξ

ξz + 1

is an isometry. Note that we have d0 = id and dξ(0) = ξ for any ξ.
Let γ be a geodesic in the Poincaré disk model, that is a diameter or

the intersection of the disk with a circle which is orthogonal to ∂D. Each
connected component of D\γ is called a hyperbolic cap on D. The space
of hyperbolic caps is parametrized as follows. Given (r, p) ∈ (−1, 1)×S1

let
ar,p = drp(a0,p),

where
a0,p = {x ∈ D : x · p > 0}

is the half-disk such that p is the center of its boundary half-circle.
The limit r → 1 corresponds to a cap degenerating to a point on the
boundary ∂D (that is, a → p), while the limit r → −1 corresponds to
degeneration to the full disk D (that is, a→ D). Given p ∈ D, we define
the automorphism Rp(z) = −p2z̄. It is the reflection with respect to



644 A. GIROUARD, N. NADIRASHVILI & I. POLTEROVICH

0
0

r

pp

a0,p

ar,p

drp−→

the line going through 0 and orthogonal to the segment joining 0 and
p. For each cap ar,p, let us define a conformal automorphism

τa = drp ◦Rp ◦ d−rp.

One can check that this is the reflection with respect to the hyperbolic
geodesic ∂ar,p. In particular, τa(a) = D \ a and τa is the identity on ∂a.

2.5. Folding and rearrangement of measure. Given a measure dµ
on D and a hyperbolic cap a ⊂ D, the folded measure dµa is defined by

dµa =

{

dµ+ τ∗adµ on a,

0 on D \ a.
Clearly, the measure dµa depends continuously in the norm (2.2.2) on
the cap a ⊂ D. For each cap a ∈ D let us construct the following
conformal equivalence ψa : D → a. First, observe that it follows from

Ta−→ φb−→ T ′
a−→

ψa

a b DD

the proof of the Riemann mapping theorem [Ta, p.342] that there exists
a family φa : a → D of conformal equivalences depending continuously
on the cap a such that lim

a→D
φa = id pointwise. Let ξ(a) = Γ(dµa) be the

normalizing point for the measure dµa and set Ta = dξ(a). The measure
(Ta)∗dµa is supported in the cap b = Ta(a). Pushing this measure to
the full disk using φb : b→ D leads to the measure

(φb ◦ Ta)∗dµa.
Let η(a) = Γ((φb ◦ T )∗dµa) and set

T ′
a := dη(a) : D→ D.

The conformal equivalence ψa : D→ a is defined by

ψa =
(
T ′
a ◦ φb ◦ Ta

)−1
.
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The pull-back by ψa of the folded measure is

(2.5.1) dνa = ψ∗
adµa.

It is clear from the above construction that dνa is a normalized measure
on the whole disk. We call dνa the rearranged measure. It also follows
from the construction that the conformal transformations ψa : D → a
depend continuously on a and

(2.5.2) lim
a→D

ψa = id : D→ D

in the sense of the pointwise convergence. We will make use of the
following important property of the rearranged measure.

Lemma 2.5.3. If a sequence of hyperbolic caps a ∈ D degenerates to

a point p ∈ ∂D, the limiting rearranged measure is a “flip-flop” of the

original measure dµ:

lim
a→p

dνa = R∗
pdµ.(F)

We call (F) the flip-flop property. The proof of Lemma 2.5.3 will be
presented at the end of the paper.

2.6. Maximizing directions. Given a finite measure dν on D, con-
sider the function V : R2 → R defined by

V (s) =

∫

D

X2
s dν.

This function is a quadratic form since the mapping R2×R2 → R defined
by

(s, t) 7→
∫

D

XsXt dν

is symmetric and bilinear (the latter easily follows from (2.1.1)). In
particular, V (s) = V (−s) for any s.

Let RP 1 = S1/Z2 be the projective line. We denote by [s] ∈ RP 1

the element of the projective line corresponding to the pair of points
±s ∈ S1. We say that [s] ∈ RP 1 is a maximizing direction for the
measure dν if V (s) ≥ V (t) for any t ∈ S1. The measure dν is called
simple if there is a unique maximizing direction. Otherwise, the measure
dν is said to be multiple. We have the following

Lemma 2.6.1. A measure dν is multiple if and only if V (s) does not
depend on s ∈ S1.

Proof. Since V (s) is a symmetric quadratic form, it can be diagonal-
ized. This means that there exists an orthonormal basis (v1, v2) of R

2,
such that for any s = αv1 + βv2 ∈ D we have V (s) = Mα2 + mβ2.
for some numbers 0 < m ≤ M. It is clear now that the measure dν is
multiple if and only if M = m, and therefore V (s) takes the same value
for all s ∈ S1. q.e.d.



646 A. GIROUARD, N. NADIRASHVILI & I. POLTEROVICH

Note that by (2.3.2), [e1] is a maximizing direction for the measure
dµ.

Proposition 2.6.2. If the measure dµ is simple, then there exists

cap a ⊂ D such that the rearranged measure dνa is multiple.

The proof of this proposition is based on a topological argument,
somewhat more subtle than the one used in the proof of Lemma 2.2.3.
This is a proof by contradiction. We assume the measure dµ as well
as the measures dνa to be simple. Given a cap a ⊂ D, let [s(a)] ∈
RP 1 be the unique maximizing direction for dνa. Since dνa depends
continuously on a and Xs depends continuously on s, it follows that the
map a 7→ [s(a)] is continuous. Let us understand the behavior of the
maximizing directions as the cap a degenerates to the full disk and to
a point.

Lemma 2.6.3. Assume the measures dµ as well as each dνa to be

simple. Then

lim
a→D

[s(a)] = [e1](2.6.4)

lim
a→eiθ

[s(a)] = [e2iθ].(2.6.5)

Proof. First, note that formula (2.6.4) immediately follows from (2.5.2)
and (2.3.2). Let us prove (2.6.5). Set p = eiθ. Lemma 2.5.3 implies

(2.6.6) lim
a→p

∫

D

X2
s dνa =

∫

D

X2
s R

∗
pdµ =

∫

D

X2
s ◦Rp dµ =

∫

D

X2
Rps dµ.

Since [e1] is the unique maximizing direction for D, the right hand side
of (2.6.6) is maximal for Rps = ±e1. Applying Rp on both sides we get

s = ±e2iθ and hence [s] = [e2iθ]. q.e.d.

Proof of Proposition 2.6.2. Suppose that for each cap a ⊂ D the mea-
sure dνa is simple. Recall that the space of caps is identified with
(−1, 1) × S1. Define h : (−1, 1) × S1 → RP 1 by h(r, p) = [s(ar,p)].
It follows from Lemma 2.6.3) that h extends to a continuous map on
[−1, 1] × S1 such that

h(−1, eiθ) = [e1], h(1, e
iθ) = [e2iθ].

This means that h is a homotopy between a trivial loop and a non-
contractible loop on RP 1. This is a contradiction. q.e.d.

2.7. Test functions. Assume that dµ is simple. By Proposition 2.6.2
and Lemma 2.6.1 there exists a cap a ⊂ D such that

∫

D

X2
s dνa(z)

does not depend on the choice of s ∈ S1. Let a∗ = D \ a.
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Definition 2.7.1. Given a function u : a→ R, the lift of u, ũ : D→
R is given by

ũ(z) =

{

u(z) if z ∈ a,
u(τaz) if z ∈ a∗.

Given u : a→ R we have
∫

a
u dµa =

∫

a
u dµ+

∫

a∗
u ◦ τa dµ =

∫

D

ũ dµ.

For every s ∈ R2, set

usa = Xs ◦ ψ−1
a : a→ R.

We will use the two-dimensional space

E =
{
ũsa
∣
∣s ∈ R2

}

of test functions in the variational characterization (2.3.3) of µ2. Note
that since τ is the identity map on the geodesic γ = ∂a ∩ D, the
functions ũsa can be extended continuously to γ, and hence ũsa ∈ H1(D).

Proposition 2.7.2. For each s ∈ R2

(2.7.3)

∫

D
|∇ũsa|2 dz

∫

D
(ũsa)

2 dµ
≤ 2µ1(D).

We split the proof of Proposition 2.7.2 in two parts.

Lemma 2.7.4. For any hyperbolic cap a ⊂ D,
∫

D

|∇ũsa|2 dz =

(

2π

∫ 1

r=0
f2(r)r dr

)

µ1(D).

Lemma 2.7.5.
∫

D

(ũsa)
2 dµ ≥ π

(∫ 1

r=0
f2(r)r dr

)

.(2.7.6)

Proof of Lemma 2.7.4. It follows from the definition of the lift that
∫

D

|∇ũsa|2 dz =

∫

a
|∇usa|2 dz +

∫

a∗
|∇(usa ◦ τa)|2 dz.

By conformal invariance of the Dirichlet energy, the two terms on the
right hand side are equal, so that
∫

D

|∇ũsa|2 dz = 2

∫

a
|∇usa|2 dz = 2

∫

a
|∇(Xs ◦ ψ−1

a )|2 dz

= 2

∫

D

|∇Xs|2 dz ←− (by conformal invariance)

= 2µ1(D)

∫

D

X2
s dz ←− (since Xs is the first eigenfunction on a disk)

(2.7.7)
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It follows from (2.1.1) that given two orthogonal directions s, t ∈ S1 we
have ∫

D

(X2
s +X2

t ) dz =

∫

D

f2(|z|) dz.

Therefore, by symmetry we get
∫

D

X2
s dz =

1

2

∫

D

f2(|z|) dz = π

∫ 1

r=0
f2(r)r dr.

This completes the proof of the lemma. q.e.d.

To prove Lemma 2.7.5 we use the following result.

Lemma 2.7.8. The rearranged measure dνa on D can be represented

as dνa = δ(z)dz, where δ : D→ R is a subharmonic function.

Proof. Indeed, dνa = ψ∗
adµa, where the measure dµa on the cap a

is obtained as the sum of measures dµ and τ∗adµ. Both measures dµ
and τ∗adµ correspond to flat Riemannian metrics on a, because dµ is the
pullback of the Euclidean measure dz on the domain Ω by the conformal
map φ : D → Ω (see section 2.3). Since the maps ψa and τa are also
conformal, one has ψ∗

adµ = α(z)dz and ψ∗
a(τ

∗
adµ) = β(z)dz for some

subharmonic functions α(z), β(z). Indeed, the metrics corresponding
to these measures are flat (they are pullbacks by ψa of flat metrics on a
that we mentioned above), and the well-known formula for the Gaussian
curvature in isothermal coordinates yields ∆ logα(z) = ∆ log β(z) = 0
(cf. [BR, p. 663]). Therefore, α(z) and β(z) are subharmonic as
exponentials of harmonic functions [Le, p. 45]. Finally, dνa = δ(z)dz,
where δ(z) = α(z) + β(z) is subharmonic as a sum of subharmonic
functions. This completes the proof of the lemma. q.e.d.

Proof of Lemma 2.7.5. Set

G(r) =

∫

B(0,r)
δ(z) dz =

∫ r

0

∫ 2π

0
δ(ρ eiφ)ρ dρ dφ.

By Lemma 2.7.8 the function δ is subharmonic. The function

W (ρ) =

∫ 2π

0
δ(ρ eiφ)dφ

is 2π times the average of δ over the circle of radius ρ, hence it is
monotone non-decreasing in ρ ([Le, p. 46]). Therefore, since r ≤ 1, we
get as in [SY, p.138] that

(2.7.9) G(r) =

∫ r

0
W (ρ)ρ dρ =

r2
∫ 1

0
W (r ρ)ρ dρ ≤ r2

∫ 1

0
W (ρ) ρ dρ = r2G(1) = πr2.
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Now, because ũsa is the lift of usa = Xs ◦ ψa, we have
∫

D

(ũsa)
2 dµ =

∫

a
(usa)

2 dµa =

∫

D

X2
s dνa.

Moreover since Va(s) doesn’t depend on s ∈ S1,

Va(s) =

∫

D

X2
s dνa =

1

2

∫

D

(
X2

e1 +X2
e2

)
dνa

=
1

2

∫

D

f2(|z|) δ(z) dz =
1

2

∫ 1

r=0
f2(r)G′(r) dr.(2.7.10)

Integrating by parts and taking into account that G(r) ≤ πr2 due to
(2.7.9), we get
∫ 1

r=0
f2(r)G′(r) dr = f2(1)G(1) −

∫ 1

0

d

dr

(
f2(r)

)
G(r) dr ≥

f2(1)G(1) − π
∫ 1

0

d

dr

(
f2(r)

)
r2 dr = 2π

∫ 1

0
f2(r)r dr.

(2.7.11)

This completes the proof of Lemma 2.7.5 and Proposition 2.7.2.
q.e.d.

Remark 2.7.12. The proof of Lemma 2.7.5 is quite similar to the
proof of (1.1.1), see [Sz, p. 348] and [SY, p. 138]. Our approach is
somewhat more direct since it explicitly uses the subharmonic properties
of the measure.

Proof of Theorem 1.1.3. Assume that dµ is simple. Then (1.1.4) imme-
diately follows from Proposition 2.7.2 and the variational characteriza-
tion (2.3.3) of µ2.

Suppose now that dµ is multiple. In fact, the proof is simpler in this
case. Indeed, it follows from Lemma 2.6.1, that any direction [s] ∈ RP 1

is maximizing for dµ so that we can use the space

E =
{
Xs

∣
∣s ∈ R2

}

of test functions in the variational characterization (2.3.3) of µ2. Inspect-
ing the proof of Proposition 2.7.2 we notice that the factor 2 disappears
in (2.7.7) and hence in (2.7.3) as well. Therefore, in this case we get
using (2.3.3) that µ2(Ω) ≤ µ1(D). This completes the proof of the
theorem. q.e.d.

Remark 2.7.13. When dµ is multiple, we get a stronger estimate

µ2(Ω) ≤ µ1(D).
To illustrate this case, consider Ω = D. Then indeed µ2(D) = µ1(D).
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3. Proofs of auxiliary lemmas

3.1. Uniqueness of the renormalizing point. The following lemma
is used in the proof Lemma 2.2.4.

Lemma 3.1.1. Let r ∈ (0, 1) and s = 1. Then Xs(dr(z)) > Xs(z)
for all z ∈ D.

Proof.We have Xs(z)= f(|z|) cos θ1 and Xs(dr(z))= f(|dr(z)|) cos θ2,
where θ1 = arg z and θ2 = arg dr(z). We need to show

(3.1.2) f(|dr(z)|) cos θ2 > f(|z|) cos θ1
for all z ∈ D. Note that the function f is monotone increasing, positive
on the interval (0, 1], and f(0) = 0. Set z = a + ib. It is easy to check
that for |z| = 0 the inequality in question is satisfied and therefore in
the sequel we assume that a2 + b2 > 0.

Let us compare |z| and |dr(z)|. We note that |z| = |z̄|. Since

|dr(z)| =
|z + r|
|rz + 1| ,

we need to compare |z+r| and |r|z|2+ z̄|. This boils down to comparing
(a + r)2 + b2 and ((r(a2 + b2) + a)2 + b2, or, equivalently, (a + r)2 and
((r(a2 + b2) + a)2. Note that a2 + b2 < 1 since z ∈ D. We have three
cases:

(i) a ≥ 0. Then |dr(z)| > |z|.
(ii) a < 0 and a+ r ≤ 0. Then |dr(z)| < |z|.
(iii) a < 0 and a+ r > 0.

Let us now study the arguments θ1 and θ2.
We have:

dr(z) =
z + r

rz + 1
=

(a+ r) + ib

(ar + 1) + ibr
=

(a+ r)(ar + 1) + b2r + ib(1 − r2)
(ar + 1)2 + b2r2

.

Taking into account that ar + 1 > 0, we obtain from this formula that
in case (iii) cos θ2 > 0. On the other hand, cos θ1 < 0 in this case, and
therefore the inequality (3.1.2) is satisfied since f > 0.

Consider now case (i). Using the formula above we get that

tan θ2 =
b(1− r2)

(a+ r)(ar + 1) + b2r
.

If a = 0 then (3.1.2) is true since cos θ1 = 0 and one may easily check
that cos θ2 > 0. So let us assume that a 6= 0. Then tan θ1 = b/a.
Note that the tangent is a monotone increasing function. If b = 0 then
θ1 = θ2 = 0 and (3.1.2) is satisfied since |dr(z)| > |z|. If b 6= 0, dividing
by b and taking into account that a > 0, r > 0 we easily get:

1

a
>

1− r2
(a+ r)(ar + 1) + b2r

.
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Therefore, if b > 0 we get that tan θ1 > tan θ2 implying 0 < θ2 < θ1 <
π/2, and if b < 0 we get that tan θ1 < tan θ2 implying that 3π/2 < θ1 <
θ2 < 2π. At the same time, in the first case the cosine is monotonically
decreasing, and in the second case the cosine is monotonely increasing.
Therefore, for any b 6= 0 we get 0 < cos θ1 < cos θ2, which implies
(3.1.2).

Finally, consider the case (ii). If (a + r)(ar + 1) + b2r ≥ 0 then we
immediately get (3.1.2) since in this case cos θ2 ≥ 0 and cos θ1 < 0. So
let us assume (a + r)(ar + 1) + b2r < 0. If b = 0 then θ1 = θ2 = π,
hence cos θ1 = cos θ2 = −1 and (3.1.2) is satisfied because |dr(z)| < |z|.
If b 6= 0, as in case (ii) we compare tan θ1 and tan θ2. We claim that
again

1

a
>

1− r2
(a+ r)(ar + 1) + b2r

.

Since by our hypothesis the denominators in both cases are negative,
it is equivalent to a − ar2 < a2r + ar2 + a + r + b2r. After obvious
transformations we see that this reduces to a2 + 2ar + 1 + b2 = (a +
r)2 + (1− r2) + b2 > 0 which is true.

Therefore, taking into account that tangent is monotone increasing,
we get that if b > 0 then π/2 < θ2 < θ1 < π, and if b < 0 then
π < θ1 < θ2 < 3π/2. This implies that in either case cos θ1 < cos θ2 < 0.
Together with the inequality |dr(z)| < |z| this gives (3.1.2) in case (ii).
This completes the proof of the lemma. q.e.d.

3.2. Proof of Lemma 2.5.3. Let M be the space of signed finite
measures on D endowed with the norm (2.2.2). Recall that the map
Γ : M → D is defined by Γ(dν) = ξ in such a way that dξ : D → D

renormalizes dν. It is continuous by Corollary 2.2.5. The key idea of
the proof of the “flip-flop” lemma is to replace the folded measure dµa
by

dµ̂a := (τa)∗dµ.

It is clear that

(3.2.1) ||dµa − dµ̂a|| → 0

in the norm (2.2.2) as a degenerates to a point p ∈ ∂D. At the same
time, the next lemma shows that the “flip-flop”property is true for each
cap when the rearranged measure dνa is replaced by (dζa)∗dµ̂a, where
ζa = Γ(dµ̂a).

Lemma 3.2.2. Let a = ar,p be a hyperbolic cap. Then

(dζa)∗dµ̂a = (dζa)∗(τa)∗dµ = R∗
pdµ.

Proof. Let us show that ζa = − 2r
r2+1p. Recall that τa(z) = drp ◦Rp ◦

d−rp. A simple explicit computation then leads to

dζa ◦ τa = Rp.
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This implies
∫

D

Xs ◦ dζa dµ̂a =

∫

D

Xs ◦ dζa ◦ τa dµ

=

∫

D

Xs ◦Rp dµ =

∫

D

XRps dµ = 0

which proves the claim. q.e.d.

Let ηa := Γ((dζa)∗dµa) be the renormalizing vector for the measure
(dζa)∗dµa.

Lemma 3.2.3. As the cap a degenerates to a point p ∈ ∂D, ηa → 0.

Proof. Since dζa is a diffeomorphism, (dζa)∗ :M→M is an isometry
so that

(dζa)∗dµa = (dζa)∗(dµa − dµ̂a) + (dζa)∗dµ̂a

= (dζa)∗(dµa − dµ̂a)
︸ ︷︷ ︸

→0

+(dζa ◦ τa
︸ ︷︷ ︸

Rp

)∗dµ→ (Rp)∗dµ.

Here we have used (3.2.1). Continuity of Γ leads to

0 = Γ((Rp)∗dµ) = lim
a→p

Γ((dζa)∗dµa) = lim
a→p

ηa.

Note that the first equality follows from (2.3.1) and the identity Xs ◦
Rp = XRps that we used earlier. q.e.d.

Set

q(a) =
ζaηa + 1

ζaηa + 1
, ξ(a) = dζa(ηa) =

(
ηa + ζa

ζaηa + 1

)

.(3.2.4)

A direct computation (cf. the proof of Lemma 2.2.4) leads to

T̃a(z) := dηa ◦ dζa = q(a)dξ(a)(z).

It follows from its definition that T̃a renormalizes dµa. Hence, Γ(dµa) =
ξ(a) and dξ(a) = Ta, where the transformation Ta was defined in section
2.5. We have

Ta∗dµa = (
1

q(a)
dηa)∗(dζa)∗dµa

= (
1

q(a)
dηa)∗(dζa)∗ (dµ̂a + (dµa − dµ̂a)) .

Now, it follows from Lemma 3.2.3 that lima→p q(a) = 1 and lima→p dηa =
id, because ηa → 0. Therefore, taking into account (3.2.1) we get

lim
a→p

Ta∗dµa = lim
a→p

(dξa)∗dµ̂a = R∗
pdµ.

To complete the proof of Lemma 2.5.3 it remains to show that as the
cap a degenerates to p, ||Ta∗dµa− dνa|| → 0. By definition dνa = ψ∗

adµ,
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where ψa = (T ′
a ◦ φb ◦ Ta)−1 (see section 2.5). Let us show that b =

Ta(a)→ D as a→ p. Indeed,

Ta = dξ(a) = dζa ◦ (d−ζa ◦ dξ(a)) = Rp ◦ τa ◦ (d−ζa ◦ dξ(a)).
Since ηa → 0 when a → p, it follows from (3.2.4) that the composition
d−ζa ◦ dξ(a) tends to identity. Therefore, the cap Ta(a) gets closer to
D \ Rp(a) when a goes to p and thus lima→p Ta(a) = D. This implies
lima→p φTa(a) = id and lima→p T

′
a = id, and hence lima→p ||Ta∗dµa −

dνa|| = 0. q.e.d.

4. Proof of Theorem 1.2.5

4.1. Hersch’s lemma and uniqueness of the renormalizing map.

The proof of Theorem 1.2.5 is quite similar to the proof of Theorem
1.1.3. We use the following notation

Bn+1 = {x ∈ Rn+1, |x| < 1}
Sn = ∂Bn+1.

The standard round metric on Sn is g0. Given a conformally round
metric g ∈ [g0] we write dg for its induced measure. Given s ∈ Rn+1,
define Xs : S

n → R by

Xs(x) = (x, s).

Similarly to (2.3.1) and (2.3.2), we assume that for each s ∈ Sn:
∫

Sn
Xs dg = 0.(4.1.1)

∫

Sn
X2

e1 dg ≥
∫

Sn
X2

s dg.(4.1.2)

Given p ∈ Sn, Rp : Rn+1 → Rn+1 is the reflection with respect to the
hyperplane going through 0 and orthogonal to the segment joining 0
and p, that is

Rp(x) = x− 2(p, x)p.

Given ξ ∈ Bn+1. define dξ : B
n+1 → B

n+1
by

(4.1.3) dξ(x) =
(1− |ξ|2)x+ (1 + 2(ξ, x) + |x|2)ξ

1 + 2(ξ, x) + |ξ|2|x|2 .

Note that dξ(0) = ξ and dξ ◦ d−ξ = id. The map dξ is a conformal
(Möbius) transformation of Sn [SY, p. 142]. Indeed, one can check
that for ξ 6= 0,

dξ = γξ ◦R ξ

|ξ|

where γξ is the spherical inversion with center ξ
|ξ|2

and radius 1−|ξ|2

|ξ|2
.

Note that for n = 1, the map dξ coincides with the one introduced in
Lemma 2.2.3, where complex notation was used for convenience.
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Similarly to the disk case, the transformation dξ is said to renormalize

a measure dν on the sphere Sn if for each s ∈ Rn+1,
∫

Sn
Xs ◦ dξ dν = 0.(4.1.4)

This condition is clearly equivalent to
∫

Sn
xi ◦ dξ dν = 0, i = 1, 2, . . . , n+ 1,

which means that the center of mass of the measure (dξ)∗dν on Sn is
at the origin. The following result is a combination of Hersch’s lemma
[Her] and a uniqueness result announced in [Na].

Proposition 4.1.5. For any finite measure dν on Sn, there exists

a unique point ξ ∈ Bn+1 such that dξ renormalizes dν. Moreover, the

dependence of the point ξ ∈ Bn+1 on the measure dν is continuous.

Proof. The existence of ξ is precisely Hersch’s lemma (see [Her], [SY,
p. 144], [LY, p. 274]).

Let us prove uniqueness. First, let us show that if dν is a renormal-
ized measure then ξ = 0. It follows from (4.1.3) by a straightforward
computation that if Bn+1 ∋ ξ 6= 0 then Xξ(x) < Xξ(dξ(x)) for any
x ∈ Sn. Assume that dξ renormalizes dν for some ξ 6= 0. Then

0 =

∫

Sn
Xξ dν <

∫

Sn
Xξ ◦ dξ dν = 0,

and we get a contradiction.
Now, let dν be an arbitrary finite measure and suppose that it is

renormalized by dξ and dη . Writing dη = dη ◦ d−ξ ◦ dξ we get

(4.1.6)

∫

Sn
Xs ◦ dη ◦ d−ξ dσ̃ = 0

where the measure dσ̃ = (dξ)∗dσ is renormalized. At the same time,
it easy to check that dη ◦ d−ξ = R ◦ dd−ξ(η), where R is an orthogonal

transformation. Indeed, since −d−ξ(η) = dξ(−η) we have

dη ◦ d−ξ ◦ ddξ(−η)(0) = dη(−η) = 0,

and it is well known that any Möbius transformation of the unit ball
preserving the origin is orthogonal [Bea, Theorem 3.4.1]. Since R pre-
serves the center of mass at zero, it follows from (4.1.6) that dd−ξ(η)

renormalizes the measure dσ̃, which is already renormalized. Therefore,
as we have shown above, d−ξ(η) = 0 and hence ξ = η.

Similarly to Corollary 2.2.5, uniqueness of the renormalizing point
implies that its dependence on the measure is continuous. q.e.d.
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4.2. Spherical caps, folding and rearrangement. The set C of all
spherical caps is parametrized as follows: given p ∈ Sn let

a0,p = {x ∈ Sn : (x, p) > 0}
be the half-sphere centered at p. Given −1 < r < 1, let

ar,p = drp(a0,p).

To every spherical cap a ∈ C we associate a folded measure:

dµa =

{

dg + τ∗adg on a,

0 on a∗,

where a∗ = Sn \ a ∈ C is the cap adjacent to a, and τa is the conformal
reflection with respect to the boundary circle of a. That is, for a = ar,p

τa = drp ◦Rp ◦ d−rp.

Let ξ(a) ∈ Bn+1 be the unique point such that dξ(a) renormalizes dµa.
We obtain a rearranged folded measure

dνa = (dξ(a))∗dµa.(4.2.1)

4.3. Maximizing directions. Given a finite measure dν on Sn, define

V (s) =

∫

Sn
X2

s dν.

Let RPn be the projective space and let [s] ∈ RPn be the point corre-
sponding to ±s ∈ Sn. We say that [s] ∈ RPn is a maximizing direction

for dν if V (s) ≥ V (t) for all t ∈ Sn. We say that the spherical cap is
simple if the maximizing direction is unique. Otherwise, similarly to
Lemma 2.6.1, there exists a two-dimensional subspace W ⊂ Rn+1 such
that any s ∈ W ∩ Sn is a maximizing direction for dν. In particular
for each s, t ∈ W , V (s) = V (t). In this case the measure dν is called
multiple.

Proposition 4.3.1. Let g ∈ [g0] be a conformally round metric on a

sphere Sn of odd dimension. If the measure dg is simple then there exists

a spherical cap such that the rearranged folded measure dνa is multiple.

The proof of Proposition 4.3.1 is similar to the proof of Proposi-
tion 2.6.2. We assume the measures dg as well as each dνa to be simple.
Given a cap a ⊂ Sn let [s(a)] ∈ RP 1 be the unique maximizing direc-
tion for dνa. The map a 7→ [s(a)] is continuous. The following spherical
version of the “flip-flop” property is proved exactly as Lemma 2.5.3.

Lemma 4.3.2. If a sequence of spherical caps a ∈ C degenerates to

a point p ∈ Sn, the limiting rearranged measure is a “flip-flop” of the

original measure dg:

lim
a→p

dνa = R∗
pdg.(4.3.3)
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Similarly to Lemma 2.6.3 we study the maximizing directions for
degenerating caps.

Lemma 4.3.4. Suppose the measures dg as well as each dνa are

simple. Then

lim
a→Sn

[s(a)] = [e1](4.3.5)

lim
a→p

[s(a)] = [Rpe1].(4.3.6)

Proof of Proposition 4.3.1. By convention (4.1.2), [e1] is the unique max-
imizing direction for dg. Recall that the space of caps has been identified
with (−1, 1) × Sn. The continuous map

h : [−1, 1] × Sn → RPn

is defined by

h(r, p) =







[e1] for r = −1,
[s(ar,p)] for − 1 < r < 1,

[Rpe1] for r = 1.

That is, h is an homotopy between a constant map and the map

φ : Sn → RPn

defined by φ(p) = [Rpe1].We will show that this is impossible when n is
odd by computing its degree. The map φ lifts to the map ψ : Sn → Sn

defined by

ψ(p) = −Rpe1 = 2(e1, p)p− e1.(4.3.7)

The two solutions of ψ(p) = e1 are e1 and −e1. It is easy to check that
since the dimension n is odd, both differentials

De1ψ : Te1S
n → Te1S

n

D−e1ψ : T−e1S
n → Te1S

n

preserve the orientation. This implies deg(ψ) = 2. Moreover, the quo-
tient map π : Sn → Sn has degree 2 for n odd. It follows that

deg(φ) = deg(π ◦ ψ)
= deg(π)deg(ψ) = 4.

Since the degree of a map is invariant under homotopy, this is a contra-
diction. q.e.d.

Remark 4.3.8. In even dimensions one of the differentials D±e1

preserves the orientation and the other reverses it. Therefore, deg(ψ) =
0 and the proof of Proposition 4.3.1 does not work in this case. In
dimension two the existence of a multiple cap was proved in [Na] using
a more sophisticated topological argument.
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4.4. Test functions and the modified Rayleigh quotient. Let g0
be the standard round metric on the sphere Sn, so that

(4.4.1) ωn :=

∫

Sn
dg0 =

2π
n+1
2

Γ(n+1
2 )

.

Let g ∈ [g0] be a conformally round Riemannian metric of volume
one, that is

∫

Sn
dg = 1. The Rayleigh quotient of a non-zero function

u ∈ H1(Sn) is

R(u) =

∫

Sn
|∇gu|2g dg
∫

Sn u
2 dg

.

We use the following variational characterization of λ2(g):

λ2(g) = inf
E

sup
06=u∈E

R(u)(4.4.2)

where E varies among all two-dimensional subspaces of the Sobolev
space H1(Sn) that are orthogonal to constants, in the sense that for
each f ∈ E,

∫

Sn
f dg = 0. Following [FN], we use a modified Rayleigh

quotient :

R′(u) =

(∫

Sn
|∇gu|ng dg

)2/n

∫

Sn
u2 dg

.

It follows from Hölder inequality that R(u) ≤ R′(u) for each 0 6= u ∈
H1(Sn). It is easy to check that

∫

Sn
|∇gu|ng dg is conformally invariant for

each dimension n so that we can rewrite the modified Rayleigh quotient
as follows:

R′(u) =

(∫

Sn
|∇u|n dg0

)2/n

∫

Sn
u2 dg

where the gradient and it’s norm are with respect to the round metric
g0.

Assume that dg is simple and let a ⊂ Sn be a spherical cap such that
dνa is multiple. Let W ⊂ Rn+1 be the corresponding two dimensional
subspace of maximizing directions. Given a function u : a→ R, the lift

of u, ũ : Sn → R is defined exactly as in Definition 2.7.1.

Proposition 4.4.3. Given s ∈ W ⊂ Rn+1, the function usa = Xs ◦
dξ(a) : a→ R is such that

R′(ũsa) < (n+ 1)

(

4
π

n+1
2 Γ(n)

Γ(n2 )Γ(n+ 1
2 )

)2/n

.



658 A. GIROUARD, N. NADIRASHVILI & I. POLTEROVICH

Proof. The conformal invariance of the modified Dirichlet energy in
the numerator of R′(u) implies

∫

Sn
|∇gũ

s
a|ng dg =

∫

a
|∇gu

s
a|ng dg +

∫

a∗
|∇g(u

s
a ◦ τa)|ng dg(4.4.4)

= 2

∫

a
|∇gu

s
a|ng dg = 2

∫

dξ(a)(a)
|∇gXs|ng dg

< 2

∫

Sn
|∇g0Xs|ng0 dg0.

Here the second and third equalities follows from conformal invariance.
To obtain the inequality at the end we again use the conformal in-
variance as well as the fact that dξ(a)(a) ( Sn. To estimate the de-
nominator in the modified Rayleigh quotient we first note that for any
x = (x1, . . . xn+1) ∈ Sn,

n+1∑

j=1

ũ
ej
a (x)2 =

n+1∑

j=1

x2j = 1.

Therefore, given that
∫

Sn
dg = 1 we obtain:

n+1∑

j=1

∫

Sn
(ũ

ej
a )2 dg = 1.

Now, since W is a subspace of maximizing directions for the measure
dνa defined by (4.2.1), for each s ∈W we have

(4.4.5)

∫

Sn
(ũsa)

2 dg ≥ 1

n+ 1
.

Set

Kn :=

∫

Sn
|∇g0Xs|ng0 dg0.

Combining (4.4.4) and (4.4.5) we get

(4.4.6) R′(ũsa) < (n+ 1) (2Kn)
2/n .

Proposition 4.4.3 then follows from the lemma below.

Lemma 4.4.7. The constant Kn is given by

Kn =
2π

n+1
2 Γ(n)

Γ(n2 )Γ(n+ 1
2)
.

Proof. Recall that g0 is the standard round metric on the unit sphere
Sn. If we consider Xs(x) = (x, s) as a function on Rn+1 then its gradient
is just the constant vector s:

gradRn+1Xs = s.
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This means that for any point p ∈ Sn the gradient of the function
Xs : S

n → R at p is the projection of s on the tangent space TpS
n:

∇Xs(p) = s− (s, p)p.

Therefore, taking into account that |s| = |p| = 1, we get

|∇Xs(p)|n = (|s− (s, p)p|2)n/2 = (1− (s, p)2)n/2,

and hence

Kn =

∫

Sn
(1− (s, p)2)n/2dg0.

Let θ be the angle between the vectors p and s. Making a change of
variables we obtain

Kn = ωn−1

∫ π

0
(1− cos2 θ)n/2(sin θ)n−1 dθ = ωn−1

∫ π

0
sin2n−1 θ dθ,

where ωn−1 is the volume of the standard round sphere Sn−1 given by
(4.4.1).

The calculation of a table integral [GR, 3.621(4)]
∫ π

0
sin2n−1 θ dθ =

√
π Γ(n)

Γ(n+ 1
2)

completes the proofs of Lemma 4.4.7 and Proposition 4.4.3. q.e.d.

Proof of Theorem 1.2.5. If the measure dg is simple, then (1.2.6) follows
from Proposition 4.4.3 and the variational principle (4.4.2). If dg is
multiple, then, as in the proof of Theorem 1.1.3 at the end of section
2.7, one can work directly with this measure without any folding and
rearrangement. Inspecting the proof of Proposition 4.4.3 we notice that
the factor 22/n disappears in (4.4.4) and hence also in (4.4.6). Therefore,
in this case we get an even better bound than (1.2.6). This completes
the proof of Theorem 1.2.5. q.e.d.
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[Sz] G. Szegő, Inequalities for certain eigenvalues of a membrane of given area, J.
Rational Mech. Anal. 3, (1954), 343–356, MR 0061749, Zbl 0055.08802.

[Ta] M. Taylor, Partial differential equations. Basic Theory, Springer-Verlag, New
York, 1996, MR 1395148, Zbl 0869.35002.

[We] H. F. Weinberger, An isoperimetric inequality for the N-dimensional free

membrane problem, J. Rational Mech. Anal. 5 (1956), 633–636, MR 0079286,
Zbl 0071.09902.
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Université de Provence
39 rue F. Joliot-Curie

13453 Marseille Cedex 13, France

E-mail address: nicolas@cmi.univ-mrs.fr

Département de Mathématiques et Statistique
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