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LAGRANGIAN TORI IN R*

KARL MURAD LUTTINGER

Introduction

Let (R*,w) denote the standard linear symplectic four dimensional
space endowed with the (Darboux) coordinates (p;,p2, ¢, ¢2) in which
the symplectic form is represented as

w=dpAdq=dp, Ndg, + dp; \ dg,.

An immersed surface is said to be Lagrangian if the symplectic form
pulls back under the immersion to the 2-form that is everywhere zero.
There are a number of fairly obvious examples: the (p;, p;) plane or any
domain there of for instance. It is easy to see that the only compact,
orientable surface that admits a Lagrangian embedding into (R*,w) is
the torus: the pairing v — w(-,v) establishes an isomorphism between
the normal bundle and cotangent bundle of a Lagrangian submani-
fold. The only known examples of embedded Lagrangian Tori are all
smoothly isotopic to a Clifford torus (i.e., the Cartesian product of the
unit circle in the (p;,q;) plane with that of the (ps, ¢;) plane). A well
known problem in symplectic topology is the question of whether or
not any Lagrangian tori are topologically knotted [1]. In this note it
is shown that a large number of isotopy classes of embeddings of the
torus in 4-space do not contain Lagrangian representatives. In some
sense most isotopy classes are in that ensemble; the author knows of a
sequence of examples to which the present methods do not apply in any
obvious way, but they are all of a rather special nature. Crudely speak-
ing, the results herein will demonstrate that any “sufficiently knotted”
torus can not be isotoped to a Lagrangian embedding.

The purpose of the proof is to show that the Lagrangian condition
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puts severe constraints on the topology of an embedding; it is shown
that a countable number of “symplectic” Dehn surgeries can be per-
formed on any Lagrangian torus, while on the other hand a theorem
of M. Gromov [7] implies that all of the resulting symplectic manifolds
are symplectomorphic to linear symplectic 4-space. Thus a Lagrangian
embedding can occur in an isotopy class of embeddings only if the afore-
mentioned sequence of surgeries are (differentiably) trivial on knots in
that class, i.e., the manifolds resulting from the surgeries are all dif-
feomorphic to R*. It is easy to see that the surgeries are trivial on
the Clifford torus, and one can see a priori that on an arbitrary torus
the surgeries must result in punctured homology spheres. As we shall
see, the condition that these manifolds are all diffeomorphic to R? is
an extremely strong restriction on the topology of the embedding in
question.

1. Symplectic rigidity

Before elaborating on the surgery construction it is necessary to men-
tion a remarkable symplectic rigidity result of M. Gromov and its ex-
tension due to D. McDuff.

Definition. Let (M,w) be a symplectic 4-manifold, where M is
noncompact with an end diffeomorphic to S® x (0, 00). (M, w) is said to
be standard at infinity if there exists a symplectomorphism between
an end of M and a neighborhood at infinity in (R, w). In other words,
there exist compact sets K C M, L C R* and a diffeomorphism 1) :
(M — K) - (R* — L) such that ¢¥*(w) = w. Gromov has proven the
following.

Theorem. (7] If (M, w) is a symplectic 4-manifold which is standard
at infinity, and H*(M,R) = 0, then (M,w) is symplectomorphic to
(R, w).

In [10] D. McDuff proves that if the cohomological assumption above
is omitted then, (M, w) is either symplectomorphic to (R*,w) or (R*,w)
blown up at finitely many points.

2. Symplectic Dehn surgery
Let T be a 2-torus embedded in R*. A Dehn surgery on T is, loosely
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speaking, any process in which a tubular neighborhood of T" is removed
and then reattached via some diffeomorphism of the boundary of this
neighborhood. It is convenient to introduce some notation; let N(T') =
T x D be the tubular neighborhood, T = N(T) and F : T® — T3
be the attaching map. These data, together with a framing (i.e., a
parameterization of N(T')) define the surgery which gives rise to a
smooth manifold

M = (R — N(T)) Up (N(T)).

The surgery is said to be trivial if M is diffeomorphic to R*.

We will call the surgery symplectic if F extends to a symplectomor-
phism of a tubular neighborhood of T2. In this case the symplectic
structures of N(7T') and its complement are collated by F', giving rise
to a symplectic structure on M. We will call a symplectic surgery
symplectically trivial if M is symplectomorphic to R*. In this paper
we are concerned only with symplectic Dehn surgery on a torus in R*;
the notion is obviously well defined in complete generality, i.e., one can
easily extend the definition to surgeries on submanifolds of an arbitrary
symplectic manifold. Such constructions are extremely local in nature
- on R*, for example, the process (at most) modifies the geometry in a
neighborhood of T'. Thus, by Gromov’s theorem, any symplectic Dehn
surgery on R* that does not affect second cohomology results in a sym-
plectic manifold symplectomorphic to R*. This is an observation that
will be crucial in what follows, however it is worth mentioning a much
stronger version of this statement. For elementary topological reasons,
(additivity of signature) it is impossible to obtain a blow up of the ball
from a Dehn surgery on an embedded surface. This fact, combined
with the theorem of McDuff gives a proof of the following.

Theorem 1. All symplectic Dehn surgeries on surfaces in R* are
symplectically and hence differentiably trivial.

This observation should be thought of as a manifestation of sym-
plectic rigidity - more generally, very few surgery or other topological
constructions work in the symplectic category.

To define the surgeries we need to begin with a natural choice of
parameterized tubular neighborhood of a Lagrangian torus. For this
we will need a corollary of a basic parameterization lemma known as
the relative Darboux-Weinstein theorem. A number of good references
exist for further details of the symplectic topics discussed here, among
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them are 2], [3] and [12]. The cotangent bundle of any smooth manifold
has a canonical symplectic structure in which the zero section is a
Lagrangian submanifold. By the relative Darboux-Weinstein lemma,
any Lagrangian torus has tubular neighborhoods symplectomorphic to
tubular neighborhoods of the zero section of the cotangent bundle of the
torus. Thus one has the following choice for a parameterized tubular
neighborhood of a Lagrangian torus: N(T) = {(z,y,r,0) : r < 1}
where (z,y)(mod 1) are angular coordinates on 7', and (r, ) are polar
coordinates on the fibers. Note that one can think of this as the unit
disc bundle for a flat Riemannian metric on the torus. For each pair of
integers, (m, n) we will define the following diffeomorphism of ON(T') =

{(z,y,1,0)}:
Fon(z,y,1,0) = (z + mb,y +nb, 1,0).

If (k,L) # (m,n) is another integral pair, then F} ; and F,, , induce
different maps on homology and are therefore not isotopic. In particu-
lar, if (m,n) # (0,0). then F,, , is not isotopic to the identity. In the
parameterization we have chosen the symplectic form w to assume the
representation

w = d(r[cos2mfdz + sin2mOdy)).

One sees by a trivial calculation that F,, , preserves the restriction of w
to the tangent bundle of N (T'). Thus F,, , extends to a symplectomor-
phism of a neighborhood of N (T'). This completes the construction of
the infinite family of symplectic Dehn surgeries that can be performed
on a Lagrangian torus. This family of isotopy classes of gluing maps is
actually uniquely determined by the meridian element (boundary of a
normal disc) which is itself uniquely determined (up to isotopy) by the
torus embedding; the meridian determines a product structure S* x T
of T? and therefore a direct sum decomposition Z + Z?2 of H,(T?, Z).
The subgroup of SL3(Z) stabilizing 0+ Z? coincides with the family of
attaching maps. Note that the T factors can be realized as Lagrangian
tori which can be thought of as Kolmogorov Tori for the geodesic flow
of a flat Riemannian metric on the zero section.

3. Obstructions to Lagrangian embeddings

The topological obstructions to a Lagrangian embedding can be
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stated in the language of classical knot theory. To do so we need
to recall some definitions. Let G be a finitely presented group. An
element is said to normally generate G if G is generated by the set
of all conjugates of this element. It is a classical result of knot the-
ory that the knot group is normally generated by the meridian curve,
and this is true also for the fundamental group of the complement of a
closed embedded surface in R* (see [11]). There exists a topologically
preferred family of framings (i.e., product structure on the 3-torus) for
a 2-torus in R* consisting of the meridian as S* factor and a “longi-
tudinal” 2-torus factor corresponding to the kernel of the surgective
homomorphism on one-dimensional homology from Z3 onto Z induced
by the inclusion map of the 3-torus into the knot complement. Note
that the map is indeed surjective since the meridian generates the one-
dimensional homology of the knot complement. The homomorphism
determines a unique isotopy class of 2-torus factor which we can choose
as the longitude. We will call an element of the knot group a longi-
tude if it is in the image of the fundamental group of the longitudinal
torus. Thus a topologically preferred frame gives us well defined lon-
gitudinal elements. It is shown in this paper that a Lagrangian torus
has a symplectically preferred family of framings-those corresponding
(under a Darboux parameterization) to Kolmogorov foliations for flat
Riemannian metrics.

Theorem 2. For a Lagrangian torus the topologically preferred
framings and symplectically preferred framings coincide.

Proof. 1t suffices to show that a symplectic frame is topological- this
amounts to showing that the associated 2-torus factor has trivial image
in the first homology of the knot complement. If a longitudinal curve
d was homologically non-trivial in the knot complement, then it could
be decomposed as a sum: § = ny + [, where [ is a longitudinal element
for the topological framing. We can assume , without loss of generality
, that ¢ corresponds to a compact one-dimensional subgroup of the 2-
torus. Now by assumption ¢ is longitudinal for the symplectic framing,
so we can define a symplectic Dehn surgery that changes v to its sum
with any multiple of § we choose. The symplectic manifold arising
from this Dehn surgery will not be simply connected , indeed , the
first integral homology group will be cyclic since the one-dimensional
homology of the knot complement is an infinite cyclic group generated
by the meridian, and the surgery kills a positive integral multiple kv of
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the meridian in homology. Thus the one-dimensional homology of the
surgered manifold is the cyclic group of order k. Another proof of the
equivalence of framings is found in the paper [6].

We can now state the obstruction to a Lagrangian embedding;:

Theorem 3. Let T be a Lagrangian torus in (R*,w) and let G be
its knot group. Then G is normally generated by every element of the
form [ x vy, where | is any longitude, and 7y is the meridian.

Proof.  For each [ there exists a symplectic Dehn surgery that
takes the meridian « to its sum with /. This changes the fundamental
group by adding the relation [ * v = id . But this relation must kill
the fundamental group, hence the knot group is normally generated by
lx7.

There are a number of isotopy classes of torus embeddings into R*,
which are very easily seen to be unrealizable by Lagrangian embed-
dings. An infinite collection of such examples is discussed below.

The examples we will discuss are torus spin knots. Such a surface
can be thought of as the orbit of a nontrivial classical (S') knot in
a 3-dimensional half space under an S' action orthogonal to this half
space. In this case the torus knot has a rotationally symmetric tubular
neighborhood. The boundary of such a neighborhood is the orbit of
the boundary of a tubular neighborhood of the classical knot while the
meridian of the torus knot can be taken to be a meridian of the classical
knot (Note: the meridian determines a rotationally symmetric prod-
uct structure). An easy application of van Kampen’s theorem shows
that the fundamental group of the complement of the torus spin knot
coincides with that of the classical knot, from which we immediately
conclude that there are infinitely many distinct isotopy classes of such
embeddings of the torus.

Theorem 4. No nontrivial torus spin knot admits a Lagrangian
realization in (R*,w).

Proof. Assume that a nontrivial Lagrangian torus spin exists.

There are an infinite number of nontrivial symplectic Dehn surgeries
that can be performed on a torus spin knot - namely, the rotation-
ally symmetric ones, i.e., those arising from gluing maps induced by
translations of the form (0,n) of the 2-torus. (Note: these are the only
nontrivial symplectic Dehn surgeries in this case.) By virtually the
same application of van Kampen’s theorem as above one finds that the
4-manifolds constructed by these surgeries have fundamental groups
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that are isomorphic to those of the 3-manifolds arising from the re-
striction of the surgery to the classical knot. The fact that all (but
at most one!) of these groups are nontrivial follows from the cyclic
surgery theorem in classical knot theory (see [4]). By Theorem 1 we
therefore conclud that no embedding of this type can possibly be La-
grangian.

There is a sequence of isotopy classes of embeddings of the torus to
which Theorem 1 does not apply (in the most obvious way). Define a
localized knot of the torus to be one obtained by attaching an unknot-
ted handle to a knot of the 2-sphere in R*. The resulting embedding of
the torus has the property that the 2-torus fibers in the boundary of a
tubular neighborhood carry trivial fundamental group in the knot com-
plement. Consequently, all symplectic Dehn surgeries result in simply
connected manifolds, so the methods of this paper do not apply in an
obvious fashion. It is also important to realize that great care must
be taken in attaching the handle: if the handle is in any sense knotted
relative to the 2-sphere knot (there are infinitely many ways to do so),
then the resulting torus embedding can easily violate the knot obstruc-
tions above and can be ruled out as a Lagrangian embedding. The
localized knots are the only examples known to the author at this time
that can not be ruled out. At the same time it should be said that we
have only applied a small portion of the full strength of these results
- the fact that the symplectic manifolds arising from these surgeries
are symplectomorphic to (R*,w) is a strong conclusion; perhaps the
full strength of this fact can be applied in some clever fashion to the
localized examples. In [5] it is shown that if a Lagrangian knot is in
some sense geometrically localized, then it is trivial i.e.,symplectically
isotopic to a product torus. The fibered surgery construction has a
number of other applications as well. By performing symplectic Dehn
surgery on cohomologically nontrivial Lagrangian tori in symplectic
4-manifolds one can create new compact, symplectic (non-Kéahlerian)
manifolds. Indeed, many infinite classes of such examples arise from
these constructions [8].

Other applications can be found in [6].
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