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CONVERGENCE OF THE ALLEN-CAHN EQUATION
TO BRAKKE'S MOTION BY MEAN CURVATURE

TOM ILMANEN

Abstract

The equation duε/dt = Auε - (\/ε2)f(uε) was introduced by Allen and
Cahn to model the evolution of phase boundaries driven by isotropic
surface tension. Here / = Fr and F is a potential with two equal
wells. We prove that the measures dμ\ = ((ε/2)\Duε\2 + {l/ε)F{uε)) dx
converge to Brakke's motion of varifolds by mean curvature. In conse-
quence, the limiting interface is a closed set of finite %?n~x-measure for
each t > 0 and of finite ^"-measure in spacetime. In particular the
limiting interface is a "thin" subset of the level-set flow (which can fatten
up) and satisfies the maximum principle when tested against smooth, dis-
joint surfaces moving by mean curvature. The main tools are Huisken's
monotonicity formula, Evans-Spruck's lower density bound and equipar-
tition of energy. In addition, drawing on Brakke's regularity theory, there
is almost-everywhere regularity for generic (i.e., nonfattening) initial con-
dition.

Introduction

The equation

was introduced by Allen and Cahn in 1979 to model the motion of phase
boundaries by surface tension [2]. Here / is the derivative of a potential
F with two wells of equal depth at u = ± 1. The equation is the gradient
flow of

Mε[u] = J^\2 ^

sped up by the factor l/ε.

The effect of - ( l / ε ) 2 / is to force u to approximate a characteris-
tic function, with a transition layer of width approximately ε and slope
approximately C/ε. Heuristically, the interface should move by mean
curvature in the limit.
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The energy density is

Since με is the quantity whose integral decreases, it must represent surface
measure in the limit. Accordingly, we try to pass to limits in the sense of
Brakke's varifolds moving by mean curvature. We succeed by combining
Brakke's convergence method [5, Chapter 4], an ε-version of Huisken's
monotonicity formula [23], and the lower density bound of Evans and
Spruck[18, 6.2].

The key step is to prove that the quantities (ε/2)|Z)ι/| dx and
(l/ε)F(uε)dx become equal in the limit. This is to be expected from
the asymptotic form uε « gε(r), where qε is the one-dimensional stand-
ing wave for (*) and r is the signed distance to the front. This result is
a kind of "equipartition of energy" for the parabolic problem.

Evans, Soner, and Souganidis [15] have proved that u converges locally
uniformly to ±1 except possibly on the corresponding level-set flow. (For
an explanation of the motion of level-sets by mean curvature, see Evans
and Spruck [16] or Chen, Giga, and Goto [13].) Bronsard and Kohn [7]
proved that

*/'(., t) -+ ±1 -S^-a.e. for each t > 0,

u ( , •) -> ±1 3* -a.e.

Thus our results are particularly of interest in the case that the correspond-
ing level-set flow fattens up. In particular, we show that for each t > 0,

u\{ , t) —• ±1 locally uniformly

except on a closed set of %?n~ -measure zero, and

Mβf'( , •) —• ±1 locally uniformly

except on a closed set of ^"-measure zero. This closed set is the support
of the limiting measure, and lies within the corresponding level-set flow.
See Corollary 9.2. It is a "set-theoretic subsolution" of motion by mean
curvature as defined in [25], with the distance function property of Soner
[34].

Furthermore, our existence theory is also suitable for the regularity the-
ory of Brakke [5] as exploited in Ilmanen [26].

Broader context, including penalized harmonic map problem. This pa-

per addresses questions raised by Bronsard and Kohn [7] and by De Giorgi
in his white paper [14]. Particularly interesting is the relation between the
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ε-W1'2 quantity (ε\Duε\2/2 + F(uε)/ε)dx and the limiting BV quantity
\Du\ dx where the limit u is the characteristic function of an open set E
of finite perimeter.

The paper extends the result of Modica [28] for the elliptic minimization
problem to the parabolic (and stationary elliptic) problem. See also Modica
and Mortola for the connection with Γ-convergence [29], and Frόlich-
Struwe [21] for further discussion.

Equation (*) specializes a more general problem where u is vector-
valued and F takes its minimum on a submanifold N of R^. If u
takes values near one component of N, then the energy f(l/2)\Du\ +
(l/ε2)F(u)dx is asymptotically finite and in the limit we solve the har-
monic map flow problem with target N. This was initially proven in Chen
[11] for target Sn . Using the monotonicity formula and regularity theory
of Struwe [36], the approximation scheme was applied to general targets
in Chen-Struwe [12].

If uε bridges from one component of N to another, then we must
normalize the energy by a factor ε. Each component of N corresponds
to a phase of matter. In the limit, phase boundaries should develop that
move by mean curvature. In this way it should be possible to model the
motion of multiple phases.

In particular, ordinary (two-phase) motion by mean curvature can be
seen as harmonic map flow into S° = {-1, +1} with infinite, but normal-
ized energy.

The Allen-Cahn equation has been studied by Barles, Soner and Sougani-
dis [4], Bronsard and Kohn [6], [7], Carr and Pego [8], [9], X. Chen [10],
Fife [20], Fusco [22], Rubinstein, Steinberg, and Keller [32], and many
others. In particular, de Mottoni and Schatzman established agreement
with smooth motion [30], [31], and Evans, Soner, and Souganidis proved
compatibility with the level-set flow [15]. Our result implies these earlier
results.

Organization. Our first step (§2) is to establish an ε-version of Brakke's
inequality

(In this formula, S represents orthogonal projection onto the tangent
plane of the surface.) However, the resulting ε-version of the formula
contains a discrepancy involving the difference
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In §3 we derive an ε-version of Huisken's monotonicity formula, which
also contains an ξε discrepancy. We prove in §4 that ξε

t < 0, thus es-
tablishing the monotonicity formula. This is equivalent to the condition
\Drε\ < 1, where rε is the ε-approximation to the signed distance to the
front.

Next (§5) we prove that the measures μ£i converge subsequentially to
a limit μt for all t > 0 at once.

In §6, we establish a version of Brakke's Clearing-Out Lemma [5, 6.3].
This immediately yields local estimates on ^ " ^ ( s p t μ , ) . Using the den-
sity argument of Evans and Spruck [18, 6.2], in §7 we get a lower bound
on the (n — l)-dimensional density of μt for %?n~ + -a.e. x e sptμ, and
a.e. t>0.

Combining the density lower bound with the (negative) ξt term in the
monotonicity formula, we show ξ = 0 in the limit (§8) by a "squeezing"
argument. This is what we need to pass to limits in the sense of varifolds
(§9) and establish Brakke's inequality for {μt}t>0 As a consequence,
sptμ, is (n - l)-rectifiable for a.e. / > 0.

In §10, we estimate ^n[\Jt>osptμt x {t} locally.
In §11, we relate the limit measures {βt}t>0 to the characteristic func-

tion obtained in Bronsard and Kohn [7] by J&K-compactness.
The Allen-Cahn limit yields effectively the same structure that arose as

the limit of elliptic regularization in the author's paper [26]. In §12 we
briefly indicate how the results of [26] can be applied in the case of the
Allen-Cahn equation to show that any initial surface can be perturbed to
one whose evolution is smooth ^"-a.e . in space-time.

It seems that approximation by the Allen-Cahn equation yields essen-
tially the full range of Brakke motions (of boundaries), without selecting

Initial: +1 X +1

Evolute:

FIGURE 1. THREE CROSS FLOWS
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"physically stable" ones. For example, there are three flows for the infi-
nite cross shown in the diagram. The third is extremely unstable under
small perturbations, but all three arise as possible limits of the Allen-Cahn
equation with suitable initial data. See Figure 1.

1. Preliminaries

In §§1.1-1.4 we set forth the notation and setting of our convergence
theorem in as much generality as possible. In §§1.6-1.9 we will define
Brakke's varifolds moving by mean curvature (needed in §§2 and 9).

1.1. Equation and measures. Let u be the unique smooth solution of

—u=Au-—f(u) onR x 0,oo ,
(*) at ε1

uε( ,0) = uε

0( ) o n R " x { 0 } ,

where uε

0 is as described in §1.4. The potential F is to satisfy

f = F', F = ίg2,

where
/(-l) = /(O) = /(l) = O,

/ > 0 on (-1,0), / < 0 on (0,1),

/ ( - I ) , / ( l )>0, /(0)<0,

g(-l) = g(l) = 0, g>0 o n ( - 1 , 1 ) .

This hypothesis allows the application of X. Chen's result [10] in Lemma
6.1. It can be weakened to a local condition near ± 1 .

The model is

F = ί(l-u2f, f = 2 u { u - \ ) , g=\-u.

Measures. Define the Radon measures μt, t > 0, by

(2) dμ\ = (j\Du(- ,t)\2 + \F(U\ , 0 ) ) dx.

1.2. Standing wave. Let qε be the one-dimensional standing wave for
(*), that is

(1)

qε

r>0,

(see, e.g., [7]), where ( )r represents differentiation with respect to r. We
can obtain q by solving the first-order equation

(2) qε

r = \
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FIGURE 2. STANDING WAVE

To see that (2) implies (1), differentiate and substitute (2) and f = ggq.
To ensure that the boundary conditions of (2) are attainable, use the fact
that F has two equal wells. See Figure 2.

Note that for any q with q(±oo) = ± 1 , we have

M£[q]= Γ U
J—oo z

where

G' = g, G(- l )

Thus q solving (2) is in fact an absolute minimizer subject to its own

boundary conditions. Note that qε(r) = qι(r/ε). Define

(3) a = Mε[qe] = (G(l)-G(-l).

For the model case F = (1 - u2)2/2, we have

q = tanh(r/ε), G = u-u3/3, a = 4/3.

1.3. Initial surface. Since Brakke motions are so general we expect
the motion can sustain very rough initial conditions. The most general
initial condition is an integral current that is the boundary of a set of
finite perimeter, with bounded density ratios. In concrete terms we can
start the evolution from any (singular) surface that can be approximated
by smooth surfaces. Specifically, let Eo c R" be an open set, M0 = dE0,
and assume

(i) Density bounds.

n j w ) f o r ; t € R . > s > 0 .
<•>„-,«*-'
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(ii) Approximability. (EQ, MQ) can be approximated strongly by

smooth pairs in the sense that there exist pairs {(EQ , Mk)}k>ι with Ek

open, MQ a smooth hypersurface, and

- XEQ weakly-* inBVloc,

β?n~ι [MQ —• %?n~ [MQ as Radon measures.

These conditions allow a variety of singularities in Mo . For example, it
permits the cross of Figure 1.

1.4. Initial data nε

0. We next show how to make EQ into suitable

initial conditions for (*). Let χE : R" —• {0, 1} be the characteristic

function of EQ. In order to use the Allen-Cahn equation (*), we must

approximate 2χE - 1 by smooth functions uε

0: Rn -> [-1, +1] such that

με

0 approximates %fn~x [MQ. To this end we set uε

0 « qe(r0), where r0 is
the signed distance to Mo. Specifically we require

(i) ε\Duε

0\
2/2 < F{uε

0)/ε (initial control of Du),

(ii) με

Q —• a%?n~x [MQ as Radon measures,

(iii) uε

0- 2χEQ-\ in BVl0C,

(iv) μl(Br{x))lωn_χr
n~x <CD for x e Rn , r > 0 (density bounds),

(v) \\uε

0\\C2<C(ε).

The technical condition (i) is essential in the argument of §4 and what
follows, but probably can be weakened or removed by showing it quickly
becomes nearly true. (M. Soner has recently done this [35].)

Proof that this is possible. Let us check that such uε

0 can be constructed

for Eo. Our construction is standard, see, e.g., Modica [28, 2(2)]. First

approximate EQ by EQ as in §1.3(ii). We may assume Mo is compact

by modifying EQ off a large ball. Define

Λx) = {
Note that \Drk\ < 1 a.e. and rk is smooth near Mk . Let rk be a

smoothing of rk that agrees with rk near MQ , and which satisfies {DT^l <

1. Set

Since £Q is compact we can assume that both (iv) and (v) hold for uε

0'
when ε is small enough.
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Condition (i) follows from §1.2(2) and \Drk\ < 1. Let us consider
conditions (ii) and (ii). Fix φ e C®(Rn). For small enough ε (depending
on k) we have

μo(Φ) = J 4>{χ) ( f l^ ε

0 | 2 + ̂ F(uε

oή dx

QJ-

'n-ι
« / aφ(y,0)dJt'n-ι(y), a as in §1.2(3).

Here we use coordinates x = (y, r) near M^, where y e M^ is the

closest point to x and r = r(x). Therefore

(ii;) με

Q « a%?n~x [MQ as Radon measures.

Evidently we also have, by considering the shape of qε for small ε,
(ϋi;) uε

0 « 2χE^ - 1 weakly-* in BV{oc.

Thus (ii) and (iii) hold with Eo replaced by E% . By taking a "diagonal"
subsequence we see that (i)-(v) are met.

1.5. Crude bounds for uε. For periodic solutions, the maximum prin-
ciple implies

| κ β | < l , \Du*\, \D2u\<C(e, Γ ) , XGR\ 0<t<T,

με

t(BR(x))<C(ε,T)Rn, xeRn, 0<t<T, R>0.

These estimates are independent of the periodicity and hence hold by
uniqueness for any smooth solution u of (*).

1.6. Varifold notation. For detailed information about varifolds the
reader is referred to [1], [3], [33]. A general k-varifold is a Radon measure
on R" x Gk(Rn), where Gk(Rn) is the Grassman manifold of unoriented
/c-planes in Rn . We write V^R") for the set of all general /c-varifolds.

When S is a fc-plane, we also use S to denote the orthogonal projection
Rn -+ S. We write A : B for the inner product Y.A^B^ of matrices,
and A V for the application of a matrix to a vector. In this notation we
write the first variation formula (see [33])

δ V(X) = ί DX(x): S d V(x, S)

(1)

= J-X(x)-H(x)d\\V\\(x) i
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Here V is a general varifold, δV is the first variation, | | F | | is the mass
measure, X e C^(Rn, Rn), {e{, , ek} is an orthonormal basis of S,
and H = Hv is the mean curvature vector if it exists. The quantity
DX : S is also written divF X.

1.7. Rectifiable Radon measures. We call a Radon measure μ k~
rectifiable, and write μ e JKk , if either of the following equivalent condi-
tions is met:

(a) μ = %? YX\β •> where X is a locally λ -rectifiable, %fk-measurable

set, and θ e Lloc(^k[X, (0, oo)).
(b) The measure-theoretic tangent plane Tχμ exists /ι-a.e., where we

define Tχμ by

Tμ = lim//v 3 (in the sense of Radon measures)

provided the limit exists and is a positive multiple of <%Γk restricted to
some fc-plane. Here μχ λ(A) = λ~ μ(x + λ^4), for ^ C R " .

In this circumstance there is a corresponding rectifiable k-varifold V =
Vμ defined by

j ψ(x, S) dV(x, S) = J ψ(x, Γ̂ /i) rf//(x) for ψ e C°c(Rn x G^R", R).

Note that μ = \\V\\. The set of all rectifiable fc-varifolds is denoted
RVA:(R/I), and is by definition in one-to-one correspondence with Jtk.
We write ϊf = Hμ = Hv.

1.8. Brakke's right-hand side. If {Mt}t>0 is moving smoothly by mean
curvature, we have the following identity for any test function φ = φ(x):

4- I φdβ?" ' = ί -φH2 + Dφ
at JM, 3M,

•2. j ^ I γ γ J C/tfH '

We call the first term the shrinkage term and the second one the transport
term. Motivated by this, we define 3&{μ, φ) for any Radon measure μ
as follows.

Singular case. &{μ, φ) = -oo if either of the following holds:

(i) μ[{φ>0} i * k .
(ii) \δμ\\_{φ<Q}4ίμt\_{φ>Q}.

(iii) JφH2dμ = oo.

Nonsingular case. Otherwise,

= ί -φH2 + Dφ Tχμ-Hdμ.
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1.9. Brakke motions. A family {μt}ί>0 of Radon measures is called a
Brakke motion provided

(B) Dtμt(φ)<a{μt,φ)

for all φ e C2(R*, R+) and all t > 0. Here μt(φ) = fφdμt and Dtf(t)
is the upper derivate

IE(/(*)-/(*))/(*-0-

The inequality (rather than equality) is required for technical reasons
in §9. It is a true feature of the flow, as illustrated in [26, §6].

Brakke introduced inequality (B) in his monumental 1978 book [5]. Our
definition is slightly stronger than Brakke's since we only look at properties
of the mass measure μ, = ||J^||.

2. Brakke's inequality

We wish to derive an e-version of Brakke's inequality §1.9(b). Let

φ e C*(Rn, R+) and derive

(1)

+ εDφ Du ( -ΔM + — f{u) \ dx.

In comparison with (B) this suggests that

2

dx,

Hdμt ~ εDu ί -ΔM + — f{u) J dx.

Recalling dμ\ - ((ε/2)\Du\2 + (l/ε)F(u))dx, we obtain two approximate
expressions for H:

H_ -Au + f(u)/ε2 _ ε\Du\(-Au + f(u)/ε2)

\Du\ ~ (ε/2)\Du 2
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If only we had (ε/2)|Dw|2 « (l/ε)F(u), these expressions would agree
(heuristically).

We next try to interpret με

t as a varifold. Integrating by parts, we will
make the transport term of (1) look like the first variation - f S: DY(x)
dV(x, S) of the varifold V, where Y = Dφ. Let δ denote the identity
matrix of Rn.

Define the stress tensor T.. by

T = UDu\2δ - εDu ® Du + -F(u)δ.

Observe that

Then

Transport term = / ε ( -Au + -jf{u) jDu Ydx

= f DJ yY*dx = I -T: DYdx

= ί (εDu®Du-^\Du\2δ--F(u)δ) : DYdx
(2) J ^ 2 ε J

= ί- ( | |£>M| 2 + -F(u)\ {δ-v®v)\ DYdx

= ( -{δ-v®v):DYdμt+ Iv %v: DY dζ\,

where v = Du/\Du\, and we define the "discrepancy" Radon measure

(3) det = (^\Du\2-X-F{u)^dx.

We are led to define the general varifold

(4) V(

ε(ψ) = I ψ(x, Du(xf)dμε

t(x), ψ e CC°(R" X G^.R" , R).

This makes sense since by analyticity the set {x: Du(x, t) = 0} is either
all of R" or has Lebesgue measure zero; we exclude the first case. Thus
we obtain

Transport term = - ίS: DY(x) dV'{x, S) - ί v ®v: DYdξ]

= -δVt

e(Y)-fv®v:DYdξε, Y = Dφ,
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and therefore the ε-Brakke formula

(5)

- S: D2φdVt

ε -v®v\ D2φdζε

t .

Note that the second term on the right corresponds to the transport term
of (B) and is weakly continuous with respect to varifold convergence. The
last term is the discrepancy between the transport term of (B) and the
transport term of (2). (It cannot be absorbed in the second term without
creating negative tangent planes.) Thus a major goal will be to show that
ξε —• 0 in the limit. Then the second term (which is a varifold) will match
the transport term of (2) (which can be estimated via the equation). This
will yield a first variation estimate on the limit varifold.

The vanishing of ξ is heuristically reasonable since we expect u « qε(r)
where r is the signed distance to the front, and thus

(6) E-\Du\2 « | ( O W = \

by §§1.1, 1.2(2), and the fact that \Dr\ = 1 a.e.

3. Huisken's monotonicity

Our next task is to derive the ε-version of Huisken's monotonicity for-
mula [24].

3.1. Smooth derivation. Let {Mt}t>Q be compact manifolds smoothly

moving by mean curvature, let μt = βfn~ι \Mt, and let v = v(x) be a
unit normal field on Mt. For any smooth function φ(x, /) we have

= ί-φH2 + 2Dφ.H + S:D2φ + ytφdμt by §1.6(1)

Now fix a "blowup point" (y, s) eRnx(0, oo) and replace φ by Huiskerίs
monotonicity kernel

( t\ \ - | * - > Ί 2 / 4 ( s - ' ) t . aΏn



CONVERGENCE OF THE ALLEN-CAHN EQUATION 429

Thus

. i d e n t l t y m a t r i x ,

d (n-\

2 ( 5 - 0 4(s-t)2

- y) 1/

Miraculously enough, we have

0)

SO

3.2. Apply to ε-equation. For </» € CC
2(R" , R+) we get

dx

+ εDφ • Du ( -Au + -jf(u) J dx

+ ^φdμe

t by §2(1)

dx

+ 2εDφ Du (-Au + \f(u) j dx

- v ® v: D2φdξe

t + (δ - v % v): D2φdμt + §-φdμε

(

f j.( Λ 1 rt N Du-Dφλ= / -eφ i-Au + —f(u) —-£ 1

+ ê  , y / dx-v®v:D dξ,

Φ

at
by §2(2)

2

%— z/ 0 ~"̂ ) ^ φdμt + —φαμt.



430 TOM ILMANEN

The second term on the right-hand side of the above equation is equal to

\2

J Φ (dμ,+dξt),

so we obtain

1 ,, v Du Dφ\2 ,f ( ) ^ j dx
ε

(2) + Λ ~(<5

+ (^u:Dφ+

for φ € Cc (R
n , R + ) . We now wish to insert φ = p s into this formula.

We set φ = ηp, where η is a smooth cutoff function with

0

onBR.

Using the crude bounds of §1.5 and the exponential decay of p, \Dp\,
\D2p\, we can pass to li
into (2). We calculate
\D2p\, we can pass to limits as R —> oo to establish that p may be inserted

-v 0 v: Z>2/> + (i/ £>/>)2//> = />/2(s - 0 .

Together with (1) we obtain from (2):
3.3. Monotonicity formula, ε-version. For y eRn , 0 < t < s,

In the next section we will show the negativity of ξ\ .
For later use we record the following lemma, whose proof we leave to

the reader. Define

which is related to p s(x, t) by

= 2(s-ή.
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3.4. Lemma. Let μ be a measure satisfying §1.4(iv), namely

μ(BR(x))/ωn_{R
n~l <CD, R>0, xeRn.

Then the following hold:
(i) fpr

χdμ<CD (same C).
(ii) For any r, R>0, x e Rn,

hn\BR(x)rχ
p dx < 2 e ' D.

(iii) For any δ > 0 there is γ2 = γ2(δ) > 0 such that for all r > 0 and
all x, xχ with \x - xx\< y2r, we have

pXχdμ<{\+δ)j pr

χdμ

(iv) For any δ > 0 there is γ3 = γ3(δ) > 0 such that for any r,R>0

with 1 < R/r < 1 + γ3 and any x eRn, we have

(pR

χdμ<{\+δ) (pr

χdμ

(v) For any r,R>0 with R/r < 1 we have J ρxdμ< (r/R)n ι f pr

χdμ.

(vi) For any δ > 0 there is a(δ) > 0 such that for all r>0, x e RΛ ,

4. Negativity of {

Formula 3.3 motivates us to prove that ξε

t < 0. As discussed following

§2(5), we expect uε « ^ ε ( r ) , and

since |Dr| = 1. Duly motivated, we define rε(x, t) by

Then, as in the argument following §2(5),

(e/2)\Duε\2

 = β 2

) ' ' *

Thus it is equivalent to show \Drε\2 < 1. By the initial hypothesis §1.4(i),
this holds at t = 0. We will now use the maximum principle to show it
for t > 0. This argument was used by Modica for the stationary case.



432 TOM ILMANEN

From (*) and qr = (l/e)g, qrr = (1/ε2)/ = (l/ε2)ggq, we obtain,

writing r = rε,

u] = Auε - f(uε)/ε2, q\τt = qεAr + qrr\Dr\2 - qrr,

so

rt = Ar+\gq(\Dr\2-\)

and

\Dr\] = A\Dr\2 - 2\D2r\2 + -Dr . Z)^(|2)r|2 - 1) + -gqDr Z)|Z)r|2.

At a maximum of \Drε\2 that is equal to 1, each term on the right is
negative or zero.

Assuming first that the function uε is periodic, this implies \Drε(-, t)\
< 1 by the maximum principle. To extend to the nonperiodic case, ap-
proximate ι/( , 0) by a periodic function uε

R( , 0) of large period, and
solve (*). Using the crude bounds in §1.5, we pass to limits as the period
goes to infinity. Thus we obtain the estimate \Drε\2 < 1 for some solution
of (*) with the same initial condition u(-, 0). By uniqueness of uε, we
obtain \Drε\2 < 1 for uε, and therefore have proven

4.1. Negativity of ξ. For u solving (*) subject to the initial condi-
tions of §1.4, we get |Z>rε|2 < 1 on R"x[0,oo) or equivalently

dξε<0 f o r a l l ί > 0

and therefore, by §3.3,

for 0 < / < s, yeRn.

5. Passing measures to limits

As a result of §§3.3, 4.1, and 1.4(iv), we immediately have
5.1. Density bounds. There is c(ε) | 0 with

(ii) με

t(BR(x)) < CDRn~l for (x, /) e Rn x [0, oo), R > c(ε).
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5.2. Growth bound. For φ e C^(R
n
 , R

+
) we have

2

-eφ ί-Au + \f(u)J + eDφ Du (-Au + \f(u)\ dx

-β0 -An + - ^ / ( K ) + ^

2

> 0}), where Cx{φ) = sup ^ ^ < sup\D2φ\
{Φ>o} 2 0

<C2(0)Z) by §5.1.

Then using §2(1) we obtain

5.3. Semidecreasing property. For φ e CC

2(R",R+), the function
με

t(φ) - C2{φ)Dt is nonincreasing.
5.4. Passing to limits in μt . The following argument originates in

Brakke [5, §4]. The version which we give is identical to [26, §7].
Choose a countable dense set B{ c [0, oo). By the weak compactness of

Radon measures, the density bound of §5.1, and a diagonal argument, we
may select a subsequence {εi}i>ι and measures {fit}teB_{ such that μt

ι —•

μt for t € Bχ. Now let {φi}i>ι be a countable dense set in C2(R" , R + ) .
By the semidecreasing property 5.3, there is a cocountable set B2 c [0, oo)
such that for t e B2 and all / > 1, μs(φj) is continuous at t as a function
of s e Bχ.

For any fixed t e B2 , we can find a further subsequence {/VJ}/>i a n ^

a limit μ, such that μ*iJ -+ μt. Then by Property 5.3, {μs{Φi)}seBχΌ{t}

is continuous at t, for each /. Since {0/}/>1 is dense, it follows that

μt is uniquely determined by {μs}seB Therefore the full subsequence

converges: με' —• μt. In this way we define μt for each t e B2.
On the countable set [0, oo)\B2, we perform a further diagonal argu-

ment, and thus obtain

5.5. Convergence of measures. There is a subsequence {e/}/>1 such that

με

t

ι —• μ for all t>0 as Radon measures on Rn .

5.6. Monotonicity. (See §§3.3, 4.1.) For each (y, s)' e Rn x (0, oo),

the quantity f py s dμt, 0 < t < s, is nonincreasing.

6. Clearing out

To proceed further, we will prove a clearing-out lemma like that of
Brakke [5, 6.3] or Evans and Spruck [18, 6.1], but using the monotonicity
formula.
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6.1. Clearing-Out Lemma, (i) There is η > 0 depending on n, F such

that fpyySdμt < η implies (y, s) j \Jt'>^&μt> x {*'}.

(ii) If (y, s) £ U,/>ospt/V x {*}* ^*CT ^ r e ^ α neighborhood U of
(y, s) in Rn x [0, oo) swcA ί/zatf wβ/ —• w uniformly on U to either +1 or
- 1 .

From the Clearing-Out Lemma come several standard consequences
about the support of μt.

6.2. Corollary (Clarity of Support), sptμ = \Jt'>osptμtι x {*'}

rf/z = dμt> dt'.

sptμ C U ί > o sptμ, x ( 0 *s immediate. For the converse, let
(y,s) £ sptμ. Then (y, s) e U, U open, with Un sptμ = 0. Thus
f py s dμt -> 0 as t T s , and (y, s) £ U ί > o sptμ, x {t} by Lemma 6.1(i).

Remark. We see that u = lim u£i is locally constant off spt μ .
6.3. Corollary (Measure of Support). Let U C Rn be open. Then,

writing (sptμ), for sptμ Π (Rπ x {t}), we have

(i) βrH'ι((sptμ)t nU)< C(D)limsVμs(U) for t > 0,

(ii) ^n~\(sptμ)ίΠBr) < C(D)DRn~ι for t>0,
(Hi) (sptμ)0 = M 0 .
We defer the proof to the end of the section.
Remark. C is independent of D if we use Brakke's compactly sup-

ported Clearing-Out Lemma. This will only be possible after §9.
6.4. Empty Spot Lemma. There are β{, τ 0 , τχ, C > 0 such that for

all y eRn, R > 0, and 0 < ε < β2R, if |*/( , 01 > 1/2 on BR(y) then

(i) \u\> \-ε/R

on BR,2{y) x[t + τ 0 ε 2 | l o g ( ε i ? ) | , t + T j i ? 2 ] ,

,2for s e[t + τ0ε
2\ log(εi?)|, t + τχR

2].
To prove Lemma 6.4, we will apply the following lemma of X. Chen

who establishes the result by means of a well-chosen subsolution.
6.5. Propagation of interface (adapted from [10, Theorem 3]). Let /

satisfy the conditions in §1.1. Let hε solve (*). Let {Nt}0<t<T be a
smooth solution of the mean curvature flow with bounded curvature, and
let d(x, t) be the signed distance to Nt. Suppose there are c, C, Cx > 0
such that

\hε(x,0)\>c\d(x,0)\, \Dhε(x,0)\<C,
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whenever \hε(x, 0)| < Cχ, where we assume hε(-, 0) takes the same sign

as rf( ,0).
Then there exist τ 0 , ε 2, M2 > 0 such that for all 0 < ε < ε2 , τQε2 | logε|

< t < T, we have

A (x, 0 > 1 - ε forrf(x, ί) >M 2 ε | logε | ,

hε(x, t)<-l+e foτd(x, t) < -Af2e|loge|.

Proof of Lemma 6 A from §6.5. 1. Let us first prove (i). Since (i) is

invariant under scale changes, we may as well assume R — 1, / = 0.

Accordingly, let u be a solution of (*) with |wε( , 0)| > 1/2 on Bχ\

wε( ,0) > 1/2 without loss of generality. Let {Nt}Q<ί<τ be a sphere

shrinking by mean curvature with radius

r(t) = y/2(T-t), 0<t<T,

where T is chosen so that r(0) = 5/6.

2. Let A( , 0) be a C 2 radial function (independent of ε) such that

J 1/2 on£ 2 / 3 ,

\ - 1 on R π \i? 1 ,

A( , 0 ) > 0 o n 5 5 / 6 , A( , 0 ) < 0 o n R " \ £ 5 / 6 ,

|A(JC, 0)| > | d ( x , # 0 ) | when |A(JC, 0)| < 1/2,

|Z)A( , 0 ) | < 7 o n R " .

Then A( , 0) satisfies the hypotheses of §6.5. Let hε be the solution of

(*) with initial data A( , 0) , where 0 < ε < ε2 . By §6.5, we have

hε > 1 - ε for τ 0 ε 2 | l ogε | < K Γ , I G £r(0_M2e|ioge|

Now choose τχ > 0 , 0 < /?2 < τ 0 such that

^ 1 ^ = 2/3, r(ή - M 2 ε | l o g ε | > 1/2 for 0 < t < τχ, 0<ε<βχ.

Then for 0 < ε < β2 we have

hε > 1 - ε on £ 1 / 2 x [τ 0 ε 2 | logεj, τ 3 ] .

3. Now let wε satisfy the hypotheses of Lemma 6.4 with i? = 1, t = 0 .

Then wε( , 0) > A( , 0) and it follows from the comparison principle that

uε > 1 - ε on 2?1/2 x [τ 0 ε 2 | logε |, τχ], as desired for (ii).
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4. To prove (ii), we estimate from (i) with general R,

M(BR/2(y)) = I ί\Du\2 + X-F(u) dx< I -F{ιf) dx by step 4
JBm

 l £ JBm «

R/2

Proof of Lemma 6.1. The basic idea is to use Huisken's monotonicity

formula to control the mass of με locally, to convert this to pointwise

control of u via (ε/2) \Du\2 < (l/ε)F, and then to use X. Chen's work

to drive uε to ± 1 locally uniformly.

1. Let y e Rn, s > t > 0. Let η > 0 be an arbitrary number to be

selected later, and assume f p sdμt < η. Observe that by Lemma 3.4(iii),

(iv), (v), / p y sdμt varies continuously with (y, s), so there is a small

neighborhood U of (y, s) such that f p , s>dμt < 2η for (j/, sf) e U.

By the density estimate 5.1 (i) and the exponential decay of p , there will be

some iQ = io(η, D, {^'}/>i) s u c h that for all / > i0 and each (y , / ) e

U, we have / py, s, dμ8/ < 3η. We may assume that U € R" x (t, oo).
By the ε-monotonicity formula 3.3 and §4.1, we have for ( / , s) e U,

provided that εt is small enough that εf/2 < inf^^ '̂ - t) > 0. Then we
obtain writing ε for εt,

(1)

where C = (n).
2. Now let us pretend that

(2) \uε(y',s'-ε2/2)\<l/2.

In the notation of the proof of the negativity of ξ in §4.1, we have

ε ε , ε N 1 , ε , N

w =q (r) = q (r / ε ) .
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Then (2) implies that

437

r'(y'9s'-ε2/2) GH
Also, \Drε\ < 1 by §4.1. Thus

That is,

< C ε + l ε on Be(y').

Then

\u( ,s'-ε2/2)\<ql(C+l) = c< 1 on B£(y').

F(u)>c>0 on Bε(y') x {s'- ε2/2},

and therefore

(3) f \\Duε\2 + l-F(uε)dx > ωnε" ttc) = as""1,

where c = c(n, q ) .

3. It follows from (1) and (3) that if \ue{y',s - ε2/2)\ < 1/2, then

cεn~ < Cηεn~ . We now fix η = η(n , q ) so small that this is impossible.

Therefore, we have proven that there is U 3 (y, s) and /0 , independent

of ε, such that for / > /0 and (/, s) e U, we have

By decreasing εt, we can see that there is a smaller neighborhood V of

(y,s) such that \uSi\> 1/2 on V.

4. Now fix a point s0 < s and a radius i? > 0 such that BR(y)x {s0} c

F and (y, 5) G BR,2(y) x (50, s0 + τ7?2). From Lemma 6.4(iii) it follows

that

- | onBR/2x

n '

l o g -

μ ,{BR/2{y)) < Cε(JR
n ' for s e k + τoε

2 log^ , s0 + τ,i?21 ,

provided 0 < ε; < β0R. Passing to limits, we obtain

μs'{BRn{y)) = 0 f°Γ s' n e a r s

uε' —* ±1 uniformly near (y, s),

which provides Lemma 6.1(i).
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5. To prove Lemma 6.1(ii), let (y, s) £ U / > o sptμ, x {t}. Then

f py s dμt —• 0 as s -> t, so by the above,

u{y , s) = lim u6i(y , s) = ±1 near (j;, s).

Proof of Corollary 6.3. (i) It suffices to prove the result for every com-
pact set K C U. Write X, = ( s p y , . Let (x, t) e Xt Π A:. Let δ > 0,
α > 0 be arbitrary. Then by the Clearing-Out Lemma 6.1, for each r > 0

Choose α = a(δ) according to Lemma 3.4(vi), and obtain

n<μt^μl2{Br)lωn_χr a +δD.

Choosing δ = δ(D) so that δD - η/2, we get

' — , Λ „ « — 1 w — 1

ωn_,r α
where a - a(D). Now for a fixed r > 0, consider the covering of Xt Π K
by the collection

& = {Br(x):xeXt}.
By the Besicovitch covering theorem, there are countable subcollections
38χ, , 3SB{^ such that each 3S{ is disjoint and

B(n)

^eU U W

Now we calculate

Σ Ht-Jί/iWXj)) by( l)

Σ - ^ Γ - ^ - . 2 r 2 / 2 ( ^ : dist(x, ΛΓ) < r})
i a η

for r small enough. By sending r [ 0, we obtain

(U)9

which is (i). Now (ii) follows from (i) and 5.1(ii).
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For (iii), consider any closed ball BR(y) disjoint from Mo. As εt j 0

we have \tfl(x, 0)| —> 1 uniformly for x e BR{y). It follows from Lemma

6.4(ii) that μs(BR/2(y)) = 0 for s e [0, τχR
2]. In particular, (y, 0) $ X

^ o / ί O ; i.e., y £ X Q . Thus Xo c MQ . Now Mo C
because Mo = sptμ0 by §1.4(ii). Hence XQ = MQ, proving (iii).

7. Density lower bound

We now apply the technique of Evans and Spruck [18, Lemma 6.2] to
prove two lower density estimates. The Hausdorff measure n - 2 + ε is a
slight improvement on their work.

7.1. Density lower bound. Let {μt}t>0 satisfy the Clearing-Out Lemma
6.1. Define

: ΈmjpxZ°=

where η is as in Lemma 6.1. Then for δ > 0, ^ " " ^ ( Z , 0 ) = 0 for a.e.
t>0.

The second density lemma involves the forward heat kernel.
7.2. Forward density lower bound. Let {μt}t>0 satisfy the Clearing-Out

Lemma. Define

Z~ = {{x, ί)

Then for ε > 0, #" l ~ 2 + β (Z ί " ) = 0 /or α.̂ . ί > 0.
We will prove the second density Lemma 7.2 and leave the first, whose

proof is simpler, to the reader.
Proof of the bound 7.2.1. We have

Z"=

where

τ>0
η2<η

Z ^ 2 ' τ Ξ | ( x , t) G spt/r. jPy,M> *)dμs{y) < η2 for all 5 G (ί, ί + τ]J .

It suffices to prove ^ " ~ 2 + ε ( Z ^ 2 ' τ ) = 0 for each fixed η2<η, τ > 0 .
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tΞΞS~Ύ (χ,t)

F I G U R E 3. CONTROLLING F U T U R E DENSITY

Let δ > 0 be a constant to be chosen momentarily. Let γ = γ(δ) be

the constant γ2 in Lemma 3.4(iii). Let {x,t)eZηi'\ se[t,t + τ], and

define r by r 2 /2 = s - t. Then for x € B (x), we have

< (1 + δ) ί pr

χ(y) dμs(y) + δD by Lemma 3.4(iii)

= (l+δ)JpyJx9t)dμs(y) + δD

<(l+δ)η2 + δD since (x, t) e ZV2'τ, se(t,t +

We now choose δ = δ(D, η - η2) so that (1 + δ)η2 + δD < η. Then

/Px'ts+ΐβly' s)dlxs^y) < V f o Γ x' e Byλx) - N o t e t h a t y =
See Figure 3.

Then by the Clearing-Out Lemma, we have (x , t') <£ \Jt"

and in particular (x , t') <£ Zηi'\ where t' ΞΞ s + r2/2 = t + r2. We have

shown that the relation

\t' -t\<2τ, \x - x\ < yr, where r2 = t - t

forces either (jc,ί) φ. ZΆl'τ or ( x ' , ί ' ) ^ Z ^ 2 ' τ . In consequence, for

(x , ί) G Zη2'τ we have proven that P2τ(x, ί j n Z ' 1 2 ' ' = (x, ί) > where

P 2 τ ( x , ί) is the truncated double solid paraboloid defined by

as shown in the figure.

2. We further subdivide Zηi'τ into sets of the form

Z' = = Z^' τ n x [t0 - τ, ί0 + τ]), x e Rn , t > 0.
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\ /

7 \

FIGURE 4. PICTURE OF Z1

Then Z^ 2 ' τ is a countable union of such sets Z ' , so it suffices to prove
βTn~2+e(Z't) = 0 for a.e. t > 0, where Z[ = Zf Π {Rn x {t}). Because
P2τ(x, t) is taller than Z' for (x, t) eZf, the set Z 7 meets each vertical
line {x} x R in at most one point. See Figure 4.

Fix δχ > 0 and cover the projection πR*(Z') c Bχ(x) c R" x {0} by a
collection of balls {Br(xi)}i>ι, where xz e nR»(Z'), rf. < <5j, and

i=\

Let (x., tt) be the point in Z' corresponding to x.. By step 1, the cylin-

ders Λr(jcf.) x [ti - rj/γ2, ^ + rj/γ2] collectively cover Z'. We calculate

with approximate Hausdorff measure

n—2+z

ϊ=ί Jti~rϊ/y

<C(η-η2,D)δll2fn(Bι(x0)).

Let 5, J. 0 and obtain by the monotone convergence theorem

ίπ+τ

ι o ~ ι

Taking countable unions, we find

n~2+t(Z~)dt = 0,

yielding the result.
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8. Vanishing of ξ (equipartition of energy)

Define dξε = dξεdt, dμ = dμ\dt and recall ξε < 0, \ξe\ < με.

Assume (via a further subsequence) that ξ£i —• ξ, με' —• μ = dμt dt as

Radon measures on Rn x [0, oo). We now are in a position to prove ξ = 0.

Recall formula 3.3 and §4.1:

Ttl " / ^ 7 Γ < I W

Heuristically, if { < 0, then (β/2)|Z)we| < (l/ε)F(uε), that is, the inter-
face is spread too much (relative to qε) and has a greater than (n - 1)-
dimensional character. Then the (n — 1)-dimensional monotonicity inte-
gral decreases rapidly toward zero as it focuses. This is expressed by the
above formula. On the other hand, we have the density lower bound 7.2.
These two will contradict one another, yielding the following theorem.

8.1. Vanishing of ξ. Let uε, {μt}t>0 be as in §§1,5. Then ξ = 0.

Note that we cannot control the measures limg ίOξε for every t.

Proof of 8.1. Integrating (1) and passing to limits, we find that for any
(y, s) e Rn x (0, oo) and any σ > 0,

Rnx[0,s-a] ZKs-t) JR" y'

< CD by Lemma 3.4(i).

Fix R, T > 0 and integrate against dμs ds to obtain

r f if tzjii
JO JBR(O)JJtLnxlO,s-σ] 2( ί - /

< ί + f CDdμs(y)ds
Jo JBR(O)

<CD2{T+\)Rn~X by §5.

<oo.

See Figure 5.
Then since \ξ\ and dμsds are Radon measures and the integrand is

continuous and bounded on its domain, by Fubini's theorem we obtain
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Γ + l /

//

\y/

FIGURE 5. REGION OF INTEGRATION

Rnx[O,T+l]Jt+σ ZKS - l) JBR(0)

2

, t)

<CD2{T+

Passing σ | 0 we obtain the same inequality with σ = 0, by the monotone
convergence theorem. It follows that

'+l ϊiT—A I Py s(x' 0 d »s(y) d s <C{x,t)<<*>
z(S-t)JBR(O) y'

for |£|-a.e. (x, t) e R" x [0, T].
2. Now for any x € BRι2Φ) > s > t > 0,we have

/ p s(x, t) dμs(y) = ί py s(x, t) dμs(y) + ί pf^dμs

JR" y' JBR(0) y' JR"\BR{0)

Py s(x,t)dμs(y)

+ 2 e 8 2 ( ί - ' )D by 3.5(ii).

Thus for |<*|-a.e. (x, t) € BR/2(0) x [0, T],

X^±—)j^pys{x,t)dμs{y)ds

<C(x,ή+ Γ ' ^ - T 2n-le-Ti£
(3)

< oo.

By taking R, T sufficiently large, the above holds for |£|-a.e. (x 9 t) e
R Λ x [ 0 , o c ) .

3. Fix (x, t) satisfying (3). We aim to prove that

s

(x,ήdμs(y) = O.
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FIGURE 6. CONTROLLING f(t + eβ)

Define β = log(s - t) and

h(s)= f p (x,t)dμs(y),

so (3) becomes

(4) /
J—o

R

eβ)dβ <oc.

This shows h is frequently small, and we will next use monotonicity to
control h in the other places.

4. Let γ e (0, 1] be any number. By (4), there will be a sequence
βt —• -oo such that

(5) β χ > β 2 > , \ β . - β M \ < γ , h ( t + eβ<)<γ.

Now let β e (-oo, β{] and suppose β e [βi9 fit_x) (see Figure 6). Then

by monotonicity, since βt < β

where R2/2 = 2eβ - eβ>. On the other hand, by (5)

γ > h(t + eβ>)

= f Pχ
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where r2/2 = eβi. Note that

1 < R/r = \Jleβ~βi - 1 < 1 + Cy.

5. Now let δ e (0, 1] and set γ = min((5, γ3(δ)/C) where γ3(δ) is as
in Lemma 3.4(iv). Then applying the inequalities of step 4 for this choice
of γ, we find that for all β < βx{γ(δ)),

h{t + eβ)<j p* dμ^ < (1 + δ) I px dμί+eβi + δD

<2γ + δD.

This is true for all β < βχ(γ). As δ | 0 we obtain

(6) limh(s) = 0 for |^|-a.e. (x,t).
s\.t

6. On the other hand, by Theorem 7.2,

(7) ίimΛ(s) > η > 0 d(βrn~2+t\sptμt) dt-a.e. {x, t).
S\,t

The fact that μt(Br(x)) < CDrn'1 for all (x, t) e R" x [0, oo), r > 0
shows that

(8) rf|{| < rf/έ = dμtdt

Combining (6), (7), and (8) gives

0>ϊϊϊnΛ(,s) > η |ί|-a.e.

from which we conclude ξ = 0.

9. Passing varifolds to limits

9.1. Brakke's inequality for the limit. Let {μt}t>0 be a limit for the
Allen-Cahn equation as in §§1.1 and 5.4. Then {μt}t>0 satisfies Brakke's
inequality

Dt I φdμt < I -φH2 + Dφ (Tχμtf Hdμt

for each t > 0 and φ e C2(Rn, R + ) , w/zer̂  //ze right-hand side is under-
stood to be 3S{μt, φ).

Remarks, (i) Using results 5.1 and 7.1 it is now easy to see that (spt μ)t

is (n - l)-rectifiable for a.e. t > 0. In fact, Brakke's work shows the
following more precise result. By the second half of the proof of [5, 6.12]
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together with Lemma 6.1, it is possible to show that whenever Dt μt(φ) >

-oo then

(μt 9 •) > cη <%r |_(sPt/Ora e '

and passing to limits ti | 1 via the Allard compactness theorem [1], (sptμ),

is (n - l)-rectifiable whenever T)~μt{φ) > -oo.

(ii) The proof of Brakke's Inequality 9.1 also establishes Tχμt-H(x) = 0
for μt[{φ > 0}-a.e. x (perpendicularity of mean curvature) whenever
Djφdμt>-oo.

9.2. Corollary (Inclusion). Let {Tt}t>0 be the level-set flow of Evans
and Spruck and Chen, Giga, and Goto, with Γ o = MQ MQ as in §1.3.
Then (sptμ), c Γt for each t>0, and u8i -> ±1 locally uniformly in the
complement of sptμ.

Proof. By [27, 10.7] any Brakke motion remains within the correspond-
ing level-set flow. The second statement repeats Lemma 6.1 (ii).

This implies, in particular, the result of Evans, Soner and Souganidis
[15] that wδ' -> ±1 locally uniformly in the complement of Γt.

9.3. Lower Semicontinuity and Rectifiability Lemma. Let {u\-)}t>0 be

a sequence of smooth functions on Rn with Jϊ?n({\Duι\ = 0}) = 0 for each

i > 1. Let {εi}i>ι be a sequence converging to zero. Define μ , ξι, V1

as in §§1, 2, namely

- , ' - ( * ! £ !

dξ' = {'->•

V* e Vfc(R"), | | F ' | | = μι, ( F ' ) w supported at {Du^x))1 for each x e

R" . Let φe CC

2(R", R+) and define

>{Ui, φ)= j - e t φ ί-Δ«' + ! / ( « '

+ zfiφ Du* ί -ΔM' + -ί/(ι/')) dx.

Assume

(i) μ' -» μ as Radon measures on R",

(ii) \ξ'\
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(iii) ξ' <0, /> 1,
(iv) &ε<(ui,φ)>-C4for i>\,

(v) βrn~\sptμ Π {φ > 0}) < oo.
Then the following hold:

(vi) μ[{φ > 0} is reα/ (n - \)-rectifiable.
(vii) ΓΛere w F e RV^^R" swcΛ that V\{φ > 0} -> V and \\V\\ =

μ[{Φ>0}.
(viii) For all Y e CJ ({</> > 0}, R"),

δV(Y) = lim / -εY • Duι ( - Δ M ' + \f(u')) dx.

(ix) ^ ( μ , 0) > Π S ^ ^ ^ ' C M ' , 0 .

9.4. Standard estimates. For φ G CC

2(R" , R+), // α Λarfon measure,

C{(φ) = sup |£>2< |̂, we have the following:

(i) JDφ (Tχμ)±'Hdμ<j^φH2dμ + Cι(φ)μ({φ>0}),

when these are defined.

(ii) j φH2 dμ < -2@(φ, μ) + 2C, (φ)μ({φ > 0}),

when these are defined. Let «:R"-»R be smooth, ε > 0, then

ί εDφ • Du (-Au + ^ / ( M ) ] dx

+ ^f{u)\ dx

%\Du\2dx.
l

2

dx

( i v ) ' ε 2

^\Du\2dx.

Proof, (i) follows from Cauchy's inequality, with

φ\Dφ\2/φ. (i
ogously for u.
sup \Dφ\ Iφ. (ii) follows from (i). (iii) and (iv) are proven entirely anal-
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Proof of Lemma 9.3. 1. By the compactness theorem for Radon mea-

sures, there is a subsequence {V'i}j>x and a limit V e Vk{9!>) such that

Vt-+V as varifolds.

2. Now let {Vι'}j>ι be any such subsequence. Fix U <s {φ > 0} .

Write i/'' = Du'/lDu'ϊ, &H-&.e. Then for 7 € ςί(l7, R"), by §2(2) we

obtain

(1)

δV\Y) = ί DY: SdV\x,S)

= ί DY: (δ-v* ®vl)dμ

= ί -ε,. Dul ί -ΔM' + -ί/(w')) dx+ ί -v ® v : DY dξ*.

Passing to limits and using |̂ '|({^> > 0}) -> 0, we find

δV(Y) = ίDY(x): SdV(x, S)

(2) f • ί • i Λ
= lim - / e, Y • Du'J -Au'J + -rf(ulj) dx

J^°° J > \ εf /

and

\δV{Y)\ < \Y\ lim /

| ΠS / ^1^£ + e(φ LΔU1 + Vί"')) dx

ι-*oojv 2 0 ' ^ t] J
< \Y\ BS(2C(0, £/)/u'({̂  > 0}) + 2C4 + 4 C , ( ^ f ( { ^ > 0}))

I—•OO

by §9.4(iv), Lemma 9.3(iv)

= \Y\(C{φ,U)μ({φ>0}) + 2C4).

3. Thus

\δV(Y)\<C(φ,U,μ,C4)\Y\,
which shows |5K[{0 > 0}| is a Radon measure on {φ > 0}. In conse-
quence, by Allard's Rectifiability Theorem [1, 5.5(2)] and hypothesis (v),
we have V[{φ >0}e R\n^({φ > 0} . Since ||F|| = μ, (vi) is established.

4. In fact, by rectifiability the varifold V = V[{φ > 0} is uniquely
determined by μ, independent of the subsequence, and so V1 \_{φ > 0} ->
V as varifolds. This establishes (vii). Now (viii) follows from (2).



CONVERGENCE OF THE ALLEN-CAHN EQUATION 449

5. We will now prove (ix). We adapt Brakke's upper semicontinuity
proof [5, 4.28]. First we do the fφH2dμ term. Let ψ e C2{{φ > 0}, R+)
with ψ1' e C ι . Due to the rectifiability of μ, we can approximate by
smooth functions (see, e.g., [27, 7.4]) to get

α 2 \ i/2 ( f _ n n Λ

ψH dμ ) =sup< / ψ HΎ dμ: Y€Cr (R , R ), | | iΊ|Γ2, Λ < 1 \.
I \ J \"' J

Now, using ζι -> 0 (twice) yields

ί ψl/2Y Hdμ = -δV(ψl/2Y) = - lim δV^l/2Y)

= lim [εy^Y Du* (-Aul + -/(M1 ')) rfx

+ lim [ vi®vi:D(ψl/2Y)dξi by (1)

/f /2 2 \ 1 / 2

< lim / ε\Du \ \Y\ dx 1

( i Λ 2 λ l / 2

E,^ -ΔM' + \f{u) ά

2 \'/2

( r ί i i Λ 2 \
•lim / ε,^ -ΔM + ̂ / ( M ) ί/x

i^y V fi2 / J
L2^) Mm I / e. V ( -ΔM' + -jfiu) I dx) ,

which shows

ί ψH2 dμ<\\m ί ε. ί -ΔM1" + 4/(w') J dx

•/ i-κx)J \ ε z /

Passing |^ to φ by the monotone convergence theorem, we obtain

Δι/+^/(t/)j dx

<C{φ,μ, C4) by §9.4(iv), Lemma 9.3(iv).



450 TOM ILMANEN

H dV H dV' £,£>«'(. ..)dx

A<Cδ

Dψ S1

Z)ψ

B-»0 C->0

D<Cδ

E = 0

ξ->0

FIGURE 7. SEVEN EPSILON PROOF

6. Next we do the transport term. We will first show that, for ψ e
2C2

c{{φ

(4) Um / efiψ Dul I -ΔM' + ̂ f(u)) dx = f Dψ •S± Hdμ,

where S = S(x) denotes Tχμ. Note that Dψ(x) S±(x) is a μ-integrable

vector field. Since μ is rectifiable, it is possible to choose a vector field

YeCι

c({φ>0}Rn) such that

\Y(X) - Dψ(x) • S±(x)\2 dμ(x) < δ1.(5)

Then (see Figure 7)

ίDψ-S± Hdμ= ί(Dψ S±-Y) Hdμ

-δV(Y) + δVi(Y)

-δv\Y)- f ε.Y Du' ί-Au +\/(«'')] dx

+ f e,(Y - (Dψ v)vl) • Dul ( -ΔM' + -l/(«') ) dx
J V e , /

+ / ε,((Dψ u')u' - Dψ) Du I -ΔM' + -jf(uι) I dx
J \ ή J

+ ί εfiψ Du1 ί -ΔM' + -ί/(u'')) dx,

(A)

(B)

(C)

(D)

(E)

(F)
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where ι/' = Dul/\Du'\ ^"-a.e. By (3) and (5),

\A\<δ([ H2dμ) <C(ψ,φ)S.

By continuity of first variation and (vii), l i m ^ ^ B = 0 . By (iii) and (1),

Next

1/2

limC = lim / v <g> v: DYdξi = 0.
/—•oo /—•oo J

εJDu'flY-iDψ^'yί1

SUP ( i ) / ε/^ ί ~ Δ w / + -jfiu) 1

{y>0} \0/ Λpt̂  V εi J

\ / /
i f I i\ 1/9

< (2 / \Y-Dψ S \dV \ C(svtψ,φ)'

• C(φ, μt{{φ > 0}), C4)
1/2 by (iii), §9.4(iv).

Thus
lim \Ό\<C(φ, ψ)δ.

i—•oo

Evidently E = 0 and thus

[ Dψ-S± Hdμ = F

= lim / ε.Dψ. Dul I -An1 + 4r/V) ) rfjc ± 2C(ψ, φ)δ.

Let (J I 0 to obtain the desired result (4).
7. Now we will pass (4) to limits to obtain the analogous result for φ.

Let \\φ- ψ\\C2 <δ2. The error on the left-hand side of (4) is bounded by

( i i Λ2 Ϋ
;(φ-ψ)[-Auι + -τf(u)\ dx\

< (2μ({Φ > 0}) sup \D2(φ - ψ)\Ϋ'2C{φ, μ, C4)
1/2 by (3)

<C(φ,μ,C4)δ.

The error on the right-hand side is bounded by a similar quantity. Thus
we have proven (4) with ψ replaced by φ. This gives (ix), and completes
the proof of Lemma 9.3.
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9.5. Density Lemma. Let {μι}i>{ be a sequence of real (n - \)-rectifi-

able Radon measures. Let φ e C^(Rn, R + ) . Suppose

(i) μ [{φ > 0} -» μ[{φ > 0} as Radon measures on {φ > 0},

(ii) - C 4 < f-φH2 + Dφ Hdμ for i > 1,

(iii) θ*n-\μi,x)>η μ'-a.e.
Then

(iv) μ[{φ > 0} is real (n - \)-rectifiable,

(v) θ * * " 1 ^ ) ^ μ-a.e.

Proof. By §9.4(i), (ii) we obtain local first variation bounds on the var-

ifolds V1 associated with μι. Then Allard's lemma [1, 5.4] on pass-

ing density to limits yields a subsequence and a varifold V such that

v'ΊiΦ > 0} - V in yn_x{{φ > 0}), ||K|| = μ[{φ > 0} , ||<$F|| is Radon

on {φ > 0} , and θ*n~\μ, )>η μ[{φ > 0}-a.e.

Thus by [1, 5.5], V is real (n - l)-rectifiable.
The proof of 9.1 is now nearly identical to [26, 7.1], which was derived

in turn from [5, Chapter 4].
Proof of Brakke's inequality 9.1. Let t0 > 0, φ e C*{Rn, R + ) , and

assume without loss of generality

(1) -oo <D0EEDtQμt(φ).

Then there is a sequence δq [ 0 and t —• t0 such that

DQ-δq<(μtg(φ)-μto(φ))/tq-to.

We may assume that tq > t for all q . (The other case is similar.)

By the convergence μ^ —• μt, there is a sequence rq -> oo such that

, < =

q — t — t t — t
lq l0 lq l0

ίίt t

Because |<^ε| —• 0 on R" x [0, oo), we can increase r if need be to ensure

(2) if d\ζε'«\<δ2

q(tq-t0).
JJ{φ>O}x[to,tg]

2. Now by Property 5.3, there is Dχ = Dχ(φ) such that

-τ-μεΛΦ) < ΰ , f o r / > l , / > 0 .
at ι ι

If
f d er

Z = \te[t0, t ]: -rtμt

q{Φ) >D0-3c
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then we have

DQ-2δq<-^— ί {pQ-Ίδq)dt + -±τl Dχdt,

from which we obtain

for q large. Thus by (2)

\Z\igξt

r«({φ>0})<δ2

q(tq-t0)

and therefore there exists sqeZ c[t0, tq] such that

(3) Do - 3*. < £ μt

r"(φ)<^^(u^( ,sa),φ),

and also that

(4) \ξs

r;\({φ>0})<2(Dι-D0)δq.

3. We now pass a subsequence of {μs* }fq>ι to a limit μ. By applying
the semimonotone property 5.3 and the growth bound (1), it is possible to
prove (see [26, 7.1]) that

so that 3S{μ, φ) = 3S{μt , φ).

4. On the other hand, by the support lemma 6.3(ii),

Together with (3), (4), (5) we have verified the hypotheses of Lemma 9.3

for the sequences {ur*{;,sq)}q>ι and {μs

r*}q>x on {φ > 0}. Therefore

from (1), (3), (4), (5), as q -> oo, we obtain

Hence we have proven Brakke's Inequality 9.1.

10. Space-time measure

Let {μt}t>0 be a Brakke motion. Define

dμ = dμt dt, dv = H dμt dt, v < μ.
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We will estimate %?n |_spt μ. The estimate is a mild generalization of re-

sults in [26, §12] to the current situation.

10.1. Long-Term Clearing-Out Lemma [26, 12.5]. There is η2 =

η2(η,D) > 0 and a > 0 such that for all x e Rn, β > a, t > βr2,

if

μ(Br(x)x[t-βr2,t])<η2βrn+\

v(Br(x)x[t-βr2,t])<η2r
n-l/β

then (x, t) φ spt μ.
This proposition implies that if the surface reaches the center of a

sphere, then it has had a certain amount either of mass on average or
of mass which has been lost in the crossing.

Proof. Fix β > a > 0, η2 > 0, r > 0, x e Rn, t > βr2. By the
hypothesis,

f μs(Br(x))ds<η2βrn+l.
Jί-βr2

Thus there is tχ e [t - βr2, t - βr2/2] with μt (Br(x)) < 2η2r
n~ι. Fix

φ £ Cι

c(Br{x), R+) with φ = 1 on Br/2{x), \Dφ\ < 3/r. Then for all

s e [ ί - / ? r 2 / 2 , ί ] ,

μs(φ)<μtχ{φ) + j* 3!{μs,,φ)ds

<2η2r"-l+ [ ί \Dφ\\H\dμs,ds
Jί-βr2 JBr(x)

<2η2r
n-l + U[t f H2dμs,ds')2 (f μ,{Br{x))dsfY

r \Jr-βr2 JBr(x) J \Jt-βr2 J

< 2η2r"-1 + 1 [n2^ηp\ {n2βr"+ϊγ12 by hypothesis

Now take a = 1/4, so β > 1/4; define s by 2(t - s) = (r/2)2, so

s e [t - βr2/2, t]. By Lemma 3.4(vi) there is δ(γ) with lim y i 05(7) = 0

such that

pχJ(y,s)dμs(y) = j pf dμs
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Choose γ then η2 small enough so that

pχJ{y,s)dμs(y)<η.

Thus (x, i) £ sptμ by the Clearing-Out Lemma.

10.4. Corollary, θ"~*(μ + v,(x,t))> cη2(η, D) on s p t μ .
Proof. By Lemma 10.1, for β > a and r > 0,

(μ + v){Br{x) x [t - βr2, *]) > η2 mm{βrn+l, β~lrn~l).

Now take r < I/a and β = ί/r >a. q.e.d.
10.5. Corollary, (i) ^n\^>\μ is locally finite.
(ii) wε' converges locally uniformly on Rn x [0, oo)\sptμ to ± 1 .
/V00/. Statement (ii) repeats Lemma 6.1(ii). Let us prove (i). Since

v < μ, sptμ = spt(μ + ̂ ) . Then by Corollary 10.4 and Simon [33,
3.2(1)],

for U QRn x [0, 00) open.

Let us estimate v{BR x [7; , Γ2]). Fix φ e C2

C(B1R) with 0 < φ < 1,

0 = 1 o n 5 r |Z>20| < C/R2 . Then by Lemma 9.3(ii),

v(BRx[Tl9T2])< Γ2 ίφH2dμtdt
Jτ\ J

< Γ2 -20(μt, φ) + 2 sup |Z)20|μ,({0 > 0}) rfί
1

<2μ (B2R) + ̂  ί μt(B2R)dt.

Thus by (1),

< 00.

11. Convergence in BV

We will relate the measures {μt}t>0 to the limit of the functions ι/' in
BVloc. This was first established by Bronsard and Kohn [7]. We begin by
reviewing their argument.
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Let us write V = V R x R and recall from §1.2

G' = g, G(-l) + G(+l) = 0, a =

Then by (*) and Cauchy-Schwartz,

if \VG{u)\dxdt= if g(u)\Vu\dxdt
JJBRx[TlfT2] JJBRX[T19T2}

+ ε\Du\2dxdή

Thus using ξe' -> 0 , we get

Ππϊ // \VG(u')\dxdt
'-*<» y JBfiXlTi ,T2]Ti ,T2]

< μ(BR x [Γ,, T2])l/2(μ + v){BR x [Γ,, Γ2])1/2,

which was estimated in §10. By a similar argument, for t > 0

ΠE

a 7

<2μt(BR)<oc.

These are uniform bounds in BV{oc{Rn x [0, oo)), BVloc(Rn x {t}), respec-
tively.

Now wβ/ —• w = ±1 locally uniformly on Rπ x [0, oo)\sptμ, so G(u£i)
-> G(w) = αw/2 locally uniformly on Rn x [0, oo)\ spt μ. Since ^ n + ι [μ =
0, <%"* [spt //̂  x {/} = 0 for each t, we have

11.1. i?F convergence.
(i) G{Φ) - G(M) = au/2 weakly-* in BVloc(Rn x [0, oo)).

(ii) G(ι/<(., 0) - W , /)) = α«0, 0/2 weakly-* ί/t BV{oc(Rn x {ί})
/or ί > 0 .
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Then for any φ e C2

c(Rn, R + ) , we calculate

dx = Jφ\DG(u)\dx

<lim f φ\Dg(u()\dx

= Jφdμt.

Thus we obtain
11.2. Relation of μt to \Du{-,t)\. For the limit u, {μt}t>0 defined

above, we have u e BVXoc(Rn x [0, oo)), w( , t) e BVloc(Rn x {t}) for all

t>0,and
(a/2)\Du(- ,t)\dx< dμt for allt>0,

where a = /_^ g(u) du.
The discrepancy is due to weak lower semicontinuity.
We might reasonably hope that the density of μt is an integral multiple

of α μr-a.e. (for a.e. t > 0), because Brakke proved integrality for the
original construction [5, §4]. One-dimensional examples are illuminating
here.

12. Remarks on regularity

In his 1978 book [5], Brakke was able to develop a remarkable almost-
everywhere regularity theory for A:-varifolds {Vt}t>Q moving weakly by
mean curvature. We will discuss informally the application of Brakke's
work, via results in [26], to the singular limit of (*). The result is the
"generic" regularity theorem 12.2.

In this section we restrict the initial data to be compact, since there
is not yet an avoidance principle for noncompact sets moving by mean
curvature.

Let us first briefly describe the result of [26]. Starting from the same
kind of initial surface as in §1.3 the argument in [26] has two steps.

A. Establish a structure (T, {μt}ί>0) (effectively (Du, {μt}ί>0) of
§11.2) moving by mean curvature in Brakke's sense.

B. Under the Nonfattening Hypothesis (described below), modify
{μt}t>0 so that it satisfies the unit density hypothesis of Brakke's regu-
larity theory.
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Step A of [17] uses the approximation scheme of elliptic regularization.
The present paper, in effect, shows that the Allen-Cahn equation yields an
alternate existence scheme for step A. To be precise, we refer to §§9.1, 11.1,
11.2, Corollary 10.5, and by defining E = {(x,t): u(x, t) = l}\sptμ we
deduce the following.

12.1. Existence of enhanced pair. Given an initial surface Mo = dEQ

strongly approximated by smooth surfaces and with the density bounds of
§1.3, there exists an enhanced pair moving by mean curvature with initial
condition Mo, that is, a pair (E, {μt}t>0) satisfying the following:

(i) E c Rn x [0, oo) is an open set of locally finite perimeter, such that
(a) E0 = EΠ(Rnx{0})9

(b) Et = E n (Rπ x {t}) is of locally finite perimeter for each t > 0,

(c) J^n(d*En(BRx[t,t+τ]))<CRn-ι(τι/2 + τ) {C1'2 continuity).

(ii) {μt}t>0 is a Brakke motion with μ0 = a%?n~x [Mo .

(iii) μt > a^n~ι [d*Et as Radon measures for t>0.
We may then apply step B of [26] to obtain the regularity theorem 12.2.

For the convenience of the reader we will briefly sketch the argument of
[26].

Brakke's theory of regularity [5, 6.12] relies on the hypothesis of unit
density, that is, θk(μt, •) = 1, μ,-a.e. for a.e. t > 0, where μt = \\Vt\\.
The measures {μt}t>0 constructed above are not known to satisfy this
hypothesis. To get around this, we proceed as follows.

Given a (compact) initial surface Γ o , possibly singular, we fill a neigh-
borhood of Γo with disjoint surfaces {Γγ

Q}γ€,δ δ) homologous to Γ o .
Let each Tγ

0 evolve according to the level-set flow of Evans and Spruck
and Chen, Giga, and Goto to form families {Γγ

t}t>0 .

By [16, CGG] these families remain disjoint for positive time. There-
fore all but countably many of them satisfy the Nonfattening Hypothesis:

(t) ^"+1 IJr^W = 0

J
Thus Corollary 9.2 implies that for these γ, i?" + 1 (sptμ) = 0.
From this, the Constancy Theorem [33, 26.27] and (i), it follows that

E is uniquely determined by Eo, independent of the choice of uε

Q and
subsequence {εi}i>ι.

According to the results in [26, 9.1], it is possible to modify {μt}t>0

so that μt = a^n~ι[d*E( for each t and {μt}t>0 still solves Brakke's
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inequality (B). Hence by De Giorgi's theorem on sets of finite perimeter,
μt has density a μ^-a.e. for t > 0. Moreover, by [26, Chapter 12] Brakke's
theory applies to show:

Any initial surface can be perturbed to one whose evolution is smooth
%?n-almost everywhere in spacetime.

The steps of the preceding argument are carried out in [26]. We now
state the result precisely.

12.2. Generic-data almost-everywhere regularity theorem for Allen-
Cahn limit. Let h: Rn —• R be a Lipschitz function with compact level-
sets Γj = h~x{γ). For each γ e R, let {Γγ

t}t>0 be the corresponding
level-set flow.

Let / C R be the set of γ such that {Γγ

t}t>0 satisfies the initial surface
hypotheses §1.3(i), (ii). (We may assume that / is full measure). For
γ e I, t > 0 let μ\ = lim/zj''6' as in §§5.4 and 9.1, and let uy = l imι/' ε '
as in §§11.1 and 11.2.

Define

E = {u = 1}\ spt μ, Et = E n (Rn x {*})

Then E, Et are open sets of finite perimeter and u + 1 = 2χE , and the
following statements are true:

A. Inclusion (originally proven by Evans, Soner, and Souganidis [15]).
For γel, sptμj C Γ* for t > 0.

B. Generic nonfattening. For all but countably many γ, {Tγ

t}t>0 satisfies

(t)
C. Uniqueness. For γ e l such that (f) holds, the sets Eγ, Ey

t are
uniquely determined independent of all approximations.

D. Matching. For γel such that (f) holds, define the reduced flow

Then {μγ

t}t>0 satisfies Brakke's inequality (B), and has density a for μy~
a.e. x, and all / > 0 .

E. Almost-everywhere regularity. F o r γel s u c h t h a t (f) h o l d s , def ine
dμγ = dμy dt. T h e n

spt ~μy = d*Ey = d*Ey ^"-a .e . ,

and spt ~μy is a smooth ^-manifold ^"-a.e .
These results follow from Brakke's work via [26, 10.7, 11.4, 12.9] (with

[26, 7.1] extended to real varifolds with a lower density bound) together
with Brakke's Inequality 9.1 and §11.2. What is new is that they apply to
the singular limit of (*).
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13. Questions

1. Sharp density lower bound: Improve the constant η in Lemma 6.1
to η = a.

2. Integral density: Following Brakke [5, 4] prove that the density of
μt is an integral multiple of a μ,-a.e. (for a.e. t > 0).

3. Unit density: Devise hypotheses that imply that the density of μ is
aμt-a.e.

4. Strong convergence for H > 0: Following Evans and Spruck [19],
show that if H > 0 initially on Mo, there is no cancellation in Dφ —̂
Du.

5. Systems: Extend to systems u: Rn —• Rm (multiple phase interfaces,
triple junctions).

6. Vanishing of ζ: Is there further significance of the equipartition of
energy for motion by mean curvature?
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