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DETECTING UNKNOTTED GRAPHS IN 3-SPACE

MARTIN SCHARLEMANN & ABIGAIL THOMPSON

Introduction

Definition. A finite graph Γ is abstractly planar if it is homeomorphic
to a graph lying in S2 . A finite graph Γ imbedded in S3 is planar if Γ
lies on an embedded surface in S3 which is homeomorphic to S2.

In this paper we give necessary and sufficient conditions for a finite
graph Γ in S3 to be planar. (All imbeddings will be tame, e.g., PL or
smooth.) This can be viewed as an unknotting theorem in the spirit of
Papakyriakopolous [12]: a simple closed curve in S3 is unknotted if and
only if its complement has free fundamental group.

[12] can be viewed as a solution for Γ having one vertex and one edge.
In [6] or [3, §2.3] this is extended: a figure-eight (bouquet of two circles)
in S3 is planar if and only if its complement has free fundamental group
and each circle is unknotted. Gordon [4] generalizes this to all graphs
with a single vertex: a bouquet of circles Γ in S3 is planar if and only
if its complement and that of any subgraph of Γ has free fundamental
group. If fact, Gordon shows that this generalization of [6] is a fairly direct
consequence of Jaco's handle addition lemma [8]. Far more difficult is
Gordon's extension to the case in which Γ has two vertices, and no loops.
We will require only the solution of the one-vertex case for our proof.

We will show:
7.5. Theorem. A finite graph Γ c S3 is planar if and only if

(i) Γ is abstractly planar,

(ii) every graph properly contained in Γ is planar, and

(iii) π ^ - Γ ) is free.

There is an alternative formulation:
Theorem. A finite graph Γ c S3 is planar if and only if
(a) Γ is abstractly planar and

(b) for every subgraph Γ ' c Γ , π{(S3 - Γ7) is free.
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The equivalence of this formulation follows easily by induction: condi-
tions (a) and (b), if true for Γ, are true for any subgraph of Γ.

Theorem 7.5 has been conjectured by J. Simon [15]. He and Wolcott
[16] demonstrated it in two cases (the handcuff and the double-theta-curve)
not covered by Gordon's theorem. It is fairly easy to show that no two of
the conditions (i), (ii), and (iii) suffice to ensure planarity:

0.1. Example. An embedding of K5 in S3 satisfying (ii) and (iii)
but not (i).

FIGURE 0.1

0.2. Example. An embedding of a theta-curve satisfying (i) and (iii)
but not (ii).

FIGURE 0.2

0.3. Example [10]. An embedding of a theta-curve satisfying (i) and
(ii) but not (iii).

FIGURE 0.3

We have the following corollary, of independent interest.
7.6. Corollary. There is an algorithm to determine if a graph in S3 is

planar.
There are two other versions of 7.5 available: Condition 7.5(iii) can be

replaced with the condition that the complement of a regular neighborhood
of Γ is a d-reducible. This vastly improves the efficiency of the algorithm
of 7.6 (see [18] for details). Alternatively, 7.5(ii) and (iii) can be replaced
with the following condition: There is an edge e in Γ not a loop, such
that the graph Γ/e obtained by collapsing e and the graph Γ-e are both
planar (see [14] for some applications).
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The bulk of the argument for 7.5 consists of induction lemmas for var-
ious types of graphs: e.g., §1 treats graphs Γ containing "cut" edges, with
§2 providing a technical lemma needed in that proof. The main theorem
is not proven until §7, where the proof consists mostly of references to
previous cases.

1. Cut edges

1.1. Definitions. Let Γ be a finite graph in S3 with vertices υ(Γ)
and edges e(Γ). Let η(Γ) denote a handlebody neighborhood of Γ, with
interior °η(T). η(T) is the union of three-cells with disjoint interiors
constructed as follows: For each vertex v in Γ let η(υ) = B3 be a three-
cell neighborhood of υ in S3, transverse to the edges of Γ, so that η(v)Π
Γ = cone(<9τ/(ΐ;) Π Γ). Let η°(Γ) = \J{η{v) \ v e Γ} . For each edge e eΓ
let η(e) be a three-cell with a product structure η(e) = B2 x / such that
η(e) Π Γ = e - η°{Γ) = {0} x / , and η(e) n η°(Γ) = B2 x {dl}. These
latter disks are called the attaching disks of η(e). Any B2 x {point} (or
dB2 x {point}) is a meridian disk ~β{e) (or circle μ(e)) of η(e). Let
ηι(Γ) = \J{η{e) \ e e Γ}. An embedded curve in dη(Γ) is normal if its
interior intersects meridian circles only transversally and intersects dη°(T)
only in arcs essential in dη°(Γ) - ηl(Γ). Any curve in dη(Γ) is isotopic
rel d to a normal curve, and this isotopy does not increase the intersection
number with any meridian.

A handlebody neighborhood η(Γ) of Γ provides a handlebody neigh-
borhood for any subgraph Γ' of Γ just take the union of cells associated
to vertices or edges in Γ'. If Γ lies in a sphere P (so is planar) one can de-
fine similarly a handlebody neighborhood i/(Γ) in P, where 0-handles are
disks and 1-handles are homeomorphs of / x / . A standard handlebody
neighborhood for Γ c P c S3 is a handlebody neighborhood η(Γ) which
isabicollar i/(Γ)x[-l , 1] of a handlebody neighborhood i/(Γ) in P . In
particular, P bisects each handle of a standard handlebody neighborhood
and for any vertex υ in Γ, P Π η(v) is the cone to v of P Π dη(v).

For M a compact manifold (typically 0 or 1-dimensional), \M\ denotes
the number of components of M.

1.2. Definitions. Γ is split if S3 - Γ is reducible. Γ is decomposable
if there is a vertex υ such that dη(υ)-ηι(Γ) compresses in S3 - °η(Γ)).

1.3. Lemma. //* Γ is split or decomposable, and every graph properly
contained in Γ is planar, then Γ is planar.

Proof. A reducing sphere for S3 - Γ divides S3 into two balls, each
of which contains a subgraph of Γ. Each subgraph is planar, so can be
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imbedded in a sphere in the ball. Tube together the spheres to get a sphere
containing Γ.

A decomposing disk (D, dD) c (S3 - °η(Γ), dη{v) - η\Γ)) divides
S3-η(v) into two balls Bχ and B2. Then η(Γ)uB2 and η(Γ)UBι can
be viewed as handlebody neighborhoods of subgraphs Γ{ and Γ2 of Γ,
with Γj ΠΓ2 = v . Since Γ{ and Γ2 are planar, there are disjoint disks Dχ

and D2 in S3 - η(v) containing Γ{ - η(υ) and Γ2-η(v). Piping these
together produces a single disk containing Γ-η(v); coning the boundary
of the disk gives a sphere containing Γ.

1.4. Definitions. For e an edge of a graph Γ, let Γ - e denote the
graph obtained from Γ by removing the interior of e. Let e denote
the subgraph of Γ which is the union of e and its incident vertex (or
vertices). Let Γ/e denote the graph obtained from Γ by identifying e to
a point, which is then a vertex of Γ/e. If Γ c S3 and e is not a loop,
then e is a tame arc in S3. Hence S3/e = S3, so the imbedding Γ c S3

gives rise to an imbedding Γ/e c *S3.
A vertex υ in a connected graph Γ is a cut vertex if Γ is the union

of two subgraphs Γo and Γx, each containing at least one edge, such that
Γo n Γ{ = υ [19]. An edge e in a connected graph Γ is a cut edge if e is
not a loop and the vertex e/e is a cut vertex of Γ/e. Equivalently, e is a
cut edge if it is not a loop and Γ-e is a disconnected topological space.
(The graph Γ - e may still be connected.)

1.5. Examples, (a) If Γ is a connected graph properly containing a
two-cycle (i.e., a bigon), then either edge of the two-cycle is a cut edge.

(b) suppose Γ is a connected graph containing a cut vertex υ and at
least one other vertex, of valence > 1. Then there is an edge e with one
end on the cut vertex and the other at another vertex of valence > 1.
Then e is a cut edge. In particular:

(c) If a connected graph Γ contains a loop and a vertex with valence
> 2 other than the base of the loop, then Γ contains a cut edge.

1.6. Proposition. Suppose e is a cut edge in a connected graph Γ c S3

such that
(a) the graph Γ = Γ/e is planar,
(b) every graph properly contained in Γ is planar.
Then Γ is planar.

Proof. Let υ± be the distinct vertices incident to e. Denote by υ0 the

cut vertex e/e, the image of e in Γ. Since Γ is planar, there is a com-

pressing disk for dη(v0) - Γ in S3 - η(T). Hence there is a compressing
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disk for dη(e) in S3 - η(Γ). Choose D to be such a compressing disk
for which dD is normal in η(Γ) and \dD Π μ(e)\ is minimal for every
meridian circle μ(e) of η(e).

If \dD Π μ(e)\ = 0, then dD lies entirely in df/(i;+), say. Then Γ is
decomposable, hence planar. So henceforth we will

1.6.1. Assume \dDΠμ(e)\ > 0.

By assumption, Γ7 = Γ - e is planar, so lies in a two-sphere P c

S3. We may take each η(v±) to be a ball which is bisected by P. In

particular, P - φ + U F _ ) is an annulus in S3 -η(v+Uv_) containing all

of Γ7 - η(v+ Uv_). Let W denote the closure of S3 - η(υ+ U i;_) with

boundary components the spheres V± = dη(v±). Let Γ ^ denote the

one-complex TnW, and similarly for Ϋw and P ^ . Note that D cW,

with part of dD lying on each of V± (since |<9D ΓΊμ(e)| > 0) and part on

dη(e). The interior of D is disjoint from Γ (not just Γ7).
Let Q be a properly imbedded finite union of disks and at most a single

annulus in W, in general position with respect to e and D, chosen so
that

(a) ΓVcQ,
(b) no component of Q is disjoint from Γ7, and
(c) \D Π Q\ is minimal among all Q satisfying (a) and (b).
Note that Pw, for example, satisfies (a) and (b).
Claim. If e is disjoint from Q or any disk component of Q, Γ is

planar.
Proof of Claim. If Q contains a disk q disjoint from e,push TwΓ\q

slightly into the component of W - q not containing e. Since dq c V+ ,
say, q is a decomposing disk Γ at υ+ and the proof concludes as above.
So suppose Q is an annulus and e is disjoint from Q. Let WQ be the
component of W - Q in which e does not lie. Γ^ has at least two
components, since e is a cut edge.

If any component Γo of Γ ^ is incident to only one of V±, say V+,
push Γo slightly into Wo. Then a disk with boundary in V+ can be
imbedded between Γo and Q, hence between Γo and the result of Γ.
This is a decomposing disk for Γ, so, by 1.3, Γ is planar.

On the other hand, if every component of Γ7^ is incident to both of V± ,

then there is a path γ in Γ*w from V+ to V_ . Since Γ is connected, every

component of Q-Γ7^ c Q-γ must be a disk. Since Y*w is disconnected,

there is a component QQ of β-Γ 7 ^ whose boundary dQn intersects more

than one component of Γ7^. Each arc component of ^QQIΠΓ 7^ must be a
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spanning arc of the annulus Q, since every component of Y*w is incident
to both of V± . Pushing the interior of one of these arcs slightly into Qo

gives a spanning arc a in Q disjoint from Γ^ . Now γ U e is a subgraph
of Γ, hence is unknotted. γ is parallel to a in the annulus Q, so a U e
is unknotted. An unknotting disk can be found disjoint from Q, and
provides an isotopy from ί to α. After the isotopy, Γ c Q, so Γ is
planar. This proves the claim.

Following the claim, it suffices to derive a contradiction if we
1.6.2. Assume that \e Π Q\ = p > 0, and that e intersects every disk

component of Q.
Label the points in e n Q by el9 -ep in order from V_ to F+. Q

can be isotoped so it intersects η(e) in meridia, whose boundary circles
we similarly denote μx, , μp .

Q Π D is a one-manifold. If it contained a simple curve, then an inner-
most such curve c would bound a disk F in D. Consider the union U
of a collar neighborhood of Q on the side away from F and a bicollar
neighborhood of F. 9 (7 is the union of a surface parallel to Q and a
surface (?' D Γ^. If c is essential in Q, then β' is now a union of
disks. Discard any disjoint from Yf

w. Qf still satisfies (a) and (b) in our
definition of Q, but has at least one fewer component of intersection with
D. Since D was chosen to minimize \Q Π D\, this is impossible. If c is
inessential in Q, then Qf is homeomorphic to Q union a sphere. The
sphere is the union of a disk parallel to F and the disk Ff in Q which
c bounds. Since c Π Γ = 0 and each component of Γ7 contains either
^ + or ^_ > it follows that Γ* nF' = 0. Then Γ7 is disjoint also form the
sphere, so discard it. Again we get the contradiction that Q' still satisfies
(a) and (b), but has at least one fewer component of intersection with D.
We conclude that Q Π D contains no simple closed curves. In particular

1.6.3. \Q Π dD\ = 2\Q Π D\ must be minimal.
A point in dD Π Q either lies in d±Q = dQΠV± or on one of the

meridian circles μ.. Consider an outermost arc a of dD n Q in D. α
cuts off from D a disk F such that interior^) is disjoint from Q and
dF = a U β, for /? some subarc of dD. The ends of α either both lie in
d±Q, or one end lies in c?±Q and one end on a μ z, or both ends lie on
the μi. Consider each possibility in turn:

If both ends of a lie in dQ, then β must not intersect any of the
meridia of η(e), so we may assume β lies entirely in V+ , say. Consider
the union U of a collar neighborhood of Q on the side away from F and
a bicollar neighborhood of F. 9 £/ is the union of a surface parallel to β
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and a surface β' D Γ7^ . Discard any component of β' which is disjoint
from T1

W . β' still satisfies (a) and (b) in our definition of β , but has at
least one fewer component of intersection with D. This contradicts (c).

Suppose a has one end on V+ say, and other end on a meridian μ..
The arc β is then an arc, disjoint from all other meridian, running between
μ. and dQc V+. Hence i = p. The arc β it self consists of two arcs, βe

running from μp to the end of η(e) in V+ and β+ running from η(e) to
dQ in V+ . The arc βe and the subarc of e lying between e and V+ are
parallel in η(e) attach to F the rectangle in η(e) lying between them,
replacing βe in dF with the parallel section of e. As above, consider the
union U of a collar neighborhood of β on the side away from F and a
bicollar neighborhood of i 7. 9 U is the union of a surface parallel to β
and a surface β' D Γ^ (in fact U = Qx I). But e no longer intersects
β' at ep. This eliminates \dDΠμ{ep)\ points of intersection of dD with
β . 92) intersects β' in at most \dD Π μ(e)| - 1 points near the end of
e in V+ , since β' Π /?+ = 0 , and no longer intersects β' at the end of a
in V+ . Hence \Qf Π <9D| < | β Π <9Z>| - 2, contradicting 1.6.3.

We conclude that a has one end on μ{ and the other end on μ. for
some 1 < /, j <p. The arc β is disjoint from the meridia and connects
μ. to μ . Hence |ί - j\ < 1. If / = j ± 1, then proceed much as above:
Attach to F a rectangle in η(e) lying between β and the subarc of e
lying between et and e.. Consider the union U of a collar neighborhood
of Q on the side away from F and a bicollar neighborhood of F . 91/
is the union of a surface parallel to Q and a surface β' D Γ^ (again,
{7 = β x /). But e does not intersect β' at et or e y , so |β Π <9Z)|
has been reduced by at least 2\dD Π μ(e)\, contradicting 1.6.3. Hence
/ = j . If i Φ 1 or /?, then /? must lie entirely between μi and /ι/±1 on
dη(e), and so be inessential in that annulus. Then dD is not in normal
form (alternatively, an isotopy of dD near β reduces |β Π dD\ by 2,
violating 1.6.3).

Hence / = j = 1 (or p). Moreover, the argument shows that β must
contain a subarc lying in V_ (or K+). This subarc must be essential in
V_ - η(Γ), hence in V_ - dQ, since #Z) is normal in dη(Γ). Therefore
<9β must have more than one component on V_ in particular

1.6.4. β contains disk components.
[Note that the contradiction is now complete if Γ is a graph in which

all edges have one end incident to each of V± .]
Let Λ c f l be the set of arcs D Π β . An end of such an arc either lies

in d±Q = dQf)V± or it lies in some μ z. To any end of an arc of Λ lying
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in μ. assign the label /, 1 < / < p, and to an end lying in d±Q assign
the label ± . We have seen that

1.6.5. Any outermost arc in D has both ends labelled 1 or both ends
labelled p.

1.6.6. Claim. For every label /, 1 < i < p, there is a component of
Λ which has both ends labelled /.

Proof. This is the main point of §2; we defer the proof to Lemma 2.3.
The arcs Λ = D n Q, when viewed in Q, are the edges of a graph Λ'

in Q whose edges are disjoint from Γ* and whose vertices are {υ+, v_} U
{e{, , ep} . The latter /j-vertices {eλ, , ep} = e Π Q are called e-
vertίces. An arc in Λ with ends labelled i and j corresponds in Λ' to
an edge running from et to βj. We have from 1.6.6 that every ε-vertex

is the base of a loop in Λ ' c β .
Let q be a disk component of Q (one exists by 1.6.4). By 1.6.2 there

are e-vertices on q. Choose an innermost loop in q based at an ε-vertex
e . The interior of the loop is disjoint from Γ' since Γ is connected and
from e since any e-vertex is the base of a loop. Hence the interior of
the loop is an empty disk E. The union of D and E along the arc of
Λ forming the loop has a regular neighborhood whose boundary consists
of three disks, one parallel to D and the others Df and D" each having
boundaries intersecting the meridian of η(e) at et in fewer points than
did D. At least one of Df or Dn must be a compressing disk for dη(e)
in S3 - η(Γ) since D was. This contradicts our choice of D.

2. Outermost forks

2.1. Definitions [13]. Let T be a finite tree. An outermost vertex of
T is a vertex of valence one. A fork is a vertex of valence > 3. If T
has forks, let F be the collection of forks of T, and remove from T
all components of T - F which contains an outermost vertex of T. An
outermost vertex of the resulting tree (possibly just a vertex) is called an
outermost fork of T. If v is an outermost fork, then all but at most one
component of T - v contains no forks. Call each of these components a
tine of T. By a tine of T we mean either a tine of an outermost fork, or
all of T if T is linear and an end of T is specified. Define the distance
between two vertices in T to be the number of edges in the path between
them. Define the distance from a vertex v to an edge ε to be the distance
from v to the nearest end of ε. Hence if ε is incident to υ , the distance
is zero.



DETECTING UNKNOTTED GRAPHS IN 3-SPACE 547

FIGURE 2.1

Suppose the tree T is imbedded in a disk. If v is an outermost fork,
then two tines are adjacent if a small circle around v in the plane contains
an arc intersecting only those two components of T - v .

Now let Q and D be as in § 1 and consider the tree T in D constructed
from Λ = QΠD as follows. For vertices of T take a single point v in the
interior of each component of D - A. Connect with edges those vertices
representing components of D - A which have a common component of
Λ in their closures. To each λ e A there then corresponds a dual edge in
T (see Figure 2.1).

Let Φ be a tine of T. The outermost edge of T is dual to an outermost
arc of Γ in D, which has both ends labelled either both 1 or both p . In
the former case, say, Φ is a 1-tine, in the latter, a /7-tine.

We have the following:
2.2. Lemma. Let Φ be a l-tine (resp. p-tine) of Φ. Then the com-

ponent of A dual to the edge ε in Φ a distance d < p from the end of Φ
has both ends labelled d + 1 (resp. p - d).

Proof Let F be the cell corresponding to the end of the l-tine con-
taining ε, and λ be the component of Λ dual to ε. According to the
remarks preceding 1.6.4, dF = αU β , where β is an arc running from ex

to V_ , around V_ , and back up to eχ. a has both ends labelled 1. Now
the arc λ divides D into two disks; let Df be the one which contains F.
dDf is the union of λ, β , and two other arcs β1 and β", each of which
runs from an end of β at e{ to an end of λ (see Figure 2.2, next page).
Since \dD n Q\ has been minimized (1.6.3), both β' and β" must run
straight up dη(e), crossing in order e2, e3, . By assumption, the path
from the end of Φ to ε contains d 4-1 < p edges, if we include ε. Hence
each of β' and β" begin at eχ and end at ed+{, so both ends of λ are
labelled d+1.

2.3. Lemma. For every label i, 1 < i < p, there is a component of
A which has both ends labelled i.
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FIGURE 2.2

FIGURE 2.3

Proof. If some tine has length >p (e.g., T itself if T is linear), then
2.2 shows the outermost p edges of T correspond in Λ to arcs with both
ends having the same label, and with all labels from 1 to p included.

If all tines have length </?,then T is not linear. Consider two adjacent
tines Φ and Φ' of an outermost fork v, and suppose they both have
lengths d and d' < p. Let Fv be the component of D - Λ corresponding
to v. The edges of Φ and Φ' incident to v correspond to subarcs λ
and λ' of dF which are component of Λ we know from 2.2 that both
ends of λ (λf) have the same label / (/') (see Figure 2.3).

We know from above that I = d or p - d + 1, and similarly for /'.
Since the tines are adjacent, there is a component β of dFndD running
from an end of λ to an end of λ'. Hence (with no loss of generality)
/' = / + 1, and β runs along dη(ε) from eι to eM . This means that Φ
must be a 1-tine, Φ' must be a p-ύne, d = I, and d! = p -I. Then the
d edges in Φ (resp. Φ') are dual to arcs in Λ each having the same label
on both ends, with labels running from 1 to d (resp. d + 1 to p).

This completes the proof of Lemma 2.3, hence of the proofs of Claim
1.6.6 and Proposition 1.6.
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3. The tetrahedral graph

We begin with a familiar observation from "tangle theory" [2].

3.1. Lemma. Suppose y c J 3 is the unlink of two components, S c
S3 is a two-sphere dividing S3 into two three-balls B±, and γ intersects
each of B± in an unknotted pair of arcs. Then there is a unique essential
simple closed curve in S-y which bounds a disk in B+ - γ. It also bounds
a disk in B_ - γ.

Proof This is best seen by considering the two-fold branched cover
Sι x S2 of γ . The link γ lifts to γ, a pair of curves each of which is
an equator of sphere fiber. S lifts to a Heegaard splitting F of Sι x S2

into solid tori T± = Sι x D2

± . A proper disk D in B+ is essential if and
only if D separates the strands of γ Π B+ . Such a disk lifts to a meridian
of Γ+ disjoint from γ. The same is true for disks in B_ . But a curve in
F bounds a meridian of T+ disjoint from γ if and only if it bounds a
meridian of T_ disjoint from γ.

3.2. Corollary. Let S be a two-sphere in S3 dividing S3 into two
balls B±. Suppose τ is an unknotted pair of arcs in B+. Then, up to
isotopy rel end points, there is a unique imbedded pair of curves σ in S
such that dσ = dτ and σ U τ is the unlink of two components.

Proof Since τ is unknotted, it is isotopic rel end points to some pair
of curves σ in S then σ U τ is clearly the unlink. Suppose a is another
pair of curves in S such that da = dτ and σ ' u t is the unlink of two
components. There is a simple closed curve c {c) in S separating the
pair of curves σ (σ'). Push a slightly into B_ and apply 3.1: the curve
c bounds an essential disk in B_ - a, hence c bounds an essential disk in
B+ - τ. Similarly c bounds an essential disk in B+ - τ. But a standard
innermost disk, outermost arc argument shows that such a disk is unique
up to isotopy in B+ relτ. Hence c and c are isotopic rel dτ. But then
c = c divides S into two disks, each of them containing a single arc of σ
and a . Since in a disk any two imbedded arcs with the same end points
are isotopic rel d, σ is isotopic to σreldσ (via an isotopy disjoint from
c = c').

3.3. Theorem. Let Γ c S3 be homeomorphic to the one-skeleton of a
tetrahedron, and let e be an edge ofY.If T/e and Γ - e are planar, so
is Γ.

Proof Let Γ = T/e and Γ' = Γ - e. Denote the end vertices of e
by wι and wr. Let / be the edge of Γ which is disjoint from e, with
end vertices υ± . Denote by e / ± (c r ±) the four other edges, with ends
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FIGURE 3.1

FIGURE 3.2

respectively at wι (wr) and v± (see Figure 3.1).
Recall that e denotes the subgraph {e U wι U wr} of Γ. Choose an

imbedding of Γ7 in the sphere P and a standard handlebody neighbor-
hood ηiΓ*) of Γ1 in S3. j (Γ') n P is a three punctured sphere and
dηiΓ*) ΠP consists of three simple closed curves. Let dι (resp. yr) be the
curve which runs along dη(f) and dη(eι±) (resp. dη(εr±)) and let y be
the unlink γι u yr (see Figure 3.2). The disks on which η(e) is attached to
^(Γ7) can be taken to be disjoint from the curves yι and yr, so henceforth
we will regard γ as lying in dη(Γ).

Consider now the planar graph Γ. There vertices of Γ are υ± and a
third vertex WQ = e/e. The edges of Γ are / , eι± , and er± . Choose an
imbedding of Γ in a sphere P and a standard handlebody neighborhood
J/(Γ) of Γ in S3. Since Γ = Γ/e, the three-manifolds ι/(Γ) and ι/(Γ)
are isotopic in 5 3 , for η(Γ) is a handlebody neighborhood of η(Γ) if we
set η(e) = ^/(^ 0). Then identify corresponding handles in η(Γ - e) and
η(Γ-w0). In particular, η(Γ) = r/(Γ) and so we can regard γ as lying on

T
Π P is a four-punctured sphere, and dη(Γ) Π P consists of four

simple closed curves. Let yι (resp. yr) be the curve which runs along
dη(f) and dη(ει±) (resp. dη(er±)), and let γ = γιuγr, also the unlink
(see Figure 3.3). The curves y and γ both intersect the four-punctured
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FIGURE 3.3

sphere dη(T) - η{w0) in two arcs, one running between the attaching disks
of each of η{εr±) on η{w0) and the other running between the attaching
disks of each of η(eι±) on η{w0). Each component of γ and of y also
intersects a meridian μ(f) of η(f) in exactly one point. Hence γ and
γ differ in dη(T) - η(wQ) by at most some twists around μ(f) and some
twists around the attaching disks. The latter twists can be pushed into
η{wQ) and so off of dη(T)- η{w0). Now consider the choice of imbedding
of Γ in the sphere P: Each bigon of Γ with one end at wQ and other
end at υ± may be rotated about w0 and υ±. The effect is to alter γ
by a twist around μ(f). It follows that the imbedding of Γ in P can
be chosen so that γ = y on dη(T) - η{w0) and the from 3.2 that also
γΠdη(w0) isisotopicin dη(wQ) to γΠdη(w0) rel end points. (Note that
this last isotopy absorbs a difference in twists around the attaching disks
of η(eι±) and η(εr±) in dη(w0) because the isotopy may sweep across
these attaching ̂ isks. In particular, this isotopy does not necessarily lie
entirely on dη(T).)

Return now to 7/(1̂ ) and η(Γ). A graph G1 isotopic to Y1 can be
recovered from the unlink γ c η(Γ) as follows: Remove the arc γrΓ\dη(f)
and attach arcs which connect the points of intersection of γr and γι in
each of the two attaching disks of η(f) at η(y±). A graph G isotopic
to Γ can then be recovered from G1 by attaching an unknotted arc in the
ball η{e) with one end on each of yι n dη(e) and yr Π dη(e).

Let us view how this construction appears in η(Γ), using the facts that
γ = y outside of η(w0) = η(e), and that the pair of arcs γ Π dη(wQ) is
isotopic in dη(w0) to γΠdη{w0) rel end points. First note that η(f)
intersects P in a rectangle / x / , with dl x I corresponding to η(f) n
7 = ί/(/)Πy and with I x dl corresponding to two arcs, one in each
of the attaching disks of η(f), connecting the points of intersection of
yι and yr in each of the attaching disks. Thus a graph G isotopic to
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Γ can be obtained from γ by replaced the arc {1} x / with I x dl in
1x1 = η[f) π P, and attaching an unknotted arc in η{w0) connecting
the two arc components of γΠ η(w0. But γ Π η(w0) consists of two arcs
in the boundary of the disk PΓ\η(w0), so they can be connected by an
unknotted arc a in the disk PΠη(vQ). Since G = γUa c P, Γ is planar.

3.4. Remark. The argument above, while apparently God-given for
the proof of the tetrahedral graph, in fact generalizes. Indeed, our original
proof of 7.5 consisted of two parts: Graphs with cut edges were covered
much as in §1. Graphs without cut edges, but with > 4 vertices, were
covered by a generalization of Lemma 2.1 above to braids of many strands.
This generalization, in turn, can be proven from 7.5. Details appear in
[14].

4. Special three-cycles

4.1. Definition. Let Γ be a graph in S3 and σ a cycle in Γ. If there
is an imbedded disk D is S3 for which ΰ ( Ί Γ = dD = σ we say σ is
flat. D is called a flattening disk for a.

4.2. Definition. An imbedded three-cycle a in a graph Γ is special
if at least one of its vertices (called the apex) has valence = 3. The edge
not incident to the apex is called the base of the three-cycle.

4.3. Lemma. Suppose Γ is a graph in S3 containing a special three-
cycle σ with base e. IfY-e is planar and σ is flat, then Γ is planar.

Proof. Let ty(Γ') be a standard handlebody neighborhood for the graph
Y1 = Γ - e imbedded in a sphere P. Let v denote the apex of σ,
w± the other two vertices, and f± the edges of σ with ends on v and

w+ respectively. Let (D, dD) c (S3, σ) be a flattening disk for σ, so
ΰ n Γ = dD = σ. We can isotope D near dD so that γ = D n η(Γf) is a
normal curve running from eΠdη(w+) to eΠdη(w_).

Let N be the three-holed sphere in //(Γ') constructed by attaching the
annuli dη(f±) - ^°(Γ/) to the three-holed sphere dη{v)-ηι(Γ). The
normal curve γ consists of three arcs: γQ = γ Π N and the two arcs γ± =
yn[dη(w±)-η(f±)]. Since; ^(Γ') is a standard handlebody neighborhood
of Γ', PnN also contains a proper arc γQ running from dNΠη(w+) to
dNΠη(w+). Since N is a three-holed sphere, we may isotope γ0 (perhaps
changing γ± by some twists about the attaching disks of η(f±) to η{w±))
so that γQ = γQ. We can now view the disk Df= D - τ (Γ') as giving an
isotopy from the arc e - η(w±) to the arc γQ. During the course of this
isotopy the end points eΠd(w±) move along y± to the end points of γ0.
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This motion of the end points can be coned in η(w±), extending it to an
isotopy from e to the union of γ0 and the arcs in η(w±) obtained by
coning the end of γQ . The latter lies in P, so, after the isotopy, Γ c P .

4.4. Proposition. Suppose Γ is a graph in S3 containing a special
three-cycle σ with base e. Suppose f is an edge of Γ such that f is not
a loop and is not incident to σ. If Tjf and Γ - e are planar, then so is
Γ.

Proof Let P be a two-sphere containing Γ = Γ//. The image of σ
remains a three-cycle σ in Γ, which divides P into two disks. Push the
interior of one of them slightly off of P. Since / and its end points are
disjoint from σ, the preimage of the disk before / is shrunk remains a
disk D with boundary σ, whose interior is disjoint from Γ. This shows
that σ is flat. Apply 4.3.

5. Two-separable graphs

5.1. Definitions [19]. If Γ is connected and has a cut vertex we say
Γ is one-separable. If Γ is connected but not one-separable it is two-
connected. A pair of vertices υ± in a two-connected graph Γ is two-
separating if Γ is the union of two subgraphs Γo and Γx, each containing
at least two edges, such that Γo Π Γχ = {v+, v_} . If Γ is one-connected
and has a two-separating pair of vertices, Γ is two-separable. A two-
connected graph which is not two-separable is called three-connected.

5.2. Definition. Let M be a three-manifold with boundary, and let
(a, da) c (M, dM) be a properly imbedded arc in M. A flange φ
from a is an imbedding φ: I x I -• M such that φ~\a) = I x {0} and
<p~l(dM) = dIxI.

5.3. Lemma. The image of any two flanges from the same arc in M
are isotopic in M rel a, via an isotopy fixed outside a neighborhood of the
images.

Proof Suppose φ and ψ are two flanges based at α . By a small
isotopy of ψ whose support lies near a we can make ψ = φ on a neigh-
borhood of / x {0} . Let ft: I x / —• / x / be the map ft(u, υ) = (u, tv),
and let φt: I x / -> S 3 (ψt: I x / —• S3) be the map φt = φft (resp.
ψt = ψft)9 which is an imbedding as long as t > 0. then for ε > 0 suffi-
ciently small, φε = ψe. The required isotopy is then obtained by following
the isotopy ψt, 1 > t > ε, by φs, ε < s < 1. q.e.d.

Suppose {v±} are a two-separating pair of vertices in a two-connected
graph Γ. Let Γo and yx be the subgraphs of the two-separation. Suppose
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FIGURE 5.1

Γj contains an edge / with distinct end vertices, neither of which are
v± , and suppose Γo contains an edge e for which Γo - e is connected.

5.4. Lemma. If Γ/f and Γ - e are planar, so is Γ.
Proof. The idea will be to show that there is an arc in Γo such that all

of Γo lies inside a flange on that arc.
Let Γ = Γ/f, T{ = Γ j / / , and P be a two-sphere that contains Γ D

Γ o . Since Γ is two-connected, Γo and Γj are connected. Since Γj
is connected, Γ{ - v± lies entirely in one component of P - Γo whose
boundary contains both υ±. Since Γo is connected, that component is
a disk D. Though a ΰ c Γ 0 may not be an imbedded circuit, it follows
from the two-connectivity of Γ that dD is the union of two imbedded
arcs a and β in Γ o , each running from v+ to v_ . One of them, a
say, does not contain e, since Γo - e is connected. Remove from D
a collar of β disjoint from Γj , so that D is an imbedded disk in P,
Γj - {v±} c interior(Z)), and a c dD. The other disk Df (see Figure
5.1) which dD bounds in the sphere P then has the following properties:

(a) Γ o cZ>' ,
(b) D'nΓι = {v±},and

(c) a c dD'.
Let Γ' = Γj U a. Since Γ ' c Γ - ί , Γ7 is planar, so lies in a sphere

Q. Let τ/(Γj) be a standard handlebody neighborhood of T{ c Q and
W - S3 - °τ/(Γj). A neighborhood of the arc a Π W in Q contains a
flange F on a Π W. D1 Π W is also a flange on a Π W and contains
Γo π W. Both flanges F and /)' intersect dW - dη^Γ1) on arcs lying in
dη(v±). By 5.3, // can be isotoped rel a onto F, forcing Γo Π JF onto
β as well. Coning the isotopy of the points Γ0Πdη(v±) to v± extends
the isotopy to Γo - W = Γo n η(Γx), after which Γ c Q .
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6. Three-connected graphs

6.1. Definition. Let Ωn, n > 3, be the wheel with n spokes. Its
vertices are the central vertex w and vertices {w{, ••• , wn} lying in order
on a cycle Cn . Its edges are those of Cn together with the n spokes, each
incident to w and one of the wi. Denote by σ , i e Zn, the circuit
w-wi-wi+ι in Ωn . Note each σ is a special three-cycle, with at least
two apexes wi and wi+ι.

6.2. Lemma. Lef Γ be the graph obtained by adjoining to Ωn, n > 3,
<z« £d££ £ wrtA (perhaps new) distinct end vertices v± c Cn. Either Γ
contains a two-cycle or Γ contains a special three-cycle σ and an edge f
not incident to σ.

Proof. Let Cn c Γ be Cn U {v±}. The vertices w and κ;/+1 in <jf.
are adjacent in Cn. If {wn wi+ι} = {v+, v_} for some i e Zn, then
Γ contains a two-cycle. If not, then at least one apex of each σ persists
as a valence three vertex in Γ. It follows that each σ remains a special
three-cycle in Γ unless υ± is in the interior of the edge of σi on Cn .
Hence at least n - 2 > 1 of the σ{ remain as special three-cycles in Γ.
Also, since n > 3, there must be at least four vertices in Cn or Γ would
contains a two-cycle. Hence in CΛ there is an edge disjoint from one of
the remaining special three-cycles.

6.3. Definition. A graph is strict if it has no loops or two-cycles and
every vertex is of valence > 3.

6.4. Lemma. Suppose Γ is a three-connected strict graph lying in a
sphere P, and F is a face of Γ in P. Either there is an edge of Γ not
incident to dF or Γ is a wheel Ωn, n > 3, whose circuit Cn — dF.

Proof Since Γ is strict it contains at least one vertex not in dF.
Suppose Γ contains exactly one vertex w not in dF. Since Γ is strict,
every edge incident to w is incident to a vertex in dF and every edge
incident to dF but not in dF is incident to w . Hence Γ is a wheel Ωn

with n = valence(iu) > 3 and circuit dF.
Suppose Γ contains more than one vertex not in dF . Let F1 be a face

of Γ whose boundary contains vertices w and wf not in dF. If any edge
of Γ is not incident to dF we are done. If every edge is incident to dF,
then there is an arc a properly imbedded in Ff, separating w from w ,
whose boundary lies on vertices wi and w. of dF. There is also an arc
β in F with dβ = da. Then the circle aU β shows that w. and Wj
two-separate Γ, contradicting the hypothesis that Γ is three-connected.

6.5. Proposition. Let Γ c S 3 be a three-connected strict graph con-
tained in a sphere P c S3. Let F be a face of Γ in P. Suppose F c S3
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is a disk such that d~F = T n Γ = dF. Then there is a sphere 7 c S3 so
that ΓcP and F c ? is a face of Γ in T.

Proof. Applying general position and isotopies which taper as they ap-
proach Γ, we can assume that P intersects the interior of F in a properly
imbedded one-manifold Λ, and that the closure in F of any arc compo-
nent of Λ is either an imbedded properly imbedded arc in Ύ with ends
at vertices of dF, or a circle containing a vertex of dF. Let Λ denote
this closure of Λ in F, and call the circles of Λ which contains a vertex
of dF loops.

We will induct on |Λ|. If |Λ| = 0 so T Π P = 0 , just replace F with
F, yielding a new sphere 7. So we suppose Tr\P Φ<Z>.

Suppose first that there were a simple closed curve in Λ, and let D be a
disk in Ύ cut off by an innermost such curve. Since Γ is connected, dD
also bounds a disk D1 in P - Γ. Replace D1 by a slight push-off of D to
eliminate dD (and perhaps more) from Λ, reducing |Λ|. So henceforth
assume Λ consists of arcs. Then I consists of arcs and loops.

In each case below, we will replace some disk in P with a slight push-
off of a disk in F, obtaining a new two-sphere P' containing Γ and
intersecting F in at least one fewer component.

An arc of Λ outermost in F cuts off a disk D in F such that the
interior of D is disjoint from P. Among all such outermost arcs, choose
a to be one for which dD contains as few edges in dF as possible.

Case I: a is not a loop. The ends of a are two vertices w{ and w2 of
dF. {w{, w2} separates dF into two arcs d{ and d2 with dD = aUdι,
say, and dx having no more edges than d2. If a c F, then a also cuts
F into two disks, one of which also has boundary aU d{. Replace that
disk in F with a copy of D, then push F slightly rel dF to eliminate
a (and perhaps more) from Λ.

If a c P - F, then consider a slight push-off β of dx onto F . a\J β
is a simple closed curve in P intersecting Γ in the vertices wχ U w2 and
containing edges of Γ on both sides. Since Γ is three-connected, one side
must contain precisely one edge. Hence a lies in a face Ff of Γ adjacent
to F and F'nF is a single edge, either d{ or d2. If FfΓ\F = d{ proceed
as above using F1 instead of F. If F1 Π F = d2, then rfj can have no
more than one edge. But then dF would have no more than two-edges,
contradicting the assumption that Γ is strict.

Case 2: a is a loop. The ends of a lie on a vertex w in dF. Let D
be the disk in T bounded by the loop a U w .

If α C F, then α U tu also bounds a disk /)' in F. Replace Z>' with
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D, then push F slightly rel dF . This eliminates a (and perhaps more)
from Λ.

If a c P - F, then the interior of the loop a in P must be disjoint
from Γ, since Γ is two-connected. Hence aUw also bounds a disk Df

in a face Ff. Proceed as above, using Fr instead of F.

7. Criteria for planarity

7.1. Lemma. Let Γ be a finite graph in S3 with handlebody neigh-
borhood η{Γ). Then π^S3 - Γ) is free if and only if S3 - °η(Γ) is a
connected sum of handlebodies, one for each component ofT.

Proof Stallings theorem [17] shows that a submanifold of S3 with
free fundamental group is either the solid torus, or a connected sum, or
a boundary connected sum of other submanifolds of S3 with free funda-
mental group. By induction, such a manifold must then be a connected
sum of handlebodies. Each handlebody summand has connected bound-
ary.

7.2. Lemma. Let Γ be a finite graph in S3 such that πλ(S3-T) is free
and every graph properly contained in Γ is planar. If Γ is not connected,
it is planar.

Proof Let η(T) be a handlebody neighborhood of Γ. Since Γ is not
connected, S3 - η(Γ) has more than one boundary component, and so is
a connected sum. In particular, Γ is split, and so by 1.3 is planar, q.e.d.

We are now ready to prove the main theorem. We will need the follow-
ing theorem, due to Barnette and Griinbaum [1, Theorem 1], If e is an
edge in a strict graph Γ, let Γ ~ e denote the graph obtained from Γ-e
by amalgamating any newly-created valence two vertices at the ends of e.

7.3. Theorem. Suppose Γ is a three-connected strict graph other than
the tetrahedral graph. There is an edge e in Γ such that Γ ~ e is also a
three-connected strict graph.

We will also need the following special case of a theorem due to Mason

[11]:
7.4. Theorem. Suppose that Tχ and Γ2 are planar graphs in S . Any

homeomorphism g:Γ{ -+ Γ2 extends to a homeomorphism H: S3 -> S3

isotopic to the identity.
If follows that if Γ c S3 is planar and g: Γ -• S2 is any imbedding

of Γ in the two-sphere, then there is a sphere P c S3 such that Γ lies in
P just as it lies in S . That is, there is a homeomorphism h: S -> P so
that hg: Γ -• P c S3 is the inclusion.
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7.5. Theorem. A finite graph Γ c 5 3 is planar if and only if

(i) Γ is abstractly planar,

(ii) every graph properly contained in Γ is planar, and

(iii) π{(S3-Γ) is free.

Proof Clearly, if Γ is planar it satisfies (i)—(iii); the interest is in the
other direction. So we will assume Γ satisfies (i)—(iii) and try to show it
is planar. Nothing is lost by assuming every vertex of Γ has valence > 3.

The proof will be by induction on the number of vertices. In particular,
we can assume that if / is an edge in Γ which is not a loop, then the
graph T/f c S3 is planar.

Following 7.2 assume that Γ is connected. The case in which Γ has a
single vertex is [4, Theorem 1], so we will assume Γ has more than one
vertex. By 1.6 we can assume Γ has no cut edge. Hence, by 1.5 we can
assume Γ is strict and two-connected.

Suppose Γ is two-separable, with two-separating vertices {v±} . Let Γo

and Γj be the connected subgraphs of the two-separation. Consider first
Γ j . Since Γ contains no two-cycles, at most one edge of T{ is incident to
both υ± . Since Γχ contains more than one edge, it must contains at least
one v Φ v± . Since Γ contains no two-cycles, at most two edges incident
to υ have their other end on υ± . Since v has valence > 3, some edge
/ incident to v is not incident to v± . Now consider Γ o . Γo contains
more than one edge, so it has at least one other vertex v , of valence > 3
since Γ is strict. Thus, Γo is not a tree, for it can have at most two ends,
v± . Since Γo is not a tree, it contains an edge e with Γ - e connected.
Then by 5.4 Γ is planar.

If Γ is not two-separable it is a three-connected strict graph. If it is
the tetrahedral graph, then by 3.3 it is planar. If it is not tetrahedral, then
by 7.3 there is an edge e in Γ such that Γ ~ e is also a three-connected
strict graph.

If Γ ~ e is a wheel, then by 6.2 Γ contains a special three-cycle σ and
an edge not incident to σ. Then by 4.4 Γ is planar. So assume Γ ~ e is
not a wheel.

Γ is abstractly planar, so imbed Γ in a sphere Q. By hypothesis,
Γ7 = Γ - e is also planar, and by Mason's theorem (7.4) we can assume
that Γ7 = Γ - e lies in a sphere P c S3 exactly as Γ lies in Q. In
particular, the ends of e lie on the boundary of some face F of P. Since
Γ ~ e is not a wheel, there is, by 6.4, an edge / of Γ not incident to
OF. Let Γ = Γ/f.By hypothesis, Γ lies in a sphere P c S3. By 7.4,
we can assume that Γ lies in P exactly as Γ// lies in Q. In particular,
e lies in a face F of Γ in ~P with dΨ = dF. Since / is not incident
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to dF, T persists when we "unshrink" / . That is, T is a disk in S3

such that dΨ = T n Γ = dF. Then by 6.5 applied to Γ' and T, there is
a sphere P" c S3 containing Γ7 and F . But e c T, so Γ c P " .

7.6. Corollary. ΓΛere w <z« algorithm to determine if a graph T c S3

is planar.
Proof. Kuratowski's theorem provides an algorithm to determine ab-

stract planarity. In fact, abstract planarity of graphs can be determined in
linear time [7].

It suffices to have, then, an algorithm to determine if the fundamen-
tal group of the complement of graph Γ is free. According to 7.1 this
is equivalent to showing S3 — °η(T) is the connected sum of handlebod-
ies, one for each component of Γ. Haken's original algorithm [5] can
be used to determine if a three-manifold contains a two-sphere separat-
ing its boundary components. This reduces the problem to the case in
which Γ is connected. Then M = S3 - °η(Γ) is irreducible. A variant of
Haken's algorithm suffices to determine if an irreducible three-manifold is
d-reducible, and gives a d-reducing disk (cf. [9, 4.1]). Cut M open along
a d -reducing disk, if one exists. Continue this process until M does not
have a d-reducing disk. If dM is then a union of spheres, S 3 — °η(Γ)
was a handlebody. If not, then a nonspherical component of dM was
an incompressible closed surface in S3 - °η(T), so S3 -°η(Γ) was not a
handlebody.
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