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ON THE DISTRIBUTION OF CONJUGATE POINTS

WALTER VANNINI

1. Introduction and main theorems

In 1958, L. W. Green published a curvature inequality for compact
riemannian manifolds without conjugate points [4]. For M a riemannian
manifold as above, he showed that | » Scal > 0. He also established that
equality occurs precisely when M is flat.

By Ambrose’s criterion for conjugate points, and an observation of A.
Avez regarding the use of Birkhoff’s Ergodic Theorem, Green’s inequality
can be quickly derived [1], [2]. By the same argument, and with the use of
a new criterion for conjugate points, we have a generalization of Green’s
inequality.

Theorem 1. Let M be a complete riemannian manifold of dimension n
with a finite volume and Ricci curvature bounded above. Then

— N2
/Scal< l(nS" ll)can v sup(0, RIC/ .

In the above theorem, SAM is the unit tangent bundle with the induced
Liouville measure, Ric: SM — R is the Ricci curvature function, and
y: SM — [0,00] is defined by

w(v) = liminf —

1 (the number of points conjugate to >
— T—oo 1T

¢y(0) along ¢y, 77, Where ¢, () = exp(tv)

For M the standard n-sphere of constant sectional curvature 1, ¥ = 1/,
Ric = n — 1, Scal = n(n — 1), and vol(SM) = vol(M)vol(S"~!,can). The
standard n-sphere shows that the above generalization of Green’s inequal-
ity is sharp.

It would be desirable to also generalize Green’s equality statement. It
seems plausible that equality occurs in the generalized Green’s inequality
precisely when M has constant sectional curvature.

The new criterion for conjugate points, mentioned above, is
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Theorem 2. Letc: [0, L] — M be a unit speed geodesic on a riemannian
manifold of dimension n. If

L
/ Ric(c'(1))dt > n(n — 1)'2, [max (0, Ric(c' (1)),
0 t€[0,L]
and Ric(c') is not identically zero, then c(0) has a conjugate point c(T)
along ¢ for some T in (0, L}].

Furthermore, if the smallest such T is L, then K(c) = n?/L?* for all
tangent two-planes a containing a tangent vector to c.

This theorem provides an analogue to Myer’s criterion for conjugate
points [7]. His criterion is the same as ours, except that the curvature
condition is replaced by Ric(c’) > (n — 1)a2/L%. Our criteria coincide
when Ric(c') = (n — 1)n?/L2.

It should be noted that the curvature condition in Theorem 2 cannot be
replaced by

/L‘Ric(c’(t)) dt> (n— )n?/L;
0

a sufficiently long geodesic beginning from the vertex of the paraboloid
z = x? 4+ y? demonstrates this. However, the curvature condition

/L Ric(c'(£))(1 — cos(2nt/L))dt > (n — 1)n?/L
0

is a valid replacement, as shown by L. W. Green [5] in 1963. At present,
this is the strongest generalization of Myers’ criterion.

An immediate consequence of Theorem 2 is the following supplement
to a result of Ambrose [1].

Theorem 3. Let c: [0,00) — M be a unit speed geodesic on a rieman-
nian manifold of dimension n, which gives rise to no conjugate points of
¢(0). Then

lim sup/TRic(c’(t))dt <n(n- 1)'/2\/ sup (0, Ric(c'(1))).
0

T—oo 1€[0,00)

Ambrose showed that with the same hypotheses, Th_rgo foT Ric(c(¢))dt is
not +oo.

Corresponding to Theorem 2, there is a theorem about second order
differential equations.

Theorem 4. Consider the second order differential equation x" + Fx =
0, where F is a continuous function defined on [0,L). Let z: [0, L] — R be



ON THE DISTRIBUTION OF CONJUGATE POINTS 835

a solution for which z(0) = 0 and z'(0) # 0. If

L
/0 F(t)dt>n /trer%&il(O,F(t))

and F is not identically zero, then z(T) = 0 for some T in (0, L).
Furthermore, if the smallest such T is L, then F(t) = n*/L? for all t in
[0,L].
Theorem 1 can be restated in terms of the integral of the Ricci curvature.
It is then apparent that it follows from the following stronger result.
Theorem S. Let M be a finite volume complete riemannian manifold of
dimension n.

(1) If Ric has an integrable positive or negative part, then

/ Ric < 0.
z

(2) If Ric is bounded above, then

/ Ric < n(n — 1)/2,/sup(0, Ric)/ .
SM-Z =

SM

Here Z denotes the subset of SAM consisting of unit vectors v for which
the geodesic ¢, : [0,00) — M defined by c¢,(f) = exp(tv) gives rise to no
conjugate points of ¢, (0).

The author would like to thank Detlef Gromoll for many helpful con-
versations and suggestions. Thanks are also due to Demir Kupeli, for
pointing out that any estimate for conjugate points should be a special
case of a more general result for differential equations.

2. Basic facts and technical lemmas

2.1. Conjugate points along geodesics. We refer to [3] as a basic refer-
ence.

Let M be a riemannian manifold, and let ¢: [0, L] — M be a unit speed
geodesic on M. c(t) is said to be a conjugate point of ¢(0) along ¢ (where
0 < 7 < L) if expy): TMc) — M is singular at 7'¢(0). The multiplicity
of the conjugate point is defined to be the dimension of the nullspace of
the differential of exp,, at 7¢’(0).

Equivalently, c(t) is conjugate to c(0) along ¢ when there is a Jacobi
field J along c, other than the zero field, that vanishes at 0 and 1. The
multiplicity of c(t) is the dimension of the vector space generated by all
such Jacobi fields.
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The index form I, associated to c¢ is defined by

L
Lv.w) = [ <% %} — RV, ()0, W) dt,

where V, W are continuous piecewise smooth vector fields on ¢ that are
orthogonal to ¢, and vanish at 0 and L. Such vector fields will be called
admissible (or c-admissible, whenever there might be confusion).

There exists a conjugate point ¢(7) to ¢(0) along ¢, 0 < T < L, precisely
when there exists an admissible vector field ¥V on ¢, where V' is not the
zero field, for which I.(V, V') < 0. If the only conjugate point to c¢(0) along
¢ is ¢(L), then the admissible V' for which I.(V, V) < 0 are precisely the
Jacobi fields vanishing at 0 and L.

We wish to recall the well-known

Morse Index Theorem. The number of conjugate points to ¢(0) along
Clio,), counted according to multiplicity, is equal to the dimension of a
maximal subspace of admissible fields for which 1. is negative definite.

This theorem is used here to count conjugate points. Counting will
usually not be according to multiplicity.

Lemmal. If0< T, < T, < L and it is known that c(0) has a conjugate
point along c|o,r,) and c(T\) has a conjugate point along c|r, ), then it
Sollows that c(0) has a conjugate point c(T) along c, where T) < T < T>.

By repeated application of Lemma 1, we have

Lemma 2. If0 < T, < T, < --- < T, <L and it is known that
¢(0) has a conjugate point along c|io 1,3, ¢(T\) has a conjugate point along
cliry.ry)> - »c(Tk—1) has a conjugate point along c|r, _, 1), then it follows
that c(0) has at least k conjugate points along c.

In Lemma 3, conjugate points are counted according to multiplicity.

Lemma 3. If0< T, <T,< - < T, <L anditis known that c(0)
has a; conjugate points along clio 1,1, ¢(T1) has a, conjugate points along
cliry. ) 5 ¢(Ti—1) has oy conjugate points along c|ir, | 1,1, then it follows
that

k
Z n—1)<a<Za,+k(n—l)

i=1

where o is the number of points conjugate to c(0) along c|jo,1,)-

Proof of Lemma 1. Without loss of generality 7> < L. Pick ¢; > 0
(¢2 < L—T3). Then there exists ¢; > 0 for which ¢(7 +¢,) has a conjugate
point along c|(7, +¢,,7+¢,)-
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Take a maximal subspace of c|jo, 7, +¢,)-admissible vector fields for which
the index form is negative definite, and extend it to a subspace of c|jo, 7, +e,1-
admissible vector fields by taking the vector fields to be zero outside of
[0, T} + €;]. Call the resulting subspace W.

Now take a maximal subspace of c|i7, +¢,,7,+¢,]-admissible vector fields
for which the index form is negative definite, and extend it in a similar
way to give W,. By the Morse Index Theorem dim(W,) > 0, so that
dim(W; + W;) > dim(W}). Applying the Morse Index Theorem again, we
see that ¢(0) has a conjugate point ¢(7) along ¢, where T1+¢; < T < Tr+e¢;.

Now, there exists S satisfying 77 < S < T3, for which ¢(0) has no
conjugate points ¢(7) satisfying 77 < 7 < S. This tells us that ¢(0) has a
conjugate point ¢(7') along ¢, where S < T < T + ¢,. This is true for any
positive ¢; and S > T, so that ¢(0) has a conjugate point ¢(7T) along c,
where T} < T < T>.

Proof of Lemma 2. By repeated application of Lemma 1, there exist
conjugate points ¢(1y),¢(12), -, c(ty) to c(0) along c, satisfying

O0<t<TT<n<<h< <17 <LT;.

Proof of Lemma 3. Define Tj to be 0. Note that conjugate points are
counted according to multiplicity in this proof. Take a maximal subspace
of ¢|fr,_,,7,;-admissible vector fields for which the index form is negative
definite. Call it ;. Extend it to a subspace of c|j,z,j-admissible vector
fields by taking the vector fields of Wi to be zero outside of [T;_;, T;]. Call
this subspace W;. Let W be the direct sum of the W;’s.

Since ¢(7;-) has at least a; — (n — 1) conjugate points along c|i7,_, 1),
we have that dim(W}) > a; — (n — 1), and so

k
dim(W) > > o —k(n—1).
i=1
Since a > dim(W),
k
Zai —k(n-1)<a.
i=1
Since ¢(T;_) has at most «; conjugate points along c|i7,_, 1,), it follows
that dim(W)) < a;, so that

k
dim(W Z

Now extend W to a maximal subspace of ¢lfo,1,j-admissible vector fields
for which the index form is negative definite. Call this space X, and note
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that
a<dimX + (n-1).
Let W' be the orthogonal complement of W in X (with respect to I).
By showing that dim W’ < (k — 1)(n — 1), we are done, since then

a<dimX+(n—1)—dimW+dirnW’+(n—1)
<Zm k—1)(n—-1)+(n-1).

Suppose that d1m W' > (k — 1)(n — 1). Since the maximum possible di-
mension of the image of the linear map sending V' in W’ to (V'(T1), V'(T>),

, V'(Tx—1)) is (k — 1)(n — 1), there exists a nontrivial vector field V' in
W' for which

V(T1)=0,V(T2) =0, ,V(T—,) = 0.

For some j from 1 to k, V; = V|i7;_, ;) is a nontrivial vector field for which
I(V;,Vj) <0, and I(V};, W)) = 0, since I(V, W) = 0. This contradicts the
maximal property of _VIQ

2.2. The geodesic flow and the ergodic theorem

We refer to [8] as a basic reference.

Let M- be a complete riemannian manifold, and SM its unit tangent
bundle. The geodesic flow G: SM x R — SM on SM is defined by
G(v,t) = c'(t), where c(s) = exp(sv). G(v,t) will be written as G;(v).

The unit tangent bundle possesses a Borel measure determined by the
riemannian structure of its base manifold. It is called the Liouville mea-
sure, and it is invariant with respect to the geodesic flow.

Birkhoff’s Ergodic Theorem applies to measure spaces with a measure
invariant flow. In our case, we have

Birkhoff’s Ergodic Theorem. Let M be a complete riemannian man-
ifold G: SM x R — SM be the geodesic flow, and f: SM — R be a
function whose positive or negative part is integrable with respect to the
Liouville measure u. Then the following hold.

(1) The following limit exists for almost all v in SM :

lim —/ f(Gw)dt.

Tooo T

(2) If A is a flow invariant subset of SM of finite measure, then

/f ) du(v /hm— F(Gw)dtdu().
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Letting a be any real number, the above statement is also true when

lim —/ f(Gw)dt

Tooo T
is replaced by
lim lNz:l S(Grav).
N—oo N k=0 @

3. On the density of conjugate points along geodesics
Let M be a complete riemannian manifold. Any unit tangent vector v
on M determines a unit speed geodesic ¢, : [0, 00) — M via c/,(0) = v, and
then two elements of [0, +o00], namely,

the number of points conjugate to

y(v) = 11m inf — < ) ,
y()= T—o0 T »(0) along ¢, [0,

F(v) = lim sup (the number of points conjugate to)
¢v(0) along cylo,7)

Writing » for the dimension of M, we immediately have
Proposition 1. If B is a positive number for which Ric(c!)) < B, then

T—o0

1
y(v) 2 N——ﬂm_fl)h}gl@ng/ Ric(c'(2)) dt.

It is clear that if ¢, gives rise to no conjugate points of ¢,(0), then
y(v) = ¥(v) = 0. The converse is not true. The paraboloid z = x2+y?
has many unit tangent vectors that serve as counterexamples.

However, the following is true.

Proposition 2. Let M be a complete riemannian manifold with finite,
volume. Then the set of unit vectors v for which y(v) = 0 and the set of
those for which c¢,(0) has no conjugate points along c, differ by a set of
measure zero.

With regard to y and ¥, it is natural to ask whether they are really
different. To show that they are the same, it suffices to show that y > ¥.
Along these lines, it is true that (n — 1)y > ¥ almost everywhere for M a
complete riemannian manifold of dimension n. This follows from

Proposition 3. Let M be a complete riemannian manifold. Then the
following is a well-defined element of [0, +o0) for almost all v in SM:

the number of points conjugate to
(CU(O) along ¢y 10,175 )
counted according to multiplicity

hm —

T—o0
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4. Proofs of the propositions and Theorem 2
First, we give some notation:

cy: [0,00) — M is the geodesic ¢,(f) = exp(tv) for v a unit tangent
vector of a riemannian manifold M.

Z denotes the set of unit vectors v for which ¢,(0) has no conjugate
points along c,.

Z' denotes the set of unit vectors v for which ¢, has finitely many
conjugate points along ¢,.

Z" denotes the set of unit vectors v for which ¥(v) = 0.

Z'"" denotes the set of unit vectors v for which y(v) = 0.

Wehave Z CZ' CZ" C Z'". Note that Z',Z",Z"" each are invariant
with respect to the geodesic flow. u will denote the Liouville measure on
SM.

Proof of Proposition 2. We are required to show that Z and Z" differ
by a set of measure zero. It suffices to show that u(SM—-Z"") > u(SM-2).

For each positive integer j, define fj: SM — R by

1, if ¢,(0) has a conjugate point along ¢y |0}
fi= .
0, otherwise.

Also, define f: SM — R by

1, if ¢,(0) has a conjugate point along c,,
f= .
0, otherwise.

Then f; approaches f from below, as j goes to infinity. It follows that

1im/ fi= f.
J=0 JsM sM

By Lemma 2,

for all unit vectors v for which the above limit exists. For v in Z", we
then have
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We can now conclude that
wsM-2)= [ f=1im [
SM

J—oo SM

= lim lim Z f L)) (v)

Jj—oo SM N—oo

: : { fi(Gv)
= lim 1 _11_
Jj—o0 SM—2zZ" Nl—rv‘go kz N dﬂ(’U)

< / 1=u(SM—2Z").
SM—zM

Proof of Theorem 2. Suppose that

/ Ric(c'(£)) dt > n(n — 1)1/2\/ max (0, Ric(c'(1))

and Ric(c’) is not identically zero.

To show that ¢(0) has a conjugate point along c, it suffices to find an
admissible vector field W: [0, L] — T M on c, which is not identically zero
and for which I.(W, W) < 0.

Letting f = max,¢o,r) Ric(c’(f)) we have that g is positive. Let y =
(7/2)y/(n—1)/B so that 0 < y < L/2. Define v: [0,L] — R by

sin(zt/2y), if0<t<y,
'U(t)= la lfyStSL—y,
sin(z(L —t)/2y), ifL-y<t<L.

Let E be a parallel unit vector field on c¢ that is orthogonal to ¢, and let
V =vE. Then

L
= [(B50) - Roewpe, v
- / "W + (1 = v (R(E, ()¢ (1), E) dt
0
+/L v'(£)% + (1 = v(0)2)(R(E, c'(1))c'(t), E) dt

L-y

_ / " RE, ¢ (0)c' (1), E) d1.
0
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Let E,,--- , E,_; be mutually orthogonal parallel unit vector fields on ¢
that are orthogonal to ¢. Let V; = vE; for i = 1 to n — 1. We then have

n—1 y

S0 = [ (1= D0 (0% + (1 = v(0))Rice (1) dt

i=1 0

L
+/ (n— 1)v'(£)2 + (1 — v(2)*)Ric(c'(2)) dt

L-y

L
- / Ric(c'(1)) dt
0
< [(n= 1w+ (1 - v
0

L
+/ (n— 'O+ (1 —v@))Bdt—n(n-1)'*/B
L-y
=0.

We now move onto the equality condition. Suppose the first conjugate
point to ¢(0) along c is ¢(L). Since E;’;' I(V;,V;) <0and I(V;, V;) > 0 for
i=1ton-1,each V; is a Jacobi field. This means that v is C, so that
y = L/2, giving us v(t) = sin(n¢/2y). The fact that V' = vE is a Jacobi
field now tells us that

(R(c'(t),E)E, (1)) = (n/2y)?
for all ¢ in [0, L]. Using y = L/2 once more, we can conclude this proof
with
(m/2y)? = n?/L2.

Proof of Proposition 1. By Theorem 2 and Lemma 2, if ¢, (0) has exactly

N conjugate points along c, (0,7}, then

/TRic(c,’,(t))dt <N+ Da(n-1D"V2/B
0

so that
1 1 N+1)

T
——— | Ric(c,(t))dt < ( .
ST, R s
Proof of Proposition 3. For v a unit tangent vector, define
(the number of points conjugate to)

¢(v) = lim inf

- —00

¢,(0) along ¢, 0,71,

counted according to multiplicity

_ the number of points conjugate to

¢(v) = limsup —= (q,(O) along ¢, (0,7}, )
T—oo counted according to multiplicity
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It suffices to show that ¢(v) < ¢(v) for almost all v.
For j a positive integer, define g;: SM — R by

¢y (0) along ¢y 0,1

the number of points conjugate to
(v) ,
counted according to multiplicity

and g; by

j = hm = Z g,(ij'U

By Birkhoff’s Ergodic Theorem, this is well defined almost everywhere.

Whenever &;(v) exists, we have in consequence of Lemma 3,

ooy =1 = _A GE))
For almost all v, we then have
3(v) < g(o) + 2.

Letting j go to infinity, we are done.

5. Proofs of the remaining theorems

843

Proof of Theorem 5(1). By Proposition 2, it suffices to prove [, Ric <

0.
By Birkhoff’s Ergodic Theorem,

z'RiC_/z' rh—»nc}of/ Ric(G,v)dtdu(v).

Using Ambrose’s criterion for conjugate points and Lemma 2, we obtain

that for v in Z’, .
liminf | Ric(c,(t))dt < +o0

T—oo Jo

from which it follows that

11Tnl1£f T/ Ric(c; (t))dt < 0.
In terms of the geodesic flow,

T
hmmf / Ric(Gv)dt < 0.
Tooo T
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Combining this with

T .
Ric=/ lim l/ Ric(Gv)dtdp(v)
z! Jz Tooo T 0

we are done.

Proof of Theorem 5(2). By Proposition 2, it suffices to prove

/ Ric < n(n — 1)"/2/sup(0, Ric)/ .
SM-zm sM—

Let B be any positive upper bound to the Ricci curvature. Birkhoff’s
Ergodic Theorem and Proposition 1 now give

T
/ Rics/ lim l/ Ric(G)dtdu(v)
SM—2Z" SM—zm T—oo T 0

T
=/ liminfl/ Ric(Gv)dtdu(v)
SM—zm T—oo T 0

<[ aV/B-Dydu)=aV/EE-D [ v
SM—-zm sM
Proof of Theorem 1. By Theorem 5,
Ric < n(n — 1)"/2/sup(0, Ric)/ v.
SM sM—
Using

n—1
Ric = M/ Scal
SM n M

we are done.
Proof of Theorem 4. Suppose that

L
/0 F(t)dt>n /tg}&z](O,F(t))

and that F is not identically zero.

Following [6], to prove the existence of 7 in (0, L] satisfying z(7") = 0, it
suffices to find a continuous piecewise differentiable function ¢: [0, L] — R
such that ¢(0) = ¢(L) = 0 (and ¢ not identically zero) for which

L
| @ w2 -Fayewyd<o
Letting B = max,epo,1; F(¢) and y = n/21/B so that 0 < y < L/2 we define
v:[0,L] — R by
sin(mt/2y), if0<t<y,
v()=4 L, ify<t<L-y,
sin(n(L—-1)/2y), ifL—-y<t<L.
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The argument can be completed by following the proof of Theorem 2.
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