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ON THE DISTRIBUTION OF CONJUGATE POINTS

WALTER VANNINI

1. Introduction and main theorems

In 1958, L. W. Green published a curvature inequality for compact
riemannian manifolds without conjugate points [4]. For M a riemannian
manifold as above, he showed that fM Seal > 0. He also established that
equality occurs precisely when M is flat.

By Ambrose's criterion for conjugate points, and an observation of A.
Avez regarding the use of BirkhoίFs Ergodic Theorem, Green's inequality
can be quickly derived [1], [2]. By the same argument, and with the use of
a new criterion for conjugate points, we have a generalization of Green's
inequality.

Theorem 1. Let M be a complete riemannian manifold of dimension n
with a finite volume and Ricci curvature bounded above. Then

ί Seal < π["~ V^Vsup^Ric) / ψmJM Yol(S»-l,can)w F V JSM~M Yol(S»l,can) JSM

In the above theorem, SM is the unit tangent bundle with the induced
Liouville measure, Ric: SM —• R is the Ricci curvature function, and
ψ: SM —> [0, oo] is defined by

_ r . f 1 / the number of points conjugate to \

ψ[v) = hmmt ψ ^ ( Q ) a l o n g C υ ^ w h e r e Cv{t) = eχp{tv) J

For M the standard ^-sphere of constant sectional curvature 1, ψ_ = l/π9

Ric = n - 1, Seal = n{n - 1), and vol(5Af) = vol(M)vol(^-1,cαn). The

standard π-sphere shows that the above generalization of Green's inequal-

ity is sharp.

It would be desirable to also generalize Green's equality statement. It

seems plausible that equality occurs in the generalized Green's inequality

precisely when M has constant sectional curvature.

The new criterion for conjugate points, mentioned above, is
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Theorem 2. Let c: [0, L] —• M be a unit speed geodesic on a riemannian
manifold of dimension n. If

/ Ric(cf{t))dt > π(n - I) 1/ 2 /max (0, Ric(c'(f))),
Jθ Y *€[0,L]

and Ric(c') is not identically zero, then c(O) has a conjugate point c(T)
along c for some T in (0, L].

Furthermore, if the smallest such T is L, then K{σ) = π2/L2 for all
tangent two-planes σ containing a tangent vector to c.

This theorem provides an analogue to Myer's criterion for conjugate
points [7]. His criterion is the same as ours, except that the curvature
condition is replaced by Ric(c') > (n - I)π 2 /L 2 . Our criteria coincide
when Ric(c') = (n - I)ττ2/Zλ

It should be noted that the curvature condition in Theorem 2 cannot be
replaced by

rL
/ Ric(c'(t))dt>(n- I)π2/L;

Jo

a sufficiently long geodesic beginning from the vertex of the paraboloid
z = x2 + y2 demonstrates this. However, the curvature condition

/ R i c ( c / ( 0 ) ( l -cos(2πt/L))dt >{n- I)π2/L
Jo

is a valid replacement, as shown by L. W. Green [5] in 1963. At present,
this is the strongest generalization of Myers' criterion.

An immediate consequence of Theorem 2 is the following supplement
to a result of Ambrose [1].

Theorem 3. Let c: [0, oc) —• M be a unit speed geodesic on a rieman-
nian manifold of dimension n, which gives rise to no conjugate points of
c(0). Then

ίτ wo /
limsup / Ric(c'(t))dt < π(n - 1)1 / 2 / sup (0, Ric(

Γ-+oo Jθ Y ί€[0,oo)

Ambrose showed that with the same hypotheses, lim /Q

Γ Ric(c;(ί)) dt is

not +oo.

Corresponding to Theorem 2, there is a theorem about second order
differential equations.

Theorem 4. Consider the second order differential equation x" + Fx =
0, where F is a continuous function defined on [0,L]. Let z: [0,L] -> R be
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a solution for which z(0) = 0 and z'(0) φ 0. //

and F is not identically zero, then z{T) = 0for some T in (0,L].
Furthermore, if the smallest such T is L, then F{t) = π 2 /L 2 for all t in

[0,L].

Theorem 1 can be restated in terms of the integral of the Ricci curvature.
It is then apparent that it follows from the following stronger result.

Theorem 5. Let M be a finite volume complete riemannian manifold of
dimension n.

(1) //Ric has an integrable positive or negative part, then

L Ric < 0.
z

(2) If Ric is bounded above, then

f Ric<π(«-l)1/2v/sΰp(θΓRΪc) / ψ.
JSM-Z JSM~

Here Z denotes the subset of SM consisting of unit vectors υ for which
the geodesic cυ: [0,oo) —• M defined by cυ(t) = exp(tυ) gives rise to no
conjugate points of cυ(0).

The author would like to thank Detlef Gromoll for many helpful con-
versations and suggestions. Thanks are also due to Demir Kupeli, for
pointing out that any estimate for conjugate points should be a special
case of a more general result for differential equations.

2. Basic facts and technical lemmas

2.1. Conjugate points along geodesies. We refer to [3] as a basic refer-

ence.
Let M be a riemannian manifold, and let c: [0, L] -+ M be a unit speed

geodesic on M. c{τ) is said to be a conjugate point of c(O) along c (where
0 < τ < L) if expc ( 0 ): TMm -> M is singular at τ'c(0). The multiplicity
of the conjugate point is defined to be the dimension of the nullspace of
the differential of expc(0) at τc'(0).

Equivalents, c(τ) is conjugate to c(0) along c when there is a Jacobi
field / along c, other than the zero field, that vanishes at 0 and τ. The
multiplicity of c(τ) is the dimension of the vector space generated by all
such Jacobi fields.
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The index form Ic associated to c is defined by

IC(V, W) = £ (?£, ^ l - (R(V,c'(t))c'(t), W) dt,

where V, W are continuous piecewise smooth vector fields on c that are
orthogonal to c, and vanish at 0 and L. Such vector fields will be called
admissible (or oadmissible, whenever there might be confusion).

There exists a conjugate point c(τ) to c(O) along c, 0 < τ < L, precisely
when there exists an admissible vector field V on c, where V is not the
zero field, for which IC(V, V) < 0. If the only conjugate point to c(0) along
c is c(L), then the admissible V for which IC(V, V) < 0 are precisely the
Jacobi fields vanishing at 0 and L.

We wish to recall the well-known

Morse Index Theorem. The number of conjugate points to c(0) along
C|[Q,JL), counted according to multiplicity, is equal to the dimension of a
maximal subspace of admissible fields for which Ic is negative definite.

This theorem is used here to count conjugate points. Counting will
usually not be according to multiplicity.

Lemma 1. I/O < T\ < T2 < L and it is known that c(0) has a conjugate
point along c\[o,τx\ and c{T\) has a conjugate point along c\[τuτ2], then it
follows that c(0) has a conjugate point c(T) along c, where T\ < T < T2.

By repeated application of Lemma 1, we have

Lemma 2. // 0 < Tx < T2 < • < Tk < L and it is known that
c(0) has a conjugate point along c|[o,η], c(T\) has a conjugate point along
c|[r,,72]> , c(ZJt-i) has a conjugate point along c\{Tk_xjk], then it follows
that c(0) has at least k conjugate points along c.

In Lemma 3, conjugate points are counted according to multiplicity.

Lemma 3. IfO<Tι<T2< <Tk<L and it is known that c(0)
has a\ conjugate points along c\[oj{], c(T\) has a2 conjugate points along
c\[T\,τ2h ''' >c(Tk-\) has a^ conjugate points along c\[τk_x,τk]> then it follows
that

i=\

where a is the number of points conjugate to c(0) along c|[o,r̂ ]-

Proof of Lemma 1. Without loss of generality T2 < L. Pick ε2 > 0
(ε2 < L-T2). Then there exists ε\ > 0 for which c{T\+ε\) has a conjugate
point along c | [ Γ l + e i T 2 + e 2 ) .
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Take a maximal subspace of c\[ojx +£l] -admissible vector fields for which
the index form is negative definite, and extend it to a subspace of c|[o,r2+ε2]-
admissible vector fields by taking the vector fields to be zero outside of
[0, Tx + e j . Call the resulting subspace Wx.

Now take a maximal subspace of c|[η+ei?^2+ε2]-admissible vector fields
for which the index form is negative definite, and extend it in a similar
way to give W2. By the Morse Index Theorem άim(W2) > 0, so that
dim(Wi + W2) > dim(Wί). Applying the Morse Index Theorem again, we
see that c(0) has a conjugate point c(T) along c, where T\ +e\ <T< T2+ε2.

Now, there exists S satisfying T\ < S < T2, for which c(0) has no
conjugate points c(τ) satisfying T\ < τ < S. This tells us that c(O) has a
conjugate point c(T) along c, where S < T < T2 + ε2. This is true for any
positive ε2 and S > T\, so that c(0) has a conjugate point c(T) along c,
where T{ < T < T2.

Proof of Lemma 2. By repeated application of Lemma 1, there exist
conjugate points c(τi),c(τ2), 9c(τk) to c(0) along c, satisfying

0 < τi < T{ < τ2 < T2 < < τk < Tk.

Proof of Lemma 3. Define Γo to be 0. Note that conjugate points are
counted according to multiplicity in this proof. Take a maximal subspace
of ^ItΓ/.^ηj-admissible vector fields for which the index form is negative
definite. Call it Wj_. Extend it to a subspace of c\[Qjk]-admissible vector
fields by taking the vector fields of W\_ to be zero outside of [7/_i, T{\. Call
this subspace W{. Let W be the direct sum of the Wfs.

Since c(7) _i) has at least α, - (n - 1) conjugate points along c\[T._uT.),
we have that dim(W^) > αz - (n - 1), and so

i=\

Since o:>dim(H^),
k

y^Q/ - k(n - 1) < a.

Since c(Γz_i) has at most α, conjugate points along c|[y/_lβy/), it follows
that dim(H^) < αf , so that

Now extend W to a maximal subspace of c|[0,7^]-admissible vector fields
for which the index form is negative definite. Call this space X, and note
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that
a<dimX + {n- 1).

Let W be the orthogonal complement of W in X (with respect to /).

By Showing that dim W < (k - l)(n - 1), we are done, since then

a < dimX + (n - 1) = dim W + dim W + (n - 1)

Suppose that dim W7 > (fc - l)(rc - 1). Since the maximum possible di-
mension of the image of the linear map sending V in W to (V (T\), V (Tι),
• , F;(Γjt_i)) is (A: - l)(/i - 1), there exists a nontrivial vector field V in
tf" for which

For some 7 from 1 to /c, Vj — V\[T._uτ ) is a nontrivial vector field for which
I{VJ9 Vj) < 0, and I(VhWj) = θ/since /(K, ίF) = 0. This contradicts the
maximal property of Wj.

2.2. The geodesic flow and the ergodic theorem

We refer to [8] as a basic reference.
Let M be a complete riemannian manifold, and SM its unit tangent

bundle. The geodesic flow G: SM x R —> 5Άf on 5Άf is defined by
G(v, t) = c'(ή, where c(s) = exp(sv). G(υ, t) will be written as Gt(υ).

The unit tangent bundle possesses a Borel measure determined by the
riemannian structure of its base manifold. It is called the Liouville mea-
sure, and it is invariant with respect to the geodesic flow.

BirkhofPs Ergodic Theorem applies to measure spaces with a measure
invariant flow. In our case, we have

BirkhofΓs Ergodic Theorem. Let M be a complete riemannian man-
ifold, G: SM x R -• SM be the geodesic flow, and f: SM -> R be a
function whose positive or negative part is integrable with respect to the
Liouville measure μ. Then the following hold:

(1) The following limit exists for almost all v in SM:

lim UTf(Gtv)dt.
7^00 1 Jo

(2) If A is a flow invariant subset ofSM of finite measure, then

f f(v)dμ(υ)= / l i m i / f(Gtv)dtdμ(v).
JA JA r—°° l JO
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Letting a be any real number, the above statement is also true when

lim 1 / f{Gtv)dt
τ^°° 1 Jo

is replaced by

k=0

3. On the density of conjugate points along geodesies

Let M be a complete riemannian manifold. Any unit tangent vector v
on M determines a unit speed geodesic cv: [0, oo) -• M via 4(0) = υ9 and
then two elements of [0, +oo], namely,

\ι/(vλ = I'm ' f -L Λ h e n u m b e r o f Points conjugate to\
w^ \ ^"^ J ^̂ ™' XXXXX XXXX I * ̂ N \ i t 1

— T-+OO T \cv{0) along cυ\[OtT] J '

Mt>) = limsup 1 ( t h e n u m b e Γ O f p o i n t s c o n J u δ a t e t0\
r-̂ oo Γ \Cυ(0) along cv|[0,r] / '

Writing n for the dimension of M, we immediately have
Proposition 1. If β is a positive number for which Ric(c^) < β, then

\_

ny/β{n-\)
It is clear that if cv gives rise to no conjugate points of cv(0), then

ψ[v) = ψ(v) = 0. The converse is not true. The paraboloid z = x2 +y2

has many unit tangent vectors that serve as counterexamples.
However, the following is true.
Proposition 2. Let M be a complete riemannian manifold with finite,

volume. Then the set of unit vectors v for which ψjv) = 0 and the set σf
those for which cv(0) has no conjugate points along cv differ by a set of
measure zero.

With regard to ψ and ψ, it is natural to ask whether they are really
different. To showlhat they are the same, it suffices to show that ψ_>ψ.
Along these lines, it is true that {n-\)ψ_>~ψ almost everywhere for M a
complete riemannian manifold of dimension n. This follows from

Proposition 3. Let M be a complete riemannian manifold. Then the

following is a well-defined element of[0, +oo] for almost all v in SM:

(the number of points conjugate toΛ

ψ(v) > /n; ^ l i m i n f l ί Ric(c'(t))dt.
T00 1 Jo

lim γ cv(0) along cυ\[o,τ),
τ~*°° V counted according to multiplicity



840 WALTER VANNINI

4. Proofs of the propositions and Theorem 2

First, we give some notation:

cv: [0, oo) —> M is the geodesic cυ(t) = exp(tυ) for v a unit tangent
vector of a riemannian manifold M.

Z denotes the set of unit vectors υ for which cυ(0) has no conjugate
points along cv.

Zf denotes the set of unit vectors v for which cv has finitely many
conjugate points along cυ.

Z" denotes the set of unit vectors υ for which ~ψ{v) = 0.

Z1" denotes the set of unit vectors v for which ψ(v) = 0.

We have Z C Z ' C Z " C Z'". Note that Z',Z",Zf" each are invariant
with respect to the geodesic flow, μ will denote the Liouville measure on
SM.

Proof of Proposition 2. We are required to show that Z and Z'" differ
by a set of measure zero. It suffices to show that μ(SM-Zf") > μ(SM-Z).

For each positive integer j , define fj: SM —> R by

ί 1, if cυ(0) has a conjugate point along cυ\[Oj],
3 1 0, otherwise.

Also, define f:SM^R by

J 1, if cw(0) has a conjugate point along cυ,

I 0, otherwise.

Then /) approaches / from below, as j goes to infinity. It follows that

Hm ί fj= f f.

By Lemma 2,

J V - l

for all unit vectors v for which the above limit exists. For v in Z'", we
then have

yl fj(Gjkv) _
^ N
k=0
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We can now conclude that

μ(SM-Z)= f f= lim ί fj
JSM J^°° JSM

k=0

< f 1 = μ{SM - Z'").
JSM-Z'"ISM-Z

Proof of Theorem 2. Suppose that

f Ric(c'(t))dt > π(n - I) 1/ 2 /max (0, Ric(c'(0))
Jo Y t€[0,L]

and Ric(c') is not identically zero.

To show that c(0) has a conjugate point along c, it suffices to find an
admissible vector field W: [0, L] —• TM on c, which is not identically zero
and for which IC(W9 W) < 0.

Letting β = maxίG[o,L]Ric(c/(O) we have that β is positive. Let y =
{πl2)y/{n- l)/β so that 0 < y < L/2. Define v: [0,L] -> R by

!

sin(πί/2y), i f θ < ί < y ,

1, iίy<t<L-y,

sin(π(L - 0/2y), if L - y < t < L.

Let E be a parallel unit vector field on c that is orthogonal to c, and let
F = vE. Then

= Γ v'(t)2 + (1 - v(t)2)(R(E,c'(t))c'(t),E) dt
Jo

+ fL v'{t)2 + {\-v{t)2){R(E,c'{t))c'{t),E)dt
JL-y

- fL(R(E,c'(t))c'(t),E)dt.
Jo
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Let E\, ,En-\ be mutually orthogonal parallel unit vector fields on c
that are orthogonal to c. Let Vi = vEt for / = 1 to n - 1. We then have

Σ I(Vh Vi) = ί\n - \)v\t)2 + (1 - v{t)2)]

- /
Jo

< ί (n-\)v'{t)2 + (\-v{t)2)βdt
Jo

+ / (π - l)v#(02 + (1 - ^ ( 0 2 ) ^ rfί - n{n - l)xl2\fβ
JL-y

= 0.
We now move onto the equality condition. Suppose the first conjugate

point to c(0) along c is c(L). Since Σϋ=\ KYi> vi) < 0 and I(Vh Vi) > 0 for
/ = 1 to n - 1, each Vi is a Jacobi field. This means that v is C°°, so that
y = L/2, giving us υ(t) = sin(πί/2y). The fact that F = υ £ is a Jacobi
field now tells us that

(R(cf(t),E)E,c'(t)) = (π/

for all t in [0,L]. Using y = L/2 once more, we can conclude this proof
with

(π/2y)2 = π2/ZA

Proof of Proposition 1. By Theorem 2 and Lemma 2, if cυ (0) has exactly
TV conjugate points along cv\[o,τ], then

rT

Ric(c'v{t))dt<{N+\)π{n-\)χl2yβ
r

/

Jo
so that

π(w - I)ι/2y/β

Proof of Proposition 3. For t; a unit tangent vector, define

. / the number of points conjugate to"

φ(v) = lin^inf γ cv(0) along cv\[0,τ),
^°° V counted according to multiplicity

/ the number of points conjugate to"
φ(υ) = limsup ψ cv(0) along cv\[0,T],

τ~*°° V c o u n t e ( i according to multiplicity
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It suffices to show that φ(υ) < φ(v) for almost all v.
For j a positive integer, define gj: SM —• R by

/ the number of points conjugate to"
«/(*>) = cv(0) along cυ\[0Jh

V counted according to multiplicity

and gj by

By Birkhoff s Ergodic Theorem, this is well defined almost everywhere.

Whenever gj(v) exists, we have in consequence of Lemma 3,

Φ(v) > j&j(υ) - ̂ y ^ , φ(v) < γ ^jΣL

For almost all υ, we then have

Letting j go to infinity, we are done.

5. Proofs of the remaining theorems

Proof of Theorem 5(1). By Proposition 2, it suffices to prove / z , Ric <

0.

By BirkhofΓs Ergodic Theorem,

ί ί 1 fτ

/ Ric= / lim - / Ric(Gtv)dtdμ(v).
Jz' Jz1 τ^°° * Jo

Using Ambrose's criterion for conjugate points and Lemma 2, we obtain

that for v in Z',
rτ

liminf/ Ric(c'v(ή)dt < +oo
T-+oo Jo

from which it follows that

1 rτ

liminf— /

In terms of the geodesic flow,

rT1 ίτ

liminf- / Ric(Gtυ)dt<0.
T->oo Γ J0
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Combining this with

/ Ric= / lim - / Ric{Gtv)dtdμ(v)
JZ' Jzf Γ-κx>.i Jo

we are done.
Proof of Theorem 5(2). By Proposition 2, it suffices to prove

/ Ric < π(n - l)lf2y/sup{09 Ric) / ψ.
JSM-Z'" JSM

Let β be any positive upper bound to the Ricci curvature. BirkhofPs
Ergodic Theorem and Proposition 1 now give

r r l rτ

/ Ric< / lim — / Ric(Gtυ)dtdμ(v)
JSM-Z'" JSM-Z"' τ^co 1 JO

r l rτ

= liminf •= / Ric{Gtv)dtdμ(υ)
JSM-Z'" τ^°° * JO

<[ πy/β(n - l)ψdμ(υ) = πy/β(n - 1) f ψ.
JSM-Z"' ~ JSM~

Proof of Theorem 1. By Theorem 5,
/ Ric < π(n - l)1/2>/sup(0, Ric) / ψ.

JSM JSM ~

Using
f Ric =^S"-Kcan) f S c a l

we are done.
Proof of Theorem 4. Suppose that

and that F is not identically zero.
Following [6], to prove the existence of T in (0, L] satisfying z(T) = 0, it

suffices to find a continuous piecewise difFerentiable function φ: [0, L] —• R
such that φ(0) = φ(L) = 0 (and φ not identically zero) for which

ί (φ'(t))2-F(t)(φ(t))2dt<0.
Jo

Letting β = max,G[o,L] F(t) and y = πj2\fβ so that 0 < y < L/2 we define
v:[0,L]-+Rby

sin{πt/2y), ifθ<t<y,

v(t)={ 1, ify<t<L-y,

sin(ττ(L - t)/2y)9 if L - y < t < L.
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The argument can be completed by following the proof of Theorem 2.
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