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PL MINIMAL SURFACES IN 3-MANIFOLDS

WILLIAM JACO & J. HYAM RUBINSTEIN

Introduction
In [12], we studied the application of least weight normal surfaces to the

equivariant decomposition theorems of 3-manifolds. The basic idea in [12] was
to investigate ways in which such surfaces can intersect, and then to find new
surfaces by cutting and pasting. Here we refine the notion of least weight
normal surfaces to obtain piece-wise linear (PL) minimal surfaces in 3-
manifolds. The main technique for analyzing PL minimal surfaces is by
examining PL area under small variations of the surfaces. This yields new
proofs of recent applications of least area (minimal) surfaces to the topology of
3-manifolds in [23] and [14], without going through the difficult existence
theory for classical analytic minimal surfaces (cf., e.g., [22]).

Also we are able to show these PL minimal surfaces have most of the basic
properties of analytic minimal surfaces. Some examples are as follows. We
define PL mean curvature H for arbitrary normal surfaces and H = 0 is
necessary and sufficient for a normal surface to be PL minimal. In fact, there is
a basic first variation argument for PL minimal surfaces, as in the analytic
case. PL minimal surfaces satisfy a maximum principle and one can perform
the crucial Meeks-Yau exchange and roundoff trick (see [16]-[20]). The notion
of a convex boundary for a triangulated 3-manifold can be defined and so
barrier arguments are possible (see, e.g., [18]). If two PL minimal surfaces
intersect at a point of "tangency," then either the local picture is like a
generalized saddle, as for analytic minimal surfaces (see [1]), or the surfaces
locally coincide where they meet the 2-skeleton.

Finally the important results of Freedman-Hass-Scott [5] on the fundamen-
tal topological properties of least area surfaces go through in the PL case. Let
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us call a map / : (i% dF) -> (M, 3M) of a compact connected surface F,
distinct from a 2-sphere or disk, to a 3-manifold M, ^-injective if /*:
ir^F^dF) -> TT^MJBM) and / # : ^ ( .F) -> ^ ( M ) are both one-to-one. In the
homotopy class of a ^-injective map there are always PL least area surfaces if
M is P2-irreducible (cf. Theorem 4). The techniques of [5] show that finite
coverings of two-sided 7rrinjective PL least area surfaces are PL least area and
prove that such surfaces have the least number of double curves in their
homotopy classes. Also two such surfaces have the smallest number of intersec-
tion loops in their homotopy classes. Somewhat surprisingly, we will give
analogous "local" results for surfaces which are merely PL minimal and not
necessarily ?r1-injective or two-sided, by working in normal homotopy classes.

A serious obstacle to the normal surface method developed in [12] is that the
technique seems to work well only if one is pulling embedded surfaces
completely apart. In fact, if two embedded 7r1-injective normal least weight
surfaces can be homotoped apart, then a complete cut and past (exchange)
along all their curves of intersection can be performed, yielding a new pair of
normal least weight embedded surfaces isotopic to the original surfaces (see
Proposition 3.7 of [12]). However if there is no homotopy which yields disjoint
surfaces, as in e.g. the Seifert fiber space case (see [23] and [14]), this method
appears to fail. Note also that the Meeks-Yau exchange and roundoff trick
cannot be directly applied to normal surfaces. The problem is that there is a
finite ambiguity in the choice of least weight normal surface, for example in
the homotopy class of a 7r1-injective surface.

PL minimal surfaces are defined relative to a nice Riemannian metric on the
2-skeleton ^"(2) of a fixed triangulation ST of a particular 3-manifold M. Then
given any normal surface F in Af, we define the PL area of F as the pair (<o, /)
lexicographically ordered, where <o is the weight of F, i.e. the number of points
where F crosses the 1-skeleton ^"(1) (see [12] and §1) and / is the total length
of the arcs in F n ^"(2). F is called PL minimal if / is stationary relative to
small variations of F and F is a PL least area surface if the pair (<o, /) is
smallest in the homotopy class of F, e.g. in the case that F is a ^-injective
surface. Note that to be precise we should specify a map f:F->M and use
f(F)n J r ( 2 ) instead of F n ^ ( 2 ) ; however we will often suppress / and not
distinguish between F and f(F) if no confusion is likely. It immediately
follows from the definitions that if F is PL minimal or PL least area then F
meets any 2-simplex in ^"(2) in a collection of geodesic arcs.

The concept of PL least area in a sense picks out the best least weight
normal surface in a homotopy class. Note that Gulliver-Scott [6] have found
examples of least area singular ^-injective tori in Seifert fiber spaces with S2

as orbit surface and three exceptional fibers, which have triple points but are
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homotopic to tori with only double curves. Presumably similar examples can
be found for PL least area surfaces.

In §1 we give the definitions of a suitable Riemannian metric on ^"(2), PL
mean curvature, PL area and PL minimal surfaces. We also include a very brief
discussion of normal surfaces (see [12], [11], and [7] for more details).

In §2 the existence of PL minimal and PL least area surfaces is established.
We show that PL minimal surfaces are uniquely specified in normal homotopy
classes and discuss first and second variation of length / and energy for normal
surfaces. We observe that one can use energy E instead of arc length /, as in
the theory of geodesies (see, e.g., [21]). E has the advantage of being a convex
function and so possesses a unique minimum. A physical model for minimizing
energy, which was suggested to us by Bill Thurston, is outlined. Finally the
other basic properties of PL minimal surfaces (maximum principle, exchange
and round off, nontransversality, barriers) are given.

In §3 the results of Scott [23], Meeks-Scott [14] and [5] are reviewed. Brief
descriptions of proofs using PL least area surfaces are given. We also indicate
how proofs of the equivariant decomposition theorems of Meeks-Yau [16]-[20]
and Meeks-Simon-Yau [15] can be done, using PL least area surfaces rather
than least weight normal surfaces, as in [12] (see also [3], [4]). For the latter
result, an isotopy minimization proposition for spheres not bounding fake cells
is needed (see §3). In fact we show generally that PL minimal surfaces are the
simplest surfaces in normal homotopy classes, in the sense of [5], i.e. have
smallest numbers of double curves. Consequently a PL minimal surface
normally homotopic to an embedded surface must be embedded or a double
cover of an embedding.

We also show in the Appendix that the metric on the 2-skeleton ^"(2) can be
perturbed so that any finite collection of PL minimal surfaces are in general
position relative to each other and the triangulation. This is useful for
arguments like [5] counting numbers of double curves and intersection curves.

We have included only one new result involving PL minimal or least area
surfaces, as compared to classical analytic minimal and least area surfaces.
However we show here and in [12] that normal surfaces and PL minimal
surfaces suffice to give most of the recent applications to 3-manifold theory,
without deep existence theory from partial differential equations and geometric
measure theory. (See Hass-Scott [8] for a new approach to existence questions,
using topology and Morrey's solution of Plateau's problem in Riemannian
3-manifolds.) We are hopeful that the very algorithmic, explicitly computable
nature of normal surfaces may lead to additional uses of PL minimal surfaces.
One interesting problem is that it should be possible to subdivide a triangula-
tion arbitrarily finely and obtain sequences of PL minimal surfaces which
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converge to classical analytic minimal surfaces. This would be analogous to
some of the early work on the Dirichlet principle (see, e.g., Hilbert's approach
[10]).

The idea of putting a Riemannian metric on the 2-skeleton ^ ( 2 ) grew out
of the analysis in [12] of intersections of least weight normal surfaces, espe-
cially the method of viewing the picture as spanning arcs crossing in 2-
simplices of

1. Normal and PL minimal surfaces

We will use M to denote a smooth 3-manifold with a fixed triangulation y
and F to denote a compact connected surface throughout. dX will denote the
boundary of X. An immersion / : F -> M will be called a two-sided surface if it
has a trivial normal bundle. We call M P1-irreducible if there are no two-sided
projective planes embedded in M and if any embedded 2-sphere bounds a
3-cell in M. ^" ( / ) will denote the /-skeleton of the triangulation.

We now give a very brief description of normal surfaces. In §1 of [12] a more
detailed review is included and for a full exposition, see [11]. Let T be a
3-simplex of ST. There are seven special disks properly embedded in T, called
disk types, which are shown in Figure 1. A surface F in M will always mean a
proper immersion / : (F, 3F) -> (M, 3M), where possibly dF and dM are
empty. A homotopy of / will always mean a homotopy of maps (F, dF) -»
(M, dM). We will usually not distinguish in notation between F and / ( F ) . F
will be called a normal surface if F meets transversely each 3-simplex of ST in
a finite collection of (possibly intersecting) disk types. Note that in [12], only
embedded normal surfaces were considered, but it is straightforward to work
with singular normal surfaces.

Two similar quadrilaterals.

Disk types for normal surfaces in a 3-simplex.

FIGURE 1
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The weight to of a normal surface F is defined as the number of points in
F n ^"(1), counted with multiplicity. So if n disk types of F in some 3-simplex
all meet a particular edge in the same point, we count this point n times. We
will sometimes refer to the sheets of F at a point x. Precisely, given an
immersion f:F->M and x e f(F), then f~l(x) = xxU • • • Uxn and we
can choose small disjoint disks D(. c f, 1 < i < «, with xt e Dt and /|Z>, an
embedding. Then the f(Dt) are the sheets of F at x. The number of sheets is
the multiplicity of x.

Remark 1. A normal surface can be thought of as a surface which meets
ST{V) in a minimal number of points amongst nearby surfaces. (See §2 and also
[13], [7], [9] for the basic result of Kneser.) One can make an analogy between
minimal surfaces and normal surfaces by "blowing up" a Riemannian metric
on M along ^"(1), i.e. concentrate all the area of a surface F near y ( 1 ) by
multiplying the metric by a very large bump function in a small neighborhood
of 3'{X). Then the weight co of F is a good measure of the area of F.

A normal homotopy is defined to be a smooth map £: F X [0,1] -> M so
that for each fixed / e [0,1], the surface Ft given by ^\F X [t] is a normal
surface. £ is a normal isotopy if in addition, each Ft is embedded.

Remark 2. A normal homotopy can be viewed as a compatible collection of
isotopies of each of the normal disk types of the initial normal surface Fo in
the 3-simplices of ST.

The normal homotopy class ^(f) of a normal surface / : F -> M is defined
as the set of all normal surfaces g: F -> M which are normally homotopic to / .

We now define a simple Riemannian metric on y ( 2 ) . For each 2-simplex a
in ^"(2) we identify a with an ideal hyperbolic triangle in the hyperbolic plane
H 2 (see Figure 2). This gives an induced metric on a. Finally we glue these
hyperbolic 2-simplices together by isometries between their common edges.
(There is some freedom of choice here which does not affect matters.) For later

Unit disk model ofH2.

FIGURE 2



498 WILLIAM JACO & J. HYAM RUBINSTEIN

applications, we will sometimes be given a group G of simplicial homeomor-
phisms of M, for which F i x ? ) = { X G M : TJJC = JC } is a subcomplex of 2T for
each 7j e G. In this case we choose the identifications and gluings so that G
acts isometrically on ^ ( 2 ) . (For example, we can choose a metric as above on
the 2-complex y ( 2 ) / G and lift it back to &(2).) In the sequel, we will denote
by V covariant differentiation relative to the hyperbolic metric on the 2-
simplices.

Given a normal surface F in Af, define its length I to be l(F n y ( 2 ) ) , i.e. the
total length of all the arcs in the boundaries of the disk types in which F meets
the 3-simplices of F. We will refer to these arcs as the arcs of F n IT(2). Since
F is compact and misses the vertices of 9*(0), / is a finite sum of finite lengths,
so is finite. We define the PL area of F to be the pair (co, /), lexicographically
ordered. (This is analogous to area if we first "blow up" a Riemannian metric
along y ( 1 ) and then by a smaller factor along ^"(2).)

A normal surface F in M is called PL minimal if its length / is stationary
with respect to small variations of F. More precisely, let p: F X (S, 5) -> M be
a normal homotopy and let F5 denote the normal surface given by p | F X {5}
with Fo = F. Let l(s) = l(Fs). Then JF is PL minimal if the derivative
/'(0) = 0 for any variation Fs of F. (Note that any sufficiently small smooth
variation of F will automatically be a normal homotopy, by transversality of F

A normal surface / : F -> M is called PL feastf #mz if the PL area of / is
equal to the infimum of all PL areas of normal surfaces g: F -> M in the
homotopy class of / . This will be most useful in the cases when / is
77^-injective or F is a disk or 2-sphere and / is an essential map, i.e. either / :
(D, 3D) -> (M, 3M) represents a nontrivial element of TT2(M, 3M) or / : S2 ->
M is nontrivial in ?72(M) or / : S 2 -> M is an embedding and f(S2) bounds a
fake 3-ball in M and does not bound a 3-ball. (A fake 3-ball is a compact
contractible 3-manifold not equal to B3.)

Clearly length and weight can be defined generally for immersed surfaces F
which are transverse to ^"(2), not just for normal surfaces. For in this case,
F O ST^ = 0, F meets ^ ( 1 ) transversely in a finite number <o of points
(with multiplicity), and F C\ ST(2) is a finite union of arcs with a finite total
length /. However, if we used such general surfaces, PL minimal would not
necessarily imply normal and PL least area would give normality only if we
assume M is P2-irreducible and either F is 7^-injective or F is an essential
disk or 2-sphere which has smallest PL-area amongst all such disks or
2-spheres (cf. §2).

Remark 3. It is clear that if F is PL minimal or PL least area, then any arc
a of F O ,f(2) is a (hyperbolic) geodesic segment running between two sides
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of an ideal hyperbolic 2-simplex. We will see in §2 that PL minimality for
normal surfaces F is equivalent to this together with a condition on the angles
at which the sheets of F meet the edges in ^"(1).

The energy E of a normal surface F is defined to be the sum of the energies
of the arcs a of F n !T(2). As in [21], we will suppose always that a is
parametrized proportional to arc length, i.e. the tangent vector field a' has
length 1. Then the energy of a is given by E[a] = /(a)2 . Note that in §2 we
show that if Fs is a variation of F then E{FS) = E(s) is a convex function of
s. This will be important in showing that PL minimal surfaces are uniquely
defined in normal homotopy classes. We would like to thank Bill Thurston for
suggesting to us the consideration of energy.

Finally let / : F -> M be any normal surface. The mean curvature field H of
/ is defined as follows and is a discontinous piece-wise smooth vector field
along / \f-\f{2)) (cf. [2, p. 3]). Let a be an arc of f(F) n $~{1\ let x e int a
and let y e /?, where /? is the arc in F with /(/}) = a and y satisfies
f(y) = x. We define H(y) = VTT(x\ where V is hyperbolic covariant differ-
entiation and T is the tangent vector field a! to a. Note that since a is
parametrized with |T| = 1, \H(y)\ is the geodesic curvature of a at x. On the
other hand if y e / - 1 ( e ) , where e is an edge of ^~(1), then let V be a unit
vector tangent to e at x = f(y). Clearly, there is a uniquely specified sheet of
f(F) at x coming from a small disk containing y. Let al9• • •, ak be the arcs of
f(F) e y ( 2 ) which have x as an endpoint and have neighborhoods of x in
this sheet (see Figure 3). We parametrize the at so that x = «,(()), ! < / < & ,

FIGURE 3
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and define H(y) = If=1 < Ti9 V > V, where Tt = a't(0). Note that H(y) is
independent of the orientation of V. We will see in §2 that F is PL minimal if
and only if H = 0 and H can be viewed in some sense as the negative gradient
derivative of PL area (really of length since weight is constant for small
variations). Notice that H(y) = 0 for y G/"1(e), e an edge in y ( 1 ) , exactly
when the sum of the cosines of the angles between the arcs ai9 1 < / < £, and
the edge e is zero.

2. Properties of PL minimal and PL least area surfaces

A linking 2-sphere in a triangulation F of a 3-manifold is a normal 2-sphere
given by the boundary of a small 3-ball neighborhood of a vertex in y ( 0 ) . A
multiple of a linking 2-sphere S is any normal surface obtained by gluing
together all the triangles in some finite number of copies of S. By projection
onto S, it can be seen such a surface is a branched cover of S.

The basic existence result for PL minimal surfaces is as follows.
Theorem 1. Let f: F -* M be a normal surface which is not a multiple of a

linking 2-sphere. Then there exists a PL minimal surface in the normal homotopy
class JT(f) off.

Proof. Let ava2,- —,am denote all the arcs of g(F) n^"(2), where g e
jV(f). Since a normal homotopy does not change disk types of a surface in the
3-simplices, we see that m is constant over Jf{f). Moreover, we can write
ai = a/(g)> 1 < *' < w, noting that the arc types of the a, (i.e. which edges of
y ( 1 ) contain the endpoints of the at) are also unaltered as g varies over
JT( f). We wish to find g0 e JT{ f) for which

' (*o)= E /(« /(g0)) = inf{/(g): g e / ( / ) } .
7 = 1

Then g0 will be the desired PL minimal surface, since of course length / is
stationary for variations of such a surface. Let /0 denote inf{/(g): g e vT(/)}.

Observe that it suffices to consider only special normal surfaces g for which
all the arcs at{g) are geodesies. In fact, if g is any normal surface in Jf{f\
we can replace each arc a((g) by the unique geodesic arc yt with the same
endpoints as at. Then clearly there is a unique special normal surface g in
^T(/ ) with at{g) = yf., 1 < / < m, and /(g) < /(g). Equality holds only if g is
already special. Let S?(f) denote the subset of special normal surfaces in
JT{f).

A special normal surface g G ̂ ( / ) is completely determined by the end-
points of the arcs ax{g\- • •,am(g). We assume the at(g) have an orientation
independent of g, and denote by x2i_x and x2i the initial and final endpoint
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of a,(g) respectively. It is immediate that for g e «$"(/), /(g) = l(xv • • •, x2w)
is a smooth function of the variables xt, where each xt can be viewed as a real
parameter, after identifying all the edges in y ( 1 ) with unbounded hyperbolic
geodesies (see Figure 1).

Let gn e S?(f) be a sequence for which l(gn) \ l0. We call gn a minimizing
sequence for ^(f), by analogy with the classical analytic minimal surface case
(see, e.g., [15]). There are two situations to consider. Firstly, suppose all the
endpoints x" of the arcs of gn remain bounded, i.e. stay in bounded regions of
the hyperbolic geodesic edges in y ( 1 ) (see Figure 4). Then we can find a
subsequence of gM, again denoted by gM, for which x" converges to xf for all
1 < / <"2m. Clearly gn converges to a uniquely specified special normal
surface g0 e &*(f) with endpoints of the arcs of g0 given by the xf, 1 < / <
2m. Also it follows that /(g0) = lim/(gw) = /0 and so g0 is a PL minimal
surface in Jf(f), as required.

FIGURE 4

On the other hand, suppose for some / and for some subsequence of gn,
again denoted by gn, it happens that say x\{ -» oo in some edge e of y ( 1 ) , i.e.
x^ converges to an endpoint (vertex) v of e. Since l(gn) \ /0, it follows that
/(a/(gw)) remains bounded and so the other endpoint xJi-i °^ a/(^«) must
also converge to v (see Figure 5). This argument is obviously symmetric in x\{

and X2/-1- So fotf/i ends of at(gn) converge to v. Similarly if ay is another arc
sharing a common endpoint x with at and in the same sheet as at at x, then
both endpoints of a", i.e. X2/-1 a nd X2y m u s t converge to v (see Figure 5).
We conclude that all the endpoints jef, 1 < i < 2m, converge to the same
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FIGURE 5

vertex v of ^(0\ Hence the normal homotopy class ^ ( / ) must contain a
multiple of the linking 2-sphere of v only, contrary to hypothesis. This shows
that every minimizing sequence has convergent subsequences.

Next we want to establish the uniqueness of the PL minimal surface bound
in Theorem 1. To do this, we first discuss first (and second) variation of length
and energy and their relationship with mean curvature for normal surfaces.

Let p: F X (-8,8) -> M be a variation (normal homotopy) through normal
surfaces Fs, s ^ (-8,8), with initial normal surface Fo given by the map / :
F -> M, where f(y) = p(y,0) for all J / G F . We compute the derivative /'(()),
where I(s) = l(Fs), by the first variation formula for arc length of curves,
following Cheeger-Ebin (see [2, p. 5]), except that we will parametrize arcs so
that tangent vectors have length 1.

Denote a{, as
29- * •, as

m the arcs of Fs n ^"(2) and in the case that s = 0, we
use the notation at for these arcs, instead of a?. Let 7) denote the tangent
vector field a • to a, and we will suppose that the at are parametrized so that
|7].| = 1. Then

no) =

1 = 1
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where /z = /(a,-), the parameter t for at is chosen to run from 0 to /,., and Vt is
the variation vector field along ai given by

Let y be some point of / " 1 (^ r ( 1}) and assume e is the edge of ̂ "(1) with
x = f(y) in e. Suppose that ft, 1 < / < fc, are the arcs of f~\^{2)) with y an
endpoint of ft and let at =/ ( f t ) be the corresponding arcs of f(F) n ^ ( 2 ) .
We note that all the variation vectors Vt{x), 1 < i < &, are necessarily equal
and given some vector tangent to e at x. Without essential loss of generality,
we will suppose that Vt(x) = V(x) is a unit vector tangent to e at x, for all
1 < / < / : . Then the first sum in the expression for /r(0) can be rewritten as

= I (H(y),V(f(y))),

where x = f(y). The second sum can be viewed as an integral over the
interiors of the paths ft in f-\^2)) of the form -f(V9 H) dt, where V is the
variation vector field and H is the mean curvature field of / . (Note both are
vector fields along /1/~1(^ (2 )).) In conclusion we can loosely write /'(0) =
-J(V, H) dt, where we interpret this as a sum with signs over /~1(^"(1)) and an
integral over f-\yV> - y ( 1 )) .

If we consider the variation of energy E(s) = E(FS) instead of length, then
clearly E'(0) = /'(0), since we have assumed that |7)| = 1. Hence F is PL
minimal if and only if F is a stationary point for either length or energy under
variations. This is of course also equivalent to the condition that the mean
curvature field H of / is identically zero, by the above expression for /r(0).

Finally we need to examine second variation of length and energy for
normal surfaces. As in Cheeger-Ebin (see [2, pp. 20-21]), we find that for a
variation Fs of i7,

/"(0)= E {(VvfrT,)
i = l

+ ^(\vTyi\
2-(R(V,,Ti)ThV,)-(Ti(Vi,Ti))

2)dt,

using the same notation as for first variation, where R is the curvature tensor
for the hyperbolic metric.

Let x <Ef(F)n y ( 1 ) , let e be the edge of ̂ "(1) containing x, and let a, be
any arc of f(F) Pi ST^ with x as an endpoint. Without loss of generality, we
may assume the variation vector field Vi at points of e is just the tangent
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vector field of unit length of the geodesic e. Hence at y ( 1 ) , VvVt = 0. Also
(R(Vi9 7))7), Vt) = -\V}X 7)| > 0, since the hyperbolic metric has Gaussian
curvature - 1 . So

m

/"(o) = E / ' ( |^TYI I + \vix Ti I -
/ = 1 °

This function has no obvious positivity property, due to the third term.
On the other hand if we use energy E{s) and compute E"{0) by the same

method

£"(o)= y, /"iivTF,r+iF,x7;iu.= £ / \ \vTy t \ + |K,XJ;|)
, - - i ^ v y

This is a strictly positive function, since Vt is assumed not parallel to 7)
everywhere, and so E is convex. This implies that E has at most one minimum
in ^ ( / ) , for any normal surface / : F ~> M. But as we observed previously,
/'(0) = £"(0) so critical points of E and / coincide. Combining this with the
existence of at least one critical point from Theorem 1, we have completed the
proof of the following:

Theorem 2. There is exactly one PL minimal surface in a normal homotopy
class Jf{f) for any normal surface / : F -> M which is not a multiple of a
linking 2-sphere.

Corollary 1. Suppose G is a group of simplicial homeomorphisms acting on a
triangulated 3-manifold M so that for each TJ in G, Fix 17 is simplicial. Assume / :
F -> M is a normal surface which is not a multiple of a linking 2-sphere and that
the metric on ̂ "(2) is chosen to be G-invariant. Finally suppose that for each
17 e G, f and qfare normally homotopic. Then the {unique) PL minimal surf ace
g in Jf(f) satisfies g(F) = r)g(F) for all 77 e G.

Proof. By Theorem 2, since clearly g and ijg are both PL minimal in
JT(f\ we conclude g(F) = t\g{F).

A nice physical model for the procedure of finding the PL minimal surface g
in ^ ( / ) , where / : F -» M is any normal surface, was suggested to us by Bill
Thurston. The idea is to minimize energy E rather than length /. Think of ZT(1)

as a collection of wires and the endpoints x 2 i - i an(^ xu °f ^ e a r c s a / °^
f(F) E: ̂ "(2), 1 < / < w, as beads which are free to slide along the wires. Note
that the beads are able to pass each other on the wires. Finally we view the arcs
a,- as rubber bands connecting the beads. Then Theorems 1 and 2 state that the
PL minimal surface g is given by the unique equilibrium {minimum energy)
position for the configuration.

We now consider analogous properties of PL minimal surfaces to those of
analytic minimal surfaces.
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2.1. Maximum principle, nontransversality and barrier. There are many
forms of the maximum principle. We will be mainly interested in its appli-
cation to nontransversality. Suppose that two (pieces of) normal surfaces /•:
Fj -» M, j = 1,2, meet nontransversely at x e ^ ( 2 ) , where possibly fx = f2.
There are two possibilities; either x e int a, where a is a 2-simplex of ^"(2), or
x e e for e an edge of ^"(1). In the first case we assume there are arcs ay of
Fj n a, j = 1,2, so that ax and a2 intersect and are tangential at x. In the
second case, we suppose that Fl and F2 have a common tangent plane at JC.
Also we can obviously make fx and f2 transverse in the complement of ^"(2),
since we are not restricted in our choice for the interiors of the disk types in the
3-simplices.

We will view the maximum principle as giving strong restrictions on the
local picture of the surfaces Fx and F2 at such a point x, in the case that Fx

and F2 are PL minimal. (One can also assume Fx is PL minimal and that F2 is
two-sided and has a nonzero mean curvature field so that F2 is a barrier—see
later.) In fact, if x e int a then we conclude that ax = a2, since ax and a2 are
then (hyperbolic) geodesies with a common tangent at x. However this does
not imply FY = F2, as in the case of analytic minimal surfaces. The reason is
that although the part of a normal surface F in ST(2) in some sense completely
determines F, F n ST^ is still only one-dimensional.

Returning to our case of PL minimal surfaces, i f x G e then Fx and F2 have
arcs in each pair of sheets at x which "interleave" as in a generalized saddle
(see Figure 6 and [1] for the analytic case). Precisely, let yv • • •, yk and
8V- • - ,8 , be the arcs of Fx n ^ ( 2 ) and F2 n y ( 2 ) , respectively, in a single
sheet of Fx and F2, respectively, at x. By PL minimality, if V is a unit tangent
vector to e at JC, then Ef=1<F, y/(0)> = 0 and EUi(F> 8*(°)> = ° als<>- H e r e we

Saddle intersection

FIGURE 6
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are assuming the y, and Sn are parametrized so that y,(0) = 8w(0) = x for all
1 < i < k and 1 < n < /. Consequently we see that the y, cannot be all
"above" or all "below" the 8n, i.e. Fx and F2 cannot touch at the single point
x locally, they must cross (see Figure 6).

In conclusion, two PL minimal surfaces FY and F2 can coincide along finite
connected unions of arcs in ^"(2), but can still be distinct by "diverging" at the
endpoints of such unions. At such an endpoint which will be in ^"(1), the
picture is either like a generalized saddle or a pair of transversely crossing
sheets where the intersection curve has a subarc in ST^ (see Figure 7).

coincident arcs

FIGURE 7

To construct barriers, suppose M is a triangulated 3-manifold with non-
empty boundary. Then we can put a metric on ^"(2) so that dM is convex,
rather than totally geodesic. We require that the mean curvature vector along
an edge of dM always points inwards. More precisely, suppose a is a 2-simplex
in ^"(2) with int a c int M and some of the edges of a are in dM. Then we
identify a with a suitable convex subset of the hyperbohc plane, as in Figure 8.

Ideal convex region with
inscribed ideal triangle

FIGURE 8
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Note that if a 2-simplex a' c 9M has e as a common edge with a, then a' can
still be identified with an ideal hyperbolic triangle by choosing an appropriate
gluing along e.

2.2. Exchange and roundoff trick (cf. [16] and Lemma 1.2 of [5]).
Lemma 1. Suppose Fv F2a M are two-sided embedded PL least area

surfaces in their homotopy classes and assume Fx intersects F2 transversely with
FY n F2 transverse to ST. Then there are no product regions between Fx and F2,
i.e. there are no products R X [0,1] c M, where R is a compact connected
surface, with nonempty boundary), Rx = R X {0} c Fx and R2 = R X (1) U
dR X [0,1] c F2.

Proof. This is a fundamental technique in the application of least area
surfaces to 3-manifold topology. We have presented it in the form of Lemma
1.2 of [5].

Let F{ = (Fx - i n t i ^ ) U R2 and let F2 = (F2 - intR2) U Rv Then F(
may be singular (the interior of the product region may intersect Ft) but clearly
F{ is homotopic to Ft, i = 1,2. Let PL area of a surface A be denoted by \A\.
If \R2\ < \RX\ then \F{\ < \FX\ and we obtain a contradiction to Fx being PL
least area. The case when \RX\ < \R2\ is similar. Hence l ^ l = \R2\ and
\Ft\ = \F/\, i = 1,2. But F/ has corners, / = 1,2. In the analytic case this is
obvious. In the PL case, since Fx and F2 are transversely intersecting PL
minimal surfaces, any crossing pair of disk types of F1 and F2 in a 3-simplex T
of ^ ( 3 ) will meet in a single spanning arc or a single point (see Figure 9). This
follows because the arcs of Fx and F2 in dr are hyperbolic geodesies, so if
distinct can meet in at most one point. There are two possibilities for an arc of
dRx = dR2 in a 3-simplex T; either the arc has endpoints in the interiors of
2-simplices of 9r or the arc lies entirely in 3T. The latter case is ruled out by
the assumption that Fx n F2 intersects ST transversely. Similarly we can
exclude the case of an isolated point of dRx = dR2 in 3T.

FIGURE 9

So we can conclude that every curve of dRx transversely crosses the interiors
of 2-simplices in ^"(2). But then F{ n a, for a such a 2-simplex, has an arc
with a corner which can be shortened by rounding it off (see Figure 10). This
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FIGURE 10

contradicts the hypothesis that Fx is least area, since \F{\ = \FX\ and F{ is
homotopic to Fv Therefore there are no product regions. Note that the
opposite (vertical) exchange to that shown in Figure 10 would also give that F[
and F2 could be homotoped to normal surfaces of smaller weight, contrary to
the choice of Fx and F2 as least weight surfaces.

2.3. Meeks-Yau trick (cf. [16] and Lemma 1.3 of [5]). In applications, one
often needs to apply the exchange and roundoff principle in situations when
Fx and F2 may not meet transversely or Fx n F2 is not transverse to ST. There
are two ways to overcome this in the PL case. It is possible to slightly perturb
the metric on ST^ so that new PL least area surfaces F£ and F2* can be
found which are very close to Fx and F2 and intersect transversely; with
Fx* n F2* transverse to y . This will be done in the Appendix.

The other way is the Meeks-Yau trick. In the analytic case, the idea is to
perturb Fx slightly to Fx*, increasing area by e, so that Ff meets F2 trans-
versely. If there are any product regions between Fx* and F2, then at least 2e
in area is saved by exchange and roundoff, a contradiction. We now show how
to adapt this trick to the PL minimal case, replacing area by PL area, i.e.
essentially length, since weight for normal surfaces is constant under small
variations. We will look at a typical situation, as in Lemma 1.3 of [5].

Lemma 2. Suppose Fv F2 are two-sided embedded ir^injective PL least area
surfaces in a P1-irreducible 3-manifold M and the inclusion of each is a homotopy
equivalence. Then either they are disjoint or have the same image.

Proof. If the surfaces intersect transversely and Fx Pi F2 is transverse to
y , then Waldhausen [26] gives the existence of product regions and the
exchange and roundoff trick produces a contradiction.

Suppose Fx and F2 have distinct images and either they intersect nontrans-
versely or Fx n F2 is not transverse to f, as in §2.1 above. We choose some
point x in Fx D F2 n ^"(1) and examine the local picture at x, as in Figures
l l a and l i b . We can perturb Fx and Fx* near x as in Figures 12a and 12b
respectively. (There are two possible directions for the perturbation, with
similar pictures and argument.) Now in both cases, by suitable perturbations
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near all points of nontransversality, we can assume Ff is transverse to F2 and
F* n F2 is transverse to J7". Also the length of Fx* is given by l(Ff) = /(F0
4- e, where e is arbitrarily small.

An exchange can now be performed between Ff and F29 since there will be
product regions by [26]. There are two possibilities in each of Figures 12a and
12b; since these are so similar we restrict attention to Figure 12a. We obtain
new surfaces F{ and F2, as in Figures 13a and 13b, as the possible results of

coincident arcs

not transverse to F2.

(b)

n F 2 not transverse to 5".

FIGURE 11

F ;

(a)

FIGURE 12

(b)

FIGURE 13
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FIGURE 14

an exchange between JFX* and F2. In the case of Figure 13a, F{ is not a normal
surface so its weight can be reduced. This contradicts the assumption that Fx

and F2 are PL least area, since all the surfaces are in the same homotopy class
and must have the same weight.

If F{ and F2 intersect as in Figure 13b, then we can firstly smooth out the
corners to obtain F" from F[ as in Figure 14. We have drawn Fx in Figure 14
as well to emphasize that the angles 0" and 02 are approximately equal to 0Y

and 02 respectively, but 03" is much smaller than 03. The angles are measured
relative to the unit vector V along the edge of 5"(1) containing x. Let / :
F{' -» M be the map of F[' and let y be chosen so that f(y) = x. Clearly the
mean curvature H(y) of F" at y points in the direction V and also the length
of H(y) can be bounded away from zero, independent of e. Hence we can
reduce the length of F{' by 2e by sliding the surface along ^"(1) in the
direction V. This gives a new surface F± satisfying l(F^) = 1{F") — 2e.
Hence

l(F2) = l(F2) - e =

1{F{) - e =

{) - e

{) 4- e

Consequently one of Fx
+ and F2 must have smaller length than Fx or F2,

contradicting these latter surfaces being PL least area. This completes the
proof.

To complete the existence of PL minimal and PL least area surfaces, we will
need the following fundamental result of Kneser [13] and Haken [7] (see also

[11], [9])-
Theorem 3. (a) Assume M is P2-irreducible and let f: F -» M be a mx-

injective surface or an essential disk. Then there is a least weight normal surface
g: F -> M homotopic to f. If f is embedded then there is a normal surface g:
F -» M which is isotopic to f and has least weight in the isotopy class off.
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(b) Suppose M is any 3-manifold which contains essential 2-spheres. If
TT2(M) =£ {1} then there exists a normal 2-sphere g: S2 -> M which is noncon-
tractible and g has least weight in TT2{M). If w2(M) = {1} then there is an
essential embedded 2-sphere g: S2 -> M which is least weight amongst all
essential 2-spheres. {Such 2-spheres necessarily bound fake 3-balls but do not
bound 3-balls in M.)

Proof, (a) We note that in the moves (cf. [9] or [7]) to attain normality,
there are compressions of the surface inside 3-simplices. These can be achieved
by homotopies or isotopies so long as M is P2-irreducible. Amongst the
normal surfaces homotopic or isotopic to / , we can choose one of least weight.

(b) Here the compressions will split a 2-sphere into two 2-spheres, at least
one of which must be essential. If both 2-spheres are essential then if one is
discarded, we do not remain in the same homotopy or isotopy class. However
we stay in the class of essential 2-spheres. Again once normal essential
2-spheres have been constructed, one of least weight can be chosen.

3. Applications of PL minimal and PL least area surfaces

The following results from [5], [23], and [14] can now be proved using the
properties outlined in §2, plus the original methods, where PL minimal
(respectively PL least area) is substituted for minimal (respectively least area)
throughout. Also the results discussed in [12] using least weight normal
surfaces, namely [16]-[20] but not [15] can also be obtained in this way. We
need an extra property of PL least area surfaces to establish the main
application of [15].

Throughout this section, whenever we consider covering spaces it will always
be assumed that the triangulation and the metric on the 2-skeleton of the cover
is induced by the covering projection. This implies that the projection or lift of
a PL minimal surface is PL minimal, under any covering, by the equivalence of
mean curvature zero and PL minimality. We call an immersion / : F -> M
locally self-transverse if given points y, yf with f{y) = /(>>'), there are small
disks about y, y' in F which are embedded b y / and intersect transversely.

Theorem 4 {cf. Theorems 3.1 and 7.2 of [5]). Let M be a P2-irreducible
3-manifold which covers a compact 3-manifold. Let f: F -> M be a mx-injective
map. Then there exists a PL least area map in the homotopy class off.

Proof. If M is compact, this follows immediately by Theorems 3(a), 1, and
2, and the observation that there are only finitely many ways of constructing a
normal surface of fixed weight. (The number of disk types, as in Figure 1, is
bounded and there are finitely many 3-simplices to choose from.) Hence one
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can find a PL least area map from amongst the finitely many PL minimal
surfaces of least weight in the homotopy class of / .

The general case follows as in [5]. If M covers a compact 3-manifold M'
then by the compact version there is a PL least area map / ' in the homotopy
class of irf, where TT is the covering projection. Then / ' lifts to the desired PL
least area map.

Remark 4. The assumption that M covers a compact 3-manifold is needed
here but not in Theorem 3. The reason is that weight of normal surfaces is
discrete, so least weight normal surfaces exist trivially. However if there are
infinitely many in a homotopy class, for noncompact M, then there may not
be one of minimal length.

Theorem 5 {cf. Theorem 3.4 of [5]). Let M be a P2-irreducible 3-manifold
which covers a compact 3-manifold. Let f: F -> M be a two-sided irx-injective
map. Let Mx be any covering of M and let Fx be a finite-sheeted covering of F
such that f^. Fx —> Mx is a lift of f. Then fx is least area if and only if f is least
area.

Proof. See [5].
Theorem 6 {cf. Theorem 5.1 of [5]). Let M be a compact P1-irreducible

3-manifold and let f: F -> M be a PL least area ir^injective map which is
homotopic to a two-sided embedding g. Then either:

(i) fis an embedding or
(ii) / double covers a one-sided surface K properly embedded in M and g(F)

disconnects M into two compact regions, one of which is a twisted I-bundle over a
surface isotopic to K.

Proof. See [5].
Theorem 7 {cf. Theorem 6.2 of [5]). Let M be a compact P1-irreducible

3-manifold and let f{. Ft -» M be two-sided PL least area mx-injective maps,
i = 1,2. Iffx and f2 can be homotoped to have disjoint images, then f^F^ and
f2{F2) are disjoint or coincide. In the latter case fx and f2 are coverings of an
embedded surface in M.

We now summarize the approach in §6 of [5] to the problem of counting
intersections and self-intersections of PL least area surfaces. This will be
important for our final results.

Assume for simplicity that our PL least area maps do not factor through
nontrivial coverings of surfaces. Let fx: Fx -» M be a ^-injective PL least
area surface and let Mx denote the covering of M with group ^ ( i ^ ) , one of
the conjugacy class of subgroups of ^ ( M ) determined by fv Then there is a
lift of Fx to Ml which is an embedding, by Theorems 5 and 6. We denote this
lift by Fx again. Let us call the image of a lift of fiiFJ to Mx a component of
the pre-image of fi{Fx). Then we count the self-intersections of fx as the
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number D(fx) of the components of the pre-image of fi(Fx) which meet Fv

Similarly the number of intersections between two 7r1-injective PL least area
maps ft\ Ft -> M, / = 1,2, is given by the number D(fl9 f2) of the components
of the pre-image of f2(F2) in M1 which meet Fv

Theorem 8 (cf. Theorem 6.3 of [5]). Let M be a compact P1-irreducible
3-manifold. Let / / : Ft -> M be two-sided m^-injective maps and let ft be a PL
least area map homotopic tof/ for i = 1,2. Then

(ii) D(fx)
We now turn to results of Scott [23] and Meeks-Scott [14].

Theorem 9 (cf. Theorem 3.1 of [23]). Let N be a closed irreducible Seifert
fiber space with infinite fundamental group. Let M be a closed orientable,
irreducible 3-manifold such that ir^M) is isomorphic to ir^N). Then M and N
are homeomorphic.

Remark 5. The argument in [23] is a beautiful analysis of the intersection
of least area tori in a suitable common covering space of M and N. The same
method works using PL least area tori.

Corollary 2 [23]. / / M is a closed orientable irreducible 3-manifold with
infinite fundamental group which is finitely covered by a Seifert fiber space, then
M must be a Seifert fiber space.

Theorem 10 [14, Theorem 2.1]. Let M be a closed 3-manifold with a
geometric structure of type H 2 X R , S12R, Nil, E3 or Sol. Then any finite group
action on M preserves the geometric structure.

Remark 6. See [25] or [24] for discussions of geometric structures. As in
Remark 5, the only simplification occurring is that existence of least area tori is
replaced by that of PL least area tori.

Our next theorem is a "local" analysis of the singularities of PL minimal
surfaces, namely as in [5], such surfaces have least possible intersections and
self-intersections in normal homotopy classes. Note the absence of any as-
sumptions guaranteeing nontrivial homotopy properties of the surfaces, like
77^-injectivity of their maps. Also it is not necessary to suppose that the surfaces
are two-sided.

We begin with the following lemma that if a certain neighborhood of y ( 1 )

is removed from M, then any normal surface becomes 771-injective. Let
iV(y ( 1 )) be the small special neighborhood of the 1-skeleton of y in M given
by choosing an open 3-ball containing each open edge in ST(1) and adding in
all the vertices in ^(0\ as in Figure 15. Let Mo = M - N(^l)). Clearly
int Mo is an open handlebody and dM0 is a collection of open annuli, one for
each edge in ST <n.
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_ \

open ball containing inte.

\

FIGURE 15

Let / : F -> M be any normal surface. We can suppose without loss of
generality that f(F) meets JV(^"(1)) in a finite set of small embedded disks,
since / is transverse to y ( 1 ) . Let FQ = /~1(M0) . then we can also assume
without loss of generality that for any g in the normal homotopy class JY*(f),
g~\M0) = f~\M0) = Fo. Let fo=f\Fo,go = g\Fo, and ao = an Mo, where
a is any simplex in ST. Also let 5^(2) denote 3T(2) n Mo.

Lemma 3. /0: JF0 -> Mo is v^injectwe.
Proof. Suppose this is not the case. Then there is a map of the disk <J>:

D -» Mo satisfying one of the following two possibilities. The first is that there
is a noncontractible loop in Fo whose image under /0 is <J>(3Z>). The second is
that there are arcs X, /A, V with 3Z> = X U /A, 9X = 3/x, v in Fo and <|>(X) c 3M0,
<|>(]u,) = / 0 (^) , where v is nontrivial in 7r2(i% 3F). These cases will be referred to
by saying that / 0 is compressible or 3-compressible respectively. We assume
without loss of generality that <J> is transverse to ^ ( 2 ) and obtain a contradic-
tion by induction on the number of components of <J>"1(^(2)).

To start the induction, we show §~l{^2)) cannot be empty. Since / is
normal, F meets each 3-simplex T of ST in the seven disk types, as in Figure 1.
So if T0 = T n Mo, then Fo intersects T0 in properly embedded disks, so cannot
be compressible or 3-compressible in T0.

It now suffices to reduce the number of arcs and loops in <^~1(^(2)). Note
these curves are all disjoint and embedded. Any loops can be removed by
elementary surgeries of <$>. So we will concentrate on an arc y of ^~1(a0), where
a is a 2-simplex in ^ r (2 ) . There are three pictures for <j>(y) in a0, as in Figures
16a, b, c. Also there are two cases to consider for the arc y in D as in Figures
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17i, ii, depending on whether <J> is a compression or a 3-compression. We will
let Z>0, Dx denote the closures of the components of D - y.

In the situation of Figure 16a, there is an obvious shaded homotopy in o0

between <j>(y) and 8, an arc of Fo. If this is in combination with Figure 17i, we
modify <£ by replacing either <f> \ Do or <f> \ Dx by this homotopy. One of the two
new maps of the disk, which we denote by <£*, will have the property that
<£* 13D is the image of a noncontractible loop in Fo. By a small perturbation
off of </>0, we obtain that <t>*'l(^0

(2)) h a s f e w e r components than <t>~\^o(2)), as
desired. In the case of Figure 17ii, we replace <j> \ Do by the shaded homotopy in
oQ and the argument is similar. Note that we retain the property that <j> is a
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(i) (»)

FIGURE 17

8-compression here; in particular the new arc v in Fo with fo(v) c <j>*(D)
cannot be homo topic in FQ relative to 9^ into 3JF0, since the ends of v are on
two different curves of dF0. Because F is normal, every point of F n ^"(1), with
multiplicity n, yields n disks of F O N(^~{1)) and « boundary curves of Fo.

Next we consider Figures 16b and 16c which are alike. (Notice that although
the arcs of Fo in these pictures have been drawn as disjoint, they can cross
since Fo may be singular. This does not affect the method though.) In the
situation of Figure 17i, either <j>\D0 or <j>\Dx can be substituted for by the
shaded homotopy in Figures 16b or 16c. This converts a compression into a
3-compression. Finally in the case of Figure 17ii, we replace <t>\Dx by the
shaded homotopy in Figures 16b or 16c. This preserves the disk as a 3-
compression. In all the above possibilities, the number of components in
<|>"1(^)

(2)) is decreased after a small push off o0 and the proof is complete.
Let us assume, for convenience, that all PL minimal and normal surfaces / :

F -> M have the property that / is in general position relative to ^"(1). So as
well as F meets &(1) transversely, every point of F n y ( 1 ) lies in a single
sheet of F9 i.e. occurs with multiplicity one. The self-intersections of / will be
counted by S(f) = D(/o) and the intersections of normal surfaces f:F->M
and / ' : F' -> M by S(fJ') = £( / 0 , / 0 ' ) - Note that as / , / ' are in general
position relative to y ( 1 ) , / and fQ (respectively / ' and /0') have the same
double curves, i.e. no double curve passes through ^ ( 1 ) or iV(^r(1)), if this
neighborhood is chosen small enough. In the Appendix we outline a simple
method to ensure that any finite set of PL minimal surfaces are in general
position relative to each other and to &.

Theorem 11. Let f: F -» M and / ' : Ff -> M be normal surfaces in a
compact 3-manifold. If g and g' are the PL minimal surfaces in the normal
homotopy classes of f and f' respectively, then

S(g)<S(f) and
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Corollary 3 (cf. Theorem 6). / / / : F -> M is an embedded normal surface in
a compact 3-manifold9 then the PL minimal surface g in ^V(f) is either an
embedding or a double cover of an embedded surface. In the latter case f(F)
bounds a twisted I-bundle over a nonorientable surface isotopic to g(F).

Corollary 4 (cf. Theorem 7). Suppose / : F' -> M and / ' : F' -> M are
normal surfaces with disjoint images in a compact 3-manifold. Then the PL
minimal surfaces g in Jf(f) and gf in Jf(f') have images which are either
disjoint or coincide. If g and g' have the same image, they are coverings of
embeddings.

Remark 7. It is easy to see from the following proof of Theorem 11 that the
corollaries do not depend on the simplifying assumption that the surfaces are
in general position relative to y ( 1 ) .

Proof. We assume first that / and / ' are two-sided surfaces. By Lemma 3,
we know that since / : F -> M is normal, it follows that f0: Fo -» Mo is
77^-injective. The strategy is to apply Theorem 8. To do this, a suitable
Riemannian metric must be introduced on the 2-skeleton of Mo. Notice that
although Mo is not compact, its " triangulation" has only finitely many
"simplices" so the previous arguments apply. We need to choose the metric so
that the given PL minimal surfaces g, g' yield surfaces g0, g'o which are PL
minimal for Mo, after small perturbations.

If T is any 3-simplex of ST, then r0 is obtained by truncating T along its
edges. These truncated 3-simplices give a cell decomposition of Mo which we
will denote by &~t and call the triangulation of Af0. Notice that T0 has four
faces which are 2-simplices and 6 faces which are 2-gons, all of which have
their vertices removed. Assume also that the special neighborhood
which is to be removed from M has arbitrarily small size e, i.e. N(^
has points at distance up to e from &"(1) in the metric on ^"(2).

A 2-simplex o of ST becomes a 2-simplex a0 of ^ , when intersected with
Mo. We will identify a0 with the same ideal hyperbolic triangle as a (see Figure
2). This can be done so that if X is any arc of g(F) D o0 or of g'(F') n a0,
then every point of X is within me of /i, the unique hyperbolic geodesic in a0

with the same endpoints as X, where m is some constant (see Figure 18). In
addition, every pair of such arcs X either coincide or meet transversely in single
points, as they are geodesies in the original metric on a. Consequently if e is
small enough, the intersection picture is identical for the new family of
geodesies /i, as for the arcs X of g(F) n ^ ( 2 ) (see Figure 18).

Next we identify all the 2-gons in <^(2) with ideal convex hyperbolic 2-gons,
satisfying the distance from any point on one boundary arc to the other
boundary arc is at most e, as in Figure 19. Suppose e is any edge of ^ ( 1 ) and
x is a point on e at which say go(Fo) crosses e. (The case for g'0(F0) is
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FIGURE 18

an ideal 2-gon

FIGURE 19

identical.) Then there are clearly exactly three arcs Xv X2, X3 of go(Fo)
with endpoints at x, by our assumptions that g is in general position relative
to y ( 1 ) and N(3T(V) [s small (see Figure 20).

Claim. The metric on ^ ( 2 ) can be chosen so that if nl9 /A2, /*3 are the
geodesic arcs with the same endpoints as Xl9 X2, X3, then the angles 0h

1 < 1 < 3, between JU/ and a unit vector V along e satisfy c o s ^ + cos02 +
costf3 = 0.

Reason. Let C be the loop of go(dFo) through x, let D be the disk of
go(Fo) n A/"(^"(1)) bounded by C and let z be the unique point where D
crosses ^(1). Since g is PL minimal, the sum of the cosines of the angles of the
edges of g(F)C\&'<® which have endpoints at z, with the edge of
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FIGURE 20

containing z, is zero. By continuity, the corresponding sum for the edges of
go(Fo) n ^ ( 2 ) which have endpoints on C, with the appropriate edges of
^ ( 1 ) , is nearly zero; in fact, the absolute value of the sum can be bounded by
ne, where n is a constant independent of C.

Since our 2-gons are chosen to be very thin, if an arc X of go(Fo) crossing
any 2-gon is chosen "obliquely," then it is still relatively short but the angles 0
and 8' of the corresponding geodesic \i with the boundary edges become close
to 0 and TT respectively (see Figure 21). Also by the Gauss-Bonnet Theorem,
we see that IT — 0 + 0' is close to the area of one of the complementary
regions of \x in the 2-gon, so 6 + 0' is approximately equal to IT. Hence
\0 + 0' — TT\ < pe for some constant p. Finally by proceeding along the loop
C, we can easily choose the geodesic arcs crossing the 2-gons with appropriate
angles so as to achieve cos 0x + cos 02 + cos 03 = 0 at all except the last point
JC. At this point, we must have Icos^ + cos#2 + cos#3| is of the order of e. But
then enlarging (shrinking) one of the pair of 2-gons at x enables us to increase
(decrease) one of these angles 0i9 1 < i < 3, keeping all other angles fixed. So
we can always achieve that the surface h0: Fo -> Mo (or h'Q\ FQ -> Mo), with
ho(Fo) n^7 ( 2 ) (or WQ{FQ) n<^ ( 2 )) given by the geodesic arcs /A, as above, is a
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FIGURE 21

PL minimal surface andh0 has the same self-intersection picture as g0 (h0, h'o
have an identical intersection pattern to g0, g'o).

By Theorem 8, PL least area surfaces k0, k'o in the homotopy classes of /0,
/0' minimize intersections and self-intersections. It remains to identify k0 and
k'o. Certainly PL least area surfaces must have least weight. The weight of /0 is
clearly the number of points where fo(dFo) meets edges of ^ l \ It is easy to
see this number cannot be decreased by any homotopy of /0. Hence the
boundary curves of ko(Fo) must be normally homotopic to those of fo(Fo\
and similarly for k'o and /0'. But ko(Fo) is complete determined by ko(dFo),
since all the arcs of ko(Fo) n ^ ( 2 ) are hyperbolic geodesies and so are
uniquely specified by their endpoints. So we see that k0 is normally homotopic
to /0, and likewise for k'o and /0'. But now by Theorem 2, there is a unique PL
minimal surface in ^V{fQ) and so k0 = h0. Hence we conclude that D(g0) =
D(ho) = D(ko) and D(go,g'o) = D(ho,h'o) = D(ko,k'o). By Theorem 8,
D(k0) < D(f0) and D(k0, k'o) < D(fo,fJ). Therefore two-sided PL minimal
surfaces have smallest numbers of intersections and self-intersections in normal
homotopy classes, as claimed.

To complete the theorem, we must consider the one-sided case. Assume that
/ : F -> M and / ' : Ff -* M are one-sided surfaces. (The case when, for
example, / is one-sided and / ' is two-sided follows by the same method.) Let
IT: F -> F be the double covering such that if / = / • IT, then f:F^>M has
image homotopic to the boundary of a regular neighborhood of f(F) in M.

Clearly / is also a normal surface. Finally let g: F -> M and g: F -> M be the
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PL minimal surfaces in the normal homotopy classes of / and / respectively.
Also / ' , g', and g' are defined analogously, using / ' instead of / .

Since the surface g - IT: F -> M is obviously PL minimal, its mean curvature
is identically zero and by Theorem 2 we conclude that g = g • m. But then we
can apply the previous argument in the two-sided case, obtaining D(g, g') <
D(/ , / ' ) and D(g) ^ D(f). Combining these, the outcome is that D(g, g') <
D(f> / ' ) and D(g) < D(f). (Note that if M2 (respectively Mx) is the cover of
M corresponding io TT^F) respectively Mx) is the cover of M corresponding to
7Ti(F) (respectively 771(F)), then M2 is the double cover of Mv) This finishes
the proof.

Remark 8. We sketch an alternative approach for proving Corollary 3, via
the techniques of [12], rather than [5]. This is a considerably more elementary
method. Note that Corollary 3 is needed to prove the next result, Theorem 12.

As above, let us assume that / is an embedded two-sided normal surface.
We wish to show the PL minimal surface g normally homotopic to / is either
an embedding or a double cover of an embedded nonorientable surface.

Since / is embedded, in any 3-simplex of y ( 3 ) , / can have at most one
quadrilateral type (see Figure 1). But then if g is not a cover of an embedding,
the double curves of g will all be regular (see [12]). In fact irregular double
curves occur precisely where two different quadrilateral types cross. Now a
regular exchange (see [12] can be performed along all the double curves of g to
give an embedded normal surface h. As h is embedded and has exactly the
same disk types as both g and / , it follows readily that h is normally
homotopic to / . But h has corners and has the same PL area as g. Smoothing
out the corners gives a surface in Jf{f) with smaller PL area than g, a
contradiction.

The case when / is one-sided follows exactly as before from the two-sided
case.

We can now give another proof (see also [12]) of the main application of
[15].

Theorem 12. Let M be a P2-irreducible 3-manifold. Then any covering of M
is P2-irreducible.

Proof. Let M be any covering of M and assume M is not P2-irreducible.
By the sphere theorem (cf. for example [9]), since M is /^-irreducible,
TT2(M) = {1}. Therefore, TT2(M) = {1} also, and since M is not P2-
irreducible, there must be an embedded 2-sphere S which is essential in M, i.e.
bounds a fake 3-ball R. Let TT: M - ^ M b e the covering projection and let TV
be the compact submanifold of M obtained by taking a regular neighborhood
of K(R) and adding 3-balls to any boundary 2-spheres of this neighborhood.
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Then M is again P2-irreducible and we can reduce this problem to the study
of the restriction of m to the component N of 7r~l(N) which contains R.

As usual we triangulate N and put a Riemannian metric on the 2-skeleton of
the triangulation. The triangulation and metric can then be lifted to N.
Amongst the embedded essential 2-spheres in N, one of least PL area can be
found. In fact by Theorem 3(b), there are such 2-spheres of smallest weight.
Projecting to N, we see there are finitely many possibilities and amongst these
we can choose one of least length. This lifts to the desired 2-sphere in N.

Finally by the usual exchange argument (see §2.2 and Lemma 3 of [15]), it is
straightforward to show that if TJ: N -> N is any covering transformation and
S is a PL least area essential 2-sphere, then S n rj(S) = 0 or S = r](S).
Hence S projects either one-to-one or two-to-one to N. In the first case, ir(S)
is a two-sided projective plane in N, contradicting N is P2-irreducible. This
establishes the theorem.

Appendix

We indicate a technique for perturbing the Riemannian metric on 5"(2) so
that any finite collection of PL minimal surfaces become transverse to each
other and to T. The idea is that all the basic properties in §2 depend only on
the metric having negative Gaussian curvature. So a small change from
constant curvature -1 is allowable. Also the PL minimal condition is equiva-
lent to all the arcs in y ( 2 ) being geodesies, plus a restriction on the angles
between these arcs and ST{V) at their ends. We will vary these arcs so that the
angles remain unchanged.

Suppose that a is a geodesic arc in a hyperbolic triangle a in y ( 2 ) and a
has endpoints xl9 x2 with angles 0l9 02 respectively between a and the arcs of
3a (see Figure 22). We put two small "bumps" in a at points zl9 z2 close to a
by locally multiplying the metric at zi9 i = 1,2, by a function which has value
1 4- e at z, and 1 outside a small disk centered at zt. We also can assume this
function has very small gradient everywhere. Then there is a new geodesic arc
a' with endpoints x[ and JC2, where x[ is very close to xv Also a! has the same
angles 0x and 02 with the arcs of 3a as a, for suitable choice of zv z2 and the
bump functions.

Using this device, we can alter the position of any PL minimal surface by a
small amount and achieve the desired transversality properties for a finite
collection of such surfaces.
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FIGURE 22
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