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COMPACT HYPERSURFACES
WITH CONSTANT SCALAR CURVATURE

AND A CONGRUENCE THEOREM

ANTONIO ROS

For an >i-dimensional hypersurface Mn in the Euclidean space, we consider
the r th mean curvature Hr, defined as the elementary symmetric polynomial of
degree r in the principal curvatures of Mn. Hx, H2, and Hn are the mean
curvature, the scalar curvature, and the Gauss-Kronecker curvature respec-
tively. The simplest global question concerning these geometric objects is the
following:

"Given a compact hypersurface Mn embedded/immersed in the
Euclidean space, such that Hr is constant for some r = 1,- • •, n,
is Mn a sphereV

The only solutions for this problem have been obtained in the cases r = 1
and r — n. If the mean curvature is constant and Mn is embedded, Alek-
sandrov [1] proved that M" is a sphere. In the immersed case Hsiang, Teng,
and Yu [3], and Wente [8], constructed nonspherical compact hypersurfaces in
higher dimension and in R3, respectively. If the Gauss-Kronecker curvature is
constant, then we conclude via the Hadamard theorem that M" is strictly
convex. But if M" is strictly convex we know that Hr = const., for some r,
implies that M" is a sphere (see Hsiung [4]). If n = 2 we obtain a classical
result of Liebmann [6],

For the scalar curvature the problem has a special interest, which was
proposed by Yau in [9].

In this paper we first prove that

"The sphere is the only compact hypersurface with constant
scalar curvature embedded in the Euclidean space"
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This result follows from a modification of Reilly's proof for the Aleksandrov
theorem [7]. It is an agreeable fact to observe that the ideas of these authors, in
both proofs, can be adapted to several other contexts.

Our second result follows also from the Reilly method, and it concerns the
extrinsic rigidity of compact hypersurfaces with nonnegative mean curvature.
A classical result of Schur (see [2, p. 36]) can be stated, in the case of closed
curves, as follows:

"Let C be a convex closed curve in the plane, and C a closed
curve in R3 of the same length as C. Let s be the arc parameter
in both curves and k(s) and k\s) the curvature of C and C",
respectively. If k\s) < k(s), then C is congruent to C."

The above result also follows easily from the Fenchel estimate for the total
curvature of a closed curve. We will prove that the theorem extends to
hypersurfaces. More precisely

"Let \p: Mn —> R/?+1 be an embedded compact hyper surf ace
with nonnegative mean curvature H. Let f : M " - ^ R " + m be
another isometric immersion with mean curvature vector H'. If
| H'\ < //, then both immersions are congruent."

Even more, the fact that \p' is an isometric immersion is used in a very weak
form: we need only assume that \p' satisfies a certain integral inequality. We
remark that Lawson and Tribuzy [5] have obtained a congruence result for
compact surfaces in R3, assuming that H = H'. Clearly, if n > 2 the hypothe-
sis H ^ 0 is weaker than convexity. For surfaces in R3 our result is applied, for
instance, to some revolution tori.

1. Preliminaries

In this section we review some standard facts about the geometry of compact
hypersurfaces. Let \p:M" -* R" + 1 be an ^-dimensional compact hypersurface
embedded in the Euclidean space Rw+1. Then Mn is the boundary of a
compact domain £2 c R" + 1, 3fi = M". Let N be the interior normal field of
A/, and {et} an orthonormal basis in the tangent space of M. We denote by o
the second fundamental form with respect to the normal N, i.e., o{e^ej) =
-(A*(e,)-^/X anc* let H = i L j a ^ e , - ) and S be the mean curvature of the
immersion and the scalar curvature of M, respectively. From the Gauss
equation we have

(1) S = n2H2-\o\\
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and by the Schwarz inequality

(2) S^n(n-l)H\

the equality holding only at umbilical points. We will denote by dV and dA the
canonical measures on R" + 1 and M, respectively. Finally we denote by V and
A the volume of S2 and the area of M respectively.

If we compute the Laplacian of the function |JC|2 on Rw+1, x being the
position vector field, we obtain A|JC|2 = 2(n + 1). So from the divergence
theorem we have

(3) (» + 1)F+ f (t,N)dA = 0.
JM

We consider now the 1-form a on M defined by

j

By direct computation we obtain that the divergence of a is given by

div a = £ ( V a ) ( e , , e , ) = (n- n2)H + ( | a | 2 - n2H2)(t, N).
i

Integrating on M and using (1) we get

(4) n(n -l)[ HdA + f S($,N)dA = 0.

Relation (4) is usually known as the second Minkowski formula. For the
general case see Hsiung [4].

Given / e C°°(fl), we denote z = / ) A / and u = df/dN. So z and u are
smooth functions on M. Reilly's formula [7] states that

(5) ( f ( A / ) 2 - | v 2 / | 2 W = f [-2(Az)w + rt//w2 + a(vz,Vz)]dL4,

where A/ and v 2 / are the Laplacian and the Hessian of / in Rw+1, and Vz
and Az are the gradient and the Laplacian of z in M.

2. Hypersurfaces with constant scalar curvature
Theorem 1. Let Mn be an n-dimensional compact hyper surf ace embedded in

the Euclidean space R/7+1. If the scalar curvature of M" is constant, then Mn is a
sphere.

Proof. As M has one elliptic point, S must be a positive constant and H is
positive somewhere. From (2) we see that H never vanishes, and so it is
positive everywhere. Hence, we can write (2) as

(6) )[S < ]/n(n - 1)7/.
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Integrating on M,

y/SA < Jn(n - 1) f HdA,
JM

and taking squares we obtain

(7) SA2^ n ( n - 1)1 f HcLi] ,

the equality holding if and only if M is umbilical at every point.
From (3) and (4) we have

0 = n(n-l)f HdA+f S(^9N)dAf

[ HdA f
M JM

= n(n - \)j HdA ~{n + 1)SF,

that is,

Combining (7) and (8) we have

and so,

n(n-l) A2

(9)
(n + I)2

Moreover the equality holds if and only if M is a sphere in Rw+1.
Now, we will prove the opposite inequality. Let / be the solution of the

Dirichlet problem such that

A/ = 1 on fi and z = 0 on M.

From the divergence theorem,

(10) V= f AfdV= -f udA.
M
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The Schwarz inequality ( A / ) 2 < ( « + l ) | v 2 / | 2 and Reilly's formula give

(11) —T-T> f Hu2dA.
n H- 1 J \f

/ Hu2dA>—fi==f «*dA>
JM Jn(n - 1) •'w

From (6), Schwarz inequality for the function w, and (10) we have

nu~a/i ^ —p=z
JM

y ^ V2

Jn(n - 1) A '

Putting this inequality in (11) we obtain

V yfS V2

" + 1 /«(n - 1)

and taking squares

. c

So we have the equality in (9) and the theorem is proved.

3. A congruence theorem for hypersurfaces

Theorem 2. Let \p:Mn -> R" + 1 be a compact hypersurface embedded in the
Euclidean space. Suppose that the mean curvature of \p, with respect to the
interior normal H, is nonnegative.

(A) If\p':Mn^> Rm is a smooth map such that

(12) ( o(vxp\Vxp')dA>n[ HdA,
JM JM

and |At//| < nH everywhere, then \p' differs from $ in a rigid motion.
(B) If \p': M" —> Rw + m is an isometric immersion with mean curvature vector

/ / ' , satisfying \H'\ < H everywhere, then \p and yp' are congruent.
Proof. The assertion in (B) is a trivial consequence of (A). Now we prove

(A). Let F: fi -» Rm be the solution of the Dirichlet problem

~KF = 0 on S2 and F = i// in M = 82.

We put £/ = 8F/3A^: M -> Rm. Estimating the length of the Hessian of F
by zero, Rielly's formula gives

( [-2<Ai//,[/> + nH\U\2 + a (vf ,
JM L
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On the other hand, by hypothesis <Ai//,£/> < \U\ |Ai//| < n\U\H, which
combined with (12) transforms the above integral inequality into

0>nf H(-2\U\ + \U\2 + l)dA.

As the integrand is clearly nonnegative, we have in fact an equality and the
following consequences follow:

(i) The Hessian of F vanishes, or equivalently F(x) = Bx + b, for any x in
0, B being a linear map from R" + 1 "to Rm and b a vector in Rm. In particular
i// = B\p + b is contained in an (n + l)-dimensional linear subspace of Rm,
V'.M"-* R'+1.

(ii) U = BN, and if H > 0 at some point, then \U\ = 1, i.e., \BN\ = 1. But
the set of normal directions corresponding to elliptic points of M is dense in
the sphere Sn(\), so \BN\ = 1 for every unit vector N in S"(l). Hence B is
orthogonal and the result is proved.
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