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1. Introduction

(1.1) Let / : R(S) -» @g/SPg(Z) be the period mapping of the Riemann
space R(S) of a nonsingular curve S of genus g to the Siegel modular space
@g/SPg(Z) of degree g. Both of these spaces R(S) and @g/SPg(Z) can be
compactified to protective varieties in a natural manner. The compactification
R(S) of R(S) is known as the moduli space of stable curves or the augmented
Riemann space. As for the Siegel space, its compactification @*/SPg(Z) is
called the Satake space, and in our previous paper [7] we studied the stable
cohomology i/*(@*/SPg(Z)) of this space. From the work of Namikawa (see
[17]) it is known that the classical period mapping can be extended to a map J:
R(S) -> @*/SPg(Z) of the compactifications. One of our original goals in
writing this paper was to study the cohomological nature of this map. Our
result follows (see also (7.1.4)).

Theorem. The stable cohomology if*(@*/SPg(Z); Q) of the Satake space is
a tensor product of two polynomial rings Q[xJ ® Q[yj]9 degree xi = 4/ 4- 2,
0 < / < oo, degree yi = 4y + 2, 0 <j < oo. The induced map on cohomology
j * . i/*(@*/SPg(Z); Q) -• H*(R(S); Q) kills the second polynomial ring

Recently E. Miller proved independently that /* maps the first polynomial
ring Q[Xj] injectively into H*(R(S); Q) in a stable range (see [16]). Thus his
results, combined with the above theorem provide a complete answer for the
induced mapping of / on stable cohomology.

(1.2) To establish our theorem, we have to overcome some of the technical
difficulties which are typical in studying the homotopy nature of moduli
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spaces. One of our goals in this paper is to set up a convenient framework in
which we can solve these problems. First, many of these moduli spaces are
obtained by gluing Eilenberg-MacLane spaces K(π, 1) together. Although each
individual piece has a fixed homotopy type determined by the fundamental
group, after gluing them together this rigid homotopy structure is lost because
of the choice of base point involved. For these reasons, we formulate the
construction in terms of a certain functor SimGX -> Top from the simplices of
a building with G-action to the category of topological spaces. We exploit
carefully the notion of universal G-spaces so that at the end there is a rigid
homotopy type. Our results are too technical to be summarized here (see
(3.3.6)).

Moduli spaces are rarely smooth manifolds, but they can be triangulated
into stratified polyhedra. Thus to control the topology near a stratum, it is
convenient to adopt the theory of regular neighborhoods, familiar to piecewise
linear topologists. This theory goes hand-in-hand with the categorical frame-
work mentioned above, and seems to be ideal for our purposes.

(1.3) This paper is divided into eight sections. §1 is the Introduction. In §2,
we give a brief summary of results required of Teichmύller theory. We adopt
the point of view of L. Bers, B. Maskit, W. Abikoff (see [4], [13], [1]) and others
because it is more accessible to topologists. In §3, we describe the categorical
framework which is the backbone of this paper, and in the following section we
present a theory of regular neighborhoods of stratified polyhedra. In §5, we
begin to treat the augmented Riemann space R(S) using our theory, and this is
completed in §6 by showing that there is a description of R(S) in terms of the
category of stable curves. In §7, we recall the treatment of the Satake
compactification in our previous paper [7]. The last section is devoted to the
proof of our main theorem.

(1.4) We would like to acknowledge our debts to J. Harer and S. Wolpert for
explaining to us various aspects of Teichmϋller theory. To F. Raymond, we
owe the treatment of regular neighborhoods in §4. Our original treatment of
this topic was extremely cumbersome, and it is based upon a conversation with
him that we arrived at the present formulation.

2. Moduli space of stable curves

In this section, we collect some of the basic facts and generalities concerning
the moduli space of stable curves. Since these are well established facts, we will
not provide proofs here but will give standard references where the proofs can
be found.
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(2.1) The word "moduli" comes from Riemann in his discussion of the space
of Riemann surfaces. By a Riemann surface, we mean a connected, 1-dimen-
sional complex manifold. Topologically, it is a two-dimensional differentiable,
orientable manifold and up to homeomorphism it is completely determined by
its genus [14]. However, a Riemann surface does not have a fixed Riemannian
structure. Instead it has a conformal structure, for linear homomorphisms of C
are conformal transformations, z -> az.

Modern development of this subject perhaps started from the work of A.
Weil. Let G be a Lie group, and π a discrete subgroup of G. Then the
deformation space of π in G, denoted by Def(ττ, G), is the space of all injective
homomorphisms θ: π -> G such that the image θ(π) is closed. There is a
natural topology on this space defined by considering this as a subspace in the
function space Gπ. Given an element θ in Def(π, G) we can deform θ by
composing θ with the conjugation by an element a in G,

(aθ)(y) = a - θ(y) a~\ γ e π.

These are regarded as trivial deformations, and so it is natural to take the
quotient space Defo(τ7, G) = Def(π, G)/G which is called the reduced deforma-
tion space.

(2.2) The above discussion is in a setting far more general than is necessary
for us. Our situation belongs to the deformation of the surface group TΓ,

I group generated by 2g generators xl9 yl9 x2, y2 xg9 y

and one relation [χl9 yx] [xg, yg] = 1,
g9 y g

into the projective special linear group G = PSL2(IR). Given an element θ in the
deformation space Def(ττ, PSL2(R)), the quotient space of the upper half-plane
®i = SO2\PSL2(IR) by the action of θ(π) is a surface Sθ = <&ι/θ(jr) with
fundamental group π. If two embeddings θ: m -> PSL2(R) and θ'\ m ->
PSL2(R) differ by the action of an element a in PSL2(R), θ = a 0', then the
surfaces Sθ and Sβ are homeomorphic as complex manifolds. Hence every
element in the reduced deformation space Defo(ττ, G) gives rise to a Riemann
surface.

Now a Riemann surface obtained in this manner has a natural Riemannian
structure, namely the metric induced by the Poincare metric on the upper
half-plane. With respect to this metric, the manifold Sθ has constant negative
curvature, K = — 1, and it is usually referred to as a hyperbolic manifold.
From the classical uniformization theorem (see [2]), a necessary and sufficient
condition for a Riemann surface to be hyperbolic is that it have negative Euler
characteristic, χ(S) < 0, or in other words its genus be bigger than 1, g > 1.
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An element θ in the deformation space Defo(π,PSL2((R)) contains more
information than the Riemann surface Sθ itself. To see this, we choose a fixed
embedding of IT into PSL2(IR), /: π -> PSL2(R), and let S = St be the corre-
sponding surface. By a topological theorem of Nielson, there is a homeomor-
phism F: @x -> (Sx which induces the action of θ, θ(y) = F°i(y)° F~ι.
Passing to the quotient spaces S and Ŝ , we obtain a topological homeomor-
phism φ: S -* Sθ between the two Riemann surfaces. Such homeomorphisms φ
are not determined by the class [θ] in Defo(π, PSL2(R)). First of all φ can be
changed by isotopy, and second of all, there are trivial deformations men-
tioned before. Taking both of these into account, we consider the space of all
triples (φ, S, S'), where S' is a Riemann surface and φ: S -> S' is a homeomor-
phism, not necessarily preserving the complex structures. Two such triples,
(φ, S, S') and (φ", 5, S"), are said to be equivalent if and only if there exists a
complex homeomorphism h such that

is commutative up to homotopy. It is not difficult to verify that these
equivalence classes of triples [φ, 5, 5"] can be identified with the reduced
deformation space Defo(π, PSL2(R)) (see [8]). It is interesting to point out that
the above formulation can be compared with the action of "the set of
homotopy triangulations", or " the set of homotopy smoothings" developed in
surgery theory of manifolds.

(2.3) Long before the modern theory of Weil and others, this last space was
studied by Teichmϋller, and so it is more appropriate to denote
Defo(τ7,PSL2(R)) by T(S) and call this the Teichmϊiller space. Let T(S)
denote the mapping class group. By that we mean the orientation preserving
automorphism group of π9 Aut+(π), modulo the subgroup Inn(π) of inner
automorphisms, i.e., Γ(5) = Aut+(π)/Inn(π). Every element g in T(S) de-
termines, up to isotopy, a unique class of topological orientation-preserving
homeomorphisms of S, i.e.

T(S) = (g: S -> 5, orientation-preserving homeomorphism}/isotopy.

There is an action on the Teichmϋller space T(S) defined by sending a triple
[φ, S, S'] to the triple [φ ° g, S, S']. In terms of the deformation space
Defo(ττ, PSL2(R)), this means changing an injection θ: m -> PSL2(R) to another
injection θ ° g by composing with the isomorphism g. It is not difficult to verify
that this action on the Teichmϋller space T(S) is discontinuous (see [1, p. 80]).
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The quotient space under this action is called the Riemann space, R(S) =
T(S)/T(S). In terms of equivalence classes [φ, S, S'] in T(S)9 this means to
forget about the homeomorphism φ, and so elements in R(S) coincide with the
isomorphism classes of Riemann surfaces [S"] with the same genus as S.
Riemann stated without proof that this space R(S) may be holomorphically
parametrized by 3g - 3 complex parameters. To establish this was clearly the
motivation behind the work of Fricke and Teichmϋller.

(2.4) In the early 60's, W. L. Baily proved that R(S) has the structure of a
quasiprojective variety. In other words, it can be compactified into a projective
variety with R(S) as a Zariski open set. The starting point of Baily was the
study of the Siegel modular space @g/SPg(Z) of degree g, and its compactifi-
cation known as the Satake compactification @*/SPg(Z) (see [7] for additional
information). Since Riemann's time, the space R(S) has been studied by
means of a period mapping /: R(S) -» @g/SPg(Z) which assigns a Riemann
surface to a matrix (Riemann matrix) of period integrals. Baily not only proved
that the Satake space is a projective variety, but that the Riemann space R(S),
embedded by /, can be compactified accordingly.

In the middle 60's, algebraic geometers began to formulate the modern
definition of the word "moduli". Both the Siegel space @g/SPg(Z) and the
Riemann space served as wonderful examples. As it turns out, the latter space
coincides with the coarse moduli space Mg of algebraic curves of genus g over
the complex field, R(S) = Afg(C), g = genus of S. In [12], Mumford and
Deligne showed that Mg has a natural compactification as the course moduli
space M* of stable curves (see below). This compactification was quite differ-
ent from that of Baily, and this was one of the topics in Mumford's address at
the 1970 International Congress of Mathematicians.

(2.5) In the decade of the 70's, many papers appeared interpreting Mumford's
compactification in the framework of the Teichmuller theory. This approach
began with the work of L. Bers (see [4], [5]), and continued in a series of papers
by B. Maskit and W. Abikoff (see [13], [1], [2]). There are also contributions by
W. J. Harvey, A. Marden, and many others (see [8], [9], [12]).

The central idea of this approach relies on the concept of Riemann surfaces
with nodes. By that we mean a compact, connected, complex analytic space So

such that every point P in SO has a local neighborhood isomorphic either to the
disk \zλ\ < 1 in C or to the cone zxz2 = 1, \zλ\ < 1, \z2\ < 1 in C 2. The first
represents the generic points in SO which are locally euclidean, and the second
represents isolated singularities in So which can be obtained topologically by
collapsing a meridian circle in a cylinder to a point. The latter set of points are
called the nodes of the surface, and since SO is compact, there are only a finite
number of nodes Pl9 9Pk.
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The complement So — {Pv- - -,Pk} forms a nonsingular surface, and the
components Σ l 9 , Σr are called parts. A surface with nodes is called stable (or
hyperbolic) if every part Σi has the upper half-plane @x as its universal
covering space. The last condition excludes the situation where a part of So is
the 2-sphere Pι(C) with 0, 1, or 2 punctures, or where it is a torus with 0 or 1
puncture. Let g, be the genus of the Riemann surface Σi9 1 < / < r. Then the
genus g of the stable surface SO with nodes is defined by the formula
g = (gi — 1) + •••+(&.— 1) + A: + 1. Alternatively, each stable surface SO is
homeomorphic to the quotient space of a nonsingular surface S of genus g
after collapsing a system a of disjoint, simple, closed curves to node points,
So = S/a. Note that this system of curves has the property that no single curve
bounds a disk and no two curves bound a cylinder. This is referred to as an
admissible system of curves in S.

(2.6) From now on, we fix a nonsingular surface S of genus g. We define the
augmented Riemann space R(S) as the set of all isomorphism classes of stable
Riemann surfaces with nodes [So] whose genus is the same as S. From the
viewpoint of function spaces, L. Bers introduced in [4] a topology on this space
R(S) which extends the topology on the subspace R(S) and makes R(S) a
complex analytic space.

For each stable surface So, we define R(S0) to be the subspace in R(S)
consisting of all stable surfaces homeomorphic to So. This is referred to as the
Riemann space R(S0) associated to So. Clearly R(S0) = R(SQ) if and only if So

and SQ are homeomorphic, and we can write R(S) as the disjoint union
R(S) = USo R(S0), where So runs through all representatives of distinct homo-
morphism types of stable surfaces of genus g.

With respect to Bers' topology, our original Riemann space R(S) is con-
tained in R(S) as an open dense set. Its boundary R(S) — R(S) consists of all
Riemann spaces Us R(S0\ where So Φ S, and S can be deformed onto So. In
the same manner, the closure R(S0) of R(S0) can be regarded as the augmented
Riemann space of So, for the boundary R(S0) — R(S0) is again the union of all
Riemann spaces USQR(SQ), where So Φ So and So can be deformed onto SQ.

From the viewpoint of algebraic geometry, the augmented Riemann space
R(S) is a projective variety of dimension 3g — 3, and each of the closures
R(S0) is a sub variety of codimension /, where / is the number of nodes in So

(see [4]). By an abuse of notation, we will also write R(S0) as R(S/a), where a
is an admissible system of curves in S with So - S/a. Then there is a filtration
of subvarieties

R(S) D U R(S/a) 3 LJ MS/a) D D U
| o | - l |α| = 2 |α|-3g-3
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where \a\ denotes the number of curves in a. This filtration makes R(S) a
stratified space in the sense of R. Thorn and J. Mather (see [21] and [15]).

(2.7) To describe the topology on R(S) we can proceed as follows.
Let Sτ and S2 be two Riemann surfaces with nodes and with the same genus

g. A deformation [F9 Sv S2] of 5X onto S2 is a continuous map F\ Sλ -> S2 such
that

(2.7.1) F is onto,
(2.7.2) F~1(node) is either a node or a Jordan curve in Sl9

(2.7.3) if Σ is the disjoint union of all the parts in S29 then the restriction of
F onto the subspace F~ι(Σ) is an orientation-preserving homeomorphism onto
Σ.

Two deformations F: S[ -> S2 and G: S" -> S2 are said to be equivalent to
each other if there exists a complex homeomorphism h: S{ -> S" such that the
following diagram is commutative up to homotopy:

Given a stable Riemann surface SO with nodes and with genus g, the set of all
equivalence classes of deformations [F9 S", So] onto So is called the deforma-
tion space of Sθ9 and is denoted by D(S0).

There is a canonical mapping TΓ: D(SO) -> R(S) of the deformation space
onto the Riemann space defined by taking a deformation [F9 S\ So] onto the
domain S'. Within a fixed genus g, there are only finitely many nonhomeomor-
phic stable Riemann surfaces Sv- —,Sd with nodes. For each type of surface
Sl9- ",Sd9 the above construction gives us a deformation space D(Si) and a
projection π: D(Si) -> R(S), 1 < i < d, into R(S). It is easy to see that the
union of all the images π(D(Si)) contains every point in the augmented
Riemann space R(S).

A partition of a Riemann surface So with k nodes is a set of 3g — 3 — k
disjoint geodesic Jordan curves on So, such that the curves and nodes separate
the surface So into disjoint regions each of which is topologically homeomor-
phic to a punctured 2-sphere PX(C) with three holes. The Jordan curves and
nodes are called the boundary elements of the partition, and the disjoint
regions are called pants. An ordered partition is one with an ordering of pants
together with an ordering on the three boundary elements of each region.
Associated to an ordered partition, there are 3g — 3 complex numbers
?i, >?3 -3? known as the Fenchel-Nielsen coordinates, where the norm \ζt\ is
the length of the i th boundary element and, for ζ. Φ 0, the angle Arg ζi is the
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twist parameter θi determined by the position of the endpoints of certain

geodesic arcs joining and orthogonal to distinct boundary elements.

Let St be a terminal Riemann surface. By that we mean that it has 3g — 3

nodes, or equivalently it is partitioned by nodes. We fix an order for this

partition. For any deformation F: S -+ Sn there is an induced partition on S

obtained by deforming every Jordan curve iΓ~1(node) into a geodesic, and by

ordering the pants in S according to the ordering in St. The Fenchel-Neilson

coordinates of S now give rise to a map D(St) -> C 3 g ~ 3 of the deformation

space D(St) into the complex affine space of dimension 3g — g. We call this

the Fenchel-Nielson map. It follows from the well-known results of Fenchel-

Nielson (see [1]) that the above mapping is a bijection, and so we can introduce

a complex analytic structure on D(St) by means of this mapping. If we write

R(S) as a union R(S) = π(D(St)) U U π(D(Sίk)) (see also (2.6)), where

St runs through a set of topologically distinct terminal surfaces Sr, then the

topology on R(S) coincides with the weak topology induced by the deforma-

tion spaces D(St), 1 ^ i < k.

(2.8) For the other deformation spaces D(S0), we choose a deformation h:

So -> St of So onto a terminal surface Sr As mentioned before, this gives a

partition on So with a preferred ordering. For any deformation (F9 S", So) this

ordered partition again gives rise to 3g — 3 Fenchel-Nielson coordinates

?i>' »?3g-3 o f s'> a n d s o a n induced map λ*: D(S0) -> D(St) = C 3 g " 3 .

However, this is neither injective nor surjective. To every node P in Sn there is

a distinguishedsubspace (P) in D(St) consisting of all deformations F: 5" -> St

such that F~1(P) is a node in S'. Under the identification in (2.7.1) this

distinguished set (P) is mapped onto a coordinate hyperplane ff = 0, for

some /.

Let {P1, -jP/} be the set of nodes in St whose preimage F~1(Pi) in So is a

geodesic curve. Then the image h*(D(S0)) of the above mapping h* in D(St)

coincides with the complement of the union of distinguished sets ( Pλ) U U

( P , ) , i.e. h*(D(S0)) = D(St)- (Pλ) u ••• U (Pi). Since each (P,) is a

hypeφlane, we have an isomoφhism of h*(D(S0)) with the product space

(S1)1 X Uι X C 3 g ~ 3 ~ / . It turns out that there is in fact a canonical isomor-

phism of D(S0) with the universal covering space C 3 g " 3 of (S1)1 X Uι X

C 3 g ~ 3 ~ 7 , and the map Λ* is the covering map. One way to achieve this

isomoφhism is to redefine each of the angle parameters θt = Arg(f7) in the

Fenchel-Neilson coordinates so that it is measured by a geodesic distance in

the universal covering space of the open surface So — {nodes} (see [2, p. 93]).

(2.8.1) The deformation space D(S0) of a Riemann surface with nodes is

isomorphic to the complex affine space C 3 g ~ 3 under an isomorphism which takes

every distinguished subset ( P ) to a coordinate hyperplane.
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A deformation h: Sλ -» S2 between two surfaces Sl9 S2 (not necessarily
terminal) gives rise to a holomorphic mapping Λ*: D^J -> D(S2) defined by
sending an element F: S" -» Sλ in D(S1) to an element Λ<>F: 5" -> S2 in
D(S2). It has the following properties.

(2.8.2) If h is a homeomorphic deformation, then the induced map h*\

D(Si) "* D(Si) ίιS α M isomorphism.
(2.8.3) IfS2has Imore nodes than Sl9 then the inducedmap h*\ D{S^ -> D(S2)

is a universal covering of D(Sλ) onto h4t(D(S1)), where hiti(D(Sι)) is the
complement of I distinguished subsets (/*,-), 1 < i < /, with h~ι(Pi) geodesic
curves in Sv

(2.9) For a nonsingular surface S, the deformation space D(S) can be
identified with the Teichmϋller space Γ(S), and the mapping class group Γ(S)
operates on D(S) with the Riemann space R(S) as its orbit space.

The situation for other deformation spaces is more complicated. Given a
Riemann surface 50 with nodes, define the mapping class group T(S0) to be
the group of isotopy classes of homeomorphisms /: So -> So of SO into itself.
Note that every homeomorphism must keep the set of node points invariant
but not necessarily pointwise fixed. Let h: S -> So be a deformation of a
nonsingular surface S onto So. Pulling back the node points P, in SO to geodesic
curves h~ι(Pi) in S, we obtain an admissible system a of curves in S. Let
T(S, a) be the subgroup of the mapping class group T(S) consisting of
homeomorphisms /α: S -» S which preserve the set a up to isotopy. Given a
self-homeomorphism /: So -> So in Γ(S), we can always lift this to a self-
homeomorphism/α: S -> S in Γ(S0, α) such that the diagram

s

is commutative up to isotopy. This is because we can always lift homeomor-
phisms locally in a conical neighborhood U of a node point Pi to homeomor-
phisms in a cylindrical neighborhood f~ι(U) of the corresponding curve
/~1(P I), and outside these neighborhoods h is a homeomorphism h: So — a =
S — {Pi}- However, such a lifting is not unique. They can differ by Dehn
twists along the geodesic curves in a. In other words, we have a group
extension

(2.9.1) ! - » # - > Γ(S, a) ^ Γ(S0) -> 1,
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where N is the free abelian group generated by the above Dehn's twists. We

can view this group extension in terms of the induced mapping h*: D(S) ->

D(S0) between the deformation spaces. There are natural actions of the

mapping class groups T(S, a) and T(S0) on these spaces, and h* is equivariant

with respect to these actions. As in (2.8.3), the projection Λ *: D(S) -> h*(D(S))

of D(S) onto its image h*(D(S)) is a universal covering map with N as its

covering transformation group. The projection map π: h*(D(S)) = D(S0)

- ( i \ ) U U (Pf) -> R(S) from the complement of the distinguished

hyperplanes (Pέ) to the Riemann space R(S) is a ramified covering map. This

is because the projection π: T(S) -> R(S) of the Teichmuller space D(S) =

T(S) to the Riemann space R(S) is a ramified covering map. If we factor a

ramified covering map π by the covering map h,

(2.9.2) π I S,h*(D(S)) = D(S)/N c

the result π: h*(D(S)) -> # ( £ ) is again a ramified covering map. Note that

the group Γ(50) = Γ(S, a)/N operates on h*(D(S)) but R(S) is not its orbit

space. However, consider the intersection of all the distinguished hyperplanes

Γ\ι

i=ι (Pj) in D(S0). Then this can be regarded as the Teichmuller space of So.

For, this space consists of all deformations /: S' -> So which are homeomor-

phisms and the group Γ(50) operates on this space with the Riemann space

R(S0) as its quotient space. In fact, a stronger version of this observation is

known (see [5, p. 53]).

(2.9.3) For every element x in D(S0), there exists a neighborhood U stable

under the isotropy subgroup Ix of x in Γ(50), such that two elements xv x2 in U

map onto the same element in R(S), TΓ(Λ:1) = π(x2), if and only if xλ = x2 * γ

for some y in Ix.

An immediate consequence of this is the following.

Lemma (2.9.4). There exists a T(S0)-equivariant, open, neighborhood W of

Π = 1 (P^ in D(S0) such that its orbit space W/T(S0) under the action ofT(S0)

is isomorphic to its projection W in R(S) which in turn is an open neighborhood

o/R(S0).

Proof of (2.9.4). Consider the closure R(S0) of R(S0) in R(S). From the

above discussion, it is clear that it is compact and consists of a disjoint union

of lower dimensional Riemann spaces R(S0/a\ R(S0) = LJ R(S0/a). Each of

these Riemann spaces R(S0/a) arises from a stable surface S0/a which is

homeomorphic to the quotient of So after collapsing a system of admissible

curves a in So to node points, ha: So -> S0/a, h~λ (nodes) = a U nodes of So.
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Note that S0/a contains more node points than So. We proceed by induction
based on the decreasing number of node points. In the case where So is
terminal, (Ί3£Γ3 (P, ) is a point, so we are reduced to the situation of (2.9.3). As
an induction hypothesis, we may assume that there exists a neighborhood Ua of
R(S0/a) in R(S) which can be lifted to a corresponding (5Ό/α)-equivariant
neighborhood Ua in D(SQ/a). As in the previous paragraph, the natural map
ha*: D(S0) -> D(S0/a) is a covering map of D(S0) onto its image, and so the
set UaΠ R(S0), open in R(S0), can be further lifted to a Γ(5Ό)-equivariant
open set Ua in D(S0), π(Ua Π (Π <i>») = Ua Π R(S0).

From (2.9.3), given any point x in R(S0), there exists a neighborhood Ux in
R(S) which can be lifted to an (5Ό)-equivariant neighborhood Ux in D(S0)
covering a Γ(SΌ)-orbit x T(S0) in (Ί (P f ). Since Λ(SΌ) is compact, it can be
covered by a finite number of these neighborhoods Ux , / = 1, ,&, and Ua.,
y = 1, •,£'. Set JP = ί/̂  U U ^ U Uai U ύ £^,. Then PΓ = ττ(#)
satisfies all the requirements and so this proves (2.9.4).

(2.10) In conclusion, it is worthwhile to point out that the above procedure
of compactifying the Riemann space R(S) is analogous to the toroidal
compactification of locally symmetric spaces due to D. Mumford and others
(see [3]). First of all, the Teichmϋller space T(S) plays the role of the
symmetric space K\G. The subgroup T(S; a) plays the role of an integral
parabolic subgroup in T(S). It has a decomposition in (2.9.1) which is
analogous to the Levi-decomposition with N as its unipotent radical and
T(S/a) as its semi-simple component. The quotient space T(S)/N has a torus
structure given by the formula T(S)/N = (C*)' X C3 g~3~7. Using this, we can
follow the procedure of torodial compactification to arrive at the deformation
space D(S/a) (see [2, p. 29] and [3]).

3. Simplicial G-spaces associated to G-functors

(3.1) Let I b e a simplicial complex, and let G be a group operating on X
simplicially. For every simplex σ in X, we denote by Gσ the isotropy subgroup
in G which keeps σ invariant, G σ = { g e G | σ g = σ}. By taking the first
derived subdivision, we may assume that the correspondence σ -> Gσ satisfies
the following properties:

(3.1.1) Functorial If σ is a face of σ', then GQ, is a subgroup of Gσ,
σ c σ' =* Gσ, c Gσ.

(3.1.2) Equiυariant. For an element g in G, there is a canonical isomorphism
of Gσ onto Gσg defined by conjugation, Gσ -> Gσg, x -> g~ιxg. In other
words, if we consider the category SimG X whose objects are simplices σ in X
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and whose morphisms Moτ(σv σ2) are elements g <Ξ G such that σλ g D σ2,
then there is a functor

G: Sim G *-> ^ /

into the category of groups which takes an object σ to Gσ = Mor(σ, σ) and a
morphism σx g I) σ2 to the composite homomorphism

Now suppose we have a functor

E: SimG X -» Top, σ -> £ σ

from SimG X into the category of topological spaces (with the homotopy type
of a CW-complex). Then we associate to E a simplicial space E*,

E*= U Eσ, Έ(di) = UE(σ?diσ):Έk^Έk_1,
/c-simplices

σczX

and a topological space |E|,

|E|= U \σ\xEa/~,
simplices

σ<zX

obtained by taking the disjoint union LJ|σ| X Eσ and glueing the components
|σ| X Eσ together according to the relation (3,0c, y) - (x, E(3Z)y). The space |E|
will be referred to as the geometric realization of the functor E. There is a
natural G-action on this space given by the formula

(x, y)'g=(x'g, E(g)(y))9 (*, y) e |σ| x Eσ,

where E(g): Eσ -> Eσ.g is the map corresponding to g e Mor(σ, σ g).
Here are some examples.
Example (3.1.3). The simplest example is the situation when Eσ is a point

for all σ. For this trivial functor, the geometric realization is isomorphic as a
G-space to the original simplicial complex X. Given any other functor E:
SimGΛr -* Top, there is a natural transformation of E to this trivial functor
which induces a simplicial, equivariant map π: |E| -» X.

Example (3.1.4). The other extreme is the situation for which Eσ is a
universal Gσ-space. By that we mean Eσ is contractible, and the Gσ-action is
free. An example of such a functor is obtained by considering a universal
G-space EG. Restricting to the subgroup Gσ, we have a universal Gσ-space.
Take E: SimG X -> Top to be the functor which sends each σ to EG and sends
(σx g D σ2) to the action of g, g: 2sG -* £G . In this case, |E| = X X EG, where
the G-action is the diagonal action.
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Example (3.1.5). Recall in (2.7) we gave the definition of a partition of a
nonsingular Riemann surface S. Now, such a partition consists of a system of
(disjoint) Jordan curves a = {γλ} such that no single curve γ λ bounds a disk
nor any two curves γλ, y{ bound a cylinder. As in (2.5), we call such a system
of curves an admissible system of curves. Two such systems a = { γ λ }, α' = { yμ }
are said to be equivalent if there exists a homeomorphism f:S-+S which is
isotopic to the identity and brings a to a'. The collection of all the equivalence
classes of admissible systems of curves forms a partially ordered set under
inclusion. Define the Tit's building ^(S) of S to be this partially ordered set,
and use the notation \^(S)\ to denote the associated simplicial complex.

In practice, it will be convenient to consider the empty set also as an
admissible system of curves. This will enlarge ^(S) by including a minimal
element, and we will denote the resulting partially ordered set by &"(S)+ and
the corresponding simplicial complex by \^(S)+\.

Geometrically, a vertex in \^(S)+\ is an element in ^(S)+, and so it is
represented by a system a of admissible curves. A λ>simplex consists of a
filtration of k + 1 such systems σ = {α0 c c <χk}, and the boundary
operation θ̂ σ, 0 < i < k, is defined by deleting the /th-system ai9 9,a = {α0 c
••• c ά , . c . . . c α Λ } .

The mapping class group T(S) operates on^(S) + in a natural manner. The
correspondence σ -> Γσ of a simplex σ = (α0 c ax c c ak) with its isot-
ropy subgroup Γσ clearly satisfies (3.1.1) and (3.1.2), and so defines a functor
Γ: S i m Γ | ^ ( 5 ) + | - «?/.

(3.2) More generally, we will be interested in functors E: SimG X -> Top
such that Eσ is a universal space for some quotient of Gσ. For this we consider
functors

G:

together with a natural transformation η: G -> G which is a surjection for each
σ, ησ: G -» Gσ. We call such a pair (G, η) a reduced group functor for G. A
universal (G, η) functor is a functor

E: Sim G *-> Top

such that for all σ, the action of Gσ on Eσ factors through Gσ (via τjσ) and Eσ is
a universal space for Gσ, that is, Eσ is contractible and the action of Gσ is free.
(In most cases, Gσ will be a natural quotient of Gσ and ησ will be the natural
projection map. When this is clear, we omit η from the notation.)

Example (3.2.1). We define a reduced group functor (f\ η) for the functor
Γ of Example (3.1.5). Given a simplex σ = (α 0 c aλ c c ak), we have a
stable surface S/a0 and a filtration of nodes ao/ao and curves at/a0 - ao/ao
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upon this surface, denoted by σ/α0. Let f(σ) = T(S/a0, σ/α0) be the map-
ping class group of homeomorphisms of S/a0 preserving this filtration σ/a0.
For σ' = 3,σ = (α 0 c c ά c c ak), 1 < i < k, there is a natural
inclusion ί\3z): Γ(S/a0, σ/α0) -» T(S/a0, σ'/a0) of the corresponding map-
ping class groups. For σ' = 90(σ) = (aλ c c ak), there is a deformation
S/αo -> S/αx obtained by collapsing the curves oίλ/a0 — ao/ao to node
points. Since this preserves the filtrations σ/α0 and σ'/α1? any element in
Γ(Syα0, σ/α0) gives rise to a corresponding element in T(S/av of/ax) and so
a map

(3.2.2) t(30): Γ(S/α 0, σ/α0) -> Γ ( S / α i , σ ' / α j .

These satisfy the simplicial identities and hence their composition gives rise to
well-defined homomorphisms f\3) for any inclusion of simplicies σx I) σ2. In
addition, for a group element g 6 Γ(S), the homeomorphism g: Ŝ/αo ->
S'/ΛQ g induces a homomorphism f(g): Γ(5'/α0, σ/α0) -> T(S/a0 g, σ
^/ α o * ̂ ) which commutes with the boundary maps. Thus we have a functor t:
SimΓ |5Γ(5 f)+ | -> ^ / defined by σ ^ T(S/a0, σ/α0), (σx g D σ2) -^

Following a similar procedure we define a natural transformation from Γ to
f\ For any simplex σ = (α0 c aλ c c ak), we let σ + = (0 c α0 c c
ak) be the simplex in | y ( 5 ) + | obtained by adding the empty set as the first
system of curves. Since Γσ is the same as T(S/0,σ+/0) and σ = 3oσ

+, the
homomorphism ί\90) of (3.2.2) gives us a map

This defines a natural transformation η: Γ -> t and completes our example.
Proposition (3.2.3). Let (G, η) and (Gr, η') 6^ reduced group functors for G,

and let E, E' 6e universal (G, η), (Gr, η') functors respectively. Ifφ: G -> Gr ΪS a
natural transformation such that ψ ° η = η', then 3 an equiυariant map of
G-spaces

H9:\E\-\E'\.

Moreover, if Φ: E -+ E' is any natural transformation, and |Φ|: |E| -* |E'| w the
induced map of G-spaces, then there is an equivariant homotopy Hφ - |Φ|
between Hφ and |Φ|.

Remark (3.2.4). As will be seen in the proof, the map Hψ is "almost"
simplicial in the sense that E can be replaced by a functor ED such that lE Î is
naturally homeomorphic to |E| and Hφ: \ED\ -> |E'| is the geometric realization
of a natural transformation ED -> E'. Moreover, the homeomoφhism lE Î =
|E|, though not itself simplicial, is homotopic to a simplicial map.
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Proof of (3.2.3). Let X1 denote the first derived subdivision of X. For a

simplex σ in X, let D(σ) denote the dual complex of σ, namely the subcomplex

of X1 consisting of simplicies (σ0 c σλ c c σ^) with σ c σ0,

g

If σ g D σ', then the action of g gives a map D(σ) -> Z)(σ g) c Z>(σ'), so
these define a functor D: SimGX->Top. The associated G-space |D| is

homeomoφhic to the original space Jf(cf. [7, Proposition 1.4]).

We can carry out this "dual triangulation" for a functor E: SimG X -> Top.

Let π: |E| -> Xbe the natural projection defined in (3.1.3). Define the functor

E^: Sim^A"-* Top by sending an object σ to 77-~1|Z)(σ)| and a morphism

(σ g 3 σ') to

Then there exists an equivariant homeomorphism

(3.2.5) d: \ΈD\ - |E|

which covers the homeomoφhism |D| = X mentioned above.

To prove (3.2.3), we construct a natural transformation E^ -» Er. First, for

every simplex σ in X, there exists a Gσ-equivariant homotopy equivalence hσ:

Eσ-
J> E'o. This follows from equivariant obstruction theory since E'σ is contract-

ible and the Gσ-actions on both spaces factor through Gσ which acts freely on

Eσ (see [6]). Secondly, for σ' c σ, we consider the space MapG(Eσ, E^) of

Gσ-equivariant mappings from Eσ to Ef

a,. These mapping spaces have the

following properties:

(3.2.6) If σ0 c σx c σ2 c σ3, then the induced maps £ ^ -> ^ o , £ σ 3 -> £'σ2

give rise to

(3.2.7) The space MapG ( £ σ , E'σ,) is contractible.

This last property follows once again from the equivariant obstruction

theory mentioned above.

To construct the required natural transformation, we proceed by defining a

map

for each γ = (σ0 c c o j in X1 such that (3.2.8) and (3.2.9) hold.
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(3.2.8) If 8 = (σ,o c • c σtj) c γ, then

incl.

commutes, where the right vertical map is given in (3.2.6).
(3.2.9) If γ g = (σ0 g c c σk g), then the following diagram com-

mutes:

This is achieved by induction on dim γ. In dimension 0, we choose one vertex
σ0 for each G-orbit and define fy = hσQ. Then we extend this to all other
vertices σ0 g in the same orbit by means of the equivariant condition in
(3.2.9). Assume we have defined f8 for all 8 of dimension less than k. We
choose among each G-orbit a representative γ = (σ0 c c σ^). Then by
(3.2.8), the maps/δ, 8 c γ , fit together to get a map

Since the space MapG (Eσ , E'a ) is contractible, this extends to a map/γ on all
of Δ*. By the definition of /JΘΔ*, this is compatible with the previously defined
fδ. For every other λ>simplex γ g in the same orbit, we define fymg by means of
the diagram (3.2.9).

We now define

f>o (ED)a= U
γ =

by taking the composition

= (σo σk)
σcσ o

A £'(3)
F'

From (3.2.8) and (3.2.9), it is not difficult to show that these maps commute
with the boundary operations and also preserve the G-actions. Thus they
define a natural transformation h: E^ -> E'. On the level of simplicial spaces,
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this gives rise to a map

which is equivariant with respect to the G-action.
To prove the second statement of the theorem, we make the following

observation. The homeomorphism d: ^D\ = |E| is not simplicial, that is, it does
not arise as a natural transformation from ED to E. On the other hand, there is
a natural transformation r: ED -> E such that |r| is homotopic to d. To see this,
we note that the deformation retraction of |Z>(σ)| onto the barycenter bσ of σ
{bσ corresponds to the vertex (σ) in D(σ)) is covered by a deformation
retraction rσ of (ED)σ = π-\\D(σ)\) onto Eσ = π~ι(bβ)9

It is not difficult to check that these form a natural transformation r: ED -> E
whose geometric realization |r|: lE Î -> |E| is homotopic to d.

Suppose now that φ: E -> E' is a natural transformation. Then φ induces a
natural transformation φD: ED -» E'D in the obvious way such that the diagram

commutes. Since Hψ = |h|<> d~x

9 it suffices to show that h and r'<> φD induce
homotopic maps. The proof of this consists of constructing a natural transfor-
mation μ: ED X / -> E' which restricts to h and τ'°ΦD at ED X 0 and E ^ X l
respectively. The construction is done inductively and the arguments are
essentially the same as those used above in defining h. We leave the details to
the reader.

(3.3) In practice, there is a technical difficulty in applying the theory in (3.2).
It arises when the group Gσ operates on Eσ "almost" freely.

Suppose Γ c G is a subgroup. Then the action of G on X restricts to an
action of Γ on X and SimΓ X c Sim^ X. Let (G, η) be a reduced group functor
for G. Set
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If oλ g z> σ2 is a morphism in SinipX, then the corresponding moφhism
Gσ -> Gσ takes Γσ into fσ , hence we obtain a functor

t: S i m Γ X ^ ^/.

Moreover, the natural transformation η: G -> G restricts to a natural transfor-
mation

ητ: Γ -> Γ, ητ

σ: Γσ = Γ n Gσ -> fσ

so (ί\ τjΓ) is a reduced group functor for Γ. Note that if Γ is a normal subgroup
of g, then the definition of t makes sense on all of SimG X so we can (by abuse
of notation) consider t to be a functor

Now suppose E: SimG X -> Top is a universal (G, τj)-functor. Then clearly it
is also a universal (ί\ ηΓ)-functor. The converse, however, is not true. We say
that E is an almost universal (G, η)-functor if there exists a normal subgroup
Γ c G o f finite index such that E is a universal (ί\ τjΓ)-functor.

Proposition (3.3.1). // E: Sim G Λ r ^ Top is an almost universal (G, η)-
functor such that each Eσ is a CW-complex, then 3 a universal (G, η)-functor E u n

and a natural transformation μ: E u n -» E such that the induced map on quotient

spaces

is a rational homology equivalence.

Proof. Let Γ c G be a normal subgroup of finite index such that E is a
universal (ί\ Ί7Γ)-functor. Then we have a "quotient group" functor

G/ΐ: SimG X -> % σ -> Gσ/fσ.

Composing this with the universal space functor SPyfc -> Top which takes a
group G to a universal G-space, we obtain a functor

Y: SimGΛr-^Top

which takes σ to a univesal Gσ/ίσ-space Yσ. The product of this with E,

E X Y: SimGX-* Top, σ ^ Eσ X 7σ,

is easily seen to be a universal (G, τj)-functor. We set E u n = E X Y. Next,
consider the natural transformation μ: Eun -> E defined by projecting Eσ X Yσ

onto the first factor Eσ. This gives rise to a map of orbit spaces μ = |μ|/G,

jα: |E u 1/CΪ- |E |/G,

whose fiber ju~1(x) over a point JC in the image of |σ| X Eσ in |E|/G is
μ~λ(x) = Yσ/Gσ. This last space is, by construction, a classifying space
B(Gσ/tσ) for the finite group Gσ/ίσ. In particular, the rational cohomology
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H*( Q) of every fiber is 0 for * > 0. It now follows from the Vietoris
mapping theorem (see e.g. [19, Theorem 2.20]), that the restriction of μ over
any compact subset A c |E|/G, μ: μ~ι(A) -> A, induces isomorphisms on
H*( Q) and hence also on if*( Q). But

H*(\Έ\/G;Q)=J]imH*(A;Q)9

A

#*(|E| X |Y|/G; Q) = Hm H^μ'ι(A))9

A

where the limits are taken over all compact subsets A c |E|/G. This proves the
theorem.

4. Stratified polyhedra

(4.1) For the sake of completeness, we collect in this section some of the
well-known facts concerning the homology of stratified polyhedra.

Let X be a finite, simplicial complex of dimension n. A stratification on X is
a filtration of closed subcomplexes I = I π D l n _ 1 D D XQ such that:

(4.1.1) The subspace X1 = Xt — X^i, called the i-dimensional stratum, is
either empty or of dimension /.

(4.1.2) If the intersection Xj Π Xi Φ 0, then / <y and Xj Π Xi consists of
connected components of X\

In particular, X is the disjoint union of its strata, X = Ui<n X\ and the
boundary (frontier) of each stratum X* is the union of the lower strata,
dX^Uj^XJ.

Note that if, in addition to (4.1.1), we require X* to be an /-dimensional
manifold, then we arrive at the notion of stratified spaces as developed by J.
Mather, R. Thorn and others (see [15], [21]).

Let Y be a subcomplex in X. Recall the definition of a regular neighborhood
N(Y) of Y in piecewise linear topology (see [11], [18]). First, form the second
derived subdivision X" of X. Then the regular neighborhood N(Y) is given by
the simplicial neighborhood N(T\ X") of Y" in X", i.e.,

*= \Jf { Δ |Δ a closed simplex in X",
(4.1.3)

Δ intersects Y" in a nonempty face}

1The notation N(Y, X) stands for closed simplicial neighborhood, N(Y) for closed regular
neighborhood, N(Y) for open regular neighborhood, and N(Y, X) for open simplicial neighbor-
hood.
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Abstractly, this is the smallest simplicial subcomplex in X" which contains Y"
as a topological neighborhood. Note that in the common usage of the term
regular neighborhood, it is not unique but depends on a triangulation of X. In
our setting, this triangulation is fixed and so there is only one choice for the
regular neighborhood.

For each /, let N(Xt) denote the regular neighborhood of Xr The reason for
taking the second derived is that a simplex Δ, in the first derived neighborhood
N(X;, X') (see [8]), can be written as a join Δ 1 *Δ 2 , of two simplexes
Δx = Δ Π X\, Δ2 outside of X-, Δ2 Φ 0. From the structure of the join
Δx * Δ2, there exists a canonical deformation retract of N(Δ[, Δ') onto Δ' (see
[10], [11]).

These deformations can be pieced together to get a deformation retract P.:
N(Xt) - Xt of the entire regular neighborhood N(Xt) = U±N(X;' Π Δ', Δ')
onto Xt = UXj Π Δ. This is referred to as the deformation retract associated to

the regular neighborhood ofN( Xt).

Following the terminology of D. Stone (see, [20, p. 5]), a subspace Y in X is
said to be a subpolyspace of X if both its closure Y and its boundary
dY = Y — Y are subpolyhedra in X. For instance, each stratum X' = Xi — Xi_1

is a subpolyspace in X. Given such a subspace 7, consider the regular
neighborhood N(Y) of its closure, the deformation retract P: N(Y) -> Y, and
the interior N(Ϋ) of N(Ϋ). If we form the inverse image P~\Y) in N(Ϋ) of
the subspace Y in X, the result N(Y) = N(Ϋ) Π P~\Y) is an open neighbor-
hood in X containing Y. This is referred to as the open regular neighborhood of
y, denoted by N(Y). From another viewpoint, the open regular neighborhood
N(Y) can be defined as the smallest, subpolyspace in X" which is an open
topological neighborhood of Y. Or it can be written as the union of open stars
Star(», X"\

N(Y)= U StBi(v,X"),

where v runs through all vertices in Y".
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Let N(X') denote the open regular neighborhood of Xi in X. From the
above definition, there is a deformation retract Pf. N(X') -> Xi of N(X') onto
X\ Throughout this paper, we consider only subspaces which are subpoly-
spaces with respect to a fixed triangulation on X. In the following, we drop the
term subpolyspace and refer to it simply as a subspace.

Suppose X is a stratified manifold in the sense that Xt is a submanifold in XJ9

and suppose the triangulation is C00. Then, as is well known, the open regular
neighborhood N(X() has a structure of a normal bundle (a vector bundle), and
the projection N(X;) -> Xt is homotopic to a locally trivial fibration (in the
sense of Steenrod) (see [18]).

More generally, without the manifold structure, we still refer to the deforma-
tion retract Xt in N(Xt) as the zero section of the open regular neighborhood.

(4.2) We index the connected components in the strata X\ 0 < i < n, by an
index set /. Then there is a partial order relation defined on the elements of /:

(4.2.1) α < β if and only if Xβ c Xa. Here Xa, Xβ are the connected
components corresponding to a and β respectively.

Since N(X') has the same homotopy type as X\ it breaks down into a
disjoint union of connected components in one-to-one correspondence with
components in X1. Therefore, if we consider the connected components of
N(Xι), 0 < i < n, we obtain an open covering N(Xa) of Xindexed by /.

Proposition (4.2.2). Let \I\ be the simplicial complex associated to the
partially ordered set (/, <) defined in (4.2.1). Then the nerve of the open covering
{N(Xa)\a e /} is isomorphic to \I\.

Proof. Two regular neighborhoods N(Xa) and N(Xβ) have nonempty
intersection if and only if either Xa is in the closure of Xβ (β < a) or Xβ is in
the closure of Xa (a < β). Hence the intersection Πα e /,N(Xa) of neighbor-
hoods over /' c / is nonempty if and only if /' can be linearly ordered. In
other words, /' spans a simplex in |/|. This proves (4.2.2).

Proposition (4.2.3). Given a simplex σ = (α 0 < ax < < ak) in |/|, de-
fine Nσ, Mσ to be the following intersection:

k

ϊ = l

Then Nσ is the open regular neighborhood of Mσ in X.

Proof. First, we reduce the proof to the case k = 1. Let Y be a subspace in
X, N(Y) its open regular neighborhood and U an open subspace of X with
UΠ Y Φ 0 . It follows from the definition that the intersection N(Y) Π U is
the smallest, open, polyspace containing Y Π U, and this is its regular neigh-
borhood. Suppose we have shown the case k = 1. Then the general case
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follows immediately by letting

N{xJnN(xaι), γ=χaonN(xJ.

The proof for the case k — 1 can be reduced to the situation when X is a

simplex. Let Δ be a simplex in the second derived subdivision X" of X, and let

A( - Z f l. Π Δ. Then the intersection N(Xa) Π Δ of the regular neighborhood

N(Xa) with Δ is the same as the open simplicial neighborhood N(Δi9 Δ),

N{Xa) Π Δ = N(Xai Π Δ, Δ) = N(Δi9 Δ).

Applying the same principle to N(Xao Π N(Xai)), we have

N(xao n N(xJ) n°Δ = tf(Δ0π A T ^ ) , Δ).
SinceΠ}= 0N(Xa), N(Xa Π Λf( A^ )) are unions of the above spaces as Δ runs

through all simplices, it is enough to verify the formula

N(Δ09 Δ) n N(Δl9 Δ) = iV(Δ0 n N(Δλ), Δ)

for the polyspaces Δo, Δλ in Δ.

Let Δ, be the closure of Δ, in Δ, Δλ c Δo. We may assume that Δx Φ 0

because otherwise N(Δl9 Δ) = Δ o Π N(Δτ) = 0 so there is nothing to prove.

For Δi Φ 0 , the simplicial neighborhood N(At, Δ) becomes the entire simplex

N(Δi9 Δ) = Δ, and so from the definition the open simplicial neighborhood

N(Δi9 Δ) is obtained from Δ by deleting faces which have nonempty intersec-

tion with Δ, — Δ. Hence Π}= 0 N(Δi9 Δ) can be obtained by deleting faces in Δ

which intersect either Δo — Δo or Δλ — Δv In the same manner, the open

neighborhood N(ΔX) Π Δ o can be obtained from Δ o by subtracting faces which

lie in (Δ o - Δ o) Π (Δx - Ax). To obtain NiNiΔJ Π Δo, Δ) we have to sub-

tract faces from Δ which intersect Δλ - N(ΔX) Π Δo. It follows from the

description for N(Δλ) Π Δ o that these faces are precisely those which intersect

(Δ o ~ Δ o) Π (Δx - Δλ). Hence,

N{N{Δλ) CΛ Δ0Λ) =
i 0

and the proof of (4.2.3) is complete.

Proposition (4.2.4). Let Pσ: Nσ -> Mσ denote the deformation retract associ-

ated to the open regular neighborhood Nσ of Mσ in (4.2.3). Then there are

commutative diagrams:

(4.2.5) For 1 < / < / : , σ = (α 0 < aλ < < ak\ 97σ = (α 0 < ά/ •

N^n n N.. — — • N^n Naι n Nak
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(4.2.6) For i = 0, σ = (α0 < < ak\ 30σ = (aλ < < ak):

incl.

where the bottom horizontal map in (4.2.6) is obtained by the restriction Pa :

Xao

 n Kλ -> XOL t 0 t h e subspace Xao Γ)Nai'- NΆk (see Figure (4.2.10)).

Proof (Sketch). Let Y be a subspace in X, iV(y) its open regular neighbor-
hood, and U an open subspace in X. Then, as in (4.2.3), the intersection
N(Y) Π U is the open regular neighborhood of Y Π U. In addition, if P:
N(Y) -> y is the deformation retract associated to N(Y)9 then the restriction
of P to iV(7) Π ί/ is the deformation associated to Y Π U. Diagram (4.2.5)
follows by letting Y = Ma.σ, ΛΓ(y) = iV9 σ, U = Na., U Π Y = Mσ9 U Π N(Y)

The above argument allows us to reduce the proof of (4.2.6) to the special
case k = 1. To verify this case, let Δ be a simplex in the first derived
subdivision X' of X, and let Δ, = Λ^ Π Δ. Our problem can be reduced to
verifying that the diagram

JV(Δ0, Δ') Π N(Δ19 Δ')

(4.2.7)

is commutative in the special case when X — Δ and Λ^ = Δ,. Note that there is
a corresponding diagram

(4.2.8) 3 0 σ

obtained by replacing Δf by its closure Δz in Δ'. Maps in (4.2.7) are the
restriction of the corresponding mappings in (4.2.8). Hence it is enough to
prove (4.2.8) is commutative. From the definition, Δx c Δo, and they are
subsimplices in Δ'. The commutativity of (4.2.8) follows from a straightforward
argument, and we will leave the details to the reader. This completes the proof
of (4.2.4).



208 RUTH CHARNEY & RONNIE LEE

Remark (4.2.9). It is worthwhile to point out the following observation

related to (4.2.6).

First, X is a subspace of XaQ. The regular neighborhood of Xaι is Naι and its

intersection N Π X gives the regular neighborhood of Xaι in XaQ. Deleting

the zero section Xa from this regular neighborhood, we arrive at Xa Π N and

the projection Px: XaQ n Naι -> Xaγ.

In the same manner, the space Mdo<J = Xaι Π Na2 - NUk in (4.2.6) is a

subspace in the closure Xa Π Na Na . The open regular neighborhood of

M 3 σ in this closure is Xa Π Na Π Π Na , and after deleting the zero

section we arrive at Mσ = I α Π Na Π Π iVα , and the projection Pα :

M σ -> M 8 n σ in (4.2.6).

FIGURE (4.2.10). Open regular neighborhoods Nαo, Λ̂ αi of Λ^, Xaχ and their intersections.

(4.3) The correspondence

(4.3.1) σ -• Nσ9 3,. -> incl,

gives rise to a functor of the category Sim|/| of simplices in |/ | to the category

Top of topological spaces, N: Sim|/| -> Top. Since Nσ is open for every σ,

\J Nσ = X, it is well known that the geometric realization of this functor |N| has

the same homotopy type as X.

There is another functor M: Sim|/| -> Top defined by the correspondence:

(4.3.2) σ -> Ma\ θ4. -> incl. for 1 < i < k\ d0 -* Paχ for i = 0.

From (4.2.4), there is a natural transformation

(4.3.3) P: N -> M; σ ~ ( P σ : 7Vσ -> M σ ) ,

of these functors. It induces a mapping on the geometric realizations |P| :

|N| -» |M|. Since P σ : Λ̂ σ -> Mσ is a homotopy equivalence for every σ, the

geometric realizations |N| and |M| have the same homotopy type.
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Suppose we have two stratified polyhedra;

(434) * - * „ = > * . _ , = > . . • = > * , ,
V ' _ y

z, — z,π, -> ^n,_λ -> -> z,0,

and suppose we have a simplicial map g: X -* Z which preserves the stratifi-

cations g(Xi) = Z,.. Then, first of all, connected components Xα, α G /, are

mapped to connected components Za,, a! e /'. This induces an order preserv-

ing mapping of / into /', and so a simplicial map A: | / | -* \Γ\ of the simplicial

complex | / | to |/' |. Secondly, since the open regular neighborhood is completely

determined by the simplicial structure, there are induced mappings

between the corresponding spaces defined in the previous section. They give

rise to natural transformations between the corresponding functors g: N -> N',

g: M -> M', and hence their geometric realizations |gI: |N| -> |N'|, |g|: |M| -> |M'|.

It is easy to see that there is a commutative diagram

|N| ί U . ps'i

(4.3.5) I - J -

where the vertical mappings are the homotopy equivalences mentioned before.

The above considerations can be applied to the situation when we have a

group G operating simplicially on the stratified polyhedron X and preserving

the strata

(4.3.6) G X X -> X, giX,) = Xi9 g<=G.

It follows that there is an induced action of G on the simplicial complex |/|,

(4.3.7) GX\I\-*\I\

and, for every simplex σ, the isotropy subgroup Gσ operates on the spaces Nσ

and Mσ. As a result, the functors N, M are functors of SίmG |/ | to Top in the

sense of §3.

5. A #(ττ, l)-covering for R(S)

(5.1) As mentioned in §2, the augmented Riemann space R(S) has the

structure of a projective variety with the subspaces # ( £ ) , = U\a\<ι;R(S/ά) as

subvarieties. From the results of Hironaka (see [8]), this algebraic variety can
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be triangulated so that the subvarieties R(S)i become subcomplexes. In this
way, the space R(S) has the structure of a stratified polyhedron with the
filtration

R(S) = R(S)0 D R(S)λ D D Λ(S) 3 g - 3 .

The connected components R(S/a) in the strata are indexed by the vertices
in the orbit space \f(S)+\/Γ. For each such vertex {a} in \&~(S)+\/T, we
define U{a) to be the open regular neighborhood of R(S/a) in R(S) with
respect to the above triangulation. This forms an^open covering {fΛα}} of
R(S), and from the results of §4, this covering has the following properties:

(5.1.1) The nerve of this covering {U^ay} is isomorphic to \^(S)+\/T.
(5.1.2) For every simplex {σ} = ({α0} < {αx} < < {ak}) in

\^(S)+\/T, let U{σ} = Πf=o^ {α l } and K{,} = R(S/a0) Π £/{σ}. Then U{a} is
the open regular neighborhood of V{σ] in R(S).

(5.1.3) Let P{σy ί/(σj -* F ^ be the projection of the regular neighborhood
of U{σ] onto its base V{σ}. For {σ} = ({α0} < {α^ < < {αΛ}), θ^σ} =
({αo} < * ' ' < {̂ /} '"{ftifc})' l ^ U f c , w(9,) — incl. and ̂ (3 )̂ = incl., we
have a commutative diagram:

0(9, )

Λ(S/α 0 ) Π t/ { β ι } Π ί/{βft} • R(S/a0) Π t/{ β / } Π t/{ β Λ >

(5.1.4) For {σ} = ({α0} < {αx} < < {«,}), 30{σ} = ({α^ < {α2} <
• < {ak})9 M(30) = incl. and v(d0) = Pαχ, we have:

v(d0) I

n ί/{αi} .. n u{ak) >R(S/aλ) n -.-n u{ak}

(5.1.5) The correspondence {σ} -> F { σ } , 3,. -> ^(3,), defines a functor V
from the category SunOS') + | /Γ of simplices in |^"(5)+ |/Γ to the category
of topological spaces. The geometric realization of this functor has the same
homotopy type as R(S).

(5.2) We now lift the above functor V to an equivariant functor V defined
over the category SimΓ|5r"(5')+|.

First, when σ consists of a single system of curves α, we consider the

deformation space D(S/a) and the projection map ha: D(S/a) -» R(S) of

D(S/a) into R(S). Define Va to be the inverse image hl\V{a)) in D(S/a) of
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the subspace V{a} = R(S/a) in R(S). From (2.9.3), it is clear that the group
T(S/a) operates discontinuously on Va with V^ as its orbit space.

To define Vσ in general, we have to use the lifting procedure mentioned in
Lemma (2.9.4). By subdividing our triangulation on R(S\ we may assume that
all the open regular neighborhoods Uσ are contained in the neighborhood W of
R(S/ao\ mentioned in (2.9.4). Note that the group T(S/a) contains elements
of finite order, and so the quotient map W -> W in (2.9.4) is not a covering.
The singular points of these actions lead to singular points of W. Since these
are singular points of the projective variety R(S), we may assume that the
filtration of the singular orbits gives a filtration of subcomplexes in our
polyhedron. For an open regular neighborhood W, the spaces W and V are
ramified coverings of W and V along branch sets which are subpolyspaces. In
this situation the regular neighborhood map P: W -> V can be lifted to a
unique equivariant map P: W -> Fof W onio V.

For a simplex σ = (α0 c aλ c c ak) in Sim|^"(5')+|, set σz to be the
subcomplex σf = (αz c α / + 1 C c ak) in σ. Since σi+1 = 90σ/? there is a
sequence of maps v(d0): Vσ -* Vσ , 0 < / < k. Recall that each Vσ can be
obtained by the following procedure (see (4.2.9)). The space Vσ is an open
subspace in R(S/ai+ι) and so lies in the closure RίS/a^ of JR(5'/α/). Let Wσ,
be the regular neighborhood of Vσ.+ι in this space RiS/a^. Then Wσ, is the
intersection of the open neighborhood Uσ,+ι with RiS/a^ Wσ, = I/σ/+i Π
R^S/di). The subspace Vσ can be obtained from Wσ by deleting the boundary
elements in WOt Π dRiS/a^, i.e.,

W9i Π R(S/at) = ί/σ/+i Π

Schematic picture of various subspaces



212 RUTH CHARNEY & RONNIE LEE

As for the map v(d0), it coincides with the restriction of the regular neighbor-
incl. P

hood map, VOi -> WOt -> Vσ + i.

To define Vσ, we proceed by downward induction on i. Suppose we have

defined VOt+ι as an open subset in h~*+ι(R(S/ai+1)) = VΛl+1- Since Wσ_ is an

open neighborhood of R(S/ai+ι) contained in Uσ , by (2.9.4) it can be lifted

to a neighborhood Wa, of Vσ + i in A~* ^ ( S / α , ) ) . Now Fσ is an open subspace

of Wcr and so there is a corresponding neighborhood, (V XWW)O =

A" 1 ( F σ ) Π Jί^σ, in Wσ covering Vσ (see diagram (5.2.2) below). This last space

(V X w W)σ can also be obtained from Wσ by taking its intersection with

* ά l ) ) . Consider the natural projection h"'*1: D{S/af) -> D(S/ai+ι)

) to D(S/ai+1). Since A f l ί + 1«/iα

α;+ 1='/i f l, the image of Fα =

h~*(R(S/aJ) under this map A";+1 is the same as A " ^ # ( £ / « ; ) ) . In particu-

lar, this image contains (V X w W)σ. as an open subspace. Define Fσ. to be the

inverse image {ha^)~\V X w W)σ'c: Fα of the subspace (VXW W)Oi c Wς,

This completes our inductive step, and so we can proceed by induction to get

the space Vσ = VOQ.

As mentioned before, the regular neighborhood map P: Wσ_ -* Vσ.+i can be

lifted to a map P : ίΓσ -> F σ + Γ Combining this with the projection A"|+1:

F σ ^ (K^ X I ^ ) α i , and the inclusion, incl:(F X w W)σ, -> ^ , we obtain a

map P oincl° A";+1 of Fσ to Fσ + i :

(5.2.2)

°i σ ι + l
to

Note the dotted arrows do not necessarily commute with the rest of the

diagram.

We can now define the functor

Top
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which takes a simplex σ in \f(S)+\ to Vσ. For a A>simplex σ, we take the
boundary maps σ D 9,σ, 1 < i < fc, to the inclusion Vσ c FB σ and the map
σ => 90

σ t o Λ e composite P °incl° Λ^, as in diagram (5.2.2). It is straightfor-
ward to check that these satisfy the necessary simplicial identities. For a group
element g G Γ(S), there is a naturally induced map of deformation spaces
D(g): D(S/a0) -> D(S/OL0 g). Under this mapping, the subspace Vσ in
D(S/a0) is sent to the corresponding subspace Vσ.g in D(S/a0 g). It is again
straightforward to verify that the diagram

K -^K

commutes for any θ,. It follows that the correspondence σ »-» Vσ, (σ g D σ')
•-> t5(8)°Z)(g) defines a functor V as above.

(5.3) Proposition (5.3.1). The spaces Vσ defined in (5.2) are contractible.
Proof, Consider the sequence of spaces Fσ and maps P <>inclo h%+ι: Fσ ~>

Vσ used in defining Vσ. From (2.8), the space Vσ = Fα can be identified
with the intersection ΠyGctk (Pγ) of distinguished hypeφlanes ( P γ ) , γ e αΛ, in
D{S/ak\ and so it is contractible. To prove (5.3.1), it is enough to show that,
for every i, the map u(90): σ̂, ~* ^σ/+1 ^

s a homotopy equivalence.
For this, we consider the spaces Vσ, Wa,9 Vσ , and their coverings

(VXwίV)σi, WOi, Vσi+i as in (5.2.2). Write α,?= {£,• ,γm<}, and α / + 1 =
{ϊi>* * *>ϊm.»"' ">Yifi + }• Then, as in the previous paragraph, the subspace
A~*i(JR(S'/αί+1)) is the intersection fljiy \ίy.) of distinguished hypeφlanes
in D(S/ai+1). Since Fσ is an open subset in h~* (R(S/ai+1)), it has the
structure of a complex manifold.

For each curve γ., 1 < j < mi9 there is a complex codimension-one, sub-
variety R(S/yj) in #(£), and the intersection ΠJlιR(S/yj) is the subvariety
ΛίS/α,.). Hence, as before, the inverse image / ^ ^ ( S / α , ) ) is the intersection
Πylli (Pγ) of the hypeφlanes (PΎj), 1 <j <mt. From the definition, Wa, is
the open'regular neighborhood of F σ + i in this last space ΠJίix (^γ,)- Since
these are complex manifolds, Wσ_ has the structure of a complex normal
bundle, and the projection P: Wa. -• Fσ/+i is homotopic to a complex vector
bundle (see (4.1)).

Each of the curves yJ9 mi <j< mi+l9 gives a codimension-one, subvariety
R(S/a0 U γ̂  ) = R(S/a0) Π R(S/yj) in Λ(S/α0). From the definition, Fσ is
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obtained by removing the intersection WOj Π R(S/a0 U γy) from War Pulling
this back to D(S/ai+ι)9 this means that by subtracting the subspaces

a, U γ,)) = hJJk{S/a,)) n hZ^{R(S/Ύj))

from Wσ, we get the subspace (V X w W)σ.. Let us describe this process locally
at a point x in

Let Γx be the tangent space of x in Λ~* (£(£/«,)) = Πy!ix (P γ y), and let 7VX be
the subspace in Γx normal to Π Jiy ( Pγ ). Then Λ̂ . is a complex vector space of
dimension w / + 1 - m, - 1. Each of the submanifolds h~^+ι(R(S/ai U γ )̂)
gives rise to a codimension-one tangent space Nxj in Nx. If we remove
these submanifolds Λ~^i(JR(5'/αί U γ )̂) from the normal bundle of
h~*+ι(R(S/ai+1))9 the effect on each of the fibers Nx amounts to subtracting
Nxj from Nx. The resulting space Nx - UNXJ has the homotopy type of a torus

Nx ~ [JNXJ = Π(C*), - Π Wj,

where each circle factor (Sι)j represents the normal circle to (Pγ). Since Vσ_+ι

is an open submanifold in Λ~^i(JR(5'/α/+1)), it inherits this structure on its
normal bundle. In particular, the map P °incl:(F XwW)σj -> Vσ is homo-
topic to a locally trivial fibration with fiber a torus as above.

From (2.9), the projection h"1*1: D{S/ai) -> D(S/ai+1) is a regular cover-
ing of D(S/aέ) onto its image, and its group of covering transformations is the
free abelian group generated by the Dehn twists along curves yj9 mi <j< mi+1.
It is not difficult to prove that the Dehn twist along γy represents precisely the
generator of the fundamental group of the above fiber circle (5 f l)J. In particu-
lar, the covering transformation group is the same as the fundamental group of
the torus.

The homotopy fiber of the composition v(d0): Vσ, -» (V X w W)σ_ -> Vσ,+ι

can be obtained by first forming the homotopy fiber of ? ° incl, and then
forming the induced covering space over such a homotopy fiber. From the
discussion in the previous paragraph, this is the universal covering space of the
torus Ylj(Sι)j and so is contractible. This proves v(d0) is a homotopy equiva-
lence, and the proof of (5.3.1) follows immediately from induction.
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(5.4) Proposition (5.4.1). Let (f, η) be as in example (3.2.1). Then the
functor

is an almost universal (ί\ TJ)-functor, and the oribt space |V|/Γ of its geometric
realization is the same as |V|.

Proof of (5.4.1). To prove the first statement of the proposition we must
show that the action of Γσ on Vσ factors through the natural transformation

and that this action is "almost universal". The action of Γσ on Vσ is the
restriction of the action of Γσ on D(S/a0). From the definition of this action,
it is clear that it factors through T(S/a0, σ/α0). For "almost universal", we
note that Γ contains a torsion-free subgroup Γ' of finite index such that the
images ί̂  = ησ(Γ' n Γσ) are also torsion-free (see [22]). For x e D(S/ao)9 the
isotropy subgroup of x in fσ is a torsion group, hence f̂  must act freely on
Vσ D D(S/a0). By Proposition (5.3.1), Vσ is contractible, hence it is a universal
ί^-space. This proves that V is an almost universal (ί\ TJ )-functor.

For the last statement in (5.4.1), we have to prove that the group
T(S/a0, σ/α0) operates properly discontinuously on Vσ with V^σ} as its orbit
space.

We proceed by induction as in (5.3.1). Let Vσ •-> Vσ -> -> Vσ be the
sequence of spaces Vσ defined in (5.3.2). In (2.9) we showed that the group
T(S/ak) operates properly discontinuously on the subspace Vσ in D(S/ak)
and its orbit is the same as the image of VOk under the projection ha ,

hak(Kk) = v(-ky
Suppose we have shown that the group T(S/ai+1,σi+1/ai+1) operates

properly discontinuously on VOj+ι with F|σ. ^ as its orbit space. From §2, there
is a group extension

0 -> Z{ai+1 - α,.} ^ T(S/ai9 σ/α,) -* T(S/ai+1, σi+1/ai+ι) -+ 0,

where the kernel Z{α/ + 1 — at} is the free abehan subgroup in T(S/ai9 oja^
generated by the Dehn twists along curves in ai+1 — at. As in (5.3), this free
abelian group Z{ai+ι — α,} operates properly discontinuously on Vσ.9 and its
orbit space is (V X w W)σ..

The factor group Γ(5/α ί + 1, σ i + 1 /α / + 1 ) is a subgroup in Γ(S/α f.+1), and so
it operates on (VXwW)σi properly discontinuously. From our inductive
hypothesis, this group T(S/ai+vσi+1/ai+ι) is precisely the subgroup in
T(S/ai+1) which keeps the subspace VOj+i and its regular neighborhood WOi in
D(S/ai+ι) invariant. Hence the orbit space of Wσ. under this action is the
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same as its image Wσ, in R(S). Since (VXW W)σ, is a subspace in Wσ., its
orbit space coincides with F { σ } in WOj. Thus the group T(S/ai9 σ/α,) operates
properly discontinuously on Fσ with orbit space F ( σ } . This completes our
induction, and so the proof of (5.4.1) is complete.

6. The category of stable curves

(6.1) Define the category of stable curves SC to be the category whose
objects are stable Riemann surfaces S' and whose morphisms S' -> S"' are
isotopy classes of deformations /: S" -* S". For every g > 2, there is a full
subcategory SCg consisting of all stable Riemann surfaces of genus g. In order
to have a deformation /: S' -* S" between two stable Riemann surfaces, they
must have the same genus and so belong to the same subcategory SCg. Hence
the category SC can be decomposed into a disjoint union of subcategories,

sc = u g > 2 sc r

The object of this section is to establish the following:
Theorem (6.1.1). Let S be a fixed nonsingular Riemann surface of genus g,

and let SCg be defined as above. Then there exists a rational homology equiva-
lence of \SCg\ to the augmented Riemann space R(S).

(6.2) Let S be fixed as in the statement of (6.1.1). By a marked Riemann
surface, we mean a triple (φβ, S/β, R) consisting of a stable surface R, a
vertex β in \&~(S)+\, and an isotropy class of homeomorphisms φβ: S/β -> R
of S/β to R. The collection of all marked Riemann surfaces (φβ, S/β, R)
forms the objects of a category, denoted by SCg. A morphism Φ: (φ^, S/β, R)
~* (<Pβ'> S/β\ R') ώ this category is a diagram of deformations, commutative
up to isotopy,

S/β

(6.2.1) I ?f
\

β

S/β' • R'

where β' z> β, and pjf' is the natural collapsing map. This is called the category
SCg of marked Riemann surfaces of genus g.

There is an action of the mapping class group Γ on the category SCg. Given
an element in Γ, it can be represented by an isotopy class of homeomorphisms
φ: S -» S. Given any marked Riemann surface (φ^, S/β, R), this element [φ]
in Γ sends (φ^, S/β, R) to the marked Riemann surface (φ^ ° φ" 1 , S/φ(β), R),
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Similarly, [ψ] sends a morphism Φ of the form in (6.2.1) to morphism Φ [φ]

given by the square:

(6.2.2)

This gives us an induced action of Γ on the classifying space |SCg|. With

respect to this action, we have

Proposition (6.2.3). The orbit space |SCg |/Γ is isomorphic to |SCg|.

Proof of (6.2.3). Let SCg/Γ denote the (quotient) category whose objects

are Γ-orbits of objects in SCg and whose morphisms are Γ-orbits of mor-

phisms. (It is an easy exercise to show that composition of such morphisms is

well defined^) There is a natural isomorphisms |SCg |/Γ = |SCg/Γ|.

Let F: SC g -> SCg be the forgetful functor F(φβ, S/β, R) = R defined by

forgetting the markings on a surface R. Clearly it takes a single value on each

Γ-orbit, and so gives rise to a functor F/T: SCg/Γ -* SCg. We claim the last

functor F/T is an isomorphism.

First, given any stable surface R, it is isomorphic to S/β for some β. Hence

F/T is a surjection on objects. For any two markings (φβ, S/β, R),

(φβ,, S/β', R) on the same stable Riemann surface R, we have a composite
ψβ ψβ~ι

homeomorphism φβ> °φβ: S/β -» R -» S/β' of S/β onto S/β'. Any such

homeomorphism can be lifted to a homeomorphism φ: S -> S such that

ψ(β) = β\ a n d the diagram

mod/? mod/?'

Ψβ~ι°ψβ *

S/β • S/β'

commutes. Hence the two markings (φ^, S/β, R), (φβ,, S/β', R) lie on the

same Γ-orbit, and so F/T is an injection on objects.

Suppose we are given a morphism/: R -> R' in SCg. Let (φ^, S/β, R) be a

marking of R. Then R' can be obtained from R by collapsing curves /~1(nodes)

- nodes. Let β' = (/oφi8)~1(nodes). Then β' z> β, and there is a composite

homeomorphism φβ,: S/β' -»JR//~1(nodes) — nodes -> R' such that the dia-

gram
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Ψβ

S/β >R

I " ' . I'
S/β' >R'

commutes. This proves that F/T is surjective on morphisms.
Suppose we are given two morphisms Φ, Φ' in SCg which map onto the same

morphism/: R -> R' in SCg:

S/β—-—>R S/y —>R

Φ ' - \pf

S/β' — - — • Rf S/y' — — > R'

From the discussion in the previous paragraph, there exists a homeomorphism
φ: S -> S of S which brings β to γ and covers the homeomorphism φ^ 1 ° φ^. It
follows that φ brings β' to γ', and sends the commutative diagram Φ to Φ'.
This proves the functor F/T is injective on morphism, and so completes the
proof of (6.2.3). _ _

(6.3) There is another forgetful functor Fo: SCg -> ̂ (S)+ of the category SCg

to the partially ordered set^~(S)+, defined by assigning to a marked Riemann
surface (φβ, S/β, R) the system of curves β (forgetting the surface R), and
assigning to a morphism Φ: (φβ, S/β, R) -> (φ^, S/β', R) the inclusion rela-
tion β c β'. This functor induces a Γ-equivariant map

(6.3.1) \F0\: \SCg\ -+\y(S) + \

on the classifying spaces. For a simplex σ = (β0 c ••• C j S ^ ) ^ ! | ^ ' ( 5 ' ) + | , we

consider the fiber category S C σ whose objects are

(6.3.2) {Ψβo, S/β0, Ro) A

and whose morphisms are commutative diagrams:

(<Pβo, S/β09 Ro) -S ( φ A , S/jβlf «!)->••• -> ( φ Λ , ^ / ^ , Rk)

o, S/i8
0 ,

It is easy to see from the definition that the classifying space |SCσ| of this
category is homotopicjo the inverse image (F0)~\σ) in |SCg| of the simplex σ
in \^(S)+\. In fact, |SCσ| is precisely the inverse image of the barycenter^of
σ. It follows that the functor SCg

F: S i m Γ | ^ ( 5 ) + | -> Top defined by σ -> |SCσ|,
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8, •-> |omit ith term| has geometric realization homeomoφhic to that of the
category SC g, j§C£| = |SCg |. _

The isotropy subgroup Γσ of σ operates on SCσ, but this action is not
effective because the Dehn twists along curves in β0 have no effect. Instead, it
gives rise to an action of Γ(S//?0, σ/α0) on the category SCσ and so an
induced action on the classifying space |SCσ|.
^Proposition (6.3.4). For every σ = (β0 c c βk) in \f(S)+\9 the space
|SCσ | is a universal T{S/a0, σ/ao)-space.

Proof of (63 A). Suppose we are given two objects

k, S/βk9 R'k)

(ψβo> S/β0, Ro) ^ (ψ

Wβ* S/β09 R'o) ^ (ψβι9 S/βl9 R[)

in SCσ. Recall that a morphism %: (φβ., S/βi9 R{) -> (φ^, S/βi9 R]) con-
necting the two objects (φβj9 S/βi9 Rt)9 (φ^, S/βi9 R]) in SCg is a commuta-
tive diagram:

Such a moφhism always exists and is unique because there is only one choice
for /), f{ = φ'β. o ψβ1. This shows that the vertical maps in (6.3.3) always exist
and are unique. To verify the commutative relation Ψ / + 1oφ /. = φ!oψ. } we
consider the cubic diagram of maps:

ϊ + l

i + l

r i+l

* / + !
i + l
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where the maps gi9 g\ are given by the definition of Φ/9 Φ/. Note that all the
squares except the front face are commutative by definition, and ψβ, φβ 9 φ'β,
φ'βi+ι are isomoφhisms. It follows that the front face is commutative, the entire
cube is commutative, and Ψ / + 1°Φ / = Φ / + 1 oΨ i + 1 . This proves that between
any two objects in SCσ, there exists a unique isomorphism and so |SCσ| is
contractible.

The group T(S/a0, σ/a0) operates freely on objects in SCσ because it
operates freely on the set of marked Riemann surfaces (φβ, S/β, R). Since
morphisms are uniquely determined by objects, it also operates freely on
morphisms. This completes the proof of (6.3.4).

(6.4) Proof of Theorem (6.1.1). The proof is an immediate consequence of
(6.3.4). For, in the previous section, we proved that the augmented Riemann
space has the same homotopy type as |V| which, in turn, is isomorphic to the
orbit space |V|/Γ. For each σ, \Va\ is contractible, the action of Γ(5/α0, σ/α0)
is properly discontinuous but not free. Since Γ contains a torsion free subgroup
of finite index, this fits into the framework of almost universal. As a result,
R(S) has the rational homology of the orbit space |E|/Γ of a universal
t-functor σ -> Eσ. On the other hand, from (6.3.4), the functor SC^: σ -> JSCJ
is precisely one of thesejimctors, its geometric realization is precisely |SCg|,
and the orbit space of |SCg| is the same as |SCg|, |SCg|/Γ = |SCg|. The proof of
(6.1.1) follows.

7. Satake compactification

(7.1) Let @g denote the Siegel upper half-space of degree g,

@g = { Z e Mg(C)|Z = Z', Im Z > θ},

and SPg(Z) the integral symplectic group

Then the group SPg(Z) operates on the space @g by the formula

The orbit space of @g under this action is called the Siegel modular space
@ /SP (Z). Classically there is an embedding of the Riemann space R(S)

onto the Siegel modular space

(7.1.1) J: t f(S)-*@ g /SP g (Z)

known as the period mapping. This is defined as follows. Let (φ, S, 5") be an
element in the Teichmϋller space T(S). Fix a symplectic basis α,, βt in
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H\S; Z), i.e., (a, U ay, [S]) = (β, U βy, [S]) = 0, (a, U βy, [S]) = «y.
The homotopy equivalence φ induces a corresponding symplectic basis a =

ψ^Cα,-), i8/ = Φ*(βi) in Hι(S'; Z). Choose g linearly independent holomorphic

1-forms ω l9 , ωg in H°\S'\ C). We consider the period matrix
- 1

whose entries are defined by period integrals. It is a classical result of Riemann

that this matrix represents an element in @g. The matrix is independent of the

choice of ωl9- ,ωg, and so gives rise to a map /: T(S) -> @g. There is a

natural homomoφhism of the mapping class group Γ onto the symplectic

group SPg(Z) defined by sending a homeomorphism φ: S -> S to the induced

homomorphism <p#: i f^S; Z) -> ^ ( 5 ; Z) preserving the intersection pairing

λ,

Γ(S) -> AutίJΪ^S; Z); λ) - SPg(Z), φ ^ φ , .

It is not difficult to show that the above mapping /: T(S) -> @g is equivariant

with respect to the action of Γ(S) on 7(5), the action of SPg(Z) on @g, and

the above homomorphism of T(S) onto SPg(Z). The map induced by / on the

orbit spaces is the period mapping

Let @* be the Satake compactification of @g, and let @*/SPg(Z) be the

orbit space of @* under the action of SPg(Z) (see [7]). Then it is a result of

Namikawa (see [17]) that the above map / can be extended to a morphism

(7.1.2) / : £ ( £ ) ^@*/SP g (Z)

of the corresponding compactifications. There is an explicit description of this

extended period mapping. Given a Riemann surface 5' with nodes, we

normalize the surface by replacing each node point by two nonsingular points

and replacing each neighborhood ZXZ2 = 0 of a node point by two disjoint

affine neighborhoods. The result is a nonsingular surface N(S'), called the

normalization of S", and the period matrix J(N(S')) is well defined on the

normalization N(S'). The period map is extended to R(S) by assigning to S'

the period matrix J(N(S')) of its normalization, i.e., J(S') = J(N(S')).

In [7], it was proven that the cohomology /Γ(@*/SPg(Z); Q) in degree

lower than g is isomorphic to the subspace of corresponding degree in the

polynomial algebra Q[x2, * 6 , , x 4 y + 2 , ] ® Q[j>6> Λo> * >Λ/+2> '"I

where d e g x 4 y + 2 = deg^4 y + 2 = 4/ + 2. The extended period mapping / in-

duces a map on the rational cohomology

(7.1.3) /*: i/*(@*/SPg(Z); Q) -> H*(k(S); Q)



222 RUTH CHARNEY & RONNIE LEE

and so gives us cohomology classes/*(x4y+2)
 a n d /*(j4y+2) i*1 H*(R(S)\ Q)

The object of the rest of this paper is devoted to the proof of the main
theorem:

Theorem (7.1.4). Let y4J+2 be the stable cohomology class in
# 4 y + 2(@*/SP g(Z); Q), 4/ < g - 3, defined as above. Then under the induced
map J* it becomes zero in H*(R(S); Q), i.e., J*(y4j+2) = 0.

(7.2) Let us recall the method of computing the stable cohomology of the
Satake space

Urn @*/SPg(Z); θ ) = Q[x4J+2] ® Q[y4j+2]

in the paper [7]. There are two categories W and Esp obtained from algebraic
X-theory. The first, W, referred to as Giffen's category, is obtained by
considering objects which are pairs (P, λ): P a finitely generated free abelian
group, λ a nonsingular, skew-symmetric, bilinear pairing λ: P X P -> Z. A
morphism (P, λ) -> (P', λ') is also a pair (L, φ) consisting of a direct sum-
mand L in P, L c Z / , and an isometry φ: (L^/L, λL) -> (P r, λr). The
category W is filtered by full subcategories Wg which consist of objects (P, λ)
whose rank is less than or equal to 2g, rank P < 2g,
(7.2.1) Wo c Wx c . . . c Wg c . . . .

The classifying space |Wg| of the subcategory Wg has the same rational
cohomology as the Satake space, #*(|Wg|; Q) = ^*(@*/SPg(Z); Q) (see [7]).
Therefore the problem of computing the rational cohomology of @*/SPg(Z) is
reduced to one for the category Wg.

For this, the second category Esp was introduced. The objects in Esp are
again pairs (P, λ) except λ is no longer required to be nonsingular. Let P-1 be
the null space in P, Px = {x e P\ λ(x, y) = 0 V j> e P}. Then there is an
exact sequence 0 -> Px -> P -> P/Px -* 0. The requirement is that P/Px is
free abelian and the induced pairing λ: P/P1^ XP/PX -> Z is nonsingular. A
morphism (P, λ) -> (P', λ') is an injection/: P -> P\ preserving the pairing
and /(P"1) = / ( P ) ± in P'. In terms of group extensions, a morphism con-
necting 0 ^ P x ^ P ^ P/P-1 -^0 and 0 -> P'-1 -^ P r ^ P ' / P ^ ^ 0 is
equivalent to a 3-by-3 commutative diagram:

0 - ^ P - L ^ P -

(7.2.2) o -̂  P'-1 C P -> f(P)/Pf±

II ϊ ϊ
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Note ύiΆtfiP^/P'1 is an isotropic subspace in P'/Pr±, its perpendicular
subspace is f(P)/P'x , and the quotient of these two spaces is isomorphic to
P/Px,

fwpιiΛH a P/P,,

In particular, the right vertical arrows represent a morphism in W. The above
discussion allows us to define a functor

(7.2.4) θ: Esp -+ W

of the extension category Esp to W by sending (P, λ) to the nonsingular,
skew-symmetric pairing (P/P^ , λ) and sending a morphism/: P >-> P' to the
morphism ( / ( P ^ / P ' 1 " , φ) in W.

It was shown in [7] that the functor in (7.2.4) gives rise to a fibration of
classifying spaces |θs|: |5

-1Esp| -> |W|, where 5~1Esp is the stabilization of Esp
with respect to a monoid S (see [7]). The rational cohomology of |S'~1Esp| can
be computed, and is the same as the rational cohomology of the infinite
symplectic group,

(7.2.5) /ϊ fls^Eβpl; Q) ̂  if*(BSP(Z); Q) ̂  Q[x4J+2\j = 0, ,oo].

The rational cohomology of the homotopy fiber, fib(|ΘJ) is the same as that
of the general linear group i/*(BGL; Q) = A[y4J+ι\j = 1, , oo]. The compu-
tation of /f*(|W|; Q) follows from an argument in Hopf-algebras, with the
classes x 4 y + 2 , 4̂/+2 arising from xΛJ+29 y^+i respectively. Since |θ| factors
through its stabiUzation |Θ5|, it is a consequence of this approach that the
induced map \θ\*: H*(\W\; Q) -> i/*(|Esp|; Q) takes the generators y4J+2 to
zero.

(7.3) Given a Riemann surface 5' with nodes, consider the pairing

\:H\S';Z)XH1(S';Z)^Z,
{ } λ(x,y)=((xUy;[S']))

defined by the evaluation of the cup product x U y against the fundamental
class [£"]. This pairing is nonsingular if the surface S' is nonsingular.

Proposition (7.3.2). There exists a covariant functor H: SC -» Esp of the
category SC of stable curves to the extension category Esp which sends a Riemann
surface 5" with nodes to the skew-symmetric pairing (Hλ{S'\ Z), λ) defined in
(7.3.1).

Proof. Given a Riemann surface S' with nodes, we consider its normaliza-
tion N(S') as in (7.1). Note that S' can be recovered from its normalization
N(S') by identifying pairs of points in N(S') to the node points. Hence there is
a natural surjection φ: N(S') -> 5" of N(S') onto S'.
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(7.3.3) 0 -+ Kerφ' -H> H^S'; Z) ^ H^NiS'); Z) -> 0.

It is easy to see that φ induces an injection φ*: Hλ(N(S')\ Z) -> Hλ{S'\ Z) on

first homology groups and that this injection splits. Hence it induces a

surjection on first cohomology, and so the right-hand side of (7.3.3) is exact.

Next we observe that the pairing λ: H\N(S'); Z) X H\N(S'); Z) -* Z is

nonsingular. Since φ' preserves the pairings on Hλ(β'\ Z) and Hι(N(S')'9 Z),

the subspace Kerφ' represents the null space in H\S'; Z), i.e. Kerφ' =

{H\S'; Z)}± It follows that the pair (H\S'; Z), λ) represents an object in

the category Esp.

Suppose we are given a deformation /: S" -> 5" of 5" onto 5"'. Then there

exists a system of admissible curves a = /~1(nodes)-nodes such that / factors

through a homeomorphism/': S'/a -> 5"' of S'/a onto S"\

S' • 5 "

The above system of admissible curves a in S" can be lifted to an admissible

system of curves β = φ~1(a) in the normalization N(S') by means of the

normalization map φ: N(S') -» 5'. If we collapse the curves Ŝ to points, the

result is a surface N(S')/β with nodes and the normalization of this surface

N(N(S')/β) is homeomorphic to N(S"). It follows from the definition N(S")

= N(N(S')/β) that there is a commutative diagram:

0 -> Kerφ -* ^ ( S ' ; Z) ^ H^NiS'); Z) -> 0

|| tmodα Tmodβ

0 -* Kerφ -* H\S'/άΐ) ^ Hι(N{S')/β\ Z) -> 0

A i * / ' i

0 -> Kerφ' -> ^ ( ^ Z) ^ Hι{N{S")\ Z) -> 0

In other words, we have a morphism in the category Esp. It is easy to show

that this defines a covariant functor.

(7.4) Consider the composite functor J = θ ° H,

(7.4.1) J : S C ^ Λ
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which sends a surface with nodes 5" to the skew-symmetric pairing
(Hι(N(S') 9 Z), λ). This functor is referred to in the following as the period
functor. Clearly it preserves the filtrations on SC and W:

(7.4.2) J : SCg -> Wg.

Since J factors through Esp, the induced maps |J|*: i/*(|Wg|; Q) ->
i/*(|SCg|; Q) on cohomology map the classes y4J+2 to zero. As a result, to
prove Theorem (7.1.4), it is enough to prove the following:

Proposition (7.4.3). Let J: R(S) -> @*/SPg(Z) be the extended period
mapping, and let\S\\ |SCg| -» |Wg| be the map on the classifying spaces induced by
the functor J in (7.4.2). Then there exists a commutative diagram

Z);Q) J' >iF(A(S);Q)

H*(\9ίg\; Q) ^ - * H*(βCg\; Q)

where the horizontal maps are induced by J and |J|, and the vertical maps are
isomorphisms.

8. \K{τr, l)-coveringfor @*/SPg(Z)

(8.1) For the proof of (7.4.3), we have to analyze the projective variety
@*/SPg(Z) in the same manner as the Riemann space R(S).

Let ̂  be the partially ordered set of isotropic subspaces L in the standard
skew-symmetric pairing (Z 2 g, λ). Let \&£\ denote the simplicial complex
associated to this partially ordered set JΓ+. The symplectic group SPg(Z)
operates on | ^ + | , and the isotropy group Pσ for a simplex σ satisfies the
conditions in (3.1). Denote by SP: S im S P | ^ + | -» <&£ the covariant functor
given by these isotropy subgroups σ •-> Pσ.

There is a reduced group functor associated to SP. Given a simplex
σ = (L o c Lx c c Lk), we denote by P(LQ/L0, O/LQ) the subgroup in
the automorphism group Aut(L£/Lo, λ) of the pairing (LQ/L0, λ) which
keeps the flag of isotropy subspaces 0 c Lλ/LQ c c Lk/L0 in LQ/L0

invariant. Let SP(σ) = P(LQ/L0, σ/L0). For a boundary map 3,., 1 < / < &,
there is a natural inclusion SP(3,): P(L£/L0, σ/L0) -> P(L£/L0, 3,-σ/Lo).
For the boundary 30, the filtration Lo c Lλ c L{ c LQ" gives rise to a homo-
morphism SP(30): P(L£/L0, σ/L0) -> P(Lt/Ll9 doσ/Lλ) defined by send-
ing an automorphism Λf in P(L£/L0, σ/L0) to the induced automorphism on
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Lι/Lv These satisfy the simplicial identities, hence, for any inclusion σλ D σ2,
there is a well-defined homomorphism SP(3): S P ^ ) -» SP(σ2).

For a group element g e SPg(Z), conjugation by g gives rise to homomor-
phisms P(L£/L0, σ/L0) -> P(L0 g ± /L 0 g, σ g/L0 g) which commute
with the boundary maps. Composing the group action and the boundary map
we obtain homomorphisms S P ^ g 3 σ2): S P ^ ) -> SP(σ2). This defines
our functor SP: S im S P | ^ + | -» &/ί.

To see that there is a natural transformation η: SP -» SP, we set σ + = (0 c
Lo c c L^), σ = 30σ

+. Then we can identify Pσ with PίOV0* σ+/0)> and
the homomorphism SP(90) defined above gives a surjection ησ = SP(30):
Pσ -» P(LQ/L0, O/LQ). This defines a natural transformation η which makes
(SP, η) a reduced SP-functor. (In the following, η will be understood and
dropped from the notation.)

As in (7.1), we fix an isometry between the pairing (/ί1(Sf; Z), λ) and the
standard skew-symmetric pairing (Z 2 g, λ) on Z2g. Given a system a of
admissible curves, there is a corresponding isotropic subspace La defined
by the image in H\S\ T) of the null space of H\S/a; Z), i.e., La =
Im(/ί1(5r/α; Z)± -> Hι(S; Z)). This correspondence a -+ La defines an order
preserving mapy(S) + ->^; + , and so a functorϊ: SimΓ|^r"(5r)+| -> Sim S P |^ + | ,
σ •-> /(σ) between the categories of simplices.

We compare the reduced group functors t: SimΓ |^"(S)+ | -^ ^ / and SP:
Sim S P | ^ + | -> ̂ /ί via the functor I. For every simplex σ = (α 0 c ax c c
α^) in |^"(S)+ | , there is a natural homomorphism Γ(Syα0, σ/α0) ->
P(LQ/L0, σ/L0) defined by sending a homeomorphism φ in Γ(5/α0, σ/α0)
to the induced automorphism φ* on the cohomology Hι(N(S/a0); Z) =
LQ/L0 of N(S/a0) (see (7.3.3)). This defines a natural transformation /A:

f -^ SPoϊ of functors from SlmΓ |^"(S)+ | to ^/.
(8.2) The Satake compactification @*/SPg(Z) can be analyzed in terms of

the Borel-Serre compactification @g/SPg(Z) by the following push-out dia-
grams:

(8.2.1)
incl. * * , x incl.

(see [7]).2 The Borel-Serre space @ is a disjoint union of cells ^(P σ ) indexed

2We take the topology on <S* to be the quotient topology induced by the surjection fg. This
induces the usual topology on @ J/SP g(Z).
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by the simplices in | ^ + | , @g = LJσ£(Pσ). Similarly, the Satake compactifica-
tion is a disjoint union of cells e(A\xt(L±/Ly λ)) indexed by the vertices L in
| ^ Ί , @* = LJL eiAutiL-L/L, λ)). For every simplex σ = (Lo c Lx c . c
Lk) the map/ g sends the cell e(Pσ) to the subspace e(Aut(Lk/Lk, λ)) in @*.
Passing to the orbit space, we have corresponding decompositions on the
Borel-Serre compactification @g/SPg(Z) = LJ { σ } e '(P { σ }), and on the Satake
compactification @*/SPg(Z) = U { L } e\A\x\{LΣ/L, λ)), and a map/g between
them. Since these are semianalytic sets, they can be triangulated into stratified
polyhedra so that/g is simplicial.

Applying the theory of open regular neighborhoods in §4 to the stratified
space @*/SPg(Z), we obtain two functors X: σ •-> X{σγ Y: {σ} •-» Y<σ, of
Sim|^+ |/SP g(Z) to the category Top of topological spaces. The first consists
of an open covering ^ σ } = Π I μ . | , where X{L.} is the open regular neighbor-
hood of e'(Aut(Lf/Li9 λ)) and the second Y{σ'} = X{σ) Π e'(Aut( Z^/L o, λ))
is a deformation retract of the first. The geometric realizations |X|, |Y| of these
functors share the same homotopy type as @*/SPg(Z).

The projection @g -> @g/SPg(Z) is a ramified covering space with finite
isotropy subgroups. Without loss of generality, we may assume that the branch
sets are subcomplexes and so the triangulation on @g/SPg(Z) can be lifted to
one on @g. Since the isotropy subgroups are finite, the result is a locally finite
simplicial structure on @g. The same procedure can be applied to @*/SPg(Z)
to get a "triangulation"3 on @*. The map/g is simplicial with respect to these
two triangulations.

For a simplex σ = (Lo c Lx c c Lk) in | ^ + | , we define Ϋσ to be the
inverse image in e(Aut(L^-/L0, λ)) of the subspace Yσ in e'(Aut(L^-/L0, λ)).
It is not difficult to show that the boundary map Y(3f-): Yσ -* Y^.σ can be lifted
to a corresponding boundary map Ϋ(3Z): Ϋσ -> Ϋd.σ. In this way, we obtain a
functor Ϋ: S im S P | ^ + | -> Top which is equivariant with respect to the reduced
group functor SP, and |Ϋ|/SPg(Z) = |Y|.

Proposition (8.2.2). The space Ϋσ is contractible.

It is well known that any torsion-free subgroup of Aut( LQ"/L 0 , λ) acts
freely on e(Aut(LQ/L0, λ)). As an immediate consequence of (8.2.2), there-
fore, we know that the functor Ϋ is almost universal and its quotient space
|Ϋ|/SPg(Z) has the same rational homology as the quotient space of a universal
SP-functor. This is, of course, not new in view of the results already obtained
in [7].

3 The induced triangulation on @ * is not locally finite. However the notion of regular neighbor-

hood is well defined, as is the deformation retraction of a regular neighborhood onto its zero

section.
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Proof of (8.2.2). Given a simplex σ = (L o c Lλ c - c Lk) in | ^ + | , we

have a filtration of subcomplexes ox z> z> σ ,̂ where σ, = (L/ c L z + 1 c

• c Z^). From the functorial properties, there is a sequence of mappings

Ϋ(90): Ϋ -> ΐζ σ l + 1 = doσi which covers a corresponding map Y(90) Yσ -*

yσ .To prove yσ contractible, it is enough to show that Ϋ(30): Ϋσ. -> yσ. is a

homotopy equivalence. For once this is achieved, we have a sequence of

homotopy equivalences

?(/»„)-» y(/»σ i)- -»r(J»αt),

and the last space Ϋ(Pσ ) = e(Aut(Z>£/L^, λ)) is contractible.

Recall the map Y(90) can be obtained as follows. First, let g, = g — rank Li9

then the space YOι+ι = XOj+i n @Λ+1/SP f t+1(Z) is a subspace in @g/SPg/(Z),

and it has the open subspace Xσ.+ι Π @*/SPg (Z) as its regular neighborhood

in @*/SPg.(Z). After deleting the boundary elements 9@*/SPg.(Z) from this

regular neighborhood, this becomes

Yσι = @g/SPg((z) n xai = ©,/SPft(Z) n xaι+i

and the projection map of the regular neighborhood gives our map Y(90):

Yσ -» Yσ . The same holds for the covering spaces Ϋσ, Ϋσ : the space Ϋσ is

obtained by deleting the boundary elements from the regular neighborhood of

ΫOi+ι in the closure e(Aut(Lf-/Li9 λ))* = @* of e(Aut{Lf-/Li9 λ)).

Without loss of generality therefore, we may assume that g = gi9 Li = 0,

σ, = (0 c L.+ 1 c c Lk\ and the problem reduces to considering the

regular neighborhood of ΫOi+ι in @*. Note that ΫOi+ι is an open subspace in

e(Aut(Lf-+1/Li+ι, λ)). Let F σ + i =/~\Ϋ σ . + 1 ) be the pullback of the subspace

Ϋσ.+ι in the Borel-Serre space @g by means of fg. Let N(Yσ.+i) be the regular

neighborhood of 7 σ + i in @g. Note that the image of N(Yσj+ι) under fg is the

regular neighborhood of Ϋσ.+ι in @*. In particular, since fg is the identity map

on the interior @g of @g, after deleting the boundary element from N(Yσj+ι),

we recover the subspace Ϋσj in @g. It follows that the map ί^o) : Ϋσ. -* Ϋσ.+ι

factors through Yσ ,

. p - h ~
Y -> y -» y

where the first map P: Ϋσ -> yσ coincides with the projection of the regular

n e i g h b o r h o o d ^ J -*' Ϋσ^. ' "

Note that YOi+1 is an open subspace in e(PL + i ) , and so it is a manifold with

corners. It is not difficult to see that the normal bundle of such a submanifold

with corners in @g exists and has the structure of a locally trivial fibration with

fiber a product of half lines ΠR +. Since the regular neighborhood is homotopic
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to such a fibration, it follows that the map P: Ϋσ. -» Yσ is a homotopy
equivalence.

As for the second map/g: Yσ,+i -> Ϋσj+ι, we observe that a manifold corners
y has the same homotopy type as its interior Yσ Π e(PL ), and the
restriction of h to this interior also maps onto Ϋa . I t follows from the work
of Zucker (see [Z]) that the projection fg: e(PL+i) -> e(Aut{Lf+ι/Li9 λ)) is a
locally trivial fibration with contractible fiber and hence so is its restriction/^:
e(PLiJ n F σ + i -> y w This proves (8.2.2).

(8.3) We now reinterpret the period map J: R(S)-> @*/SPg(Z) in terms of
the functors V and Y. Since the period map is a morphism in the category of
projective varieties, we may assume that it is simplicial with respect to our
triangulations on these spaces. It follows that / maps the subspaces Uσ, Vσ of
R(S) into the subspaces XI(σ), YI(σ) of @*/SPg(Z), where I: Sim\^(S)+\/T
-> Sim|^+ |/SP is the quotient of the functor I described in (8.1). The first of
these maps, /: Uσ -> ^/ ( σ ) , commutes with the boundary maps (which in this
case are just inclusions) and thus defines a natural transformation ηy. U -> X.
Clearly, the diagram

k(s)—ί—. β;/sp,(z)

V\ - ^ « K

commutes. The maps /: Vσ -> y/(σ), on the other hand, do not commute with
boundary maps as the following example shows.

Example (8.3.1). Let σ = {φ c a}, where a is a system of null homologous
curves. Then a represents the zero subspace in H^S; Έ) = Z2g, so J(σ) = {0}.
By definition, therefore YI(σ) = Yf^oσ)

 = @g/SPg(Z). Consider the diagram

v(do)i

On the one hand, y <> /(90) is the identity map and on the other hand i;(90) is a
nontrivial deformation. Hence the diagram does not commute.

To avoid this problem we use the theory of universal spaces developed in §3.
From (5.4.1) and (8.2.3) we know that V and Y are quotients of functors V and
Ϋ which are almost universal with respect to f and SP respectively. By
Proposition (3.3.1), these can be replaced by universal functors V1"1, Ϋun whose
quotients, Vun = Vm/Γ, Y1"1 = Ϋun/SP, have the same rational cohomology
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as the original functors V, Y. (The construction of the universal functors
depends on choices of torsion free subgroups Γ' in Γ and ΓgP in SP^(Z). These
can be chosen so that Γ' is the inverse image of ΓgP under the natural map
Γ -» SPg(Z) described in (7.1). Here we assume such a choice.)

Lemma (8.3.2). There is a map fy. |Vun| -* |Yun | such that the diagram

induces a commutative diagram on cohomology groups.
Proof of (8.3.2). Let I: SimΓ |^"(S)+ | -* SimSP|Γg

+| be as in (8.1) and
consider the composite functor SP°Ϊ: SimΓ |y(5')+ | -> 9/k. Then the natural
map Γ -» SPg(Z) described in (7.1) gives rise to a natural transformation
Γ -> t -> SP°Ϊ which is a surjection for each σ e \f(S)+|, Γσ -» fσ -» SP/(σ).
This makes SP<>Ϊ a reduced Γ-functor. Now the functors Vun, Ϋu noϊ:
S i m r | y ( S ) + | -* Top are almost universal with respect to f and SP°Ϊ respec-
tively. We can therefore apply Proposition (3.2.3) to get a Γ-equivariant map
|Vun| -H> |Ϋunoϊ|. Replacing Vun by its "dualization" V^n if necessary (see
Remark (3.2.4)), we may assume that this map is simplicial, that is, that it
arises from a natural transformation J u n: V^n -> Ϋ u n o I. Let J u n: \™ -> Y u n o I
denote the induced transformation of quotient functors.

Note that there is a canonical map

|γunoj| > |γun|

II II
LI ki x YrTo)/ ^ LI M x γτ

un/~

defined by identifying |σ| X Y^ with |/(σ)| X Yτ^y Similarly for |XoI| and
|YoI|. Consider the diagram:

N/l - |ϋ| > ix°i| > lχl

1- i- I-
|V| |YoI| . |Y|

f f ί
ι γ u n i ι ιv u nι
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Clearly the two squares on the right commute, so to prove the lemma, it
suffices to verify that the left square induces a commutative diagram on
cohomology. But since all of the maps in the diagram arise from natural
transformations, the induced maps on cohomology are completely determined
by their component parts:

- * / ( • >

I- I-
V Yτ,

Recall from the discussion preceding the lemma that the period map / maps
Vσ into y/ ( σ ) (but does not respect boundary maps). The maps Uσ -> Vσ and
Xi(o) -» Yf(σ) are deformation retractions hence are homotopy inverses of the
inclusions Vσ «-> £/σ, 7 / ( σ ) <-> xi{ay I* follows that the diagrams

o i

I- . I
are homotopy commutative. Thus it remains only to show that

J

(8.3.3)
run I

is homotopy commutative. For this it suffices to show that /: Vσ -» Γ/(σ) can
be lifted to a map /: Vd -> ί} ( d ), for in this case, the diagram (8.3.3) lifts to a
diagram

V,

(8.3.4)
J u n ^ I

VD )σ J/(σ)

of fd-equivariant maps. Since fd acts freely on (F^ n ) 5 , and Ϋ~I{d) is contract-
ible, there is a unique such map (V£n)δ -> Ϋ^y up to fά-equivariant homo-
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topy. It follows that for any lifting / of 7, (8.3.4) commutes up to fd-equi-
variant homotopy and hence (8.3.3) commutes up to homotopy.

It remains to construct J: Vd -» Ϋj(dy Consider first the case of a 0-simplex
σ = (α0), 7Cσ) = (L0). In this case, K(βo) = h^(R(S/ao))9 where hao:
D(S/a0) -* R(S) is as in (5.2). Let N(S/a0) denote the normalization of
S/a0. Then there is a natural identification of F ( α o ) with D(N(S/a0)) (or
equivalently, with the Teichmϋller space T(N(S/a0))) given by sending a
homeomorphism S" -> S/a0 to the induced homeomorphism N(S') ->
N(S/a0) of the normalizations. Since N(S/a0) is nonsingular, the period map
J, restricted to R(S/a0), lifts to a map Ja :

F(αo) - D(N(S/a0)) - > e(Aut(U/L0, λ)) c

|Λαo 1"
/L0, λ)) c

(see (7.1)). In particular, since f/(αo) = ^(Aut(L£/Lo, λ)), we have

In general, for any σ = ( α 0 < « ! < • • < ak) in | ^ " ( 5 ) + | , F 5 is contained

in F ( β o ) , so m . 7 0 o ( F s ) = 7 . A a o (F β ) = / ( F σ ) c y / ( σ ) , hence

U/L0, λ)) = f/(β).

Thus / : Vd -> Ϋ;(5) is the desired lift of /: Vσ -• Y/(σ). This completes the
proof of the lemma.

(8.4) Let J: SCg -> Wg be the functor of (7.4.1). To complete the proof of
Proposition (7.4.3), and hence also of Theorem (7.1.4), it remains to verify the
following lemma.

Lemma (8.4.1). There exist homotopy equivalences |SCg| ̂  |V un |, |Wg| ^ |Y H

such that the diagram

|V |—^—^ IY

1- ί
commutes up to homotopy.

Proof of (8.4.1). The proof is another application of the theory of universal
functors. Recall from the proof of (8.3.2) that/, is a composite

|yun| = | γmi |^ l | γun o I | _»|γim|β
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By definition, \£n, Y1"1 <>I are quotients of functors \gn, Ϋun °ϊ, universal with
respect to t and SP°Ϊ respectively. The natural transformation J u n is the
quotient of the unique (up to Γ-equivariant homotopy) natural transformation
jun. ŷ in ^ γ u n o j W e n e e d t o ^Q^^ t h e map |J|: |SCg| -+ |Wg| similarly as
the quotient of a majM)f universal functors. In (6.3) it is shown that there is a
universal f-functor SC^: SimΓ |^r'(5')+ | -» Top such that |SC^|/Γ is canoni-
cally homeomorphic to |SCg|. The same procedure can be applied to the
category Wg to obtain a universal SP-functor Wg

F: S im S P | ^ + | -> Top such that
|Wg

F|/SPg(Z) is canonically homeomoφhic to |Wg|. For this, we first lift Wg to a
category Wg with SPg(Z)-action whose objects are quadruples (<p, L, P, λ) such
that L is a vertex in | ^ + | , (P, λ) is an object in Wg, and φ: (L±/L, λL) ->
(P, λ) is an isometry. A morphism φ: (φ, L, P, λ) -> (φ', L', P', λ') in Wg is
defined by an inclusion relation L c L' together with a morphism (L", ψ):
(P, λ) -> (P\ λ') in Wg such that the diagram

is commutative in Wg. The action of M E SPg(Z) on Wg is given by M
(φ, L, P, λ) = (ψM o φ, L Λf, P, λ), where φM: ((L M ) V ( L * M), λ L Λ / )
-> (L±/L, λL) is the isometry induced by M~ι.

Now, arguing as in (6.2) and (6.3), one has forgetful functors F: Wg -> Wg

and Fo: \Vg-+^g

+. The first induces a homeomorphism |Wg|/Γ = |Wg|. The
second is used to define "fiber categories" Wσ whose objects are sequences of
morphisms in Wg lying over σ e | ^ + | and whose moφhisms are commutative
diagrams. The resulting spaces |Wσ| are universal spaces for SPσ =
P(LQ/L0, σ/L0) and thus define a universal SP-functor, Wg

F: S im S P | ^ + | ->
Top, such that |W/| = |Wg| and hence |W/|/SPg(Z) = |Wg|. The details are
exactly as in (6.2), (6.3) and we leave their verification to the reader. Compos-
ing with I: S i m Γ | ^ ( 5 ) + | -> SimSP\Fg\, we obtain a universal SP°ϊ-functor,
W/ΌΪ: SimΓ |^ r(S')+ | -> Top, and a canonical map |W/<>Ϊ| ^ |Wg

F|.
Consider the functor J: SCg -> W ^ ^ (H\N(R); Z), λ), of (7.4). This

lifts to an equivariant functor J: SCg -> Wg, (φ, S/a, R) -> (N(φ)*9 Lα,
H\N(R); Z), λ), where La = lm(H\S/a; Z)-1 ^ H\S; Z)) and N(φ)*:
La/La = H\N(S/a); Z) ^ H\N(R); Z) is the isometry induced by the
normalization of φ, N(φ): N(S/ά) -» A (̂.R). Recalling (8.1), the correspon-
dence a •-> Lα induces the map /: |^"(5) + | -> |«^+|, so there is a commutative
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diagram:

i s c s l — ^ | w j

It follows that J induces maps of fiber categories Jσ: SCσ -> W/(σj and hence a
natural transformation of universal functors J F : SC^ -> Wg

F°I. Comparing
this with the natural transformation J u n : \gn -> Ϋun °I, the rigidity of univer-
sal functors (Proposition (3.2.3)) implies that there exists homotopy equiva-
lences IV^I ^ |SC£| and ft™ °ϊ| Z |W/Όί| such that the diagram

is commutative up to Γ-equivariant homotopy. Taking quotients by the action
of Γ, Lemma (8.4.1) follows immediately.
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