
J. DIFFERENTIAL GEOMETRY
18 (1983) 445-503

FOLIATIONS AND THE TOPOLOGY OF
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1. Introduction

Given a compact connected oriented 3-manifold M with boundary 3Λf,

when does there exist a codimension-1 transversely oriented foliation ^ which

is transverse to dM and has no Reeb components? If such an Sexists, then dM

necessarily is a (possibly empty) union of tori and M is either S2 X Sι (and §"

is the product foliation) or irreducible. The first condition follows by Euler

characteristic reasons while the latter follows from the work of Rosenberg [24]

extending the work of Reeb [23] and Novikov [21]. Our main result says that

such conditions are sufficient when H2(M, dM) φ 0.

If such a foliation Sexists on M, then it follows from the work of Thurston

[32] that any compact leaf L is a Thurston norm minimizing surface for the

class [L] G H2(M, dM). Our main result says that for a 3-manifold M satisfy-

ing the above necessary conditions any norm minimizing surface can be

realized as a compact leaf of a foliation without Reeb components.

Theorem 5.5. Let M be a compact connected irreducible oriented 'i-manifold

whose boundary dM is a (possibly empty) union of tori. Let S be any norm

minimizing surface representing a nontrivial class z E H2(M, dM). Then there

exists foliations % and 5", of M such that:

(\)fori = Q, 1, φ. ffl dM and % \ dM has no Reeb components,

(2) every leaf of % and (%λ nontrivially intersects a closed transverse curve,

(3) S is a compact leaf of both % and %

(4) % is of finite depth,

(5) ^Ί is C°° except possibly along toral components of S.

We now state some corollaries of the theorem.

Corollary 6.2. Let L be an oriented nonsplit link in S3. Then S is a surface of

minimal genus for L if and only if there exists a C°° transversely oriented foliation
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<§of S3 - N(L) such that

(1) f Γϊl dN(L) and $ and 3F| θiV(L) λαt e wo Reeb components,

(2) S w a compact leaf.

The => direction follows from Theorem 5.5 and Thurston [32] proved the

converse. Simple methods for explicitly constructing foliations for certain

classes of knots and links, thereby computing their genera, can be found in [5],

[6] and [7].

Corollary 6.5. A nontήvial link Lin S3 is nonsplit if and only ifL is the set of

cores of Reeb components of some foliation ΦofS3.

The => direction follows from Theorem 5.5. Novikov [21] proved the con-

verse in 1965. We therefore answer the so-called "Reeb placement problem" of

Laudenbach and Roussarie [16] who asked which links could be realized as

cores of Reeb components of foliations of S3. The holonomy of our foliations

along the toral leaves is in general C°. The C00 problem is open although it can

be solved for the alternating knots, fibred knots, many other knots, and certain

"sums" of such knots using the constructions [6]-[8]

Corollary 6.7. Let Rtbe a Seifert surface for the oriented link L, C S3 for

i — 1,2, and R be any Murasugi sum (or generalized plumbing) of R{ and R2

with L — dR. Then R is a minimal genus surface for the oriented link L if and

only if each /^ is a minimal genus surface for the oriented link Lz.

This generalizes the classical result due to Seifert in the 1930's that the

connected sum of minimal genus surfaces is a surface of minimal genus.

Corollary 6.9. Let M be a compact connected irreducible oriented 3-manifold

whose boundary ΘM is a (possibly empty) union of incompressible tori, and

H2(M,dM) is not generated by tori and annuli. Then there exists a C 0 0

transversely oriented foliation ^ on M such that ^ ίίl ΘM, <$\ ΘM has no Reeb

components, and no leaf of ^ is compact.

In particular we have

Corollary 6.11. Let M be either a compact connected oriented 3-manifold

whose interior has a complete hyperbolic metric and H2(M, ΘM) Φ 0, or M —

S3 — N(L) where L is a nonsplit nontrivial link in S3. Then there exists a C°°

transversely oriented foliation ¥ of M such that 3F has no compact leaves,

®ί ffl ΘM, and <$\ ΘM has no Reeb components.

The conditions that ΘM be a union of incompressible tori and M be

irreducible are necessary by Novikov's work. The question of whether a

manifold possesses a C°° codimension-1 foliation without compact leaves has

been precisely answered by the work of Thurston [31], Levitt [18], Wood [34],

and Milnor [19] for circle bundles over surfaces and for most Seifert fibred

spaces by [4]; see also [5]. The 2-dimensional homology of these spaces (except

for trivial cases) is generated by tori and annuli. It would be interesting to
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finish the 'in between' case to completely answer this question for all 3-mani-

folds with H2(M, dM) φ 0.

Applying a criterion of Sullivan [30] we obtain

Corollary 6.12. Suppose M is a compact connected oriented irreducible

3-manifold with boundary dM such that χ(dM) = 0 and H2(M, dM) is not

generated by tori and annuli. Then there exist a Riemannian metric and foliation

<$ on M such that *$ ίtl dM, and every leaf is minimal {i.e., mean curvature 0).

Corollary 6.13. Let M be a compact oriented 3-manifold. Let p : M -> M be

an n-fold covering map and let z G H2(M) = H\M, dM) or z G H2(M, dM)

= H\M). Then n(x(z)) = x(p*(z)) where x(z) denotes the Thurston norm of

z.

The truth of Corollary 6.13 was conjectured by Thurston in [32].

Corollary 6.18. Let M be a compact oriented 3-maψfold. Then on H2(M) or

H2(M, dM), xs — x — \g where xs denotes the norψ on homology based on

singular surfaces, and g denotes the Gromov norm.

The equality of the singular and Thurston norms was also conjectured by

Thurston in [32]. Recall that the immersed genus of a knot K in S3 is the

smallest g such that K bounds a punctured immersed surface S of genus g,

which is nonsingular along the boundary, i.e., f:S-*S3 and f~\K) = dS. A

special case of Corollary 6.18 is

Corollary 6.22. If K is α knot in S3, then the immersed genus of K equals the

embedded genus of K.

More generally we have

Corollary 6.23. Let M be a compact oriented 3-manifold, S a compact

oriented surface with connected boundary, and f: S -> M a map such that f\ dS is

an embedding and f~ι(f(dS)) — dS. Then there exists an embedded surface T in

M such that dT — dS and genus T < genus S.

In words, Corollary 6.18 says that given an immersed surface in M there

exists an embedded surface of not larger "topological complexity" which

represents the same homology class. Corollary 6.23 is exactly Dehn's lemma

for higher genus surfaces. Papakyriakopoulos [22] asked about the truth of the

higher genus Dehn's lemma in his 1957 paper giving the first correct proof of

Dehn's lemma.

The paper is organized as follows. Basic definitions and notation are

introduced in §2. In §3 we define the general sutured manifold operations and

show that a sutured manifold satisfying certain hypotheses can be split in a

nice way to yield a new one. In §4 we show that one can only 'nontrivially'

decompose a sutured manifold a finite number of times. In §5 we show how a

sutured manifold hierarchy yields a prescription to construct a foliation on a
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manifold, completing the proof of Theorem 5.5. In §6 we state and prove some
corollaries of the theorem. To prove Corollary 6.18 we need

Theorem 7.1. Let M be a closed oriented 3-manifold. Let ^be a finite depth

transversely oriented foliation without Reeb components. Let f: S -* M be a map

of a closed oriented surface S φ S2 such that the image of every homotopically

nontrivial simple closed curve in S is homotopically nontrivial Thenf ^ g : S -> M

where g is an immersion and g(S) (tl *$ except for a finite number of circle and

saddle tangencies.

The proof of Theorem 7.1 is the content of §7. Roussarie [25] and Thurston
[31] independently proved this result around 1971 for the case / was an
embedding. When finite depth is replaced by C00, this result also follows from
the work of Sullivan [30], Sacks-Uhlenbeck [26], Schoen-Yau [27] and Hass [12]
using minimal surface techniques. The proof here is elementary and topologi-
cal. \

2. Preliminaries

If M is an oriented manifold, and S is an oriented codimension-1 submani-
fold, then they determine a well-defined field of unit normal vectors to S.
Conversely a normal direction determines an orientation for S. Define the +
side (or —side) to be the side where the normal points out (in). If X is a set (or
space), define | X\ to be the number of elements (or components) of X. If W is a
codimension-1 foliation, then a transverse curve is a smooth curve which
intersects the leaves of *§ transversely. The symbol ίtl means transverse to. For
ideas and definitions concerning 3-manifolds see Jaco [15] or Hempel [14]. For
ideas and definitions concerning foliations see Lawson [17].

Notation 2.1. If R is a properly embedded compact oriented surface in a
compact oriented manifold, then [R] denotes the homology class which R
represents. If S is a submanifold of Λf, then N(S) denotes a product neighbor-
hood of S in Λf. If R and S are oriented submanifolds of Λf, and dim R +
dim S — dim Λf, then ( ,) denotes their algebraic intersection number. E
denotes the interior of E.

Definition 2.2. Let 5 be a compact oriented surface 5 = Όn

i=xSi, St

connected. Then define the norm of S to be

χ(s)= Σ

In [32] Thurston defines a pseudonorm on H2(Mi 3M) and H2(M). We
review the definition of the Thurston norm presenting it in a slightly more
general context.
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Definition 2.3. Let M be a compact oriented 3-manifold. Let A' be a
codimension-0 submanifold of dM. Let z E H2(M, K). Define the norm of z to
be

x(z) = Min{jc(S)|(S, 95) is a properly embedded surface in (M, K),

Definition 2.4. Let S be a properly embedded oriented surface in the
compact oriented 3-manifold M. Then S is norm minimizing in H2(M, K) if
95 C #, S is incompressible, and x(S) = x([5]) for [5] E iJ2(M, # ) .

Theorem 2.5 (Thurston [32]). Le/ M be a compact oriented 3-manifold. Let
^ be a codimensionΛ transversely oriented foliation without Reeb components of
M such that ®ί is transverse to dM. If R is a compact leaf, then R is norm
minimizing (as an element ofH2(M, dM)).

Definition 2.6. A sutured manifold (Λf, γ) is a compact oriented 3-mani-
fold M together with a set γ C dM of pairwise disjoint annuli A(y) and tori
Γ(γ). Furthermore, the interior of each component of A(y) contains a suture,
i.e., a homologically nontrivial oriented simple closed curve. We denote the set
of sutures by s(γ).

Finally every component of R(y) = dM — γ is oriented. Define R+ (γ) (or
R- (γ)) to be those components of dM — γ whose normal vectors point out of
(into) M. The orientations on Λ(γ) must be coherent with respect to s(y\ i.e.,
if δ is a component of dR(y) and is given the boundary orientation, then 8
must represent the same homology class in i/j(γ) as some suture.

Example 2.7 (Figure 2.1).

M=-D2

FIG. 2.1

We state a basic result, part (1) of which is classical, parts (2)-(5) are
basically due to Novikov [21], [13]. Part (3) is Rosenberg's [24] significant
improvement of Novikov's result ττ2(M) = 0.

Theorem 2.8. Let M be a compact oriented 3-manifold. Let $ be a trans-
versely oriented codimensionΛ foliation of M such that % has no Reeb compo-
nents, and<$(\\ dM. Then:

(1) dM is a (possibly empty) union of tori,
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(2) I * , ( * # ) |=OO,

(3) M is either irreducible or S2 X S 1 with the product foliation,

(4) for every leaf L in ^the map πx{L) -> πx(M) is infective,

(5) no transverse closed curve is homotopically trivial.

Definition 2.9. Let M be a compact oriented 3-manifold, and ^ a codimen-

sion-1 foliation. We say a leaf L is depth 0 if L is compact. Having defined the

depth j ( ^ k) leaves we say L is a depth k + 1 leaf if L — L is a union of

depth j (^k) leaves and contains some depth k leaf. *% is depth k \i k —

max{deρth L \ L E $"}. In general the depth of a leaf or a foliation may not be

defined.

For a good discussion of depth see Cantwell-Conlon [2]. Be aware that they

call depth k, totally proper at level k. Note that if ^ is transversely oriented,

and M is compact, then S îs depth 0 if and only if M fibres over Sι.

Definition 2.10. A sutured manifold (M, γ) is taut if M is irreducible and

R(y) is norm minimizing in H2(M, γ).

Definition 2.11. A transversely oriented codimension-1 foliation 5" on

(M, γ) is taut if ^ i s transverse to γ, tangent to R(y) with the normal direction

pointing inward (outward) along Λ_(γ) (R+(y)), Ψ\y has no Reeb compo-

nents, and each leaf intersects a transverse curve or properly embedded arc.

Theorem 2.12. Let M be oriented. If (M, γ) has a taut foliation ty, then

either (M, γ) is taut or M — S2 X S 1 or S2 X /, and ^ is the product foliation.

Proof. This is basically Theorem 2.5 restated in the language of sutured

manifolds. Thurston's proof extends to this more general setting. We actually

only need the hypothesis that 5" has no Reeb components (instead of <$ being

taut), q.e.d.

A goal of this paper is to prove the converse of Theorem 2.12 when

3. Sutured Manifold Decomposition

Definition 3.1. Let (M, γ) be a sutured manifold, and S a properly

embedded surface in M such that for every component λ of S Π γ one of

(l)-(3) holds:

(1) λ is a properly embedded nonseparating arc in γ.

(2) λ is a simple closed curve in an annular component A of γ in the same

homology class as A Π s(γ).

(3) λ is a homotopically nontrivial curve in a toral component T of γ, and if

δ is another component of T Γ) S, then λ and δ represent the same homology

class in Hλ(T).
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Then 5 defines a sutured manifold decomposition

)

γ' = (γ Π M') U N(S'+ ΠR_ (γ)) U N(SL DR+ (γ)),

* _ (γ') = ((#_ (γ) Π M') U 51) - f',

where 5+ (51) is that component of dN(S) Π AT whose normal vector points
out of (into) M' (see Figure 3.1 for an example).

s
Definition 3.2. If (Af, γ) ~*(Af, γ') is a sutured manifold decomposition,

define
5+ = 5'+ ΠR+ (γ'), 5_ = 51 ΠR_ (γ')

Remark 3.3. In words the sutured manifold (Af', γ') is constructed by
splitting Af along 5, creating R+ (y') by adding 5'+ to what was left of R+ (γ)
and creating Λ_(γ') by adding 5 1 , to what was left of R_(y). Finally one
creates the annuli of y' by "thickening" R+(y') Γ\ R_(y').

Definition 3.4. A sutured manifold is decomposable if there is a sequence of
decompositions

(Af,γ) ^(MX9yx) ~» ••• ̂ ( A / π , γ J = ( 5 X 7 , 3 5 X 7 )

where R+(yn) = 5 X 1 .
Example.

FIG. 3.1
Our goal now is to show that decompositions exist under certain conditions.

Lemma 3.5. Let (M, γ) ~»(M', γ r) be a sutured manifold decomposition. If

(Λf, γ') is taut, then either (Af, γ) is taut or M = D2 X 5 1 α«rf 5 w β έ/wc with

dS C Λ(γ) = 3M.
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Proof. If (Λf, γ) is not taut and either R(y) is compressible or M is
reducible, then either R'(y) is compressible or Λf is reducible. Otherwise there
exists an embedded incompressible surface T C M such that dT = s(y),[T] =
[R+ (y)] E H2{M, γ), but x(T) < x(R+ (γ)); hence there exists an embedded
incompressible V C M' (obtained by doing surgery with T and R+{y) and
compressing) such that dΓ = s(y'% [Γ] = [R+(y')] G # 2 (M', γ') and x(Γ)
<x(R+{y')).

Lemma 3.6. Let T and R be properly embedded compact incompressible

oriented surfaces in an oriented 3-manifold M with boundary dM. Suppose W is a

union of disjoint annuli and tori in ΘM, dT U dR C W, [T] = [R] G H2(M, W)

and x(R) > x(T). Then there exists an oriented properly embedded surface S in

Msuch that dS C Wand

(2)x(S)<x(R)9

(3)R Π S= 0.
Proof. Step 1. First perturb T so that R ΓtΊ T. Since R and T restrict to the

same homology class on each component of W, we can attach annuli to
oppositely oriented parallel components of 3Γ, isotope the resulting surface Tλ,
and perform compressions where necessary to conclude x(Tx) < x(T), [ΓJ =
[T], ΘΓ, Π dR = 0, and Γ, is incompressible. Let T2 be an incompressible
surface so that x(T2) < x(Tλ\ [T2] = [Tx], dT2ΠdR= 0, and | T2 Π R\ is
minimal over all surfaces satisfying the above conditions.

Step 2. No component of R — T2 is a disc. Otherwise we can perform the
appropriate compression to T2 to get T3 so that x(T3) < x(T2\ [T2] = [Γ3], and
| Γ 3 n Λ | < | Γ 2 Π Λ | .

It follows from Step 2 and the incompressibility of R and T2 that no
component of T2 — R is a disc.

Step 3. Define φ : Λ f - Γ 2 U Λ - * Z b y

φ ( 0 = < λ , Λ > - < λ , Γ 2 ) ,

where x G M — (T2U R) is fixed, λ is some oriented path from x to t
transverse to T2 U R, and (,) denotes algebraic intersection number, φ is well
defined, for if 8 is any other path from x to Γ, then

0 = ( λ * δ - ι , # U (-Γ 2 ))= (λ « - \ Λ ) - ( λ * δ " 1 , Γ 2 )

= «λ,Λ)-<λ,Γ2»-«β,Λ)-<δ,Γ2»,

where -T2 denotes T2 oppositely oriented. By choosing x appropriately we can
assume that φ > 0. If T2 Π R Φ 0, then max φ>2. Let / be any connected
region where φ takes on a maximal value. Then / has the property that the
normal to T2 Π /points out of/, and the normal to R Π /points into /.
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If x(J ΠR)> x(J Π Γ2), let S' = (R-J ΠR)U(J Γ) T2). Let S be the
surface S" perturbed slightly so that S Π R = 0 , [S] = [Λ], and JC(,S) <
Whence we are done.

FIG. 3.2

If x(JD R) < jc(7n Γ2), let Γ3 = (Γ2 - 7 n Γ2) U ( 7 n R). Then Γ3 can
b e i s o t o p e d s l i g h t l y s o t h a t \ T 3 Π R \ < \ T 2 Π R \ 9 x ( T 3 ) ^ x ( T 2 \ [T3] = [T2],

and no component of T3 U Λ - (Γ3 Π Λ) is a disc. If φλ: M - T3 U R -* Z is
defined analogously to φ, then either maxφ, < maxφ or maxφ, = maxφ,
and the number of regions where φx is maximal is less than the number of
regions where φ is maximal. The proof follows by induction.

Lemma 3.7. Let (M, γ) be a sutured manifold such that R+(y) and R-(y)
are norm minimizing in H2(M, γ) and γ is incompressible. Let N be the
3-manifold obtained by doubling M along R(y). Then R+(y\ R-(y) are norm
minimizing surfaces in H2(N9 dN).

Remark. N should be viewed as the union of the two sutured manifolds
(Λfh γ,) and (M2, γ2) where M = MX=M2 and R(y) = Λ(γ,) = -Λ(γ2). By
R+ (γ) C N we mean the inclusion of R+ (γx) into N.

Proof. We will prove that R — R+{yλ) U R-(yλ) is a norm minimizing
surface in N. The result will then follow from the elementary fact that if P is a
norm minimizing surface, and Q is a union of components of P, then Q is a
norm minimizing surface.
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If R is not norm minimizing, then there exists a properly embedded oriented
surface T such that [T] = [R] G H2(N, dN) and x(T) < x(R). Since R+ (γ),
R-(y) and 3iV are incompressible, we can apply Lemma 3.6 to conclude that
there exists an oriented properly embedded surface S C N such that [S] = [R],
x(S) < x(R), and S Π R = 0 .

Define φ: N - R U S -* Z as in Lemma 3.6, i.e., fix x G N - R U S, and
define φ(ί) = (Λ,γ>—(S, γ) where γ is a path from x to / transverse to
RU S. For simplicity pick a basepoint so that φ is nonnegative. φ defines a
chain d = Σψ(W)W such that 9 r f = 5 U ( - i ? ) U e where e C 3Λ̂ , and the
sum is taken over all components Woϊ N — (RU S).

Suppose that V was a region of N — R U S such that φ(F) was maximal.
Then since R separates N, KCM, oτ_V C M2. Furthermore, (dVΠ R) C
Λ+(γ) or Λ_(γ). So we can assume F C M , and dVΠ R C Λ+(γ). Now
dV = A U B U C where 4̂ is a union of components oί R+(y), B is a union of
components of S, and C C 3Λf.

Since R+ is norm minimizing in M1? so is A; hence x(^ί) < ^(.S). Thus if
φ(W)<\ for all components JF of N - (R U S\ we conclude xίS') ^ x(R)
contradicting the hypothesis.

If φ(F) > 1, let A X / be a product neighborhood of A such that A = A X {,
A X [1/2,1] C K, Λ X [0,1/2] Π F = 0, and x & A X I. Let i ) = v 4 X 0
(Figure 3.3) be oriented so that [Z>] = [Λ] = [5] G ̂ 2(iV, 37V). Finally let
S ι = ( S - B)U D.

φ=k I ψ=k-\

FIG. 3.3

W e h a v e x ( S x ) < x ( S \ [Sx] = [S], S } Π R = 0 a n d a n e w m a p φ x : N -

R U 5Ϊ -> Z defined analogously to φ satisfying Maximum(φ) ^
Maximum(φ!) with equality holding only if the number of regions where the
maximum is achieved is fewer under φx than under φ. The result now follows
by induction.

Lemma 3.8. Let (M, γ) be α sutured manifold. If dM is not empty and not a
union ofl-spheres, then there exists a class z G H2(M, dM) such that 0 ψ dz G
Hx(dM) and the following hold.

(1) For each nonplanar component V of R(y) and each component λ of 3F,
<z,λ>=0.
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(2) For each planar component V of R(y) there exist at most two components
λj andλ2 of dVsuch that <z, λ,.)^ 0, i = 1,2.

Proof. For simplicity assume that no component of dM is a 2-sphere.
It follows from Poincare duality and the long exact homology sequence that

rank H2(M, dM) > ^rank Hx(dM) =\dM\ + \-x(dM) = k and is generated
by Zj, ,zk, zk+u- "9zι where dzl9 ,dzk are linearly independent in Hx(dM).

Let δ1?- ,δj be a maximal set of sutures in s(y) such that no component of
dM — Uδi is planar. Since j < k — 1, it follows that by taking a linear
combination of the z/s, / < /:, there exists a z G H2(M, dM) such that for
0 < i *zj (z, δy> = 0 and 0 φ dz G Hλ(dM).

Let 5 be a properly embedded oriented surface representing z in H2(M, 3M)
such that S Π U / = 1 δ ; = 0 . Let V be a component of Λ(γ), / be the
component of dM — UJ

i=ιδi which contains V, / b e the surface obtained by
capping off the components of 3/ with discs, and W be the set of oriented
curves S Π /. If a is a component of 3F, then (z, a) = ( W, α) where the latter
algebraic intersection number is computed in /. Hence if a is homotopically
trivial in /, then 0 = (W,a)= (z,a). If a is not homotopically trivial in /,
then / — a is an annulus containing V. Hence V is planar, and there can be at
most one other curve in 3 V homotopically nontrivial in /.

Lemma 3.9. Let Vbe a compact oriented surface with boundary dV.
(ϊ)IfOΦ\E: HX{V, 3F), and (λ, a) = 0 for every component a of 3F, then

\ — k[μ] where μ is a simple closed curve and k E Z.
(ii) If V is planar, and (λ, a) φ 0 for at most two components a of dV, then

λ = k[μ] where μ is a simple arc.

Proof, (i) Assume that λ is represented by a set δ of pairwise disjoint
oriented simple closed curves with fewest number of components. If the closure
of some component of V — δ did not intersect exactly two components of δ,
then δ is not a smallest set (Figure 3.4). It is now evident that λ = k[μ] where μ
is one component of λ.

FIG. 3.4
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(ii) Assume that λ is represented by a set δ of properly embedded pairwise

disjoint oriented arcs δ so that if α is a component of dV, then (α, δ) =

±\a Π δ | . Thus λ = k[μ] where μ is a component of δ and k =\a Π δ | .

q.e.d.

The proof of the following stronger lemma follows along the same lines as

Lemma 3.9.

Lemma 3.10. // V is a compact oriented surface, and 8 is a set of properly

embedded oriented curves such that [8] E HX(V, dV) satisfies (i) or (ii) of Lemma

3.9, then there exists a sequence of sets of pairwise disjoint properly embedded

oriented curves λo,λx, ,λp such that λo = 8,λp is a set of k parallel oriented

properly embedded simple closed curves or arcs (depending on whether (i) or (ii)

held), and dW = λi+x U (-λ,) for some compact subsurface (i.e., inherits

orientation from V) Wr

Lemma 3.11. Let (M, y) be a taut sutured manifold. Let N be the manifold

with boundary obtained by doubling M along R(y), and let z E H2(N, dN). Then

there exists an integer n>0 and a properly embedded oriented surface T such

that the following hold.

(2) T is norm minimizing.

(3) // S is a surface obtained by doing cut and paste surgery to T and either

R+(y) or R_(y), then S is norm minimizing, and each component of S Π γ

satisfies one of the three conditions of Definition 3.1 where (M,y) is viewed as

being embedded in N.

(4) // V is a component of R(y), then no nontrivial subset of V Π T is

homologically trivial in HX(V, dV). Furthermore, the following hold.

(a) // Vis a component of R(y) such that (z, δ ) = 0 for every component 8 of

dV, then T Π V is a set of k (> 0) parallel oriented simple closed homologically

nontrivial curves.

(b) // V is a planar component of R(y) such that (z, δ ) ^ 0 for exactly two

components δx and δ 2 of dV, then T Π V is a set of\(z,8λ)\ parallel oriented

properly embedded arcs.

Proof. By [31, Theorem 2] there exists an integer m ^ 0 such that for all
k^O

x[(m + k)[R(y)] + z] = kx[R(y)] + x[mR(y) + z\.

This statement can be deduced from the facts that the norm is linear on rays

and is convex, i.e.,

x{k(z)) = kx(z), x(zx) + x(z2) ^ x(zλ + z2),

and takes on integer values on integer lattice points. Thurston more generally

proves that the norm is the supremum of a finite number of linear forms.
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Let Tx be a norm minimizing surface representing m[R(y)] + z.lfA is any
component of dN, then we can assume that Tx Π A is a union of parallel
oriented simple closed curves, since oppositely oriented components of Γ, Π A
can be capped off by annuli. Furthermore, m can be chosen to be sufficiently
large so that if a is a component of dR(y) Π A, then either (a, Tx) = | a Π Tx \
φ 0 or α Π 71! = 0, and [Γ, Π A] = fc[α] E ^ ( Λ ) for some A: > 0. Since Mis
irreducible and Tx and Λ(γ) are incompressible, we can isotope Tx so that the
surface T2 obtained by cutting and pasting r (> 0) copies of R(y) and Tx

contains no surfaces of positive Euler characteristic. Hence

=\χ(T2) M rχ(Λ(γ)) + χ(Tx) |=

z] =

This shows in particular that every component of negative Euler characteris-
tic of T2 is incompressible. It follows from the previous paragraph that no
component of T2 is 3-compressible.

Let us assume that T2 was obtained by doing surgery where r — 1. If W is a
subsurface of R(y) such that dW - dN = λx U UλΛ U (Sx) U U(-δ7)
where δ, is a component of Γ, Π Λ(γ) and λf. Π ^ = 0, then T2 can be
isotoped slightly so that T2 (Ί R(y) = ( ^ Π .R(γ) - Uδz) U (Uλ f ). This can
be seen by performing the surgery in two steps. First do the surgery along the
curves Tx Π W, and homotope the resulting surface P slightly so that P Π
R(y) = (Tx Π R(y) - Uδ,.) U (Uλ,). Finally do surgery along the remaining
curves to get T3. It now follows from Lemma 3.10 that by surgering Tx and r
copies of R(y) we can obtain a surface T3 so that (4) holds.

Let T — T3 — J where / is a maximal collection of components (necessarily
tori) of T3 such that 0 = [/] G H2(N, dN).

Lemma 3.12. Let (M, γ) ~*(M', γ') be a decomposition such that either J is

a disc and \J Π s(y)\= 2 or J is an annulus with one component of dJ lying in

each of R+ (γ) and R_ (γ). Then (M, γ) is taut if and only if (Λf, γ') is taut.
Theorem 3.13. Let (M, γ) be a taut sutured manifold such that H2(M, 3M)

s
φ 0. Then there exists a decomposition (M,y) ~*(Mx,yx) such that (Mx,yx) is
taut, S is connected, and 0 φ [dS] G Hx(dM) if dλf φ 0 . Furthermore, for a
component V of R(y), S Π V is a union of k (> 0) parallel oriented nonseparat-
ing simple closed curves, if V is nonplanar, or arcs if V is planar.

Proof. If Λf is closed let S be any norm minimizing surface. If dM φ 0, let
z be a homology class obtained by applying Lemma 3.8 to (M, γ), P a properly
embedded surface in M such that [P] = z, N the 3-manifold obtained by
doubling M along R(y\ and P' the oriented surface in N obtained by doubling
P along dP - y. Let z = [P'] G H2(N, dN), T be the properly embedded
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oriented surface obtained by applying Lemma 3.11 to z, T be the surface
obtained by doing surgery with T and R(y), S' = T Π M, and S a component
of S' such that 0 Ψ [dS] G Hx(dM). Consider the decompositions

', γ'), (i )( M , γ ) - ( M 1 , γ 1 ) , (M, γ) -

It suffices to show (Λfl5 γj) is taut.
There exists a set / of properly embedded pairwise disjoint annuli and discs

in N' satisfying the hypotheses of Lemma 3.12 such that the decomposition

(N'J')~*(N'\δ") yields (M',γ') as a component of (N",δ"). By Lemma

3.12 (N'\ δ"); hence (Λf, γ') is taut. This is schematically pictured in Figure

3.5.

FIG. 3.5
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T o complete the proof apply Lemma 3.5 to the commutative diagram:

(M,γ)

^ ^ S s - S/

4. Sutured manifold hierarchies

Definition 4.1. A sutured manifold hierarchy is a sequence of decomposi-

tions

where ( M n , γ j = (i? X /, 3Λ X / ) and R+ (yn) = RX\.

Theorem 4.2. Every connected taut sutured manifold (M, γ), where M is not

a rational homology sphere containing no essential tori, has a sutured manifold

hierarchy such that S( Π dMi_ι φ 0 ifdM(_x Φ 0 , and for every component V

of Λ(γz), Si+X Π V is a union of k (> 0) parallel oriented nonseparating simple

closed curves or arcs.
s

Proof. If M is closed, then a decomposition (M, 0 ) ~*(M,, γj) yields a

taut decomposition if and only if 5 is norm minimizing. Therefore either

H2(M) φ 0 or M contains an essential torus.

We first define the notion of complexity of taut sutured manifolds and

induct on the complexity.

Definition 4.3. The complexity c(M, γ) of the taut sutured manifold (Af, γ)

is given by the 4-tuple (c l 5 c 2, c3, c 4) (cf may be denoted c^Af, γ)) where cx is a

nonnegative integer, c2 is a 6-tuple of nonnegative integers with the dictionary

ordering, and c3 and c4 are finite, possibly empty, sets of positive integers. The

values of c3, cΛ are ordered as follows. If A — {ax>-—9an} and B = {bu ,bm)

are two sets of positive integers with aλ *> a2 > > an, bx > b2 > - — > bm9

then A < B if for some j , at = bt for / <j and either αy < bj or n — j < m

holds. The set of complexities is given the dictionary ordering, i.e.,

(cv c2, c3, c 4) < (c;, cj, cj, c4) if c, = c;, i < j , and c} < c'}.

Proposition 4.4. Let α,, / G Z, be possible complexities of sutured manifolds

so that ax> <x2> . Then there exists an n so that an = an+J for all j > 0.

q.e.d.

We need the following theorem to allow us to define cx(M, γ). It was

originally basically proven by Haken. This version is due to Jaco [15].
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Theorem 4.5. Let M = Mo be a Haken 3-manifold. Then there exists a

smallest integer m, called the height of M, so that any sequence Mo, Mλ, -,Mk

satisfies k < m where Mi+ι = Mt — N(S;) for some nonboundary parallel, prop-

erly embedded, incompressible, boundary incompressible surface Si Φ D2.

Definition 4.6. Let (M, γ) be a taut sutured manifold not containing the
component (D2 X S\ dD2 X Sι). Let D = {Dλ, ,Dn) be a set of property
embedded discs in M so that the following holds.

(1)Z>.ΓMY);
(2) M — UiV(Z>.) is a union of θ-incompressible 3-manifolds Mv -,Mk

and 3-balls B^ ^Bj. Furthermore, if V is a component of dMi9 then V Π
(U#(/),)) has at most one component, and if V= dBi9 then VΠ (UNiD^)
has exactly three or zero components, unless V intersects a unique iV(/),.), and
I KΠ #(/>,)|=2.

Order Mx, ,Mk, and fix r so that j < r if and only if Mj is homeomorphic
to P X I for some closed surface P. Let

D= Π ^ 0 for somey < A:}.

D consists of those discs which split off the "handlebody part" of M from the
"nonhandlebody part" of M. We say that D is a set of complexity discs.

Definition 4.7. nξ = {aλ, a2, ,as) where at is the number of components
of 4 Π j(γ).

IZ),. Π ,s(γ)| if/). Π ^(γ) > 2,

0 if/),. n,s(γ) = 2.
= U U U

D is a set of minimal complexity discs if D minimizes (/if, nf) where E ranges
over all sets of complexity discs, and the 2-tuple is given the dictionary
ordering.

Definition 4.8. Let D be a set of minimal complexity discs

C2(M,y) =

Cx(M,y)= Σ length
i = r+\

n

!i Π U N(Dt)
i=\

Γ,n U

= 2

= 1
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\{VCdMj\j>r,Vns(y)*0}\,

\{Mj\j <r,\{VCdMj\Vn j(γ) φ 0 }| = 2}|,

\[Mj\J < r, \{VCdMj\VΠs(y) φ 0 }| =

Remarks 4.9. (l)Cx(M9y) and the first 3 components of C2(M, γ) depend
only on the topology of M.

(2) The last 3 components of C2(Af, γ), C3(M, γ) and C4(M9 γ) measure the
complexity of the sutures in M.

(3) In words if C2(M, γ) = (al9 a2, α3, a4, a5, a6) then ax (a4) is the num-
ber of components of dMi9 i> r + 1, which non trivially intersect U #(/),.)
(s(y)), a2(a5) is the number of product components of UM, such that both
boundary components nontrivially intersect U N(Dt) (s(γ)), etc.

(4) If (Λf, γ) is taut, connected and Haken, and C(M9 γ) =
(0, (0,0,0,0,0,0), 0, 0), then (M, γ) = (P X /, ΘP X /) where R+(y) =
? X 1 , and P is a compact surface. Define C(D2 X S\ dD2 X S1) =
(0, (0,0,0,0,0,0), 0, 0). The complexity measures how far a structured mani-
fold is from being a product. Discs intersecting ,s(γ) twice correspond to where
the sutured manifold is locally a product, hence do not count in the definition
ofnζ.

Definition 4.10. Let (M, γ) be a taut sutured manifold, and let S be a
maximal set of pairwise disjoint properly embedded annuli and discs in M such
that the following hold.

(1) If A G S is an annulus, then one component of dA is contained in R+ (γ)
and the other component is contained in R_ (γ).

(2) If Al9 A2EL S are annuli, then Aλ and A2 are not parallel in M (i.e.,
bound (annulus) X /), and for * = + , — , / = 1,2, At Π /^(γ) are not parallel
in the same component of R*(y).

(3) If D e 5 is a disc, then | D Π j(γ) |= 2.
(4) If Dλ9 D2 G S are discs, then Dx and D2 are not parallel in M.
Let (M, γ) be the sutured manifold obtained from (Λf, γ) by decomposing

along S and throwing away product sutured manifold components. Then
(M, γ) is called the reduced sutured manifold of (Λf, γ).



462 DAVID GABAI

(M, γ) is well defined and is the sutured manifold obtained by excising all
the "product parts" of (M, γ). (M, γ) is taut by Lemma 3.12.

Definition 4.11. Define the reduced complexity C(M, γ) of the taut sutured
manifold (M, γ) by C(M, γ) = C(M, γ).

The notions of reduced complexity and reduced sutured manifold will not be
used in this paper; however, they are essential in other contexts where one
needs to measure how far certain 3-manifolds with trivial suturing are from
being a product.

We are now ready for the proof of Theorem 4.2.

Step 1. Decompose (M, γ) along discs intersecting s(y) twice to get, by
Lemma 3.12, a taut sutured manifold (Mλ,yλ) with C(Λf,, γ^ < C{M, γ), so
that if D — (Z),, ,DΛ} is a set of minimal complexity discs in (Mv γj), then

Proof. Since dM is compact, and decomposing raises χ(3M) by 2, we can
only do a finite number of such decompositions.

s
Step 2. Let S be a surface so that the decomposition (Ml9 γ^ ~*(M2, γ2)

yields a taut decomposition. Then there exists a commutative diagram

(Mλ9yλ) ^~*>(M2,γ2) — > ( M 3 , γ 3 )

such that F is a union of disjoint discs {Fj} where | Fj Π s(y2) |= 2, [S] = [S2]
G H2(MX, 9M2) and the following four conditions hold.

Condition 1. S2 is transverse to Uΰ,- and intersects UZ),- only in arcs.
Furthermore, each component of S2 Γ\ A(y{) intersects each component of
(UD.)Π (A(yx)) at most once.

Condition 2. No component E of R(yλ) — S2 is a disc satisfying that
E Π S2 is connected and nontrivial.

Condition 3. There exist tubular neighborhoods N(Dt) = D(X I of 2), so
that the following hold.

(a) If W is a component of Mλ — UiVίZ),.), and Γ is a component of
S2 Π W, then either

(i) Ŝ  = T is boundary parallel in W, or
(ii) Γ is not boundary parallel in W, or

(iii) T is parallel to P C dW- U#(£>,), i.e., there exists an embedding
φ : ( Γ X / J Π (UiV(2).)) XI)^(W,WΓ\ (U #(!>,))) such that φ(T X 0) =
Γandφ(ΓX 1) = P.
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(b) NiDj) Π γ, = (Dt Π γ i ) X /, N(Dt) Π 352 = (Dt Π dS2) X /, and N(Dt)

Π S2 can be described as follows:

There exists numbers 0 = aλ < a2 < < <xn — 1 so that S2 Π Dt X α,- is a

set of properly embedded pairwise disjoint arcs λyi, ,λ and each compo-

nent of S2 Π (/>,. X [oLj, aj+ι]) is either of the form λ, X [aj9 aJ+ι] or is a

saddle as in Figure 4.1.

snDixdj+1 i J

S Π

F I G . 4.1

Condition 4. No component λ of Dz X αy Π S2 occurs as in Figure 4.2

where _M^K_ denotes a component of αy X Z)z X ^ ( Y O , the arrows denote the

normal orientation to λ, ± denotes d(Di Π αy) Π Λ ± (y^, and the shaded area

is a disc E in D, X αy .

F I G . 4.2

Proof. The proof is by induction on IS Π (UZ>f ) | . Isotope S so that

Condition 1 holds (for S = S2). If Condition 2 failed (for S = S2) then

S can be replaced by Sλ as in Figure 4.3 because (Mu γ,) ^ ( M 2 , γ 2 ). The

important point is that given 5 with normal vector oriented as in Figure 4.3 we
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are forced to have A C R+ (yγ) and B C R_ (γ,). If the reverse were true, the
s

decomposition (Ml9yl)~*(M29y2) would yield a nontaut sutured manifold.

FIG. 4.3

Assuming that Conditions 1 and 2 hold for S, then isotope S as follows to
satisfy Condition 3.

First find a small tubular neighborhood N(Dt) « D, X / so that N(Dt) Π γj
= (/),. Π γ,) X /. Let W be a component of M - UiΫ(/>,.), and T a compo-
nent of S Π JT.

If Γ is boundary parallel in W, and none of 3(a) holds, then isotope T to lie
close to dW. By pushing 'saddles' into UN(Dt) (Figure 4.4) the resulting
surface V satisfies (iii).

FIG. 4.4
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Now consider a component T of S Π iV(Z>,). Since #(/),) is a 3-ball and 5 is
incompressible, T is a properly embedded disc. By first isotoping T to lie near
9( #(£>,)) it is evident that T can be isotoped to look like a union of saddles
near D X 1 and DXO and to look like λ X / elsewhere, where λ is a set of
properly embedded arcs. Finally one perturbs T so that multipronged saddles
appear as two pronged saddles at discrete levels.

If one of the bad cases of Condition 4 occurred, then E would correspond to
a properly embedded disc F' in M2, which intersected s(y2) twice. By letting Sx

be the surface in Mx obtained by performing a boundary compression along E
to S we get the commutative diagram:

Observe that | Sx Π (U Dt) \<\ S Π (U Z);) | and

[5] = [ S j <ΞH2(MX9dMx).

By induction there exists a commutative diagram

5 F' F"

where [S] = [S2] E H2(MX, dMλ), S2 satisfies Conditions 1-4 and each compo-
nent of F" intersects ^(γ^) in two points. The result follows by letting
F = F' U F".

Step 3. We show C(M2, γ2) < C(MX, yλ) where (M1? yx) ~»(M2, γ2),

(M2, γ2) is taut, 52 satisfies Conditions 1-4 of Step 2, some component of S2 is

not boundary parallel, and (Afj, γ,) satisfies Step 1. For simplicity denote S2

by S, and assume that it is connected.
Case 1. 5 is closed.
Proof. If S is not boundary parallel in M - U #(/),), then CX(M2, γ2) <

Cx(Mx,yx). If 5 is boundary parallel in Mx - U#(£>,), then C,(M2,γ2) =
C2(M1? γ,) and C2(M2, γ2) < C2(M,, γ,).

Case2. 35 ψ 0, 5 Π (UD,-) = 0 .
5 is contained in some component W of Mx —

(i) If S is boundary parallel, then CX(MX, γ,) = C!(M2, γ2), but C^A^, γ,)

>C 2 (M 2 ,γ 2 ) .
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(ii) If S is not boundary parallel, and WΦPXI, then Cλ(M29 γ2) <
CX(MX, yx). This follows from the general fact that if WΊs a compact irreduci-
ble 3-manifold with incompressible boundary, and S is an incompressible
surface, then S is either boundary parallel or one can obtain, by performing
boundary compressions, a boundary incompressible surface S'. Therefore

height W-N(S) = height W - N(S') < height W.

(iii) If S is not boundary parallel, and W — P X /, then

C 2 ( M 2 , γ 2 ) < C 2 ( M 1 , γ I ) , Cx(M2,y2) = Cx(Mx,yx).

(b) If W = B3, then S is a disc E parallel to some Dt. By Step 1 we conclude
\S Π s(y)\> 4. Let E = D — Di where Z> was our original set of minimal
complexity discs. Then some subset F of E gives a set of complexity discs for
(M2, γ2). We now conclude C3(M2, γ2) < C3(M1, Ύ ι) or C3(M2, γ2) =
C3(M1? γ,) and Q(M2, γ2) < C4(M,, γ,). In both cases C,(M2, γ2) <

Case 3. S
Proof, (a) If some component of S Π (Mj — U#(!),)) was not boundary

parallel in a nonproduct component of Mx — U #(/),), then C 1 (M 1 ,γ ι )>
C,(Λf2,γ2).

(b) If (a) does not hold, then C^M^ yx) > CZ(M2, γ2), i = 1,2. We now
show Q(M2, γ2) < C3(MV γ,)^

Let i)̂  G .D, and Λ (̂i3.) = .D, X [0,1] be the standard neighborhood of Dt

described in Condition 4. Let E = U. A X α, where α, is as in Condition
3(b). Let F = E Π M2. One can now find a set of complexity discs G for
(M 2,γ 2) such that G C F. The key point is that if F' is a component of
Dt X α, Π Λf2, then

To see this when Dt Π S is connected with 23f. Π Mj = Ex U .E2, note
(l)\EX n j(γ 2 ) | + | £ 2 n j ( γ 2 ) | = ι 4 n j(γ,) | +2,
(2) I £z Π 5(γ2) | = 2 if and only if one of the seven cases listed in Condition 4

holds.
It now follows that C3(M2, γ2) < C3(Ml9 yx).
Case4. S Π ( U 4 ) = 0 and 5 Π (UZ)Z) ^ 0 .
Proof. Since 5 is connected, S must lie in the "handlebody" part of Mx.

We certainly have Ci(Mx, yx) > C2(M2, y2) for / < 3. We prove that either

29 γ 2) < Q(MX, yx) or C3(M2, γ 2) < C3(MX, yx).
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Let N(D;) — DtX I denote a standard neighborhood described by Condi-
tion 3. Let F— {DtX oίj Π M2), and let B be a ball component of Mλ —
(UiV(£);)). Since each component of S Π B is "boundary parallel" in B —
(U #(/),)), every component of B - (N(S) U N(F)) intersects N(F) in 2 or 3
components. If V — Z); X [α7, o^+J, and 5 Π F contains a saddle, then F —
(N(S) U W(F)) is a union of/? + 2balls^ l 9 B2, -,^+2 w i t h ^ Π ̂ ( i 7 ) ^ 3
for i < 2 and \BiCιN(F)\=2ioτi> 2. It follows that some subset G of Fis a
set of complexity discs.

The proof of Case 4 is easily deduced from the following facts (compare
Case 3) about G:

(1) GCD.
(2) If Fl9 ',FJ = N(Di)nG9 then for / = 1 , 2 , , y, | F , n * ( γ 2 ) | <

Step 4.

Lemma 4.12. Le/ (N, δ) /v^(iV', δ') fcα sutured manifold decomposition so
that (N98) and (N\δ') are taut. Let (N"9δ") be obtained from (N\δ') by
decomposing along a set of discs D each intersecting s(δ) twice so that no
nontrivial compressing disc in N" intersects s(δ") twice. Then the following hold:

(1) C(N", β") < C(N9 δ).
(2) If no nontrivial compressing disc in N intersects s(δ) twice, and some

component of S is not boundary parallel, then C(N", δ") < C(N, δ).
Proof. We have the commutative diagram

(N,
y

I

δ)~

A>
S'

P ^ ^ ι ^ •

-5>(JV',

1
->(N2,

δ')«.

o3
^ D

>> ( AT" δ")

where Do (D2) is a maximal set of pairwise disjoint nonparallel discs each
intersecting s(δ) (^(δ2)) twice, and S' is the surface obtained by modifying the
surface T — Nι Π S in Nλ to satisfy Conditions 1-4 of Step 2. From the
modifications one observes that there exists a set D3 of discs in N' each
intersecting s(δ') twice so that the diagram commutes. It follows from Lemma
3.12 and Step 3 that C(N9 δ) > C(Nl9 δλ) > C(N29 δ2) > C(N"9 δ") with
C{Nλ,δx) = C(N2,δ2) only if each component of S was boundary parallel. To
prove (2) observe that (N9 δ) = (Nl9 δ,).

Step 5. Proof of Theorem 4.2. Let S be the surface obtained by applying
Theorem 3.13 to (M1? γ,), and let S2 be the surface obtained by applying Step

2 to S. Perform the decompositions (M1? yx) ~>(M2, γ2) ~*(Λf3, γ3), where D
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is a maximal set of nonparallel discs each intersecting s(y2) twice. By Lemma

3.12, (M 3 , γ 3) is taut, and by Lemma 4.12, C(M3, γ3) < C(Af,, yx).

It follows by induction that M has a sutured manifold hierarchy satisfying

the conclusions of Theorem 4.2 with one exception. Some decomposing surface

St may be a disc such that | St Π s{yt_x) | = 2, and S, separates a component of

dR(yj-x). Since this can be rectified by applying Lemma 5.4, the result follows.

5. The construction

Theorem 5.1. Suppose M is connected, and (M, γ) has a sutured manifold

hierarchy

so that no component of Λ(γf ) is a compressing torus. Then there exist trans-

versely oriented foliations % and ®ix of M such that the following hold.

(1) % and ^ are tangent to R(y).

(2) ^ and ($x are transverse to γ.

(3) // H2(M, γ) Φ 0 , then every leaf of % and ($x nontrivially intersects a

transverse closed curve or a transverse arc with endpoints in R(y). However, if

0 φ dM — R+(y) or R_(y\ then this holds only for interior leaves.

(4) There are no 2-dimensionalReeb components on %\y, i — 0,1.

(5) <3ι is C°° except possibly along toral components ofR(y) or S{ ifdM = 0 .

(6) % is of finite depth.

Remarks 5.2. (1) If some component of iί(γ,) was a compressible torus,

then the construction described below would yield a foliation with Reeb

components.

(2) If each S, is a disc, then by the construction of [6], % could be made to

be of depth at most 1.

Corollary 5.3. Let (M, γ) be a sutured manifold such that M φ B3 or

S2 X S 1 and H2(M, y) Φ0, then the following are equivalent.

(a) (M, γ) has a sutured manifold decomposition so that no component of R(yt)

is a compressible torus.

(b) (M,y)hasa taut foliation <S.

(c) (Λf, γ) is taut.
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Proof, (a) =» (b) by Theorem 5.1, (b) => (c) by Theorem 2.12, and (c) => (a)

by Theorem 4.2.
s

Lemma 5.4. Let (M, γ) ~*(M', γ') be a decomposition operation. Then there

exists a commutative diagram of sutured manifold decompositions

so that if V is a component of R(yi_λ)9 then either St Π V is a set of parallel

nonseparating oriented simple closed curves or arcs or W φ 0 and St Π V is a

set of oriented properly embedded arcs such that |λ Π 5/1 = 1 (λ, 5Z)| for each

component λ of W. If S is a disc with \ S Π s(y) | = 2, then the former holds for

all i.

Proof.

Case 1. S is an annulus such that dS = 8} U δ2 where δx and δ 2 lie in

different components of R(yι<_ λ).

Proof. If δ( is homologically trivial in H2(R,dR), then there exists a

connected subsurface WiM R so that dWt = λt U (-δ,), where λ,- C 3γ, and -δx

denotes δz oppositely oriented. If δi is homologically nontrivial, let Wi — 0.

Let St =W2UWι\JS9 pushed slightly to be properly embedded in M - 9γ.

If λ, U λ 2 T^ 0 , then \λ U λ 2 should be isotoped to lie parallel to some

sutures. In any case one can find S2, ,Sk so that the conclusions of the

lemma are satisfied. These Sj9j > 2, are annuli and discs.

Case 2. S is a disc satisfying | S Π s(γ) | = 2.

Proof. Proceed analogously as in Case 1.

General case.

Proof. Let V be a component of R{yt-λ\ and let δ = F Π 5. Then as in

Lemma 3.10 there is a sequence of property embedded simple pairwise disjoint

arcs and closed curves δ = δ 0, δl9- ,δ r, where δ,-U (-δ,-.!) U λ / = 3Ŵ  ,

λ, C 9γ, and W îs a codimension-0 subsurface of Fsuch that no proper subset

T of W{ satisfies dT C (-δ/_!) U γ, and further that the set δr satisfies the

conclusions of the lemma with respect to V.

Let To = S, and having constructed 7J_, let T be Tt_x U Wt pushed into M

so as to be properly embedded in M and 37]' Π V — δf . Obtain 7] by doing cut

and paste surgery to eliminate double curves. Finally isotope 7) as in Figure 5.1
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FIG. 5.1

to eliminate trivial intersections with γ. There is now a commutative diagram

To

(M2,y2)

so that each St is either an annulus with 9S, lying in distinct components of
R(Ύi-x) or St is a disc intersecting s^y^^ exactly twice. One now applies Cases
1 and 2 to these decompositions. By continuing in this manner with Γ2, — 9Tk

and repeating this procedure for each component of R(y) we complete the
proof.

Proof of 5.1 (Outline). (1) Apply Lemma 5.4 to each term of the original
decomposition of (Λf, γ) to get a new decomposition. Assume that each
decomposing surface is connected.

(2) Use the new decomposition as a prescription to construct foliations %
and ^ satisfying Conditions 1, 2, and 4. These foliations will satisfy Condition
3 if there does not exist a subset T of U S, which is a union of tori and
O = [T] E H2(M, dM). % will satisfy Condition 5 if no St (i > 1 if dM = 0,
/ ̂  1 if dM T^ 0 ) is a torus. % will satisfy Condition 6 if for every component
V of £(%_,) with Sέ Π WΦ 0 then F Π 5Z is a union of parallel oriented
nonseparating simple curves. One observes from the construction that these
foliations have no Reeb components.

(3) Apply Theorem 2.12 to conclude R+ (γ) and R-(y) are norm minimiz-
ing.

(4) Apply Theorems 3.13 and 4.2 to (M, γ) if H2(M, γ) φ 0, or to (M1? γ,) if
H2(M, γ) = 0 to construct a new sutured manifold decomposition of (M, γ) so
that no decomposing surface S( is a torus unless that dM — 0, H2(M) is
generated by tori and / = 1, and further that if V is a component of ^(γ^j),
then V Π St consists of k (> 0) parallel oriented nonseparating simple curves.

(5) Apply the construction of (2) to the decomposition of (4) to yield the
desired foliations.
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The construction (Proof of (2)). Let

be the decomposition yielded by Step 1.

By definition (Mk9 yk) = (S X /, dS X /) with R+ (yk) = dS X 1. Let %k =

^χ be the product foliation.

Induction hypothesis, (i) Foliations S^ and ®j\ have been constructed on

(Mf., γ,) satisfying the results of Theorem 5.1 except possibly parts (3), (5) and

(6).

(ii) % and ¥( satisfy (3) if dMjφR+(yj) or Λ_(γy) for each j > i. In

particular if U* = / + 1 7} contains no tori and 3M, ^ Λ+ (γ,) or R_ (γ,), then (3)

holds.

(iii) §", is C00 except possibly along toral components of U* = / + 1 7] U ^(γ,).

Furthermore, if 8 is a curve on a nontoral component of R(yt\ and/: [0, <z) ->

[0, b) is a representative of the germ of the holonomy map around δ for the

foliation <${, then

d t Λ ) 10, ι > l .

(iv) F̂Q1 is of finite depth if V Π ̂ ._, is a union of parallel oriented simple

curves for each component Vof Λ(γy ) with ^ . _ x Π d V Φ 0.

(v) F̂Q and 5"/ have no Reeb components.

To construct S^"1 there are three cases to consider. Checking that the

induction hypothesis hold for each case is routine.

Casel. 37) Π Γ(γI _ 1 ) = 0 .

Proof. (Mz _,,%_!> is obtained by gluing 7^ to Tp . Let %~x and Q"/"1 be

the respective foliations induced by % and W{ on (JW)_ l 5 γz_ !>.

Case 2. 37] is contained in a component Kof R(yt).

Proof. By hypothesis 7] Π F is a union of K parallel oriented homologi-

cally nontrivial curves. For simplicity we will assume that 37] is connected and

contained in R_ (%_!). See Figure 5.2(a) for a view of that part of dMt which

contains 7]+ Π Tr.

Let Q be the manifold obtained by gluing 7]+ C Λ + ( γ , ) to T~ C R_(yt)

(Figure 5.2(b)). Let % be the foliation obtained by extending %' to Q. Q is

homeomorphic to Mi_ι and should be thought of as being embedded in Mi_ι

so that Mi_ι -QCN(V).

To construct SQ'"1 extend the foliation ^ to Mi_ι by spiraling the leaves in

towards V to get (Λ^.^γ,..,) (Figure 5.2(c)). It follows that depth SJ/"1 =

depth φj + 1. This operation of spiraling is analogous to the procedure of

extending a 1-dimensional foliation defined on a subset of an annulus to the
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(b)

(c)

FIG. 5.2
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annulus (Figure 5.3). More formally let A be the annular component of γ, such

that dT~ C A. Let/: / -» /be the holonomy map of %\A. Let δ be the simple

closed curve Tt Π F, and let λ be a simple closed curve in V whose geometric

intersection number with δ is 1. Let λ X I be a tubular neighborhood of λ in F.

FIG. 5.3 FIG. 5.4

Construct a foliation on V X / = V X [-oo, oo] as follows.

(A) Give ( F - (λ X (0,1))) X [-oo, oo] the product foliation.

(B) Give F X [-oo, oo] the induced foliation <$ι by identifying (λ,0, /) to

(λ, 1, [t] + f{t — [t])) where [ ] denotes the greatest integer function.

(C) Let ί ^ f ' K F - δ X (0,1)) X [-oo, oo].

(D) Let Φ3 be the induced foliation on F X [-00,00] obtained by identifying

(δ,0, /) with (δ, 1, t + 1) on the f2 foliated manifold (V - 8 X (0,1)) X

[-00,00].

Let μ be the circle (δ, 0,0) C V X [-00, 00]. The leaf LofΦ3 which contains

μ is homeomorphic to the infinite ladder (Figure 5.4). Its ends spiral (limit)

towards VX ±00. Let L be μ together with those points of L lying on

the + side of μ. Let Z C V X [-00, 00] be the set of points in L plus those

points (x, t) whose normal ray (x,(ί, -00]) intersects L nontrivially. Z is

topologically F X / and geometrically diffeomorphic to Mt_ x — Q where V X 0

is the unique compact leaf of 3r31Z, and F X / is the union of a twice

punctured surface contained in L and an annulus transverse to <$3\Z. The

holonomy along the transverse annulus equals /. By gluing Z into Mi_ι — Q

we get the desired foliation S^1"1.

Construction of ${~\ Glue 7]+ to T~, and extend ^ to ^ ] on the

resulting manifold Q. Let/be the holonomy of the transverse annulus.

(1) If the holonomy map / along the transverse annulus is the identity then

by repeating the above construction in an appropriate way one extends ($λ to
(Sr(~ι as desired. If /is not the identity, the above construction yields only a C°

foliation.
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(2) If V is a torus, we apply the previous construction and must be satisfied

with ^l~λ having C° holonomy maps along V.

(3) If dV φ 0, then by pushing the holonomy to the boundary as follows we

can assume that (1) holds. Construct a codimension-1 foliation on(Sλ X I)X I

so that the leaves are transverse to the Sι X / X t factors and the holonomy is

f^\ Construct the manifold Q' by gluing (S 1 X /) X 0 to a collar neighbor-

hood of a component of dV. Finally attach a band (/ X /) X / with the

product foliation to Q' so that / X / X 0 glues to F, 0 X / X / glues to the

transverse annulus, and 1 X / X / glues to ( 5 ι X /) X /.

(4) If V is a surface of genus > 1, and fφ id, then we need the following

theorem whose genesis is due to the work of Mather and Thurston.

Theorem {Mather-Sergeraert-Thurston [28]). /// : / -> / is a C°° diffeomor-

phism satisfying

, n>l9

for a E {0,1}, then there exists C°° diffeomorphisms ci9 bxf: / -» /, i = 1, ,n,

satisfying the above conditions so that

f° lc\> b\\ ° iC2> bl\° '" ° [Cn> dn\ = I d

Now let Qλ be obtained by attaching thick bands Bλ and Cλ to 9(λ

(Compare Figures 5.2(b) and 5.5). Extend ^λ and (3r2 defined on Qλ by

foliating these bands so that the holonomy along Bx (or Cx) is bλ (or cλ). One

now observes that the holonomy along the new transverse annulus is

fcλbxc^λb\λ = / ° [ c , , 6 1 ] . By repeating this procedure n times one gets a

foliation 5 Γ Π + ι on (?", whose holonomy along the transverse annulus is trivial.

F I G . 5.5
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We have now reduced to (1).

Case 3. 37] Π γ H ^ 0 , and 37] is connected (Figures 5.6 and 5.7).

(A) 37]+ is a union of arcs contained in 3γz and properly embedded arcs in

R+ (γ, ) (Figure 5.6(a)). A similar situation holds for dTr . Perform the diffeo-

morphism on Mz (Figure 5.6(b)) obtained by "extending" pieces of γy which

contain dT+ U dT~ . Finally glue T+ to T~ (Figure 5.6(c)) to create the

manifold Q. This gluing is analogous to the operation of stacking chairs on top

of each other. As before Q is homeomorphic to Mi_ι and should be thought of

as lying in Mt_λ - #(#(%_!)) . Fory = 0,1, define <$/ = <5j extended to Q.

^ΐ~χ is constructed by extending ^j to Mt_ λ (Figure 5.6(d)).

(B) Let V be a component of Λ(γz_i) such that 7] Π Vφ 0 . Then P =

N(V) ^ Q appears as in Figure 5.7(a), that is, P is homeomorphic to VX I

and V X 1 = / U (μλ X 7) U U(μn X 7) where/ is tangent to 3F', μm X 0,

m — 1, ,«, is properly embedded in both F X 1 and the leaf L of ^j which

contains /, μm X 1 C dL is properly embedded in V X 1, and SF'|μw X 7 has

the product foliation (Figure 5.8).

(a)
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FIG. 5.7
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F I G . 5.8

(C) Let Qx = Q \JJίχ0 J' X I (Figure 5.7(b)) where J' = J -

N(Un

m=χ(μm X 0)). Qx looks like (M,_ 1 ? yt_x) with ditches βm X J X J, m =

1,2, ,w, drilled out, where βm X 0 X 0 is identified with / i m X 0 and βm X /

X 0 C L. By giving ( β m X /) X / the product foliation and gluing it into Qx

(Figure 5.7(c)) we get the desired foliations %~x and φ{~1. To construct 5"/"1

near F perform the appropriate smooth gluing.

(D) How to construct %~x near V.

View / ' X / as / ' X [1, oo] and βm X / X / as βm X / X [0, oo]. Glue βm X 0

X [0, oo] into ρ, by identifying βm X 0 X [0,1] with μm X [0,1], and βm X 0 X

[1, oo] with α w X [1, oo], where am = μ w X 1 C /', and the identification map

is the identity on [1, oo]. Glue βm X 1 X [0, oo] into Qx by identifying β w X 1

X [0, oo] with a'm X [1, oo], where κ'm = (N(μm X 0) Π /') - α w , and the iden-

tification map/on the second factor isf(x) = x + \.

It is easy to check that when depth ^ is defined, and the μm 's are parallel,

then depth %~x = depthS^ + 1. In general when the μm's are not parallel,

there is no way to glue in β X / X / so that ^~[ has finite depth even when

depth % is finite.

(E) Extend the foliation to the rest of # ( # ( % _ ! ) ) as in parts (B), (C) and

(D).

General Case. Glue 7]+ to T~ , and extend tfj to <5jJ = 0,1, on Q. Apply

Cases 2 and 3 where appropriate to extend these foliations to Mt_x.

Theorem 5.5. Let M be a compact connected irreducible oriented ^-manifold

whose boundary dM is a (possibly empty) union of tori. Let S be a norm

minimizing surface representing a nontriυial class z G H2(M, dM). Then there

exist transversely oriented foliations % and <$x of M such that:

(l)fori = 09l9%(t)dM and % \ dM has no Reeb components,

(2) every leaf of'% and ($x nontrivially intersects a transverse closed curve,

(3) % is of finite depth,

(4) 5", is C°° except possibly along toral components of S,

(5) 5 is a compact leaf of both % and ξF,.
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S

Proof. Consider the decomposition (M, dM) ~*(Af,, γ,). Since 5 is norm

minimizing, (Mvyx) is taut and H2{Mλ, yλ) φ 0. Apply Theorem 4.2 to

(Afl5 γ,) to extend the above decomposition to a sutured manifold decomposi-

tion. Apply Theorem 5.1 to this decomposition to yield the foliations ίF0', <%[ on

(M,, γ^. Identify S+ to S~, and extend ^ and ̂  to M to get the desired

foliations.

6. Consequences

Definition 6.1. A surface of minimal genus for an oriented link L in S3 is

an oriented embedded surface S in S3 containing no closed components, whose

oriented boundary is L and χ(S) > χ(T) for any other surface T satisfying the

above conditions.

This definition generalizes the notion of a minimal genus surface for a knot

in S3 to surfaces spanning oriented links in S3.

Recall that L is a nonsplit link in S3 if there exists no embedded S2 C S3

such that S2 Π L = 0 but each component of S3 — S2 intersects L non-

trivially. Equivalently π2(S3 — L) — 0.

Corollary 6.2. Let L be an oriented nonsplit link in S3. Then S is a surface of

minimal genus for L if and only if there exists a C°° transversely oriented foliation

Φof S3 - N(L) such that:

(l)^(\\dN(L)and^\ dN(L) has no Reeb components,

(2) ^has no Reeb components,

(3) S is a compact leaf.

Proof. => : Apply Theorem 5.5. to S 3 - N(L).

«= : Apply Thurston's Theorem 2.5.

Remark 6.3. Explicit constructions of foliations in the complement of

alternating and arborescent (i.e., algebraic in the sense of Conway [3] and

Bonahon-Siebenmann [1]) can be found in [6] and [7]. For knots (links) of less

than 11(10) crossings see [6].

Definition 6.4. A core of a Reeb component V = D2 X Sι is a smooth

simple closed curve 8 in Fisotopic to t X Sι for some t G D2.

Corollary 6.5. A nontrivial link Lin S3 is nonsplit if and only if L is the set of

cores of Reeb components of some foliation ^ofS3.

Proof. => : Apply Theorems 4.2 and 5.1 to the sutured manifold (S3 —

N(L% γ) where R+(y) = d(N(L)) to construct a foliation f of S3 - N(L)

containing no Reeb components such that d(N(L)) is a compact leaf. Extend ^

to S3 by gluing in Reeb components.

<= : This was proven by Novikov [21] in 1965.
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Remarks 6.6. (1) Corollary 6.5 answers the so-called "Reeb placement

problem" of Laudenbach and Roussarie [16] which asked what links in S3 are

cores of Reeb components.

(2) Corollary 6.5 is a special case of the following general result. A link L in

a 3-manifold M has an irreducible 3-incompressible complement if and only if

L is the set of cores of Reeb components of some foliation ^ o n M. The proof

is as in Corollary 6.5.

(3) The holonomy along the toral leaves of the foliations constructed in

Corollary 6.5 may be C°. It follows from [6], [7] and [8] that for fibred knots,

knots of fewer than 10 crossings, the arborescent knots, connected sums of the

above knots and more generally knots which are boundaries of Murasugi sums

of certain spanning surfaces for many classes of links are cores of Reeb

components of C 0 0 foliations. It is an open and very interesting problem to

determine exactly which links in a 3-manifold are cores of Reeb components of

C°° foliations.

Corollary 6.7. Let St be a Seifert surface for the oriented link Lt C S3 for

i = 1,2, and S be any Murasugi sum or generalized plumbing {see [20] or [8] for

a definition) of Sx and S2 with L — dS. Then S is a minimal genus surface for the

oriented link L if and only if each S, is a minimal genus surface for the oriented

link Lr

Proof If S, is a surface of minimal genus for the oriented nonsplit link Li9

then by Corollary 6.2 there exists a transversely oriented foliation % of

S3 — N(Lj) without Reeb components such that St is a compact leaf. If S is a

Murasugi sum of Sλ and 5 2, and L — dS9 then it follows from [8] that there

exists a transversely oriented foliation <# of S3 — N(L) such that ^ h a s no Reeb

components, and S is a compact leaf. It follows by Thurston's Theorem 2.5

that S is a surface of minimal genus. Conversely in [9] we show how to

construct a foliation ξ. o n M - N(Lt) with S, a compact leaf and no Reeb

components when given a foliation F without Reeb components on M — N(L)

with S as a compact leaf, q.e.d.

The process of "plumbing" and "deplumbing" foliations in fact preserves

the best qualities of foliations, e.g., all leaves compact, the foliation is depth 1,

the foliation is smooth, or all leaves intersect transverse closed curves. See [8]

and [9].

Remark 6.8. This corollary generalizes the classical fact due to Seifert in

the 1930's that the connected sum of minimal genus surfaces is minimal genus.

An elementary (nonfoliations) proof of the => part of Corollary 6.7 can be

found in [8].

Corollary 6.9. Let M be a compact irreducible connected oriented 3-manifold

such that its boundary dM is a (possibly empty) union of tori, and H2(M, dM) is
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not generated by tori and annuli {i.e., x{z) φ 0 for some z E H2(M, dM)). Then

there exists a C 0 0 transversely oriented foliation 5 of M such that $ ίtl 3Af, 5] dM

has no 2-dimensional Reeb components, and no leaf of & is compact.

Proof. Step 1. There exists a transversely oriented foliation 5, of M such

that (5λ I dM has no Reeb components, and Φλ has a finite number of compact

connected leaves TX9— 9Tk such that χ(7)) < 0 for each /.

Step 2. Foliation ^ can be perturbed slightly in a small neighborhood of

the compact leaves to eliminate them.

Proof of Step 1.

(1) Definition. Let

be a sequence of sutured manifold decompositions. Define £ 0 — dM. Define Et

to be the union of those components of γ, which are contained in Et_x after

gluing S* to S~. In other words Ei consists of those components of Et_x —

N(St) which are annuli and tori.

(2) Let

be a sutured manifold hierarchy. Let (5λ be the foliation constructed by

applying Theorem 5.1 to the decomposition. If Lemma 5.4 was not invoked in

this construction, then ^ has a finite number of compact leaves, and each

compact leaf corresponds to a unique component of some St. Conversely a

component T of St gives rise to a compact leaf if and only if 9Γ C Et_ λ.

(3) Induction hypothesis. A decomposition

( M , 3 M ) - ( M 1 , γ 1 ) ~> . .- ^ ( A f n , γ J

has been constructed such that (Mπ, γM) is taut, Lemma 5.4 need not be

applied to any term of the sequence, every annular component T of S/5

1 < i < «, satisfies ΘΓ ς£ £,_,, 0 ^ [Γ] G H2{M^λ9 dMt_x) for each compo-

nent Γ of Si9 and if /I is a properly embedded homologically nontrivial (in

H2(Mn,dMn)) annulus such that dA C En, then dA is contained in toral

components of yn.

(4) Induction step.

Case 1. (Mπ, γw) = (M, ΘΛ/). By hypothesis there exists a norm minimiz-

ing connected surface T in M such that χ(T) < 0. Let ^4,, ,AS be a maximal

collection of pairwise disjoint homologically nontrivial annuli disjoint from T

no two of which are parallel, and for each At there exists a component V of ΘM
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such that V Π Aέ,Φ 0 and V Π T ψ 0. The finiteness of r follows from the

fact due to Haken [14] that a 3-manifold can have only a finite number of

disjoint nonparallel incompressible surfaces. By taking the right number of

parallel copies of T and each of the 4/s and orienting the 4/s appropriately

and attaching annuli to oppositely oriented components of ΘΓ and 9( UA() one

constructs a surface 5, satisfying the induction hypothesis. S{ is norm minimiz-

ing because [5,] = k[T] + [a] where x[a] = 0. Hence x(Sy) = x(k[T]) =

lxθs,)|.
Case 2. yn Φ 9MM.

Lemma 6.10. For each component V of En there exists some nontriυial simple

closed curve 8 C V such that any homologically nontrivial annulus A with

dA C En satisfies ([A Π F], δ> = 0.

Proof. If not the existence of annuli Aλ and A2 such that ([Ay Π V]9

[A2 Π V\)φ 0 and 3(4, U A2) C En together with the irreducibility of Mn

would imply that Mn could be obtained by taking a regular neighborhood of

Ax U KU W and gluing on a solid torus to one boundary component. W

(possibly empty) is a component of En distinct from V satisfying W Π Ax Φ 0 .

We conclude yn D En = ΘMΠ, contradicting the hypothesis, q.e.d.

If there exists a nontrivial compressing disc D such that D Γ\ s(yn) = 2, then

let SM + 1 = D. (If Z> separated a component of R(yn), then replace this term by

the sequence obtained by invoking Lemma 5.4.) If no such D exists continue as

follows. Let F,, , Vt be the toral components of En. For each Vt choose a

simple closed curve λ, such that |λ f Π 8y|= 1. One now applies the method of

Lemma 3.8 to find a homology class z E H2(Mn, dMn) satisfying the results of

Lemma 3.8 and further satisfying (z, λI ) = 0 for all /. Applying the proof of

Theorem 3.13 to this class z one finds a surface Sn+ι such that the decomposi-
sn+]

tion (ΛfM, yn) ~* (Mn+ι, yn+ι) satisfies the results of Theorem 3.13 and

(Sn+l9 λj) — 0 for all /. This decomposition extends our sequence to a new one

satisfying the induction hypothesis.

The sequence must eventually terminate by Lemma 4.12. Applying Theorem

5.1 to this sutured manifold decomposition yields the desired foliation.

Proof of Step 2. Let L be a compact leaf. By construction there exists a

simple closed curve or properly embedded arc a in L such that a foliated

neighborhood of the " — side" of L is diffeomorphic to a neighborhood of

L X 0 where L X [-1,0] is foliated as follows. Give L X [-1,0] the product

foliation. Let / : [-1,0] - [-1,0] be the appropriate (depending on f ) C00

diffeomorphism such that/(ί) > t for / £ {0, -1} and

W(rΛ= ( 1 , i f Λ = l ,
dtnK } 10, ifA2> 1.
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The desired foliation is the induced foliation on

LX [-1,0] - (a XI) X [-1,0]
a,

where a X / is a product neighborhood of a in L. Similarly %x spirals in

towards L along a simple closed curve or arc β on the " + side" of L. Let λ and

δ be simple closed curves in L such that |λ Π a\= 1, | δ Π j8|= l,andlet JΓbe

a simple closed curve or arc such that 0 φ [W] G HX(L, dL), ^ Π λ = 0 , and

\(W, a)\ +\(W, β)\= 0 it Wis & closed curve. Notice that such a JΓcannot be

found on a torus or annulus.

It follows that ^λ\(WX /) X / has the product foliation for some suffi-

ciently small neighborhood of W where (W X /) X 0 C L. By excising W X /

X / and regluing in a smooth fashion so as not to cancel the holonomy of $", in

a neighborhood of δ, one can construct a C00 transversely oriented foliation ($2

with one fewer compact leaf. By performing this modification on each compact

leaf one achieves the desired foliation.

Corollary 6.11. Let M either be a compact 3-manifold with boundary dM,

whose interior has a complete hyperbolic metric and H2(M, dM) φ 0 or S3 —

N(L) where L is a nonsplit nontriυial link in S3. Then there exists a C 0 0

transversely oriented foliation ^ of M such that ^ has no compact leaves,

*$ fh dM, and 5] dM has no Reeb components.

Proof. If M is hyperbolic it follows from Thurston [33] that it is atoroidal,

acylindrical, and irreducible, hence M satisfies the hypothesis of Corollary 6.9.

If M = S3 — N(L) where L is nonsplit and nontrivial, then M is irreducible

and either x(z) φ 0 for some z G H2(M, dM) or L = ( u l , whence M =

T2 X I. In the latter case one constructs the foliation directly. In the former

case M satisfies the hypothesis of Corollary 6.9. q.e.d.

See the remarks following the statement of Corollary 6.11 in the introduc-

tion.

Corollary 6.12. Suppose M is a compact irreducible 3-manifold, dM is a

(possibly empty) union of tori, and H2(M,dM) is not generated by tori and

annuli. Then there exists a Riemannian metric and foliation ^ on M such that

^ ίti 3Λf, and every leaf is minimal, i.e>, has mean curvature zero.

Proof. Sullivan [30] has shown that the leaves of a transversely oriented C°°

foliation are all minimal for some Riemannian metric on M if and only if every

leaf intersects a closed transverse curve. The corollary follows from Corollary

6.9.

Corollary 6.13. Let M be compact and orientable. Let p: M -* M be an

n-fold covering map, and let z G H2(M) = H\M, dM) or z G H2(M, dM) =

H\M). Then n(x(z)) = x(p*(z)).
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Proof. Case 1. M is closed, orientable and irreducible.

Proof. Let S be a norm minimizing surface representing z G H2(M) =

H\M). By Theorem 5.5 there exists a transversely oriented foliation ^without

Reeb components such that S is a compact leaf. Then p*(^) has no Reeb

components and p~\S) is a compact leaf. Hencep~\S) is norm minimizing.

Since χ(p~\S)) — nχ(S\ the result follows.

Case 2. M is compact, oriented and irreducible, and dM is incompressible.

Lemma 6.14. Let M be compact, oriented and irreducible with incompressible

dM. Let S be a closed surface. Then S is norm minimizing in M, representing a

class in H2(M) if and only if S is norm minimizing in D(M).

Proof. => : Let ?Γ: D(M) -» D(M) be the doubling involution, and let R be

an incompressible surface such that [R] = [S] G H2(D(M)). View D(M) =

Mλ U M2 with S C J I ί , . Let Rt = RΠ Λf, and R = R^U $(-R2). Then R is an

immersed surface with only double curves of self-intersection. Hence there

exists an embedded surface T such that [T] - [R] = [S] G H2(M) and Λ (S ' )

<= : Immediate.

Lemma 6.15. Let M be a compact oriented irreducible 3-manifold with

boundary dM incompressible. Then S is a norm minimizing surface in M

representing a class in H2(M9 dM) if and only if D(S) is a norm minimizing

surface in D(M).

Proof. =» : Let T be an incompressible surface such that [T] = [D(S)] G

H2(D(M)). Isotope T so that no component of T Π Mλ or T Π M2 is a disc.

Since [Γ Π M J = [S] G i/2(M,, 8Af,) and [T Π M2] = [?Γ5] G # 2 ( M 2 , ΘM2),

and S and 9"5 are norm minimizing, we conclude x(D(S)) < x(T).

«= : Immediate.
- Dp

Proof of Case 2. Consider the induced map D(M) -> D(M). It follows from

Lemma 6.14 (Lemma 6.15) that p~\S) is norm minimizing in M representing

a class of H2(M) (H2(M9dM)) if and only if (Dp)~ιS ((Dp)-\D(S))) is

norm minimizing in DM. The result now follows from Case 1.

Case 3. General case. M is a compact oriented 3-manifold.

One can obtain a 3-manifold N which is compact oriented irreducible and

3-incompressible by splitting M along a set / of disjoint properly embedded

spheres and discs, capping off the resulting spherical boundary components

with 3-balls and throwing away the fake 3-spheres. Let q: N -> N be the

induced covering map.

Any norm minimizing surface T for a class in H2(N, dN) (or H2(N)) when

regarded in M is norm minimizing. Hence by Case 2 the surface q~\T) when

regarded in M is norm minimizing. Since any z G H2(M, dM) (or H2(M))
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satisfies z = [71] + a where x(a) = 0 and Γis a norm minimizing surface lying

in Λί, we conclude p*(z) = p*([T]) + /?*(«) where JC(/>*[Γ]) = ΛJC(Z) and

x(/?*(α)) = 0. The result now follows from the fact that x(β) = JC(/? + λ) if

jc(λ) - 0.

Remark. Corollary 6.12 was conjectured by Thurston in [32].

Definition 6.16. Let M be a compact oriented 3-manifold. Let z E

H2(M, dλf) (or H2(M)). Define

x£z) = inf{ί*(Γ)|/: Γ - Mand/jΓ] = *

where/is a proper map of a compact oriented surface j .

xs is the singular norm of H2(M, 3M) (or H2(M)).

Definition 6.17. Let M be a compact manifold. Let z G i / ^ M R) or

Hk(M, 3M; R). Then the Gromov norm g(z) of z is defined by

g(z) = inf { 2 IΛ/1[ Σ fliσ, ] — z where 2 ^/^ is a singular chain].

Corollary 6.18. Let M be a compact oriented 3-manifold. Then on H2(M) or

; 3M),

*, = * = τ£>

where x denotes the Thurston norm, xs is the norm based on singular surfaces,

and g denotes the Gromov norm.

Proof. xs = \g. Gromov proved (see [33, §6]) that for hyperbolic k mani-

folds,

ί\ a* mrΛ\ VolumeM
g([M,dM])= V o l u m e σ ,

where σ is the volume of the largest hyperbolic Λ -simplex. For connected
surfaces S of negative Euler characteristic we conclude

For S of nonnegative Euler characteristic g([5, 35]) = 2x(S) = 0. Therefore if

kz G H2(M) or H2(M,dM) is represented by the singular surface S9 then

g(z)< 2x(S)/k; hence \g{z) < xs(z) for z E H2(M9 3M; Q). Since g, xs are

continuous functions, ^g < xs on H2(M; R) or H2(M, dM; R).

Conversely, if z G H2{M, 3Af; R), and z = [Σ έ^σj, α, E Z, then by pasting

together singular simplices one obtains a proper map f:S-+M such that

/ J S , 35] = z; hence by Gromov, x 5 ( z ) < x ( 5 ) < ΣltfJ . For any singular

cycle z = [Σ ̂ -αj and any c > 0 there exists a cycle z' = [£(Σ /w λ̂,-)] such that

z, z r are c close in H2(M, dM; R), and m,, « £ Z such that Σ | mjn | < Σ | ax\ + c .
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The result xs(z) < \g(z) for z E H2(M, 3M; R) (and similarly z E H2(M; R))
now follows from the continuity of xs and g.

To prove xs — x it suffices to show that for every compact oriented surface
S and every proper map/: S -> M, x(/JS]) < x(S).

Case 1. M is closed oriented and irreducible.
PAΌO/. The idea of the proof is similiar to the idea of the proof given by

Thurston showing that compact leaves of taut foliations are norm minimizing.
Let/: S -> M.
(A) it suffices to assume that if λ is a homotopically nontrivial simple closed

curve in S, then/(λ) is homotopically nontrivial in M.
(B) Find a norm minimizing surface Γrepresenting/JS].
(C) Apply Theorem 5.5 to find a transversely oriented foliation ^of finite

depth having no Reeb components such that T is a compact leaf.
Definition 6.19. Let /: S -> M be an immersion of a surface in the ®f

foliated 3-manifold. / has center tangency at p E S if in some coordinate
system, where leaves of S7 restrict to subsets of horizontal planes, / maps a
neighborhood of/? into R3 so that/(/>) is a strict local maximum./has a saddle
tangency at p E S if in some coordinate system / maps a neighborhood of p
into R3 as a saddle and / has a circle tangency along a simple closed curve γ if
for each x E γ there exist a local coordinate system and a neighborhood U of
A" so that f(U) appears as a ridgetop (Figure 6.1), where the arc of tangency
lies in /(γ). The rim of a volcano can be thought of as a circle tangency. In
general/(γ) is only an immersed curve on some leaf.

XI)

FIG. 6.1

(D) / is homotopic to an immersion g: S -> M which has only circle and
saddle tangencies.

Proof. The case when / is an embedding was proven independently by
Thurston [31] and Roussarie [25]. An elementary topological proof is given in

§7.
If F is smooth, and each leaf intersects a transverse closed curve (instead of

F being finite depth), then there exists a proof of Theorem 7.1 due to Sullivan
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[30], Sacks-Uhlenbeck [26], Schoen-Yau [27] and Hass [12] using minimal
surface techniques. The idea is to use [Sn] to find a Riemannian metric v
making the leaves minimal, use [27] or [26] to show that / is homotopic to an
immersion such that g(S) is an immersed minimal surface in the v metric, and
use [12] to observe that g(S) is either contained in a leaf or transverse to F
except at saddle tangencies (basically because if g(S) met a leaf at a center,
then g(S) would not have mean curvature 0).

Definition 6.20. Let x be a saddle tangency. Let (n (x) resp. N(x)) denote

the unit normal to g(S) (resp. (S:) at g(x). Then define

+ 1, ifn(x) = N(x),

(E) Let E G H2(M) be the Euler class to the 2-plane bundle over M of
tangent planes to <&. By [32]

\E{g*[S])\= o(x)
x saddle
tangency

# saddle tangences =|χ(5 r ) | .

Since T is a leaf, | E([T]) | = | χ(T) | . Since [T] = g JS], we conclude

x(S)=\χ(S)\>\χ(T)\=x(fm[S]).

Case 2. M is compact oriented and irreducible, and dM is incompressible.

Proof. (A) / J S ] represents a class in H2(M).
Consider

S^M= Mλ -+D(M) = Mλ UM 2 .

By Case 1 there exists an embedded T in D(M) such that [T] =f*[S] and
x(T) <x(S). Since we can assume by Lemma 6.14 f(S) Π M2 = 0, (A)
follows by Case 1.

(B)/*[S] represents a class in H2(M, dM).
Consider D(f): D(S) -* D(M). By Case 1 there exists an oriented em-

bedded T C D(M) such that (Df)^D(S)] = [T], x(T) < x(D(S)\ and no
component of T - dM is a disc. Since [ Γ Π M ^ / J ^ G H2(Mi9 3MZ), the
results follows.

Case 3. M is compact and oriented.
Proof. Let / be a collection of disjoint discs and spheres such that the

manifold N obtained by splitting M along / and capping off spherical
boundary components, and throwing away fake S3's is compact, irreducible
and 3 incompressible. Since we can assume f(S) ίtl / it follows f~\J) is a
union of disjoint simple closed curves; hence by pinching off these curves we



TOPOLOGY OF 3-MANIFOLDS 487

can assume that /(5) Π / — 0 . By Case 2, / J 5 ] can be represented by an
embedded surface T with x(T) < JC(5), [T] = / J 5 ] G H2(Λ ,̂ 3ΛΓ) (or i/2(iV))
Since H2(M, dM) is generated by i/2(iV, 97V) (or H2(N)) and components of/,
the result follows.

Remarks 6.21. (1) The equality of the singular and Thurston norms was
conjectured by Thurston in [32].

(2) Corollary 6.18 is a generalization of Dehn's lemma and the loop and
sphere theorems to higher genus surfaces. How such theorems generalize was
asked by Papakyriakopoulos [22] in 1957. In particular he asked about the
relationship between the immersed genus and the genus of a knot.

Definition. The genus of a knot K in 5 3 is the smallest g such that K
bounds a punctured embedded surface of genus g. The immersed genus of a
knot in 5 3 is the smallest g such that K bounds a punctured immersed surface
5 of genus g which is nonsingular along the boundary, i.e. f:S^>S3 and
f~\K) = 35.

Corollary 6.22. If K is a knot in S3, then the immersed genus equals the
embedded genus. More generally if K is nontrivial and / : T ^> S3 — N(K) is a.
proper map of an oriented surface no component of which is closed then
x(T) > (2g - 1) I n I where / J Γ ] - [n] G H2(S3 - N(K), dN(K)) = Z
q.e.d.

More generally we have
Corollary 6.23. Let M be α compact oriented ̂ -manifold, S a compact

oriented connected surface with connected boundary, f:S-*Ma map such that
/ | 35 is an embedding and f~\f(dS)) = dS. Then there exists a compact
embedded oriented surface T in M such that dT = dS and genus T < genus S.

Proof. If genus 5 = 0, apply the classical Dehn's lemma. Otherwise let P
be the manifold M — N(dS) and let Q be the manifold obtained by doubling P
along d(N(dS)). There is a natural map g: S -> Q where 5 is the double of 5,
g\S — /and g(5) is invariant under the doubling involution. Apply Corollary
6.18 to obtain an embedded norm minimizing surface T in Q representing the
class gJ_S] G H2(Q). By pairing off oppositely oriented annuli we can assume
that T Π d(N(dS)) is a simple closed curve. Our desired T is that component
ofTΠP which intersects 3(N(95)) nontrivially. q.e.d.

This is exactly Dehn's lemma for higher genus surfaces.

7. The homotopy theorem

Theorem 7.1. Let M φ S2 X 5 1 be a closed oriented 3-manifold. Let § be a
finite depth, transversely oriented foliation without Reeb components of M. Let
f0: 5 -> M be a map of a closed oriented surface S φ S2 such that the image of



488 DAVID GABAI

every homotopically nontriυial simple closed curve in S is homotopically nontriv-

ial. Then /0 ^ g : S -> M where g is an immersion, and g(S) ft! ®j except for a

finite number of circle and saddle tangencies.

Proof. Suppose depth <$ = K, and for simplicity assume that the number of

leaves of depth < K is finite, if K > 0, since any depth K foliation can be

"approximated" by such a foliation. In fact the depth K foliations constructed

in §5 satisfy this condition.

(1) By [14]/0 is homotopic to an immersion/,. By perturbing/! slightly we

can assume that/ 2 is an immersion with transverse self-intersections, f2(S) ίtl *$

except for a finite number of center and saddle tangencies, and that these

points of tangency, triple points of/ 2(S), and points of double curves which

are tangent to *% all lie on distinct depth K leaves.

(2) The general philosophy of the proof is to compress the centers until they

either cancel with saddles or force other types of simplifications.

Let p be a center. As in Roussarie [25] ther exists a neighborhood U of p in S

such that the induced foliation on U is one of the types exhibited in Figure 7.1

where fo(p) is a saddle tangency.

Type II Type I

F I G . 7.1

As indicated in Figure 7.1 a neighborhood of p is foliated by a family of

'circles' indexed by [0,1] where the initial circle γ0 is just the constant map to

/?, and the limiting circle is an embedded smooth curve with a corner at q when

p is type I and is a smooth curve with two corners at q when/? is type II. These

facts follow from the Reeb stability theorem, Theorem 2.14 and the fact that a

limit of compact leaves is a compact leaf [23]. One should think of /2 © γ :

/ X S 1 -» M as a regular homotopy from γ, to γ2. Each γ, is homotopically

trivial in some leaf L,. For / sufficiently small there exists an immersion

Λ, : D2 -> L, such that f2 o yi = ht\dD2. For all / G [0,1] we can define maps

hx,: D2 -> Lx^ so that/ 2 o γ. = h t \ dD2 by flowing discs along rays normal to <S.

(3) The first obstruction to nicely squashing this center is that for some

i < 1, f2 o γ. does not bound an immersed disc in Lt. This is exemplified in
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Figure 7.2 where we see the image of a neighborhood of p. Figure 7.2(b) shows
the image of some of the γ/s on the leaves containing them. If this occurs, and
Ύj is the first circle such that/(γ7.) does not bound an immersed disc, we define
a homotopy/: [2,3] X S -> M in 4 steps as follows.

OcO
(b)

FIG. 7.2

(A) Define a homotopy /: [2,2 1/4] X S -> M which is fixed outside of
S ~ γ(0, j + c), i.e., /(/, x) = f(t'9 x) for x G 5 - γ(0, y + c), by "pushing
down" on the center to create a map which has two branched points and
elsewhere is an immersion (Figure 7.3(a)).

Up to smoothing of corners f2 ι/4(S) = f2(S - γ[0, j + c]) U hJ+€(D
2). The

process of creating the branched points is similar to the homotopy from Figure
7.4(a) to Figure 7.4(b).

(B) Define/: [2 1/4, 2 1/2] X S -* M to be a homotopy fixed outside of the
preimage of the double curves of/2 \/4(S). This homotopy can be thought of as
the operation of putting ones finger on one of the branch points and pushing
(compare Figures 7.5(a) and 7.5(b)) it along a double curve until we get a very
short double curve whose endpoints are branch points. Note that the two
branch poinnts bound an immersed double curve γ in M; however, the path
traversed by the finger may be quite different than the path described by γ.
This is because when one traverses through a triple point, one changes the old
double point locus. If B was an open set inM such that B Π f2\/4(S) looks like
Figure 7.2, then B Γ) f2 ]/2(S) would appear as in Figure 7.3(b). By a very short
double curve d we mean that there exists a neighborhood C of d such that
C Πf2 /n(S) looks exactly like Figure 7.3(c). In particular there exists a simple
closed curve 8 on S lying close to d such that / 2 1 / 2 (δ) = λ is a simple closed
curve bounding a disc in M. Hence δ bounds a disc D in S.

(C) Since ̂ has no Reeb components and M Φ S2 X S\ π2(M) - 0. Define
a homotopy/: [2 1/2,2 3/4] X M fixed outside of D so that f23/4(D) lies very
close to d. If Figure 7.3(b) denoted B Π/ 2 1 / 2 (5), then B Π / 2 3 / 4 (5) would
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appear as Figure 7.3(d) or 7.3(e) depending on which side of λ, f2\/i{D) lay

on.

(a)

COO
oOo

o
a
o

o o o

FIG. 7.3
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(a) (b)

FIG. 7.4

<=K

(b)

FIG. 7.5
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(D) Define /[2 3/4, D] X S -> M to be the map which sucks in the disc
completely and eliminates the branch points (Figure 7.3(f)).

This homotopy/: [ 2 , 3 ] X S ^ M should be done in such a way that center
and saddle tangencies, triple points, and double curve tangencies lie on
different depth K leaves.

(4) One now considers a center P of f3(S) and the corresponding curves yi9

i G [0,1]. If for some i < 1, /3 ° γ, does not bound an immersed disc, then one
performs a homotopy as in (3). After a finite number of such homotopies each
center will satisfy the property that the γ/s, i < 1, bound immersions. If not
then a contradiction can be arrived at as in (10).

(5) Let P be a type I center with saddle q. We say that p is type la if
σ(p) = σ(q) (σ was defined in §6), and p is type Ib otherwise. Since each γ, ,
/ < 1, bounds an immersion and since tangencies of double curves cannot lie
on L,, we conclude that γ, bounds in some leaf a pinched immersed disc
(Figure 7.6(a)). Typical examples of images of type I centers are given in
Figure 7.7. Notice that the image of a small neighborhood of/? was removed in
the picture of the type Ib center.

If fn was the last function defined, and/? is type la, then let/: [Λ, n + 1] X S
-> M be the homotopy which 'cancels' the center with the saddle. Notice that
fn+a(S) is approximately fn(S - γ[0, a]) U ha(D) for 0 < α < 1.

la

a)

Ib

b)

FIG. 7.7
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If p is a type Ib center, then define/[AΪ, n + 1] X S -> Λf as the composite of
the following 3 homotopies.

(A) Define/: [«, n + 1/3] X S -> Λf to be the homotopy which compresses
the center so that it lies just above the saddle as in Figure 7.8(b), i.e.,
Λ+i/3(S) «Λ(S - γ[0,1 - €]) U hx_£D).

(B) Define f[n + 1/3, w + 2/3] X 5 -> Λf to be the map where the disc
hx_£D) is pushed slightly below the level of the saddle simultaneously
performing the homotopy of Figure 7.4 to create a branched immersion
(Figure 7.9(a)) with 2 branch points. Figure 7.9(b) gives a close-up view of one
of the branch points. The inverse of this homotopy can be thought of as the
map which coalesces the two branch points.

(C) We proceed as in parts 4(D) and 4(C) to define/: [n + 2/3, n + 1] X S
-* M as the homotopy which creates a very short double curve, sucks in a disc
homotoping the short double curve and its branch points away.

(a)
(b)

FIG. 7.8

(b)

FIG. 7.9
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(p) By doing the above procedure we may have created many new centers

and thus be forced back to (4). The methods of (10) will show that we can have

only a finite number of homotopies of types already described.

(7) Suppose p is type II center with saddle q, and γf bounds an immersed

disc in Li for i < 1. Then the limiting curve γ, bounds either a doubly pinched

immersed disc (Figure 7.6(c), (d)) or a squeezed immersed disc (Figure 7.6(e)).

If the former occurs, then/? is of type Ha or type lib! depending on whether or

not σ(p) = σ(q). If y{ bounds a squeezed disc, then we conclude that σ(p) φ

σ(q), and we say p is of type Πb2.

An example of a type Πa center is given in Figure 7.10 and a type Πb2 in

Figure 7.11. Figure 7.12 shows fm(U) where ί/is a neighborhood of yλ when/?

is type lib. Figure 7.13 shows a close-up view of the saddle at/(#).

(8) If p is a center of type Hb2, then γ, is a composite of two simple closed

homotopically trivial curves \l9 λ2. Each λ, must bound a disc Dt in S. Assume

D = Dλ D D2. If fm has been the last function defined, then let/[w, m + 1] X

S^ M be the homotopy fixed outside of D so that fm+λ(D) lies near the

FIG. 7.10

FIG. 7.11
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immersed disc which λj bounds in Lλ. A view of fm+ι(S) near q will appear as
in Figure 7.14.

If p is a center of type Πb^ perform a homotopy/[wz, m + l J X S - ^ M a s a
composite of the following 3 homotopies.

FIG. 7.12

FIG. 7.13

FIG. 7.14
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(A) Define/: [m, m + 1/3] X S -> M to be the homotopy which compresses
the center so that it lies in a leaf just above q, i.e., fm+ι/3(S) « / ^ S — γ[0,
1 — c]) U /i,_€(D). Push the disc hx_€(D) normally to ^simultaneously per-
forming the homotopy of Figure 7.4 to create a branched immersion with two
branch points. If B is a neighborhood in M which intersects /m( S) as in Figure
7.12 (recall that some surface has been excised), then BΠfn+ι/3(S) will
appear as in Figure 7.15. (Note the branch points xx and x2 ) I*1 that picture
we have excised a disc E for greater clarity. It may be helpful to think of the
inverse of the homotopy. First glue back the disc E and perform the homotopy
of Figure 7.4 to coalesce the branch points with the newly created double curve
passing through the disc E (Figure 7.16). Notice that/ w + 1 / 3 (5) has a circle
tangency.

FIG. 7.15

FIG. 7.16
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(B) Define/[m + 1/3, m + 2/3] X S -> M as in (7)(C) and (7)(D) to create

a short double curve and suck in a disc to eliminate the branch points.

(C) If after (B) the circle tangency is still there, perturb fm+2/3 slightly to get

a type Πa center. If the circle tangency has been destroyed in (B), then it may

be necessary to perturb fm+2/3

 t o m^ke sure all the centers lies on different

leaves, etc.

(9) Suppose that after finitely many homotopies we are only left with type

Πa centers. Then by cancelling them with their saddles, to create circle

tangencies, we complete the homotopy. Let g: S -> M be the resulting map.

(10) We now show that there can only be a finite number of homotopies of

types already described. We first give the proof in the case where depth % = 0.

(A) Let T be a leaf of ξF satisfying T(t\f2(S) and TΠ (triple points of

f2(S)) = 0 τ h e n T h a s a tubular neighborhood V- TX[-\9\] such that

#Ί Fhas the product foliation and V Π f2(S) = (f2(S) ΠT)X [-1,1].

By checking what happens as we perform one of the previous homotopies we

conclude that for each n ^ 2, fn(S) Π V- (fn(S) Π T) X [-1,1], and either

/ | [ Λ , n + 1] is fixed on V (i.e., /,(*) =/,,(*) if (/,(*) U/,,(*)) Π VΦ 0 ) or

/„(£) Π TDfn+λ(S) Π Γandα π + 1 < α π where

α7 = | Double points ofj^S) Π Γ| +|jζ ( S ) Π Γ - Double points oϊfj(S) Π Γ|.

Therefore if Λ̂  is sufficiently large, then/| [w, π H- 1] is fixed on Vfoτn> N.

(B) Let F = T X [-1/2,1/2]. Let W = M - F. Then ίF = Γ X [2,3] with

the product foliation. Let n be a normal vector field to ®ji\ W. Assume that

except for 'sharp corners' fN(S) is composed of horizontal and vertical pieces,

i.e., for almost all x G S there exists a neighborhood U of x such that/^(ί/) is

tangent to $", or fN(U) is contained in a union of normal curves through a

curve on some leaf. For example Figure 7.17(a) is Figure 7.2 viewed as a union

of horizontal and vertical pieces. Figure 7.17(b) shows precisely how to

construct 7.17(a).

Let 7r: V -* T X (2 + 1/2) = Γ' be the normal projection onto T. Let P be

the projection of all the vertical pieces of fN(S) Π V. Then P is a graph on T

with complementary regions Yλ9- —,Yr. Let ^ E Yt be an interior point and

y = UJV Let βn = (an, bn\ where an =\fn~
ι^~\y)\9 and £>„ is the number of

'centers' of fn(S), i.e., bn is the number of local maximal plateus. Ordering such

2-tuples by the dictionary ordering we claim βm+λ < βm for all m> N. This

can be seen by considering what happens to horizontal regions during homo-

topies. Any homotopy involving the compression of a center such that some γ,

does not bound an immersion or homotopies involving type Ib, lib, or Πb2

centers must reduce the first component of β. Any other homotopy involving

the cancellation of a center or saddle must reduce the second component of β
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(a)

XI

FIG. 7.17

while the first component is fixed. Figures 7.17 and 7.18 exemplify the case

when some γ, does not bound an immersion. If B is a region in M such that

fn(S) Π B is given as in Figure 7.17(a), then Figure 7.18(b) shows both the

projection P' of the vertical regions of fn(S) Π B onto V and the number of

horizontal pieces which project into each component of T — P'. Figure 7.18(a)

shows fn+\/4(S) Π B and Figure 7.18(c) indicates the number of horizontal

pieces o f/ π + 1 / 4 (5 ) Π B which project into each component of T — Pf. Notice

how vertical regions with opposite oriented normal vectors have cancelled each

other out. The other cases are similar. This completes the proof when depth ®i

= 0.

(11) Suppose depth ^ — k > 0. For simplicity assume that the number of

depth / < k leaves are finite. Let 7] be the union of the depth i leaves if i < k,

and let Tk be a finite set of depth k leaves such that the quotient map

P: depth k leaves — Tk -> Space of (depth k leaves — Tk)

is a fibration over (0,1) and that for ally >29TkΠ [(triple points of fj(S)) U

(tangencies of double curves of fj(S) with <%) U (points of tangency of /•(£)

ff= 0 .
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(A) Let V be a small neighborhood of To homeomorphic to To X / such that

V Π / 2(5) = (/ 2(5) Π Γo) X /. Furthermore, if W = # X / is a component of

K and if # X z, / = 0,1, is component of 3 ^ , then A' X i, a surface with

corners, is a union of an annulus At transverse to 3F and a twice punctured

surface Λf contained in some component of Tλ (Figure 7.19). Let B = Bo U Λlβ

Equip W with the 'canonical' normal vector field to <&, and let Ao U ^ ! be

tangent to normal curves. Let Jt be the leaf of ?F| ίΓ which contains J?,.. If W is

sufficiently small, then Jt is half of an infinite cyclic covering space of K

(Figure 7.20).

F I G . 7.19

F I G . 7.20
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Let x G W — K. Then we say that x is at level j if the normal ray through x

not passing through K intersects Lo U Lλ j + 1 times. Let Uι',= W — {x E W\

level JC < /}. Ut qualitatively looks like Wexcept that a certain number of levels

have been peeled away.

(B) We show that there exist Nl9 N2 sufficiently large such that any homo-

topy / : [ « , « + 1] X 5 -> Af, n> Nl9is fixed on UNi. Let i be the first integer

so that /: [/ — 1, i] X S -> M is not fixed on W. Then one of the following

holds.

(i) c(/,(S) Π 5 ) < c ( / _ , ( £ ) Π B\ where

c(jζ-(S) Π # ) =\fj(S) ΠB- Double points of jζ ( S ) Π Λ|

-h|Double points of jζ(5) Π £ | .

(ii)/is fixed on 5.

View each f:[j\j+ 1] X S1 -> M as a composite of three homotopies, one

that compresses a disc, one that does surgery along double curves (i.e., creates

a short double curve with branch point end points), and one that sucks in a

disc. Each time a compression of a disc involves B there exist ay G (/ - 1, /)

and a maximal disc D in S such that fj(D) is an immersed disc lying in some

leaf of ίFsuch that fj(D) Π B φ 0 . If jζ.(3Z>) Π B = 0 , Λenjζ.(Z)) Π dB Φ 0

which implies that some component of 92? is null homotopic, so that K is

compressible, and hence ίFhas Reeb components by Novikov [21]. If fj(dD) Π

B ¥= 0, then c(fj+€(S) Π B) < c(fj_£S) Π 5). If the creation of a short

double curve involves B, then the number of double points o f/(5 ) Π 5 is less

than the number of double points of /_j(S) Π 5 while the first component of

the complexity does not rise. Since M — N(B) is irreducible, the process of

sucking in a disc can be made to avoid B if (i) does not hold. We now conclude

that there exists an N such that ifn>N, then every homotopy/[«, n + 1 ] X S

-> M will be fixed on B.

It is easy to check that for each n there exists an rn such that ft(S) Π Ur is

vertical for 2 < t < n, t E Z. As in (10), define P to be the normal projection

of the vertical part of fN(S) Π W into K. P is a graph with complimentary

regions Y,, , Yr. Pickj>, E ^ and let j> = U ^ . For n>N9 define βn = (tfn, Z>M)

where απ

 ==|/I~
1fl>~1(<y)|, and bn is the number of 'centers' of f(S) lying in W.

By applying the methods of (10) to W we conclude that if n > N9 either

rM = rn+λ and/[π, Λ + 1] X 5 - Mis fixed on t/ v or &+, < &.

The proof of (B) now follows.

(C) Suppose that there exist a neighborhood Xj of U/ = o 7} and an N such

that/[/i, Λ + 1] X S -» Λf is fixed on Λ̂  if n>N.
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There is a finite union of compact incompressible surfaces Kl9-—9Kr

contained in TJ+X such that Kx U , , \JKr U X3 ,D Tj+X and dKi C Xjm Let V

(Figure 7.21) be a small neighborhood of K = U Kt homeomoφhic to L X /

such that:

(ii) dV = Bo U Bx U A U £ where Λ U E ΓlΊ f, E = dK X I C XJ9 B = Bo

U 5, are contained in depth min(y + 2, fc) leaves, and Λ = λ X [0,1] where λ

is a possibly empty union of arcs and simple closed curves.

F I G . 7.21

Let L, be the leaves of $] V which contain Bi9 i — 0,1. As in (B), define the

levels of V - K and the neighborhoods [̂  of K. Note that E C Λ ;̂ hence any

homotopy f[n, n + 1]X S -> M (« > N) is fixed on a neighborhood of £". By

mimicking the proof in (B) we conclude that there exist Nx, N2 such that

n>Nλ implies/[Λ, n + 1] X S -» M is fixed on ί/ .̂ Let Λ^+I = ί/^ U Xjm

(D) The set of depth k leaves is a union of a finite number of components

HX9" -,Hn such that for each i the quotient map

p: //, -> Space of leaves of $] //.

is a fibration over S1, and Hi Π Γ^ contains a leaf L,. Hence /ff =

(L, X /)/[(x,0) - (Λ,(x), 1)] and ^ - L, = L, X (0,1). By the compactness

of M there exist a, b E (0,1) and a compact incompressible βf. C L, such that

L, X (0,1) - (& X (a, b)) C A^_,. Hence any homotopy / : [n,n+l]XS

-> M for « sufficiently large must be carried in the interior of the product

Q X [a, b]. By applying the methods of (10) we conclude that for n sufficiently

large /[«, n + 1] X S -» Λf is fixed on βf. X [α, Z>]. By applying this to each

Qi X [α, 6] the proof of Theorem 7.1 is concluded.
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Remark. By generalizing the above procedure (see [25]) it is not difficult to

show that if every leaf intersects a closed transversal, then f^g:S^M such

that g is an immersion, and either g(S) is contained in a leaf or g(S) ίΐl %

except along a finite number of saddle tangencies.
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