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INTRODUCTION

This paper is a continuation of the joint papers with Donald Spencer, parts I
and II of the same title which appeared in Acta Math. 136 (1976) 103-239 and
parts III and IV of the same title which appeared in this journal 13 (1978)
409-526. We continue our study of the integrability problem for pseudogroups
or for Lie equations and the program embarked upon in parts I and II and
outlined in [17] for proving the solvability of the integrability problem for all
Lie pseudogroups acting on R" which contain the translations. Our proof
follows to a large extent Guillemin’s program for solving the integrability
problem for flat pseudogroups and relies on Galois theory type methods
similar to those introduced by Sophus Lie in his work on partial differential
equations. In this work, these methods provide us with solutions of the
non-linear partial differential equations associated to this integrability prob-
lem.

Communicated by D. C. Spencer, March 29, 1980. This work was supported in part by National
Science Foundation Grants MCS 78-02459 and MCS 79-04683.
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In parts I and II of this paper, we started a program announced in [14] of
studying the integrability problem in terms of transitive Lie algebras. If R, is a
Lie equation on a manifold X and x € X, we defined a non-linear cohomology
H'(R,),, which is a set with a distinguished element 0. The integrability
problem for R, (for a precise formulation of the problem, see [33]) is solvable
if and only if H'(R,), =0 for all x € X. If R, is formally transitive, this
non-linear cohomology depends only on the transitive Lie algebra R, , of
formal solutions of R, at x. To a real transitive Lie algebra L and to a closed
ideal I of L, we associated non-linear cohomologies H'(L) and H'(L, I) in
such a way that H'(L, L) = H'(L), and H'(R,, ,) = H'(R,), whenever R, is
analytic and formally transitive. The integrability problem for formally transi-
tive Lie equations is reduced to the study of the non-linear cohomology of
transitive Lie algebras and their closed ideals. If I is a closed ideal of the
transitive Lie algebra L, the quotient L /I is again a transitive Lie algebra and
we proved that, if H'(L,1)=0 and H'(L/I)=0, then H'(L)=0. By
repeated applications of this result, if we consider a Jordan-Holder sequence of
Guillemin [20] for L, that is, a descending chain

L=1,0I,D>---2I =0

of closed ideals of L such that, for 0 <j < k — 1, either [;/I,, is abelian or
there are no closed ideals of L properly contained between /; and I, it
follows that to prove that H'(L) = 0 it suffices to show that
ﬁ'(L/IjH, I/1;,,) =0 for the closed ideal I,/I;,, of the transitive Lie
algebra L/I, |, with 0 <j < k — 1; clearly the ideal I;/I,, is either a closed
abelian ideal or a non-abelian minimal closed ideal of L/I,.,. We are
therefore lead to study the cohomology H'(L, I') of a closed abelian ideal or a
non-abelian minimal closed ideal I of L. In §11 and §18, we proved that, if I is
an abelian ideal of a transitive Lie algebra L, the non-linear cohomology
H'(L, I is isomorphic to the linear Spencer cohomology H'(L, I) introduced
in [16] and that the vanishing of H'(L, I) is equivalent to the local solvability
of a linear differential operator associated to 1.

In this paper we turn our attention to the study of the non-linear cohomol-
ogy H'(L, I') of a non-abelian minimal closed ideal I of a real transitive Lie
algebra L. According to [20], I possesses a unique maximal closed ideal J of 1
and R = I/J is the non-abelian and simple transitive Lie algebra canonically
associated to I. The commutator ring K of R is the algebra of all R-linear
endomorphisms of R which commute with all inner derivations of R. By a
result of [20], K is a field, and we say that I is of real or complex type
according to whether K is R or C. In parts I and II, we conjectured that
H'(L, I') = 0; the examples of Conn [5] of non-abelian minimal closed ideals
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of complex type for which this cohomology does not vanish show that this
Conjecture I of §13 is false, as is Conjecture II. The main result of this paper
(Theorem 26.2) is the proof of Conjecture I for a non-abelian minimal closed
ideal of real type, namely:

Theorem 1. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of L of real type. Then H/(L,1)=0 for j>0 and
HY(L,I)=0.

In a sequel to this paper, we shall study the cohomology of non-abelian
minimal closed ideals of complex type and present counterexamples to the
integrability problem arising from these ideals generalizing those of Conn [5].
In [6], Conn associates to a non-abelian minimal closed ideal I of complex type
of a real transitive Lie algebra L an algebraic invariant, the Levi form, which is
a vector-valued Hermitian form. In particular, we shall present a proof of

Theorem II. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of L of complex type. If the Levi form of I vanishes, then
H/L,I)=0forj>0and H(L,I)=0.

We now briefly outline how the solvability of the integrability problem for a
Lie pseudogroup acting on R" which contains the translations can be deduced
from Theorems I and II and the results of parts I and II. Let L be a real
transitive Lie algebra possessing a fundamental subalgebra L° and an abelian
subalgebra A such that

L=1"®A.

In fact, the transitive Lie algebra corresponding to such a pseudogroup has this
property. Consider the Jordan-Holder sequence for L introduced above. In §11
and §13, we proved that the linear differential operator associated to any
abelian quotient I;/I;,, is an operator with constant coefficients and we
deduced from the Ehrenpreis-Malgrange theorem that H'( L/ L/ ) =
0.If /1, is a non-abelian minimal closed ideal of complex type of L/I,,,,
then the Levi form of 1,/I, | vanishes. Therefore Theorems I and II imply that
H'(L/IjH, L/I;,,) = 0 whenever I,/I,,, is a non-e}belian minimal closed
ideal of L/1;,,. From these results, we deduce that H (L) = 0 and that the
integrability problem for pseudogroups acting on R” containing the transla-
tions is solved. Furthermore these methods also give us a proof of Conjecture
IIT of §13.

We now present an outline of the reduction of Theorem I to Theorem 26.1
which is based on §13 and is given here in §26. Let L be a real transitive Lie
algebra and 7 a non-abelian minimal closed ideal of L of real type. According
to the classification of the real simple infinite-dimensional transitive Lie
algebras (see [21], [22], [34] and [36]), the Lie algebra Der(R) of derivations of
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the simple transitive Lie algebra R associated to I possesses a natural structure
of transitive Lie algebra in which R is a closed ideal of codimension at most
one. Moreover Der(R) has a fundamental subalgebra Der’(R) such that
R° = R N Der’(R) is a fundamental subalgebra of R and
Der(R) = R + Der®(R)

(see [6]). The normalizer N of the unique maximal closed ideal of J of [ in L is
an open subalgebra of L. Let F be the local ring of formal power series on the
finite-dimensional vector space (L/N)* endowed with the Krull topology. The
Lie algebra Der(F) of derivations of F has a natural structure of transitive Lie
algebra; if F° denotes the unique maximal ideal of F, the subalgebra Der(F)
of Der(F) consisting of all elements ¢ of Der(F) satisfying £(F°) C FCis a
fundamental subalgebra of Der(F). Since Der(R) is a transitive Lie algebra
and F is a linearly compact topological algebra, there is a structure of
linearly compact Lie algebra on the Hausdorff completion Der(R) ®g F of
Der(R) ®g F. The action of Der(F) on F determines a structure of linearly
compact Der( F)-module on Der(R) ®g F, the semi-direct product

Der(R ® F) = (Der(R) ®g F) ® Der(F)
has a natural structure of real transitive Lie algebra,
Der®(R &g F) = (Der®(R) ®g F + Der(R) &g F°) ® Der®(F)

is a fundamental subalgebra, and R ®g F is a non-abelian minimal closed
ideal of this Lie algebra; we call the ideal R ®g F the Lie algebra R with real
parameters (see [6]). According to the topological version of Conn [6] of the
structure theorem of Guillemin [20], there is a continuous morphism of
transitive Lie algebras

®: L - Der(R &g F)
whose restriction to / is an isomorphism
®:I>R®RF

such that

Der(R ®g F) = ®(L) + Der®(R & F).
By results of [16] and §10, ® induces isomorphisms of cohomology

H*(L,I) - H*(Der(R ®g F),R®g F),

HY(L,I) > H'(Der(R®g F), R®g F).
Theorem I follows from Theorem 26.1 which asserts that
H/(Der(R®g F), R® F) =0, H'(Der(R &g F),R®z F) =0,
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for j > 0, where R is a simple transitive Lie algebra, with Ky = R, and F is the
ring of formal power series on a finite-dimensional vector space U.

In §§22-25 to prove Theorem 26.1, for each simple transitive Lie algebra R,
with K = R, and each finite-dimensional vector space U, we construct ex-
plicitly a formally integrable and formally transitive analytic Lie equation R¥
of order k, with k£ = 1 or 2 depending on whether Der(R) equals R or not, on
an analytic manifold X, a formally integrable analytic first-order Lie equation
R, such that R _ , is a closed ideal of R%  , for all a € X, a formally integrable
and integrable finite form P, of R, and an isomorphism of transitive Lie
algebras y: R%,  — Der(R ®g F) such that Y(R,, ,) = R ®g F, where x is a
point of X. Then we show that the linear Spencer cohomology H’(R,) and the
non-linear cohomology H I(P,),, defined in terms of the D-complex (see §7),
vanish for all j > 0 and a € X; it follows that the assertions of Theorem 26.1
hold for R and U. If J,(T) is the bundle of k-jets of the tangent bundle T of X,
the Lie equation R, is a sub-bundle of J,(T') and P, is a sub-bundle of the
bundle Q, of l-jets of local diffeomorphisms of X. If u is a section of
T* ® J|(T), we denote by myu the section of T* ® J(T') determined by u. Let
D, be the compatibility condition for the operator D of the non-linear Spencer
complex; the set Z'(R,), of D,-cocycles at a € X consists of the germs at a of
sections u of T* ® R, which satisfy ©,u =0 and myu(a) close to 0. The
vanishing of the non-linear cohomology H'(P,), is proved using the following
necessary and sufficient condition given by Proposition 22.7: for all u €
Z'(R,), we can solve the equation D¢ = myu for some germ ¢ of an invertible
section of P;.

According to the classification results referred to above, the simple transitive
Lie algebra R is either finite-dimensional or isomorphic to one of the follow-
ing:

(1) the Lie algebra of all formal vector fields on R”;

(ii) the Lie algebra of all formal vector fields with zero-divergence on R”,
with n = 2;

(iii) the Lie algebra of all formal symplectic vector fields on R*", with n = 1;

(iv) the Lie algebra of all contact vector fields on R>"*! with n > 1.

If R is equal to one of the transitive Lie algebras (ii) or (iii), these
constructions are made in §23 and the corresponding vanishing of the linear
and non-linear cohomology is proved in Theorem 23.1, while the analogues for
the Lie algebra (iv) are accomplished in §25 and Theorem 25.1. The case of a
finite-dimensional Lie algebra R is considered in §24 and the vanishing of
cohomology for the Lie algebra (i) is given by Proposition 22.9.

We give a unified treatment of the Lie algebras (i)—(iii) and of finite-dimen-
sional Lie algebras in terms of the class of Lie equations whose solutions



600 HUBERT GOLDSCHMIDT

preserve a differential form. Let X, Y be analytic manifolds and p: X - Y an
analytic surjective submersion. We assume that the dimension of Y is equal to
that of the vector space U. In §22, under certain regularity assumptions, we
associate to a differential form w along the fibers of p a first-order Lie equation
J,(V; w) on the bundle V of vectors tangent to the fibers of p and a finite form
0,(V; w) of J)(V; w). The solutions of J,(V; w) are the vertical (with respect to
p) vector fields ¢ on X which preserve w, that is, for which the Lie derivative
L(¢€)w of w along ¢ vanishes. If J (V) denotes the bundle of k-jets of V, a
section u, of T* ® Jy(V') operates on the space of differential forms along the
fibers of p and associates to w the differential form w“e. If u is a section of
T* ® J(V), the fundamental formula (22.20) relates the actions of the section
uy = myu of T* ® Jy(V') determined by u and of the exterior differential
operator d y , on differential forms along the fibers of p to D,u. We denote by
9, the sheaf of invertible sections of Q,. If Ji(V; w) is formally integrable and
0,(V; w) is a formally integrable and integrable differential equation, in
Proposition 22.8 we obtain as a consequence of Proposition 22.7 a criterion for
the vanishing of the non-linear cohomology of Q,(V; w) or of Jy(V; w) at
a € X: if ue Z\(J|(V; w)),, it suffices to find a germ f at a of a local
diffeomorphism of X over Y such that

(1) f*o = W',

where u, = myu; in fact the relation (1) guarantees that the unique element
¢ € Ql satisfying my¢ = f and D¢ = u, is a germ of a section of Q,(V; w).

In §23, we suppose that w is an analytic volume or symplectic form along the
fibers of p; we prove that J,(V; w) is a formally integrable and involutive Lie
equation and that Q,(V; w) is a formally integrable and integrable finite form
of J)(V; w) (Proposition 23.3). If w is a symplectic (resp. volume) form and
u € Z'(J(V; w)),, with @ € X and u, = myu, then w* is closed according to
the fundamental formula (22.20) and is the germ of a symplectic (resp. volume)
form along the fibers of p; moreover every such germ can be obtained in this
way. Darboux’s theorem with parameters (resp. an elementary result about
ordinary differential equations) gives us the existence of a germ f at a of a local
diffeomorphism of X over Y satisfying f*w = w*, and hence the vanishing of
the non-linear cohomology of Q,(V; w) at a. A Q,(V; w)-structure on X is
equivalent to a non-singular differential 2-form (resp. g-form, where g =
rank V') along the fibers of p and is formally integrable in the sense of
Malgrange [33] if and only if this differential form is closed, and hence is a
symplectic form (resp. is always formally integrable). If w is a symplectic form,
this last remark can be used to derive directly the fact that w* is a germ of a
symplectic form for u € Z'(J(V; w)), and u, = myu without requiring our
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formula (22.20). Finally, we construct a second-order formally integrable and
formally transitive analytic Lie equation J;(7; w) on X whose solutions over
connected open subsets of X are the p-projectable vector fields ¢ satisfying the
relation £(§)w = p*g - w, for some real-valued function g on Y. If rank V = 2,
for x € X we verify that J_(V; w), is a closed ideal of the transitive Lie algebra
J(T; w), and that, if R is the Lie algebra (iii) with 2n = rank V (resp. the Lie
algebra (ii) with n = rank V'), there is an isomorphism of transitive Lie
algebras

Y: J.(T; w), - Der(R &g F)

such that Y(J(V; w),) = R ®g F; it follows that the non-linear cohomology
of the closed ideal R ® g F of Der(R ®R F) vanishes.

If R is a finite-dimensional Lie algebra, in §24 we consider a Lie group G,
whose Lie algebra g, is isomorphic to R. If X = Y X G, and p: X —» Y is the
projection onto the second factor, the left-invariant and right-invariant
Maurer-Cartan forms of G, induce non-singular g,-valued 1-forms » and o
respectively along the fibers of p. From the identity (24.4) relating the Lie
derivative £(¢)w of w along a vertical vector field £ on X to the exterior
derivative dy, y(0, §) of the g-valued function (o, £), we deduce that Jy(V; )
is a formally integrable Lie equation whose solutions over open subsets of X
whose fibers over Y are connected are the vertical vector fields whose restric-
tions to each fiber are right-invariant vector fields on G,. From the formula
(24.7) relating the first-order (non-linear) differential operators Dy, of §4
and ®_, which corresponds to the equation Q,(V; w), we infer that the
solutions of Q,(V; w) over open subsets of X whose fibers over Y are
connected are the local diffeomorphisms of X whose restrictions to each fiber
are left-translations of G, and, using properties of the operator Dy ,y, that
0,(V; w) is a formally integrable and integrable finite form of Ji(V; w)
(Proposition 24.3). If D, y,y is the compatibility condition for the operator
D x /vy, the Maurer-Cartan equation satisfied by w is 9, y,yw = 0. Using this
fact and the fundamental formula (22.20), we obtain the commutative diagram
(24.17) connecting the non-linear Spencer ©-complex of J\(V; w) and the
sequence of §4 involving the operators ® y ,yand D, y . Ifu € Z (L(V; @),
with a € X and u, = myu, then w* is a germ of a non-singular g,-valued
1-form along the fibers of p satisfying the equation D, y,yw*“ = 0; moreover
every such germ can be obtained in this way. Proposition 4.1, which is a
consequence of Frobenius’ theorem, says that this sequence of §4 is exact and
hence gives us a germ at a of a local diffeomorphism f of X over Y satisfying
Dy, yf= w*, which is precisely equation (I), and the vanishing of the
non-linear cohomology of Q,(V; w) at a. The exactness of this sequence is the
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assertion of the second fundamental theorem with parameters for the Lie
group G,. A Q,(V; w)-structure on X is equivalent to a non-singular g,-valued
1-form v along the fibers of p and is formally integrable if and only if
D, x,yv = 0. This last remark can be used to show directly that D, y yw*“ =0
for u € Z\(J(V; w)), and u, = myu without requiring our formula (22.20). The
analytic first-order Lie equation J,(T; w) on X, whose solutions are the
p-projectable vector fields ¢ satisfying £(£)w = 0, is formally integrable and
formally transitive. For x € X, we verify that J_(V; ), is a closed ideal of the
transitive Lie algebra J_(T; w), and that, if R is simple, there is an isomor-
phism of transitive Lie algebras

Y: J(T; w), > Der(R @y F)

such that Y(J (V; w),) = R ®x F. Thus the non-linear cohomology con-
sidered in Theorem 26.1 vanishes whenever R is finite-dimensional. We remark
that, if U is zero-dimensional and Y is a point, the Lie equation J,(V; w) and
its finite form Q,(V; w) can be described in a much simpler way without the
use of w (see §20) and the vanishing of the cohomology in this case is given by
Proposition 17.2.

In §25, we study the case of the Lie algebra (iv). If w is an analytic contact
form along the fibers of p, the Lie equation J,(V; W), corresponding to the
equation (£(£)w) A w = 0 for vertical vector fields £, whose solutions are the
contact vector fields along the fibers of p, is not formally integrable. We
introduce a first-order Lie equation R (V; w) (resp. R,(w)) which corresponds
to the equations

L(§)w=fo, L(&)dy yo=fdyxyo+aw

for the vertical (resp. p-projectable) vector field §, where f is a real-valued
function on X and « is a 1-form along the fibers of p depending on & The
solutions of R,(V; w) are precisely the contact vector fields along the fibers of
p. In Proposition 25.2, using the explicit form of the contact vector fields, we
show that this equation R,(V; w) is formally integrable and integrable and that
it is involutive and can be obtained from J,(V; W) by the methods of [10]; in
fact, it is equal to the projection in J, (V') of the first prolongation J,(V; W) of
the equation J\(V; W). This enables us to apply the results of [10] to deduce
that H/(R(V; w)) = 0, for j > 0. To verify that a certain differential equation
P\(V; w) C Q, is a formally integrable and integrable finite form of R,(V; w),
we are lead to examine properties of a finite form Q,(V; W) of Ji(V; W) and
then to construct explicitly elements of the first prolongation P,(V; w) of
P,(V; w) in order to apply results of [9]. If u € Z'(R,(V; w)),, with a € X and
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uy = myu, then by means of the formula (22.20) we see that w*° is a germ of a
1-form along the fibers of p satisfying the condition

(2) w A (dX/Y‘*’uo - (dX/Y‘*’)uO) =0;

in fact the relation (2) implies that w“0 is a germ of a contact form and
moreover every germ of a contact form along the fibers of p can be obtained in
this way (Propositions 25.5 and 25.6). Darboux’s theorem with parameters
gives us the existence of a germ at a of a local diffeomorphism f of X over Y
satisfying (1); from equation (2) we infer that f verifies the additional relation

(3) WA (frdy yo — (dyy0)*) = 0.
The equations (1) and (3) guarantee that the unique element ¢ € Ql satisfying
7,9 = fand D¢ = u, is a germ of a section of P,(V; w) (Proposition 25.4). Our
criterion now insures that the non-linear cohomology of P (V; w) vanishes. The
equation (2) expresses the condition that a germ u, at a of a section of
T* ® Jy(V), with uy(a) close to 0, be of the form u, = myu for some u €
Z'(R\(V; w)),. Finally, the analytic Lie equation R,(w) is formally integrable
and formally transitive; for x € X, we verify that R (V; w), is a closed ideal
of the transitive Lie algebra R (w), and that, if R is the Lie algebra (iv) with
2n + 1 = rank V, there is an isomorphism of transitive Lie algebras

¥: R (w), — Der(R &g F)
such that Y(R_(V; w),) = R &g F. It follows that the assertions of Theorem
26.1 hold whenever R is the Lie algebra (iv).

Finally, we ought to point out to the reader that all differential equations
considered throughout this paper are assumed to be of order greater than or
equal to one. We wish to thank D. C. Spencer for his constant encouragement
and advice during the preparation of this paper.

CHAPTER V. THE COHOMOLOGY OF NON-ABELIAN
MINIMAL CLOSED IDEALS OF REAL TYPE

21. Lie Algebras with parameters

Let K be a field endowed with the discrete topology. We begin by recalling
the following definitions.

Definition. A linearly compact Lie algebra over K is simple if it contains
no non-trivial ideals.

According to [20, Proposition 4.3] a linearly compact Lie algebra is simple if
and only if it contains no non-trivial closed ideals; clearly such a simple Lie
algebra is transitive.



604 HUBERT GOLDSCHMIDT

Definition. Let L be a transitive Lie algebra over K and I a closed ideal of

L. A Jordan-Holder sequence for (L, I') of length k is a properly nested chain
I=I,0D2L,D -2, =0

of closed ideals of L such that, for all 0 <j < k — 1, either I,/I;, is abelian

or there are no closed ideals of L properly contained between /; and [, ;.

If I is equal to L, we call such a descending chain a Jordan-Holder sequence
for L. The existence of such sequences for (L, I') was proved by Guillemin [20,
Theorem 6.1] (see also Theorem 12.2).

Let L, E be linearly compact Lie algebras over K and suppose that E is
endowed with the structure of a linearly compact L-module such that the
elements of L act on E as derivations of the Lie algebra E, that is,

(21.1) ‘g'[T’I’TIZ]:[g'nl’nZ]+[7’1’£'7’2]’

for§ € L, ., n, € E. We define a structure of linearly compact Lie algebra M
on the linearly compact topological vector space E X L by setting

[(’h’ £1), (ny, 52)] = (‘51 Mm—&mt ["11,’12]’ (&1, ‘fz])~

The Jacobi identity for M follows from (21.1). We identify E (resp. L) with its
image in M under the Lie algebra homomorphism i: E - M sending 7 into
(n,0) (resp.j: L — M sending § into (0, £)). If ¢: M — L denotes the projection
sending (1, §) € E X L into &, the sequence

i (]
0O-E-M->L->0

is an exact sequence of linearly compact Lie algebras which is split by j;
moreover

&-m=[j(¢),i(n)],

for ¢ € L,n € E. Thus M is an inessential extension of L by the closed ideal E
which we call the semi-direct product of L and E and often denote by E @ L.
A closed Lie subalgebra F C E which is also an L-submodule of E determines
a closed ideal F of M.

Let E, F be linearly compact topological vector spaces over K. If {E*}, 4,
{F' 'g},gE p are fundamental systems of neighborhoods of 0 in E and F respec-
tively, we endow the tensor product E ® F with a structure of topological
vector space by letting the subspaces

E“®yF + E ® F¥,

with a € 4, B € B, of E ® F be a fundamental system of neighborhoods of 0.
The Hausdorff completion of E ® F is a linearly compact topological vector
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space which we denote by E ® F; we have a canonical injective mapping
EQ®yF—-E®F

which enables us to identify E ® F with a dense subspace of E ®x F. The
tensor product E ® F may be canonically identified with the projective limits

lim(E/E®) ®(F/FP) =1lim(E/E®*) ® F = imE ® (F/FF).

If one of the spaces E or F is finite-dimensional, then E ® F coincides with
E ®F.

Let F be a linearly compact (associative) algebra over K, that is, a topologi-
cal algebra over K whose underlying topological vector space is linearly
compact, and let R be a linearly compact Lie algebra over K. The tensor
product R ®g F has a structure of Lie algebra determined by

(6,9, 86]=[6,6]19f - £,
for £,6, ER, f,, f, €E F. Then it is easily verified that there is a unique
topological Lie algebra structure on R ®x F which extends this Lie algebra
structure on R ®x F. Let L be a linearly compact Lie algebra. Assume that F is
a linearly compact L-module such that the elements of L act on F as
derivations of the associative Lie algebra F, that is,
(i )= -L+fi-(§- 1),

for§ € L, f,, f, € F. The action of L on R ® F, determined by

£ m®f)=n®¢-f,
for §€ L,m ER, f €EF, extends to give us a structure of linearly compact
L-module on R ® F such that (21.1) holds for ¢ € L, 3,, 7, € R ® F. There-
fore we may define the semi-direct product of L and R ® F according to the
construction given above.

Let 1 be the trivial line bundle over the manifold Y which is associated to
J(Ty; Y). Thus Fy = J (1; Y), is a geometric J(Ty; Y),-module, for y € Y,
and a linearly compact algebra, and the elements of J (Ty;Y), act as
derivations of the algebra F,. We denote by Fyo the kernel of m,: J(1;Y), -
Jo(1; Y),. Let L be a real transitive Lie algebra, I a closed ideal of L and L" a
closed subalgebra of L. According to the above construction, we obtain the
semi-direct product

M= (L&xF,)®J(TyY),
of the transitive Lie algebra J (7y; Y), and the J, (Ty; Y),-module
L ®g F,. By [6, Lemma 3.1}, M is a transitive Lie algebra and, if L%is a

fundamental subalgebra of L, then
MO=(L"® E,+ L®E®) ® JX(Ty; Y),
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is a fundamental subalgebra of M. Moreover the J(Ty; Y) -module / ®r F,is
a closed ideal of M and the semi-direct product

(L'® FE)®u (T Y),

is a closed subalgebra of M. We say that the ideal I ®¢ F, of M is the Lie
algebra I with real parameters. If the closed ideal I of L is a non-abelian and
simple Lie algebra, then it is easily verified that 1 ®g F, is a non-abelian
minimal closed ideal of M. If L is a non-abelian and simple Lie algebra, then
as J(Ty; Y), is a simple transitive Lie algebra when the dimension of Y
is = 1, we see that

MDL&®RF,D0

is a Jordan-Holder sequence for M.

Assume that the manifold X is the product Y X Z of Y with a manifold Z
and that p: X — Yis the projection onto the first factor. Since T, = Ty, , ® T, ,,
if x = (y, z) € Y X Z, we have an isomorphism T, , —» V,; thus a vector field
¢ on Y determines a p-projectable vector field p~'¢ on X, while a vector field 5
on Z determines a vector field pr;'n on X, and a p-form on Z determines a
section of /APV* over X. On the other hand, we obtain a morphism of Lie
algebras

(21.2) 0, Jo(Ty; Y), = T (T p)..

sending j_(£)(y) into j(p~'¢)(x), where x € X satisfies p(x) = y, which is a
splitting of the exact sequence of Lie algebras

0 = (V) = JulT; £) > (T3 Y), = 0,
If x =(y, z) € Y X Z, the mapping
Joo(TZ; Z)z ® Fy - Joo(V)x’

sending j(1)(z) ® j(f)(») into j (p*f - pr;'n)(x), where f is a real-valued
function defined on a neighborhood of y and n € J, ,, determines an isomor-
phism

(21.3) A (Ty; Z),8 F, > J(V),

of linearly compact Lie algebras, which by restriction induces an isomorphism
MNJATy; Z),® F, + Jo(Tz; Z), 8 F2 - JI(V),.

If x = (y, z), the mapping

(21.4) A: (Jo(Ty3 2), 8 F)) @ J(Ty; Y), = J(T; p)s
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sending (£, n) into A§ + 6,7, is an isomorphism of transitive Lie algebras
between the semi-direct product of J (Ty; Y), and the J (Ty; Y),-module
J (T4 2), ® F, and J(T; p),; this mapping mduces the isomorphism (21.3)
and the 1somorphlsm
N (J2UTy: Z), & E, + U (Ty; 2), ® E2) @ I3(Ty; Y), ~ J3(T; p),
of fundamental subalgebras. Therefore the mapping
Joo(TY; Y)y ® Joo(V)x - Joo(V))n

sending £ ® 7 into [0, £, 0], endows J(V'), with the structure of a linearly
compact J_(Ty; Y),-module, and the mapping (21.3) is an isomorphism of
Jo(Ty; Y), modules If the dimension of Z is=1, then J (T, Z), is a
non- abehan and simple Lie algebra, and so J_(T}; Z), ® F, and J(V), are

non-abelian minimal closed ideals of the semi-direct product and J_(T; p),
respectively; moreover

(Ju(Ty3 2), 8 F,) ©J(Ty; ¥), D Jo(T: Z), 8 F, D0
(215) Ju(T3 0), 3 Jo(V), 5 0

are Jordan-Holder sequences for the semi-direct product and J_(T; p), respec-
tively. The mapping
Joo(TZ; Z)z ® F;l - TZ,z’

sending j(1)(z) ® j(f)(y) into f(y)n(z), determines a surjective mapping
c’:Joo(T'Z; Z)z ® F;) - TZ,z;
it is easily seen that the diagram

1,

- o ® v Mo
Vu(Tz:2),®F)) B J (Ty;Y), — T;,®Ty,
(21.6) 1x f
vlenm,

is commutative.
Let L be a transitive subalgebra of J(T,; Z), and I a closed ideal of L. If
L is the fundamental subalgebra L N J%(T; Z), of L, then

M=(L®E)®J,(TyY),
is a transitive Lie algebra, / ® F, is a closed ideal of M and
M°=(L"® E,+L® F°) ®J3(Ty; Y),
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is a fundamental subalgebra of M. The image of M under the isomorphism
(21.4) is a transitive subalgebra of J_ (T; p), and the image of the closed ideal
I ® F, of M is contained in J_(V'),; moreover

AMM®) =J3(T; p)x N N(M).
By restriction, the mapping o induces a surjective mapping
w:L® F, > T,
and so we obtain an injective mapping

(e*®mgorv)®id: (13,9 TE,)®C

(21.7) .
S((L® E)*®u (Ty; Y)r) ® C.

The characteristic variety V(M, I & F,,C) of the closed ideal I ® F, of M
over C is a subvariety of the image of (21.7). Since the characteristic variety
V(J,(V), C) of the Lie equation J,(V) is equal to T ® C, by Theorem 16.4 (i)
the characteristic variety YV (J (T} p),, J(¥V),, C) is equal to the image of the
injective mapping

mg o v ®id: TF ® C - J(T; p)* ® C.

Therefore if L = J_(T,; Z),, from the commutativity of diagram (21.6) we
dec}uce that the characteristic variety V(M, L ® F,,C) of the closed ideal
L ® F, of M is equal to the image of the mapping (21.7).

We no longer assume that X is the product Y X Z, but only suppose
that p: X - Y is a fibered manifold. Let x € X with y = p(x) and let Z be the
submanifold p~!( y) of X; we denote by z the point x considered as a point of
Z. Then there is a local isomorphism ¢: ¥ X Z — X of fibered manifolds over
Y defined on a neighborhood of (y, z) such that ¢(y, z) = x. The mapping A
defined above together with the isomorphism ¢ gives us an isomorphism of
transitive Lie algebras (21.4), which by restriction induces an isomorphism
(21.3), and a commutative diagram (21.6). Thus whenever the rank of Vis = 1,
we see that (21.5) is a Jordan-Holder sequence for the transitive Lie algebra
Jo(T5 p),-

In §26, we shall require the following result which is the realization theorem
of Guillemin-Sternberg [24, Theorem III}:

Proposition 21.1. Let L be a linearly compact real Lie algebra and N an open
subalgebra of L. Let Y be a manifold whose dimension is equal to that of L/N,
andy € Y. Then there exists a morphism of pairs of topological Lie algebras

(b: (L9 N) - (Joo(TY; Y)y’ J£(TY; Y)y)
such that ¢(L) is a transitive subalgebra of J (Ty; Y),.
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Such a morphism ¢ is called a transitive representation of (L, N) on
Jo(Ty; Y),. It is easily verified that the kernel of ¢ is the largest ideal D°N of
L contained in N; in particular if / is an ideal contained in N, then ¢ maps I
into zero.

22. A class of Lie equations determined by forms

We continue to assume that p: X — Y is a surjective submersion. Let E be a
fibered manifold over Y and E’ be the fibered manifold p'E over X. If
e’ =(x,e) EE’,withx € X,e € E, then V,(E’) is equal to T(E/Y). Let

p*: p'S*TE > SkT*
be the monomorphism of vector bundles over X, whose restriction to the fiber
over x € X is induced by the mapping
pF: T oy = T
and denote its image by p*(S*T%). Let
pi: PI(E;Y) = J(E')

be the morphism of fibered manifolds over X sending (x, j(s)(y)) into
Ji(s ° p)(x), with x € X, s € &, and p(x) = y.

Proposition 22.1. The morphism p, is a monomorphism of affine bundles over

py_, whose associated morphism of vector bundles is induced by the monomor-
phism of vector bundles

p* ®id: S¥T ®p T(E/Y) - SKT* ® . V(E’)
over E’.
Proof. Let f be a real-valued function on Y satisfying j, _,(f)(y) = 0, with

y € Y. If u is the unique element of S"T;",’ , satisfying eu = ji(f)(y), then for
x € X, with p(x) = y, the element p}u is determined by the relation

e(pfu) = ji(fop)(x).
To prove the proposition, it suffices to show that, if s is a section of E over a
neighborhood of y and § € T WNE/Y), we have
(22.1) pi(x, Ji(s)(p) + u®€) =ji (s o p)(x) + pfu @&,
where £ on the right-hand side is considered as an element of ¥, ., (E’). In
fact, let § be a deformation of the section s, that is, a mapping §: U X (¢, €) —
E, where U is a neighborhood of y satisfying §(b,0) = s(b) and s(b, t) € E,
forb € U, t € (-, ¢), such that

sy, t) | _ £
dt t=0 :
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Then the mapping §: p"'(U) X (-¢, &) — E sending (a, t) into §(p(a), t) is a
deformation of the section s o p over p~!(U) satisfying

b

ds'(x, 1) _
dt |l=0 - £

considered as an element of ¥, ,,(E’). According to [9, Lemma 5.1 and
Proposition 5.1], we know that

(22.2) () (y) +u®¢=ji(o)(y),
(22.3) (s o p)(x) + pu ® £ = ji(o")(x),
where ¢ is the section

bw5(b, f(b))

of E over a neighborhood of y, and ¢’ is the section
ar5'(a,(fop)(a))
of E’ over a neighborhood of x. Since 6’ = o o p, we see that

(22.4) jk(o')(x) = Pk(x’ jk(o)()’)),

and so (22.1) follows from (22.2), (22.3) and (22.4).
Now assume that £ and E’ are vector bundles over X. If ¢: E > E’ is a
morphism of vector bundles, we denote by

J(@): Jk(E) - J(E")

the unique morphism of vector bundles sending j,(s)(x) into j (@s)(x), where
s is a section of E over a neighborhood of x. If P: & — &’ is a differential
operator of order k, let

p(P): Jy (E) - J(E)

be the morphism of vector bundles sending j, , ,(s)(x) into j,( Ps)(x), where s is
a section of E over a neighborhood of x.

For the remainder of this section, assume that E is a vector bundle over Y.
The sequence

d d d
0— p716 — 6 1L * @ 5, XL A\2ey* @ 5, —XL5s
(22.5)
e d /\qov*®8x—)0
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is exact, where ¢ = rank V, and formally exact in the sense that the sequences

Pr_1Ux;y) Pr—2lx;y)

P
0 — p~ VLB Y) 5 J, (07 1E) T (V* ®4 E)

Pr-3@x,v)

J—2(A?V* ®4 E) =T (AV*®4 E)—0

(22.6)

are exact for k = 0. Indeed, it is easily seen that the sub-bundle p*T% ® x E of
T* ®x E, corresponding to the differential equation p,(p™Y,(E; Y)) C J,(p"'E)
on p'E, is involutive. Moreover the sequences
(22.7) 0> p*(S*T}) ®xE - S*T* ®yE » S*"'T* @ V* ®yE - - -
SS*RNFVFQUEST*@ N IWW* ®yE » A*1* ®yE - 0,
whose mappings are induced by the mappings p/(dy,y), are exact and (22.5) is
the Spencer sequence of this formally integrable first-order equation on p™'E
constructed according to the method of [8, Theorem 5.1]. Furthermore, if
R, CJ(/\"V* ®xE), with r =1, is the differential equation equal to the
kernel of py(dy,y), from the involutivity of p*T3 ® xE and the exactness of
the sequences (22.7) and (22.6), we deduce by [8, Proposition 4.3] (see also the
proof of [3, Theorem 4.4]) that g, is involutive and that R, is formally
integrable, with myR, = /\"V* ® x E. According to [10, Theorem 3], the exact-
ness of the sequences (22.5) and (22.6) implies that

(22.8) H(p\(p",(E;Y))) =0, H/(R,)=0, forj>0.
By Proposition 16.4, for x € X, the characteristic variety V. (p,(p",(E; Y)), C)
is equal to the subspace pfT7 ., ® C of T¥ ® C. From the exactness of the
sequences (22.7), we see that the characteristic variety V (R,,C) is equal to
T* ® C.

Next we recall the following formulas. If u € * ® J(9) and u, = myu,
iy =»"" o u,, then, for ¢, n € I, we have the identity
(EAm, D)= v[(id + @)E, (id + do)n] — (v + uo)[£,m)

—L(»'u(8))((v + up)n) + (v 'u(n))((» + uy)£),

which is given by [18, Lemma 3.1] and which is equivalent to the identity

o[£, 7] =[ﬂ0(£), ao("l)] +[ﬁo(§), 77] +[§, ﬁo("’)]
(22.10) v R (v 7u())((» + up)m)
+r (v u()) (v + uo)€) v KEA m, Dyu).

(22.9)
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The relation (22.9) is analogous to the formula for the operator ®, on
Jo(T)* ® J(T) of Lemma 1.3:
(N, @|“>: _[(id - ao)g’(id - ao)ﬁ] + (id - ﬁo)[é’ ’7]
= (v = uo) {L(u(£))n — L(u(n))E},

where u € Jy(T )* ® J(T ), ug = myu, iy = ugovand & n € J(T), E=r'¢
i =»"'n.

If ue T*®J(T), we set i=v»"'ou e T* ®T. The mapping sending
a € /\T* into the element

a*=(id+ d@)*a =ao (id + @)

of /\T*, where id is the identity mapping of T, is an endomorphism of the
exterior algebra AT*. If u € (T* ® J(T))", it is an isomorphism; if u = 0, it
is the identity mapping. If a € A°T*, then a*=a. We also set a“ =
v*(v*a)", fora € NJ(T)*. Forv=8®n € AT*® T and a € /\T*, we
define the element

(22.11)

oR,a =B A (i(n)a)”
of /AT* and extend this operation to arbitrary v by linearity. Then
(22.12) oA, (aAB)=(vR,a) AB*+ (-1)"?a* A (vA,B),

for all vE NPT*® T, a € N\NIT*, B € A\T* Next, if u is a section of
T* ® J(T), forv =B ® 5 € NJ(T)* ® J(T), «a € NJy(T )*, we define the
element

L (v)a=BA(E(F)a)"

of NJy(J)* ®J(T) and extend this operation to arbitrary v by linearity.
Then

(22.13) £ (v)(a A B) = (E(v)a) AB*+ (-1)"a* A (R (v)B),
for all v € NZJ(T)* @ J(T), a € NUYT)*, B € NJ(T )*; moreover if
v € J(T)* ®J(T), a € J(T )*, then
(22.14) (EAn, L (0)a)y=((id+uov)n, L(v(£))a)
—((id + u o v7')¢, L(v(n))a),

for &, m € Jy(9).
If u is a section of T* ® J(T') and w is a form on X, then the following
proposition gives us the fundamental formula (22.15) relating dw* and (dw)*.
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Proposition 22.2. Let w be a section of /\T* and u a section of T* ® J(T)
over X. Then

(22.15)  du*o = (dw)" = (™' 0 D) R0 = r°L, (#)(r*0),

where u, = myu and 1 is the section (v*™' ® v™"Yu of J(T)* ® J(T).

Proof. Let u be a section of T* ® J(T') over X; we set i, = »~' o u,. Since
d is a derivation of /AJ* of degree 1 and the relations (22.12) and (22.13) hold,
it suffices to verify (22.15) when w is a real-valued function f or a 1-form on X.
In the first case, for ¢ € 9 we have

& df — (df)*)= ¢ f—[(d +ao)¢] - f= —ao(£) -
= (@) f)= — (& e (a)f),

which reduces to (22.15) with w = f. Next, suppose that w is a 1-form on X; for
¢, m € 9, we have by (22.10) and (22.14)

(ENn, dotoy=§- (n, 0y =7 - (§ )= ([§ 1], 0*)
=&-(nw)y=n- (&)= ([&n], 0)
+& - (dp(n), w)—n - (Hp(§), )= (#o[€, ], @)
= (§Am, doy+ £ ig(n), w)—n - (iHp(£), w)
——([120(.5), ao("l)]’ w)— <[ﬁ0(§), ’7]’ @)
—([& do(n)], )+ TR u(E))((v + uo)n), @)
— (v u(n))((v + uy)é), @)
+(TKEA D, Dyu), )
= (EAm, doy+ £ (ig(n), w)—n - (i1y(£), @)
—([ao(8), do(m)], @)= ([0(£), n], @)
_<[§’ ao(ﬂ)]a w)+ do(§) - ((id + @g)n, w)
—dig(n) - ((id + @g)§, 0y — (¥ + up)m, £(v~'u(§))(»* ')
(0 u)g, £ u(m) (7))
+(EAD (r7' o Dyu)Rw)
= (A (do)+ (r' o Du)iw— e, () (r*w)),
from which we deduce (22.15) when w is a section of 7* and hence also in the

general case.
Let f: X —» X be a local diffeomoiphism defined on an open set U. If £ is a

vector field on U, we define the vector field f, £ on f(U) by

(£,8)(x) = £.(&(£ (%)),
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for x € U. If wis a section of /\ T* over X, it is easily seen that
(22.16) (&) f*o = fL(f,8)w.

If £ is a p-projectable section of T over an open set U C X and n € N\,
then £(£)n € AY; if w is a section of /\V*, then £(§)w is the section of
/A V* satisfying
(22.17) (m, B(£)“’>= B(f)(ﬂ,w)— <E(£)ns“‘>’
for allm € AV, If f: X > X is a p-projectable local diffeomorphism defined

on U, then f £ is a p-projectable vector field on f(U) and formula (22.16)
holds. If g is a real-valued function on Y, then

L((gop)é)w=(g°p)E(¢)w.

If £ is section of V, then
(22.18) B(g)dex/Y(gxw) +érdy yo,

and so

E(g)dx/yw =dy,yL(§)w;

if w is a section of AV* ®xE, formula (22.17) or (22.18) defines a section
L(&)w of ANV*@®yE. If £€J(T;p) and a € NJ(V)*, then L(§)a €
NJ(V)* is determined by

(22.19) (n, £(&)a)=L(E)(n, a)— (E(¥)n, &)
for all n € NJ(V). Moreover if & € J(V), a € NJ(V)* ® &, formula
(22.19) defines £(&)a € AJy(V)* ®E.

If u is a section of V* ® Jy(V), the operations depending on u described
above are easily modified to define elements a*, vA,a of A\V* ®yE, for
a € ANV*®yE, vE AV*®V, and £ (v)a of NJ(V)*® by, for v E
NI(V)* @ J(V), a € NJ(V)*®E,. If u€ T*®Jy(V) and «a €
AV*®yE, we set a“ = a°, where v = 4. According to (1.5) and the
definition of the bracket on /\T* ® J(T), for u € §* ® J,(V') the element
D2y of AV* ® Jo(V') depends only on u;,; we set

i31,)(/}’(“|V) = (@1“)1/\%/
and thus obtain an operator
Dy xr: VO L(V) > AXV* @ Jo (V).

The following proposition is a generalization of Proposition 22.2 and gives us
the fundamental formula (22.20) relating d,y«" and (dx,yw)*, where u is a
section of T* ® Jy(¥) and w is a section of /\ V* ® x E over X.
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Proposition 22.3. Let w be a section of \V* ®xE and u a section of
V* ® J(V') over X. Then

(22.20) dy, yw' = (dy/y0)™ = (”—l ° SD1,){/1/“) Rup @ = VL, (@) (r*70),

as sections of \V* ®@xE, where uy = myu and i is the section (v*™' ® v~")u of
J(V)* @ J(V).

Proof. 1If we restrict the forms of both sides of (22.15) to /A V, we obtain
(22.20) when w is a section of /A\V*. The proposition is an immediate
consequence of this special case.

We now introduce a class of Lie equations determined by forms. Let w be a
section of /\ V* ® v E over X, and let

D,: Vo> /N\V*® by

be the linear differential operator sending £ into £(¢)w. The kernel J,(V; w) of
Pi—1(D,) is a sub-bundle of J (V') with possibly varying fiber. Then ¢ € Jy(V)
belongs to J,(V; ) if and only if £(£)r*'w = 0, where £ = »~'¢. It follows
that if J(V; w) is a vector bundle, then it is a Lie equation whose kth
prolongation is J, , (V; w), and which is the Lie equation determined by the
form w. Let g, (V; w) C SY,(T)* ® Jy(V) be the kernel of m,_: J(V; w) >
Jo1(V; @), where Jy(V; w) = J(V).

In §23 and §24, we shall consider sections w, and the corresponding Lie
equations, satisfying the condition of the following:

Proposition 22.4. Let w be a section of /\"V* @y E over X, withr=> 1. If
there are isomorphisms of vector bundles

o: V->/A\""1V*®E,
7: N'V*®yE > N\"V* QyE

over X such that the diagram

CV' _&—_) /\"V*@gx

r—1 o % dX/Y /\r rk
N 1Y* Q@ 6 —— N'V*® &y
commutes, then J(V; w) is a formally integrable Lie equation, g\(V; w) is
involutive, my: J\(V; w) — Jo(V') is surjective, and
(22.21) H/(J(V; w)) =0, forj>0.

Moreover, for x € X the characteristic variety of Jy(V; w) over C is equal to
0Ty p® Cifr=1ortoTr ® Cifr>1.
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Proof. First if r = 2, since o, T are isomorphisms and the sequence (22.6) is
exact, J,(V; w) is equal to the image of the kernel of
Pk—l(dX/Y) : Jk(/\ "y ®XE) = Je(NV* ®4E)
under the isomorphism
J(6™): (AW  ®yE) » J (V)
induced by ¢~'. Next if r = 1, the commutative and exact diagram

D
0—> T, (V; w) T(V) Pr=1 Do) Jo_(V* ®y E)

(22.22) i l.fk(a) le_ 1 (1)

Pr—1lx;y)
MY_)JIC—I(V* ®X E),

o
0 — o~ (E; Y) 5 T (p71E)

whose mappings J,(o) and J,_,(7) are isomorphisms of vector bundles,
induces an isomorphism J,(V; w) = p"'J,(E; Y). The conclusions of the pro-
position are direct consequences of our discussion of the sequence (22.5) and
the equations p,(p~'J,(E; Y)) and R, and of (22.8).

A local mapping X — X over Y is a p-projectable mapping inducing the
identity mapping of Y. If f is such a local mapping X — X over Y, let D f
denote the section f*w — w of /\V* @y E. Let

pk—l(Qw): Qk(V) _)Jk—l(/\ V* ®XE)
be the morphism of fibered manifolds over X sending ¢ = j,(f)(a) into

Je—1(D,f)(a), where f is a local diffeomorphism of X over Y defined on a
neighborhood of a € X. If target ¢ = b, we define an isomorphism

¢:J_(AV*®xE), > J,_(AV* ®4E),
by setting
¢(jk—1(”)(b)) = jk—1(f*u)(a),
where u is a section of /A V* ® x E over X; then the diagram

@)
V(i (V) /DGR Joy(AV* @4 E)

(22.23) [fb I¢

D )eov
T (V) —————— T, _(AV* ®x E)
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commutes. Indeed, if g, is a one-parameter family of local diffeomorphisms of
X over Y defined on a neighborhood U of b, with g, the identity mapping of
U, we set Y(1) = j,(g,)(b) and let £ be the section dg,/dt |,_, of V over U, then

AO®) =2y | _,

and

Pe-1(D)s - 0(Gi(£)(D)) :pk—l(@“’)*%‘l/(t) ¢ I':O
= %pk—l(@w)("b(t) : ¢) |1=0
- %jk—l((gt ° f)*o — w)(a) |t=0
- %jk—l(f* - grw)(a) Ir:0
d .
= E‘P '_]k—l(gt*w)(b) |¢=0
=¢- %jk—l(gt*w)(b) |z=0
= ¢ e 800 |, o) ®)
=6 i 1(B(&)w)(b) = d(pe_ (D) i (£)(B))-

From the commutativity of (22.23), we see that J(V; w) is a vector bundle if
and only if p, _ (D) has constant rank. Let

J(D,): Jk(Ql(V)) - Jk(/\ v* ®XE)

be the morphism of fibered manifolds sending j (¢)(a) into j (po(D )¢ ) a),
where ¢ is a section of Q,(¥') over a neighborhood of a € X; then the diagram

o)
000 1) 22, 1 A+ ey B)
(22.24) lxk lid
7,@,)

J(@,(V)) — >J (A\V* ®x E)

is commutative.

Let Q,(V; w) be the sub-groupoid of Q,(V) consisting of the k-jets ¢ €
Q,(V) satisfying p,_ (D ,)¢ = 0. An element ¢ of Q,(V') belongs to Q\(V; w)
if and only if ¢(v*~'w) = v*~'w. By [9, Proposition 2.1}, if J,(V; w) is a vector
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bundle, then Q,(V; w) is a fibered submanifold of Q,(V') and a differentiable
groupoid which is a finite form of the Lie equation J(V; w), whose solutions
are the local immersions f: X - X over Y satisfying f*w = w. Moreover from
the commutativity of (22.24) and [9, Proposition 4.4], we deduce that if
Ji(V; w) is a vector bundle, then

MQiii(Vs @) = M0 (V) N I(Q1(V; @)
= MQir1 NJI(Q)(V; @),
since Q,. (V) =(Q,(V));,; therefore if Ji(V; w) is a vector bundle,
Q. +1(V; w) is the kth prolongation of Q,(V; w). We write
2,(Viw)=9,n2,(V; w);
thus by Proposition 7.2, if Ji(V; w) is a vector bundle, we have
(22.25) D(2,(V; w)) C T* @ J(V; w).

The following lemma is needed for our study of Q,(V; w) and provides us
with a partial converse to Lemma 2.3:

Lemma 22.1. Let ¢ be a section of Ql, with m,¢ = f, and u a section of
(Jo(T)* ® T)" . Then the following are equivalent:

() Do =1y

(ii) ¢ is the section j(f) —fouow on,.

Proof. By Lemma 2.3 (i), j,( f) — f o u o » is a section of 9~2|. According to
Lemma 2.3 (iii), it suffices to prove the following: if ¢, ¢, € Q, satisfy
70 = 7yp, and Do = D, then ¢ = ¢,. In fact, by (2.41)

D(¢-¢1') = 6:(De) + D1’ = 0:(Do1) + Doy’ =D(9, - ¢7') =0.
Therefore ¢ - ¢7' = ji(7e(¢ - ¢7')) =ji(1;) and s0 ¢ = ¢,.
Recall that if u € (T* ® J(T))", then according to Lemma 2.2 we obtain
an element # € (Jy(T)* ® J(T))" such that
vl—a=v+u)"J(T) - J(T).
Ifk=0,fora € AV*®4E, £ € AV, we have
(22.26) (£, a)=((id+ » ' ou)(id — @wo v)¢, ay= ((id — @ o )£, a*).
Proposition 22.5. Let w, a be sections of /\V* ® xE and u a section of
(T* ® Jy(V))" over X. Let f be a local immersion X - XoverY. Then:
)¢ =j\(f) — feouovisasectionof 2,(V) satisfying D = and D¢ = u;
(il) we have
(22.27) (& o0 0)y=((r"' —U)§, f*w),
for § € NJy(V), and (v*~'w) = v*"'a if and only if f*& = a*;
(iii) ¢ is a section of 2 (V; w) if and only if f*& = w*.
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Proof. (i) By Lemmas 22.1 and 2.2 (iii), we need only show that ¢ is a
section of Q,(V). By Lemma 2.3 (i), we have ¢(¢) = »(f(r™' — @)¢), for
§ € J)(T), and so p¢(£) = pé. The desired result is a consequence of Proposi-
tion 6.1 (ii).

(ii) For ¢ € A\Jy(V)*, we have

& o(rw)y=(o(§), »o)y= (r(f(r! — @)E), r* )
=((»! —@)§, fro),
and according to (22.26)

Evla)y= (v — u)¢, a).

Since v~ — itz Jy(V') - V is invertible, we deduce that ¢(v* 'w) = a if and
only if f*w = a*.

(iii) is an immediate consequence of (i) and (ii), with a = .

From Lemma 22.1 and Proposition 22.5 (iii), we deduce that

1

(22.28) ffo = o®?,

for ¢ € 2,(V; w) with f = m9.

A section u of (T* ® J(V; w))” determines a section w“c of A\V* ®,E,
where u, = myu. In the next proposition, we investigate the relationship
between the integrability condition ©,u = 0 on u, an integrability condition
(22.28) on w*® and the existence of local diffeomorphisms f: X - X over Y
satisfying f*w = w"o.

Proposition 22.6. Let w be a section of \V* ®xE and u, a section of
(T* ® J(V))" over X. Let f be a local diffeomorphism X — X over Y defined on
a neighborhood of a € X. Then of the following assertions, (i) and (ii) are
equivalent while (iii) implies (iv):

@ ffo = o™

(ii) there is a section ¢ of QI(V; w) over a neighborhood of a satisfying myd = f
and D¢ = uy;

(iii) there is a section u of (T* ® J|(V; w))" such that myu = u, and Du =0
on a neighborhood U of a;

(iv) we have

(22.29) dx/y‘*’“o = (dX/Y"")uO

on a neighborhood U of a.
Moreover, if J(V; w) is a vector bundle and the finite form Q(V; w) of
Jy(V; w) is formally integrable, assertion (i) or (ii) implies (iii).
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Proof. The equivalence of (i) and (ii) is a consequence of Lemma 22.1 and
Proposition 22.5. Next assume that (iii) holds. If we write Jy(V; )=
v U (V; w), then & = (»*~' ® »')(u,) is a section of Jy(V)* ® Jy(V; w), and
SO

L (a)(»*'w) =0,

where v = u,,. Since D, y,y(%,/) = 0, we apply Proposition 22.3 to w and u,
to obtain (iv). Finally, assume that J(V; w) is a vector bundle and that
0,(V; w) is formally integrable, and that (ii) holds. There is a section ¢ of
?22( V; w) over a neighborhood of a such that 7y = ¢; then by (22.25), u = Dy
is a section of (T* ® J|(V; w))” satisfying myu = u,and D,u = 0.

The proof of part (i) of the following proposition resembles the argument
used to prove Proposition 7.6 (see also the end of the proof of Theorem 8.1).

Proposition 22.7. Let R, C J,(T) be a formally integrable Lie equation. Let
P, C Q, be a finite form of R, whose Ith prolongation we denote by P, , ;. Assume
that m,: P, ., = P, is surjective.

() Ifu € Z\(R,),, with a € X, and @ is the image of u in Z'(R ), under the
mapping (7.13) and ¢ € @k’a, then the following assertions are equivalent:

@ D = me_ 15

(b) D¢ =1

(c) there is an element ¢, € @k +1 Satisfying

md, = ¢, @4’1 = u.

(ii) Suppose that P, is a formally integrable and integrable finite form of R,. If
u € Z\(R,), and i is the image of u in Z(R ©)a> then the following assertions
are equivalent:

() the cohomology class of u in H'( P, )k.q Lanishes;

(b) the cohomology class of i in A (P, )kq Vanishes;,

(c) there exists ¢ € @k’a satisfying D = m,_u.

(ii1) Suppose that P, is a formally integrable and integrable finite form of R,. If
for all u € Z'(R,),, with a € X, we can solve the equation Do = MU, for
¢ €9, ,, then H(P,),, , =0, forallm=>k,a € X.

Proof. (1) Clearly (c) = (b) = (a). We now verify that (a) = (c). Suppose
u€ Z'(R,),and ¢ € @k,a satisfy (a) with (me$)(a) = b. Choose §, € @Hl,a
with ), = ¢. Since (7, ,u)* = 0, we have

wi' e (B(T)*®g),
and (see §1)

Su¥" = _Du¥' = —%'rrk[u‘”', w'] = 0.
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Since g, is 1-acyclic, there exists v € g, .., such that §v = u¥". According to [9,
Proposition 7.1}, m,: Py, — P, is an affine sub-bundle of m,: Q. ,p — P,
and so the mapping (7.4), with / = 0, namely

9: Qk+1 NPryy = 8ksrs

is an isomorphism of Lie groups over X and thus ¥, = 9 'v belongs to
21 N Fuyr By (2.38),

Dy, = —bv = —u¥i'
andy;' -y, € @H,,b, with 7y(¢;' - ¥, )(b) = a; then
u‘l’l_l"h = u’l’l-I + @‘1,2 =0.

Hence ¢, = 45" - ¢ € ¥, , satisfies ¢, = ¢ and D¢, = u.

(i1) Clearly (a) = (b) = (c). We now verify that (c) = (a). If u € Z'(R k)a and
¢ E ?Pk satisfy D¢ = 7, _ 4, then according to (i) there exists ¢, € @k +lar
with m,¢, = ¢, such that D¢, = u. Since P, is 1ntegrable there exists f €
Sol( P,), such that j, . ,(f)a) = ¢,(a). Then j, . ,(f") - ¢, belongs to GJ’,(H,G,
and by (2.41)

gg(J'k+1(f—l) : 4’1) = D¢, =u.

(iii) is a consequence of (ii) and Proposition 7.8.

From Propositions 22.5 and 22.7 (iii), we obtain directly:

Proposition 22.8. Let w be a section of \V* ® x E. Assume that J,(V; ) is
a formally integrable Lie equation and that Q,(V; w) is a formally integrable and
integrable finite form of J,(V; w). If for all u € (T* @ J(V; w)).', with a € X,
satisfying D ,u = 0, there is a local diffeomorphism f: X — X over Y defined on a
neighborhood of a satisfying f*w = w"o, where uy = myu, then

EI(QI(V’ w))m,a = O’ HI(JI(V’ w))a = 0
forallm=1,a € X.

The sub-bundle Q,(V') of Q, is a formally integrable and integrable finite
form of the formally integrable Lie equation J,(V'), and its k th prolongation is
Q. +1(V). The following proposition is a special case of Theorem 8.1 and also
follows directly from Proposition 22.8 with w = 0, taking f to be the identity
mapping of X.

Proposition 22.9. For allm = 1, a € X, we have

H'(Q((V )= 0, H'(J(V)),=0
By the exactness of (1.3), we also have
H/(J,(V)) =0, forj>0.
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If x € X, there are structures of analytic manifolds on a neighborhood U of x
in X and on p(U) compatible with the structures of differentiable manifolds on
X and Y such that p, is analytic. Then Ji(T; p) is a formally transitive and
formally integrable analytic Lie equation; since J,(V') C J|(T; p) is a formally
integrable Lie equation satisfying (6.3), for x € X and j > 0 we have

H/(Jo(T; ), Jo(V)) = H(1,(V)) = 0,
HY(J(T; p),, Jo(V),) = H'(J,(V)), =0,
by Proposition 22.9.

Let Z be a manifold and assume that p: X - Y is the fibered manifold pr;:
YXZ-Y. If x=(y, z) € X, from the properties of the isomorphism (21.4)
of transitive Lie algebras given in §21 and (22.30), we deduce:

Proposition 22.10.  If Z is a manifold, then for z € Z andy € Y, we have

H/((J1o(Tz: 2), 8 F) @ L(Ty: Y),, J(Tz: Z), & F,) = 0
forj >0, and
ﬁl((Joo(TZ; Z)z ® F;)) ® Joo(TY’ Y)y’ Joo(TZ’ Z)z ® F:v) =0.

Finally, we assume again that p: X — Y is an arbitrary surjective submer-
sion, and further that E is a trivial vector bundle over Y. If £ is a p-projectable
vector field on X, formula (22.17) defines a section £(§)w of /\V* ® y E, while
formula (22.18) determines an element £(£)a of AJy(V)* ®yE, for all
£ € J(T; p), a € NJ(V)* ® &,. The differential operator

D,: 9, > AV*®E,,

w

(22.30)

sending ¢ into £(£)w, extends the differential operator considered above; the
morphism of vector bundles

(22.31) Pi—(D,): I (T; p) ;)Jk-l(/\V* ®xE)
determined by this operator D,, sending j(§)(x), with £ €9J, ,, into
Ji—1(D,€)(x), is an extension of the morphism p, ,(D,) considered above.

The kernel Ji(T; w) of (22.31) is a sub-bundle of J,(T; p) with possibly varying
fiber and satisfies

J (V5 w) =7, (V) N J(T; ).

An eler~nent ¢ of J|(T; p) belongs to J(T; w) if and only if L(£)r*'w =0,
where £ = »71& It follows that if J(T; w) is a vector bundle, it is a Lie

equation whose k th prolongation is J,, (T; ). Moreover, we have the exact
sequence

0~ J(V; ©), = Ji(T; ©), 5 J(Ty; Y)

p(x)
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for x € X, and
[Jk+1(T§ @), S (T “’)] CJ(T; w),
[Jis1(T5 @), i (V3 @)] CI(V; @),
for k = 1. For x € X, we write

J(T; w), = li}_an(T; @®)ys

(22.32)

J,(V; w), =limJ(V; w),;
by (22.32), J(V; w), is a closed ideal of the linearly compact Lie algebra
J (T, w),.
Let Z be a manifold and assume that p: X — Y is the fibered manifold pr,:

Y X Z - Y. Denote by V’ the integrable sub-bundle of T consisting of vectors
tangent to the fibers of pr,: Y X Z — Z. We have the decomposition

T=VveVv,
and p induces an isomorphism
p: V' - p’'Ty.
If { €(Y,Ty), then £ =p'¢ is the unique p-projectable section of V’

satisfying p§ = §. Clearly J,(V’; p) is a formally integrable Lie equation whose
kth prolongation is J, , ;(V’; p) and p induces an isomorphism

p: (V5 0) = o (T3 Y),
whose inverse we denote by
(22.33) o: p U(Ty; Y) = L (V' p).
For x € X, with y = p(x), and { € I'(Y, Ty), the mapping (22.33) sends
(x, Ji(§)(y)) into

o (Ji($)(»)) = jilp7)(x),
and we have
(22.34) [0.§, o.m],
for ¢, m € Ji(Ty; Y),. The mapping

0, Jo(Ty; Y), = Jo(T5 p).
determined by (22.33) with kK = oo is equal to the mapping (21.2) and its image
is J(V’; p),. Moreover, we have the decomposition

J(T;p) = J(V) ® J(V'; p);

for k = oo, this gives us a decomposition of J (T p), as the semi-direct
product of its closed subalgebra J_(V"; p), and its closed ideal J_(V),.
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Let w, be a form on Z with values in the vector space E. We assume now

that the vector bundle E is the trivial vector bundle over Y whose fiber is the
vector space E and that  is the section &, of /\V* ®xE determined by the
form w,. The p-projectable vector field p~'¢ on X determined by a vector field £
on Y clearly satisfies the relation £(p™'¢)w = 0. Hence we have the decomposi-
tion
(22.35) J(T; ©) = J(V; 0) ® J(V'; p).
Moreover for x = (y, z) € Y X Z, the image J_(V’; p), of the morphism of
Lie algebras (21.2) is contained in J,(7; w), and J(V; w), is a J(Ty; Y),-
submodule of J_(V),, and J (T; w), is the semi-direct product of its closed
subalgebra J_(V’; p), and its closed ideal J(V; w),. Therefore the sequence

2236) 0= J(V; 0) = J(T5 @) S T(Tyi ¥y = 0

is exact for 1 <k < oo. It is easily seen that the image of the semi-direct
product

(Joo(TZ’ wZ)z ® F:v) ® Joo(TY’ Y)y
under the isomorphism (21.4) is equal to J,(T; w), and that the restriction
A: Joo(TZ’ wZ)z ® ij - Joo(V’ w)x

of the mapping (21.3) is an isomorphism of J,(7Yy; Y),-modules.

23. Some simple Lie algebras with parameters

Let g be the rank of ¥ and assume throughout this section that ¢ = 1. Let E
be a vector bundle over Y and r = 1. A section w of /\ "V* ® 4 E over X is said
to be non-singular if the mapping

(23.1) w: V> A""W* ®,E,

sending ¢ into £ & w, is an isomorphism of vector bundles over X.

Proposition 23.1. Let w be a non-singular section of /\"V* ® x E over X.

(i) Ifuisasectionof T* @ J(V') over X, then u is a section of (T* ® Jy(V )"
if and only if w* is a non-singular section of /\"V* ® y E over X.

(ii) If f is a local mapping X — X over Y defined on an open set U, then f is
an immersion of U if and only if f*w is a non-singular section of /\"V* ® xE
over U.
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Proof. (i) Ifu € T*® Jy(V) and v = (id + »™' o u),, the diagram

VL NI @y E

Vs NIV e, B

commutes; the mapping w" is an isomorphism if and only if the mapping v is
an isomorphism, or equivalently if u € (T* @ J(V))".
(ii) For x € U, the diagram

®
v, L9 (Ao, B,

bl

w _
Viey —> (NTIV* @y By,

is commutative; thus the mapping f*w of the diagram is an isomorphism if and
only if f,: V, > V},, is an isomorphism, or equivalently if and only if fis an
immersion on a neighborhood of x.

In this section and the next, we shall examine three types of non-singular
sections of the vector bundles /\"V* ®xE and the corresponding Lie equa-
tions. For the remainder of this section, we assume that £ = 1 and that r = ¢
orr=2.

A section of /\ 7V* is non-singular if and only if it does not vanish at any
point of X. A non-singular section w of /\ 9¥* is called a volume form along
the fibers of p; the restriction w X, of w to a fiber X, = p“( y),withy €Y,isa
volume formon X,. If wis a non~smgular section of /\2V*, then the rank of V
is even and equal to q = 2p, with p = 1; if q is even and equal to 2 p, a section
w of A?V* is non-singular if and only if the section w? of /\ 9F* does not
vanish at any point of X. A non-singular section w of N\ 2p* is called a
symplectic form along the fibers of p if dy,yw = 0; the restriction w of such
a symplectic form w to a fiber X, with y € Y, is a symplectic form on X Ifx
is the product Y X Z of Y with a manifold Z and p: X — Y is the pIOJectlon
onto the first factor, and if w, is a volume or symplectic form on Z, the section
&, of A\"V* determined by w, is a volume or symplectic form along the fibers

of p.
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Proposition 23.2. Let w, ' be two non-singular sections of \"V*. If r =2
or r = q, then for all a € X, there is a section uy of (T* ® J(V))" such that
w’ = w" on a neighborhood of a.

Proof. There are frames {a,,- - -,a,}, {a], -, a;} for V* over a neighbor-
hood U of a € X such that

— /= 4 .« .. 4
w—a]/\---/\aq, o =a N /\aq,

when r = ¢, or such that
P p
w = 2 o Nay;, = E c"’2,‘—1 A 0"2,'»

j=1 j=1
when r = 2, according to Cartan’s lemma. Let v be the section of V* ® V over
U satisfying v*(a;) = aj, for 1 <j < ¢, and let u,, be a section of T* ® Jy(V')
over U satisfying (id + »! o uy)y = v. Then o’ = w*, and u, is a section of
(T* ® J(V))" by Proposition 23.1 (i).

Let w be a non-singular section of /\ "V*. Assume that either r = ¢, or that
r=2 and w is symplectic. Since dy, yw = 0, by (22.18) the hypotheses of
Proposition 22.4 are satisfied with ¢ equal to the mapping (23.1) and 7 to the
identity mapping of /\"V*. Therefore J,(V; w) is a formally integrable Lie
equation whose k th prolongation is J,  (V; w), and Q,(V; w) is a finite form
of J|(V; w) whose kth prolongation is Q, . (V; w); moreover my(J(V; w)) =
Jo(V) and (22.21) holds.

Let (w, y) be a local coordinate for X on an open neighborhood U of a € X
compatible with p, that is, w = (w',- - -,w9) is a coordinate along the fibers of
pandy = (y',---,y™)is a local coordinate for Y on p(U). First, suppose that
w is a volume form along the fibers of p; then w is the restriction to /\ 9V of
the g-form

haw' A -+ Adwi,

where 4 is a real-valued function on U. We solve the equation dg/dw' = h for
a real-valued function g on a neighborhood of a. If z' = g, z/ = w/ for j = 2,
then w is the restriction to /\ 9V of the g-form

dz' Ndzi N - Adz9,

and (z',---,z9% y',---,y™) is a local coordinate on a neighborhood U’ of
a € X compatible with p. A vertical vector field § = 29_,£/3/9z/ on U’ is a
solution of J,(V; w) if and only if

YY)

j=1 aZj
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Next, if w is a symplectic form along the fibers of p, according to Darboux’s
theorem with parameters, there are functions z',- - -,z7 on a neighborhood of a
such that w is the restriction to /A 2V of the 2-form

P
> dz TV N dz Y,

Jj=1

Since w is non-singular, (z',---,z% y',---,y™) is a local coordinate on a
neighborhood U’ of a compatible with p. In either case, the vertical vector field
q
(23.2) g= 3 0
j=1 aZ J

on U’ satisfies £(£,) = rw and £(p*f- &,) = rp*f - w, if f is a real-valued
function on p(U’). Clearly we may assume that z/(a) = 0 for 1 <j < g; then
we have {,(a) = 0.

Proposition 23.3. (i) Let w, w’ be two volume or two symplectic forms along
the fibers of p. If a, b € X, with p(a) = p(b), there is a local diffeomorphism
f: X = X over Y defined on a neighborhood of a such that f(a) = b and
ffo=w'.

(ii)) If w is a volume or a symplectic form along the fibers of p, then Q\(V; w)
is a formally integrable and integrable finite form of the formally integrable Lie
equation J|(V; w), whose kth prolongation is Q; . \(V; w).

Proof. (i) There are local coordinates (z, y) on a neighborhood U of a and
(z’, y) on a neighborhood U’ of b compatible with p, where y = (y!,---,y™) is
a local coordinate for Y on a neighborhood of p(a). From the above discus-
sion, if w and w’ are volume forms, we may assume that w is the restriction to
/\ 9V of the g-form dz' N --- Adz9 on U and that «’ is the restriction to /\ 9V
of the g-form dz’' A --- Adz'? on U’; similarly, if w and «’ are symplectic
forms, we may suppose that w is the restriction to /\*V of the 2-form
32_,dz*~" A dz*/ on U and that &' is the restriction to /\ 2y of the 2-form

[ dz’* "' Adz’¥ on U’. We may also suppose that z(a) = z'(b). The
mapping f defined on a neighborhood of a sending the point of U with
coordinate (z, y) into the point of U’ whose (z’, y)-coordinate is equal to
(z, y) is a diffeomorphism over Y and satisfies f(a) = b and f*w = ', since
z/ o f=1z.

(i) We begin by proving that for ¢ € Q,(V; w), with source ¢ = a, there is
a local diffeomorphism f: X - X over Y defined on a neighborhood of a such
that j,(f)(a) = ¢ and f*& = w. If we take w’ = w in (i), we see that it suffices
to verify this assertion when target ¢ is also equal to a. Assume that (z, y)isa
local coordinate compatible with p on a neighborhood U of a, with z(a) = 0
and y(p(a)) = 0, satisfying the conditions with respect to w described in the
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proof of (i). Let ¢ € Q (V') with source ¢ = target ¢ = a. If ¢: JQ(T)a - JO(T)q
sends »(3,/3z/) into 2f_, a/»(3/3z"), for 1 <j < ¢, and »(3/3y") into »(3 /3y’
+ 37, B/ /0z'), for 1 < i < m, then the mapping f defined by

f(Z, y) = (fl(z’ y)a"'9fq(z’ y)’ yl,"',ym),

with
f(z,y) = 2oz + 2 By,
=1 i=1

is a local diffeomorphism of X over Y on a neighborhood of a which satisfies
Ji(f)a) = ¢; moreover f*w = w if and only if ¢p(r*~'w) = »*'w, or if ¢ €
0,(V; w). Thus we have verified our assertion, which implies that 7,: Q,(V; w)
- Q,(V; w) is surjective. Since g,(V; w) is 2-acyclic and g,(V; w) is a vector
bundle for k£ = 1 by Proposition 22.4, we apply [9, Theorem 8.1] to Q,(V; w)
and deduce that it is a formally integrable finite form of J,(V; w). With respect
to the analytic structure on U determined by the coordinate (z, y), the form w
is analytic and the open sub-bundle of Q,(V; w),, consisting of all elements
¢ € Q,(V; w) with source and target belonging to U is an analytic and
formally integrable differential equation on U, and therefore integrable. That
Q,(V; w) is integrable now follows from (i) with w = «’.

The equivalence of assertions (i) and (ii) of the following proposition shows
that the mapping T* ® J (V) - A'V*, sending u into w*’, with u, = myu,
induces a surjective mapping from Z'(J,(V; w)), to the set of germs at a € X
of volume or symplectic forms along the fibers of p.

Proposition 23.4. Let w be a volume (resp. symplectic) form along the fibers
of p and let a € X. If ' is a section of /\V* (resp. /\ *V*) over a neighbor-
hood of a, the following assertions are equivalent:

(i) ' is a volume (resp. symplectic) form along the fibers of p on a
neighborhood of a;

(ii) there is a section u of (T* ® J(V; w))" such that D ,u = 0 and &’ = w*,
with uy, = myu, on a neighborhood of a;

(iii) there is a section ¢ of QI(V; w) over a neighborhood of a such that
o = ', withuy, = Dé.

(iv) there is a local diffeomorphism f: X - X over Y defined on a neighbor-
hood of a such that f(a) = a and f*w = W'.

Proof. (it) = (i): Proposition 23.1 (i) shows that w* is non-singular; the
implication (iii) = (iv) of Proposition 22.6 gives us the relation (22.29), and so
dy,yw* = 0.

(i) = (iv) is given by Proposition 23.3 (i).
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(iv) = (iii): According to Proposition 23.2, there is a section u, of (T* ®
Jo(V))" such that w’ = w* over a neighborhood of a; assertion (iii) is given by
the implication (i) = (ii) of Proposition 22.6.

(iit) = (ii): Since Q,(V; w) is a formally integrable finite form of J,(V; w) by
Proposition 23.3 (ii), the implication (ii) = (iii) of Proposition 22.6 tells us that
assertion (ii) holds.

The proof of the implication (ii) = (iii) of the above proposition gives us the
more precise statement:

Corollary 23.1. Let w be a volume (resp. symplectic) form along the fibers of
p and let a € X. If u is a section of (T* ® J|(V; w))" satisfying D ,u = 0, there
exists a section ¢ of o) (Vs w) over a neighborhood of a such that D¢ = myu.

Since Q,(V; w) is a formally integrable and integrable finite form of the Lie
equation J,(V; w) by Proposition 23.3 (ii), Corollary 23.1 together with Pro-
position 22.7 (iii), or the implication (ii) = (iv) of Proposition 23.4 together
with Proposition 22.8 gives us:

Theorem 23.1. Let w be a volume or a symplectic form along the fibers of
p: X = Y. Then forallm = 1, a € X, we have

HY(Q(V; ©)) e =0, H'(J(V;w)),=0.

The existence of the local coordinates for X satisfying the conditions with
respect to w described in the proof of Proposition 23.3 (i) shows that the
sequence (22.36) is exact for x € X and 1 < k < oo; therefore Ji(T; w) is a
formally transitive and formally integrable p-projectable Lie equation whose
kth prolongation is J, ,,(T; w). From (22.32), we deduce that J_(V; w), is a
closed ideal of J_(T; w),, for x € X.

Let {w} be the sub-bundle of /\"V* generated by the section w and let
@: \N"V* > {w)} be a projection of /\ "V* onto this sub-bundle. Let E’ denote
the quotient bundle /\ "V* /{w} and y: /\"V* > E’ be the natural projection.
Fork =2, let

0 (w): (T3 p) > S (E") © J,5(V*)
be the morphism of vector bundles sending j(§)(x), with £ €9, ., into
(Je—1(¥D E)(x), jk_l(dx/yf)(x)), where f is the unique element of Oy
satisfying ¢D_ ¢ = fw. The kernel J(T; w) of ®,(w) consists of all k-jets
J(§)(x), with £ € §, , for which there is a real-valued function f on Y such
that

(23.3) Jee1(B(&)w — p*f - w)(x) = 0;

then
J(T; w) CJY(T; w).
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We set

Ji(Vs w) =4 (V) NJ(T; 0),
for k = 2. By means of the morphisms ®,(w), we see that, if J;(T; w) (resp.
J3(V; w)) is a vector bundle, then its kth prolongation is J; ,(T; w) (resp.
Ji 12(V; w)). If £, is one of the vertical vector fields (23.2) and f is a real-valued
function on Y, then j,(p*f- §,) is a section of Jy(V; w), for k= 2. Using
(23.3), it is easily verified that
(23.4) [ i(T5 @), Jiu(T; )] CIUT; o),
(23.5) [Ji4(T5 @), Jia(Vs @)] CI(V5 @),
for k = 2. For x € X and k = 2, the mapping

V3 @) = T (1 Y ) ooy,

sending i (§)(x), with £ € V, into j,_,(f)(p(x)), where f is a real-valued

function on Y such that (23.3) holds, is easily seen to be well-defined. Because
of the existence of the vector fields (23.2), the sequence

0= J (Vi w) > Ji(V; @) = p V(1Y) -0,

induced by these mappings, is exact. We immediately deduce from this fact
and (23.4) that J;(V; w) is a formally integrable Lie equation whose kth
prolongation is J; , ,(V; w). For x € X, we consider J,(1; Y),,, as an abelian
Lie algebra, and we write

T (Vs 0), =J0(V) NIL(V; 0),.
If &, is one of the vector fields (23.2) defined on a neighborhood of x satisfying
£o(x) = 0, the morphism of Lie algebras
Jo(15 Y )oy = T (V3 @)

sending j(f)(p(x)) into j (p*f - §,)(x), where f € (‘)Y‘p(x), is a splitting of
the exact sequence of Lie algebras

0-J,(V;0), = I (V5 0), > Jo(1; V) p(xy = 05

clearly the image of this mapping is a closed abelian subalgebra of J22(V; w),
which is a complement of J_(V; w), in J_(V; w),, and so the quotient
J(V; w),/J(V; w), is abelian. Moreover the existence of the local coordi-
nates for X satisfying the conditions with respect to w described in the proof of
Proposition 23.3 (i) shows that the sequence

0 = Ji(V; 0)5 = JUT; ), > J(Ty3 Y )y = 0
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is exact, for x € X and 2 < k < oo; therefore by (23.4) we see that J;(T; w) is
a formally transitive and formally integrable Lie equation whose & th prolonga-
tion is J;, ,(T; w). From (23.5), we deduce that

(23.6) [55(T; ), (V; @)] CI(V; @),

if JY(T; w) = »v™Y3(T; w), and that J,(V; w), and J,(V; w), are closed ideals of
the transitive Lie algebra J (T w),, for x € X; moreover J_(T; w), is a closed
transitive subalgebra of J_(T; w),. With respect to the structure of analytic
manifold on an open set U C X determined by a local coordinate on U
satisfying the conditions with respect to w described in the proof of Proposi-
tion 23.3 (i), the section w is analytic and the Lie equations J,(V; w) and
J5(T;, w) are analytic and satisfy (23.6); hence for x € X and j > 0, we have

H/(JL(T; 0), Jo(V; @)s) = H/(J)(V; @), =0,

H(JL(T; @)y, Jo(Vs ©),) = B'(5(V; @), =0,

by Proposition 22.4 and Theorem 23.1. According to Proposition 22.4, the
characteristic variety V (J,(V; w), C) of Jy(V; w) is equal to T* ® C if g > 1,
and to pfTy, ,,) ® Cif ¢ = 1 and w is a volume form. Hence by Theorem 16.4
(i), the characteristic variety V(J(T; w),, J(V; w),, C) is equal to the image
of the injective mapping

mE o v* ' ®id: T* ® C - JL(T; w)* ® C

(23.7)

if ¢ > 1, or to the image of py7y ., ® C under this mapping if g = 1.

If the manifold Y consists of just one point, then ¥ = T and w is either a
volume or a symplectic form on X. Applying the above results to w, we see that
J(T; w) and Jy(T; w) are formally transitive and formally integrable Lie
equations on X, and that J_(T; w), is a closed ideal of J/(T; w), of codimen-
sion one, for x € X; moreover there is a closed abelian subalgebra of J.X(T; w),
of dimension one which is a complement to J_(T; w), in J(T; w),. f wis a
volume form on X, the solutions of J,(T; w) (resp. J;5(T; w)) are the vector
fields with zero-divergence (resp. with locally constant divergence), J(T; w), is
the Lie algebra of formal vector fields with zero-divergence, and the local
diffeomorphisms solutions of Q,(T; w) are the volume preserving diffeomor-
phisms of X. If w is a symplectic form on X, the solutions of J(T; w) (resp.
Jy(T; w)) are the symplectic vector fields (resp. the vector fields £ satisfying
£(&)w = cw, where c is a locally constant function depending on £), J_(T; ),
is the Lie algebra of formal symplectic vector fields, and the local diffeomor-
phisms solutions of Q(T; w) are the symplectic diffeomorphisms of X. If
n = 2, in either case the transitive Lie algebra J_(T; w), is non-abelian, simple
and infinite-dimensional; moreover if Der(J(T; w),) denotes the Lie algebra
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of derivations of J_(T; w),, according to [7] the mapping

Jo(T; @) = Der(Jo(T; @),),
sending £ into the derivation ad(£) of J (T; w),, is an isomorphism of Lie
algebras (see [6, Corollary 2.2]).

We no longer assume that Y is a point. Let b € Y and let Z be the
submanifold X, of X. We consider the volume or symplectic form w, restric-
tion of w to Z. If a € Z, a local coordinate on a neighborhood of a satisfying
the conditions with respect to w described in the proof of Proposition 23.3 (i)
determines a local isomorphism ¢:Y X Z — X of fibered manifolds over Y
defined on a neighborhood of (b, a) such that (b, a) = a and &, = ¢*(w). If
y €7,z € Z with ¢(y, z) = x, the mapping ¢ induces an isomorphism (21.4)
of transitive Lie algebras; under this isomorphism, it is easily seen that the
image of the semi-direct product

M, = (Jo,o(TZ’ wZ)z ® I‘;) @Joo(TY’ Y)y

is the transitive subalgebra J (T; w), of J (T; p),, that the images of the
closed ideals J/(Ty; w,), ® F, and J (T7; wz), ® F, of M’ are the closed
ideals J,(V; w), and J(V; w), of J_(T; w), respectively, and that the image of
the closed subalgebra

M= (Joo(TZ; wz), ® I’}) ® Jo(Ty; Y)y

of M’ is the closed subalgebra J (T; w), of J_(T; w),. If the dimension g
of Z is>1, since J (T, w;), is a non-abelian and simple Lie algebra,
J(Ty; wy), ® F, is a non-abelian minimal closed ideal of M’ or of M;
therefore J_(V; w), is a non-abelian minimal closed ideal of J_(T; ), or of
J(T; w), whenever ¢ > 1. If w, is a volume form on a one-dimensional
manifold Z, then J_(T,; w,), is abelian, and therefore so are the ideals
J(Ty; wy), ® F,and J(V; w),. Thus

M’ D J(Ty; wz), ® F, D J (T, wz),® F, D0,
M D J (T w;),® F,D0,
JL(T; w), DJIL(V; w) DI (V; w), DO,
J (T, 0), DI (V;w), D0

are Jordan-Holder sequences for the transitive Lie algebras M’, M,
JL(T; w),, Jo(T; w),. If S, is a closed abelian subalgebra of J.%(T,; w,), which
is a complement to J_(T; wz), in J,(T5; wz),, then

(Sz ® F:v) ® Joo(TY; Y)y
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is a closed subalgebra of M’ which is a complement to J,(T; w,), ® F,in M.
From the commutativity of diagram (21.6), we deduce that the characteristic
variety V(M', J,(Tz; wz), ® F,, C) of the closed ideal J(Ty; w,), ® F, of M’
over C is equal to the image of the injective mapping (21.7), with L =
Joo(Tz; wz),, if the dimension g of Z is > 1, or to the image of T3, , ® C under
this mapping if ¢ = 1 and w, is a volume form.

We restate some of these results in

Proposition 23.5. Let w be a volume or a symplectic form along the fibers
of p: X > Y. Let x € X withy = p(x), and Z = p”(x). If w, is the volume or
symplectic form on Z, restriction of w to Z, then J(T,; wz), and J (T,; wz),
are transitive subalgebras of J (T,; Z),, and J (T,; wz), is a closed ideal of
codimension one of J,(T,; w;),. Moreover, there is an isomorphism of transitive
Lie algebras

(4o(Tz; ©2), ® E) @ J(Ty; Y), = Jo(T; ),

mapping the closed ideals J,(T;; wz), ® F, and J (T7; wz) ® F, of the semi-
direct product onto the closed ideals J,(V; w), and J (V; w), of J.(T; w),, and
the closed subalgebra

(Joo(TZ’ wZ)x ® F‘y) ®Joo(TY7 Y)y

of the semi-direct product onto the closed subalgebra J(T; w), of J.(T; w),.

Let w, be a volume or a symplectic form on a manifold Z. Let p: X — Y be
the fibered manifold pr,: Y X Z - Y and w be the volume or symplectic form
&, along the fibers of p determined by w,. We have the decompositions (22.35)
and

JI(T; w) =J)(V; w) ® J(V'; p),
and
JL(T; ©), = I (V; ), © 0 (J(Ty; Y),),
Jo(T; @), = T (V; ©) © 0 (Jo(Ty; Y),),

for x = (y, z) € Y X Z. Therefore J (V; w), and J(V; w), are J(Ty; Y),-
submodules of J_(V'),, and the restrictions

M I (Ty; wz), @ F, = JL(V; 0),,
A: Joo(TZ; wZ)z ® F;r - Joo(V’ w)x

of the mapping (21.3) are isomorphisms of J(Ty; Y ),-modules.
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From (23.7) and Proposition 23.5, we deduce the following:
Theorem 23.2. If w, is a volume or a symplectic form on a manifold Z, then
forz € Zandy € Y, we have

Hj((Jc:o(Tz; wz), & Fy) O J(Ty; Y),, Jo(Tz; ©z), ® Fy) =0
forj >0, and

(VT @7), ® E,) @ J(Ty: ), Jo(Tgs 02), & F) = 0.

If we take Y to be a point and Z = X in Theorem 23.2, we obtain:
Corollary 23.2. If w is a volume or a symplectic form on X, then for x € X
and j > 0, we have

HI(J(T; w),) =0, H'(J(T;w),)=0.

24. Finite-dimensional Lie algebras with parameters

In this section, we consider a third type of non-singular sections of the
vector bundles /\ "V* ® x E and the corresponding Lie equations.

Assume that p: X — Y is a bundle G of Lie groups over Y. The Lie algebra g
of G is the vector bundle over Y whose fiber g, at y € Y is ¥}, (G), where
I(y) is the identity element of G,. We consider the bracket on g as a morphism
of vector bundles

a®g-g

which, when restricted to the fiber g , is the usual bracket defined in terms of
right-invariant vector fields on G,. The Maurer-Cartan forms of G

w:V-ogqg, 0:V-og

are defined by

<£aw>:g_l'£, <£,0>:§'g_1,

for § € V,; if g € G and p(g) = y, the restrictions of w and o to V,=T(G))
are respectively the left-invariant and right-invariant Maurer-Cartan forms of
the Lie group G,. They define isomorphisms of vector bundles

w:V-plg, o:V-plg
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over Y, and we consider w and ¢ as non-singular sections of V* ®,g.
Moreover w satisfies the equation

dX/Yw —3lw, 0] =0,

where the bracket is given by (4.1) with g endowed with the above bracket.
The bracket on g induces a structure of Lie algebra on I'(Y, g). Let

e T(Y,g) > T(X,V)

be the homomorphism of Lie algebras sending ¢ into the vertical vector field
1(§) on X whose restriction to X, is the right-invariant vector field on G, whose
value at I( y) is §(y), for all y € Y. Then

(24.1) (1), 0)(g) = £(n(2)),
for g € G. Let
Ad: 7*®xg->V*Qyg
be the isomorphism of vector bundles over X sending u € V ® g , with
g € Gand p(g) =y, into (id ® Ad g)u. Then
(24.2) o = Ad(w).

Lemma 24.1. If n is a vertical vector field on X whose restriction to X, is a
left-invariant vector field on G, for all y € Y, and § is an arbitrary vertical vector
field on X, then we have

(24.3) <77’dX/Y<£’0>>: ([n, £], 0),
as sections of p~'g over X, and
(24.4) Ad(L(¢)w) = dy,v{£ o).

Proof. There is a one-parameter family of sections g, of G over Y such that
g.(y) is a one-parameter subgroup of G, for all y € Y, and

d
1(8) =25 803 | oo
forge G, y€e Y. If ¢:G— G is the diffeomorphism sending g € G, into
g - g(y), withy € Y, thenn = dg,/dt|,_,, and if £ is a vertical vector field on
X,
[n. £1(8) = - Sout(07'(2)) | _,

= Le(s-50) 80 | o
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for g € G,. Thus
In.€1.0)(g) = - (58 8'(1) - 800) | oy &

= 5: (g-87"'(») - (&(»)-87") |:=o
= dt<£,0>(g g '(y))l
= _Ft<§,o)(g'g_,(J’)) |;=0

=4 o)z 500 |
= <71, dX/Y<£a o))(g),

and so (24.3) holds. On the other hand, (7, ») is a constant function on each
fiber of X, and hence

(245) (0, L(&)w)y=L(E)(n, w)+ ([n, £], 0)= ([, £], 0).
According to (24.2) and (24.3), we thus obtain

(n,Ad(E(&)w))= ([, £], Ad(w))= ([n, £], o)
=, dy,y(& 0)),
from which we deduce (24.4).

We also write E for g and consider the differential operator D: V —
V* @ &, sending £ into £(§)w. According to (24.1) and (24.4), the diagram

-1 [ Dw

(24.6) fd 1 lAd

d
0—p716 — 6 2L V* @ 6,

is commutative; since its vertical arrows are induced by isomorphisms of vector
bundles and (22.5) is exact, its rows are exact. If £ is a vertical vector field on
X, from (24.5) it follows that £(¢)w = 0 if and only if [£, n] = 0 for all vector
fields n satisfying the left-invariance condition of Lemma 24.1. It is easy to
verify that this holds if and only if £ belongs to the image of «. We thus obtain
a direct proof of the exactness of the top row of diagram (24.6). The
hypotheses of Proposition 22.4 are satisfied with » = 1 and 7 = Ad. Therefore
Ji(V; w) is a formally integrable Lie equation whose kth prolongation is
Jes1(V; @), and Q((V; w) is a finite form of J,(V; w) whose kth prolongation
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is the fibered manifold Q, , ,(V; w); moreover my( Jy(V; w)) = J(V') and (22.21)
holds. The solutions of J,(V; w) over open subsets of X whose fibers over Y are
connected are the vector fields of the form «(£), with £ a section of g over an
open subset of Y. Furthermore, diagram (22.22) is commutative and exact, and
J(67") induces an isomorphism of vector bundles

e (g Y) - I (V; 0)

over X; in fact, by (24.1) we see that ¢, sends (g, ji (£)(y)) into j (¢(£))(g),
with g € G satisfying p(g) = y and £ € I'(Y, g). The bracket of g induces a
structure of linearly compact Lie algebra on J,(g; Y),, fory € Y, by setting

[in(E)(3), J(m ()] = ju([& 2D (»),

for £, m € T(Y, g). The mappings ¢, give rise to an isomorphism of linearly
compact Lie algebras

b o83 V) = TV 0,
for g € G, with p(g) = y.

The bundle p~'G over X is equal to G X, G considered as a bundle over X
via the projection onto the first factor, and the sheaf of sections of p~'G over X
is 8. Sections of p™'G are precisely the graphs of local mappings G > G over
Y. We identify a mapping f: G - G over Y defined on an open set U C G with
its graph f: U - p”'G, and the k-jet j,(f)(x) with j(f)x), for x € U. We
thus consider Q,(¥) as an open fibered manifold of J,(p™'G). If f is a local
mapping G — G over Y defined on an open set U, let a(f): U— G, B(f):
U — G be the mappings over Y defined by

a(f)(a) = f(a) - a”,
B(f)(a) =f(a) - a,
fora € U. Then
«(B(f) =1 Blalf)) =1,

and so a, B determine isomorphisms of fibered manifolds over U
J(@): J(p7'G) = J(p7'G),
Jd(B): (p7'G) = J(p7'G),
sending j,( f )(a) into j(a( f))(a) and j,(B(f))(a) respectively and satisfying
J(B) = Jk(“)_l~
Lemma 24.2. Iff: G - G is a local mapping over Y, then
(24.7) Ad(f*0 — w) = a( f)*w

as sections of V* ®x g.



638 HUBERT GOLDSCHMIDT
Proof. Let§ € V,, with a € G and p(a) = y, and choose a one-parameter
family a, of elements of G, such that a, = a and da,/dt |,_, = §. Then
da;!

et S = _gl.¢&. 471
ar |z=o a £-a

and
(1) =21(a) ai' | _,
da;’
=2 1(a) |,y a + 10) - =],
=(fut) -a' —f(a)-a'-§-a.
Thus
& a(f)*e)=(a(f)t wy=(fla) -a?)" - a(f),¢
=a-f(a)" - a(f),¢
=a .f(a)‘l ) (f*i) ca'— ¢ g
= Ad a({ f,&, w)— (£, ©))
=Ada- &, ffo — w),
and so (24.7) holds.

If g is a section of G over an open set U C Y, let «(g) be the mapping G - G
defined on p~!(U) by

((8)(a) = g(p(a)) - a,
for a € p™/(U). Then «(g) is a local diffeomorphism of G over Y satisfying
(24.8) a(u(g)) =genp;
the left-invariance of w means that
(g)*w = w.
Thus ¢ determines a morphism of fibered manifolds

(24.9) i P (G Y) = (Vs w)

over X sending (a, ji(g)(p(a)) into j(«(g))(a), with a € p™'(V).
We consider the sequence (4.6) (with X = G), where

Dy vf=1w, forf € 8,
Dy, x/yv =dx,y0 — o, 0], forv € V*®b&,;
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the bracket is given by (4.1) with g endowed with the bracket considered
above. From (24.8) and Lemma 24.2, we obtain the commutative diagram

)
Iep—p7lg = 8 — > V*® &y

(24.10) lid la lAd
)

D
I°p—p1g— g —Xs y* @ g, XL N2+ @ 6

which is the finite form of diagram (24.6). Since its vertical arrows are bijective
and its bottom row is exact by Proposition 4.1, its top row is also exact.
Therefore the solutions of Q,(¥; w) over open subsets of X whose fibers over Y
are connected are the local diffeomorphisms of G of the form «(g), with g a
section of G over an open subset of Y.

If E’ is a vector bundle over G, let E’ ®,-15 V' be the vector bundle whose
fiber over (a, b) € G X,Gis E;® V,. If a, b € X, with p(a) = p(b), and if
u €T} ®V,, we denote by uiw the element of (V* ®xg), equal to the
composition

u

[4)
Va= Vo =8,y

a

and by
T(w): T* @iV - V*®xg
the mapping sending u into u & w. Moreover, if
Ap_y,: S¥T* > SK'T* @ T*
is the morphism of vector bundles determined by
k

Apra(Erret)= 2 (608 8) 08,
=1
for §,,...,&, € T*, where ¢ ! indicates that & 7 is to be omitted, we denote by
T, 1(w) the composition
Ay, ®id d®7(w)

SET* @1 V——— S*7IT* @ T* B, V——SIT* @ V* @y q;
then 7(w) = 7(w). Since w is a non-singular section of V* @y g, from the
exactness of (22.7) we deduce that the sequence

*®id Tee (@)
(24.11) 0 - ST}, ® V2 ST @ V, 5 (SK7'T* ® 1* @),

is exact, for a, b € X with p(a) = p(b).
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We now study the morphisms

Pk(gDX/Y): Jer1(p7'G) = S (V* ®x ),
Pi(D,): i (p7'G) = T (V* ®x g)
of fibered manifolds over X determined by the first-order differential operators
Dy, y and D, from Gy to V* ® &. We let p_(Dy,y) and p_(D,) be the
projection pr,: p~'G > X onto the first factor.
Proposition 24.1.  For k =0, the mapping p (D ,y) (resp. p(D,)) is a
morphism of affine bundles over p, (D x ,v) (resp. py_(D,,)) whose associated

morphism of vector bundles is induced by 7,(w).
Proof. 1t suffices to show that

(24.12) Pk(@)(/y)(‘l’ +u)= pk(gDX/Y)qb + 7 (w)u,
for ¢ €J,,(p'G), u € S¥T* ®,1cV and k =0, where the sum on the
right-hand side is that of two elements of the vector bundle J(V* ®y g).
According to [9, Propositions 5.6 and 5.3], we need only verify this for k = 0.
Indeed, if f, f' €85 ,, a € X, with f(a)=f(a)=b, and if u ET} @V,
satisfy

W(f)(a) =j5(f)a) +u,

then f: V, > V, is equal to f, + u,,. Hence we obtain

PO(SDX/Y)(fl(f’)(a)) =(f*w)(a)=wo (f* + u|V,,)

=wo f, tukw
:Po(@X/Y)(jl(f)(a)) + 1o(w)u,

which gives us (24.12) for k = 0.
From the commutativity of diagram (24.10), we deduce that of the diagram

Py— (GDw)
0, (Vs w) —— T (p™'G) —k—l_—""k—l(V* ®x 9)

(24. 13) I'—k ljk(a) l"k—l (Ad)

P Pi—1x,y)
p~U(G; Y) 5 T (p71G) X

T (V* ®x 9),
whose rows are complexes and whose mappings J,(a) and J, _,(Ad) are the
isomorphisms of fibered manifolds over X determined by a and Ad respec-
tively. We now verify that its bottom row is exact.
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Proposition 24.2.  The set of elements ¢ of J,(p™'G) satisfying p, _ (D x 7)P
= 0 is equal to p,(p""J,(G; Y)).

Proof. We proceed by induction on k. For k = 0, the result is trivial with
J_(V* ®xg) = 0. Assume that it holds for k — 1, with k=1, and let ¢ =
J(f)a) be an element of J(p'G), where fE€ 8 x.a» @ € X, satisfying
Pi-(Dy,y)p = 0. Then by our induction hypothesis, we may write
Je—1(f @) = ji— (g ° p)a), for some section g of G over a neighborhood of
p(a). Since m,_, j (f)Na) = m,_,j.(g ° p)(a), by [9, Proposition 5.1] there is
an element u € S*T* ® V,, where b = f(a), such that

(24.14) i f)(a) =ji(g°p)(a) + u.
As

Pk—l(@X/Y)jk(f)(a) :pk—l(@X/Y)jk(g °p)(a) =0,

we deduce from (24.14) and Proposition 24.1 that 7,_,(w)u = 0. Since the
sequence (24.11) is exact, there is an element v € S¥T} o(a) @ V5 such that
(p} ® id)v = u. By Proposition 22.1 and (24.14), we have

pi(a, ji(8)(p(a)) + 0) = ji(f)(a),

concluding our proof.

Since p, is injective, by Proposition 24.2 and the commutativity of diagram
(24.13), we see that (24.9) is an isomorphism of fibered manifolds and deduce
the following:

Proposition 24.3. If X is a bundle of Lie groups G over Y and w is the
Maurer-Cartan form of G considered as a section of V* ® x g, then Q,(V; w) is a
formally integrable and integrable finite form of the formally integrable Lie
equation J(V; w), whose kth prolongation is Q, . (V; w); moreover (24.9) is an
isomorphism of fibered manifolds over X.

Let

Y. T* ®JO(V) - V*®xag,
Y: N2T* @ Jy(V) > A2V* ®x g

be the mappings sending u and v into w*and w © ¥™ o K A2y = (¥ o VA2 ) RW
respectively. We have the identities

(24.15) D¢ =Dy, yp, fore €2,(V; w),
(24.16) 1,9,u =D, x,y(nimu), foru € T* @ J(V; w).

Indeed, for ¢ € QI(V; w), we have f = mp € G, and (24.15) is the relation
(22.28). If u € T* ® J(V; w), then @ = (»*"' ® »™')(1,) is an element of
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Jo(V)* ® J(V; ) and so
Lo(a)(r*~'w) =0,

where u, = mu and v = u,. Hence if we apply Proposition 22.3 to » and ,,,
we obtain

Dy x/yw = dy,yw — 3w, @]
= (dX/Y)uo + (”_1 ° (@1“)|/\2V) Ry — 3([w, 0])™

= (@l,x/yw)uo + (V" o (@1u)l/\z,,)7m
:Y2©]u,

since D, y,yw = 0. These two identities imply that the diagram

Ji°t ~ )
p 16 5T (7 w) s (T* ® T, (V; W) —> A2T* @ Jo(V)

(24.17) lid 1"0 171 °my l‘rz
Cy

D
p—lg 7QX XY rcv‘*@ E‘SXL/Y) /\24‘V*®6 ,

whose top row is the non-linear Spencer complex of J(V; w) and whose
bottom row is the exact sequence (4.6) (see Proposition 4.1), is commutative.

The following proposition is the analogue of Propositions 23.2 and 23.4 for
Maurer-Cartan forms. The equivalence of assertions (i) and (ii) of the following
proposition shows that the mapping v, o m,: T* @ J|(V) —» V* ®x g induces a
surjective mapping from Z'(J(V; w)), to the set of germs at a € X of
non-singular sections v of V* ®y g satisfying D, y,yv = 0.

Proposition 24.4. Let ' be a section of V* ®x g over X. Then there is a
section uy of T* ® Jy(V') over X such that &' = w*. If a € X, the following
assertions are equivalent:

(i) w’ is non-singular and satisfies the equation

D,y yw =dy,yo — ile’, @] =0

on a neighborhood of a;

(ii) there is a section u of (T* ® J(V; w))" such that myu = u, and ®,u =0
on a neighborhood of a;

(iii) there is a section ¢ of ?ZI(V; w) over a neighborhood of a satisfying
Do = uy;

(iv) there is a local diffeomorphism f: X — X over Y defined on a neighborhood
of a such that f(a) = a and f*w = .
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Proof. Let v be the section of V* ® ¥V over X equal to the composition

, -1
voplghy,
and let u, be a section of T* ® Jy(V) satisfying (id + »~' o ug)y = v; then
w = w",

(i) = (): If u is a section of (T* ® J|(V; w))" satisfying myu = u, and
®,u =0, Proposition 23.1 (i) shows that w“® is a non-singular section of
V* @y g. The relation (25.16) tells us that D, y,yw“e = 0; this fact can also be
obtained as a consequence of the implication (iii) = (ii) of Proposition 22.6.

(i) = (iv): Taking X = G in Proposition 4.1, we obtain a local mapping
f: X - X over Y defined on a neighborhood of a satisfying f(a) = a and
f*w = w’. From Proposition 23.1 (ii), it follows that f is a local diffeomorphism
on a neighborhood of a.

(iv) = (iii) is given by the implication (i) = (ii) of Proposition 22.6.

(iii) = (ii): Since Q|(V; w) is a formally integrable finite form of J(V; w) by
Proposition 24.3, the implication (ii) = (iii)) of Proposition 22.6 tells us that
assertion (ii) holds.

Since Q,(V; w) is a formally integrable and integrable finite form of the Lie
equation Jy(V; w) by Proposition 24.3, the implication (ii) = (iii) of Proposi-
tion 24.4 together with Proposition 22.7 (iii), or the implication (ii) = (iv) of
Proposition 24.4 together with Proposition 22.8 gives us:

Theorem 24.1. If X is a bundle of Lie groups G over Y and w is the
Maurer-Cartan form of G considered as a section of V* ®x g, then for all m = 1
and a € X we have

H(0\(V; @), ., =0, H'(J,(V; w)),=0.

If the manifold Y consists of just one point, then G is a Lie group, V=T
and w is the left-invariant Maurer-Cartan form of G. The Lie algebra g of G
endowed with the discrete topology is a transitive Lie algebra. Applying the
above results to w, we see that Ji(T; w) is a formally transitive and formally
integrable Lie equation on X = G, and that for g € G the image of the
monomorphism of transitive Lie algebras

tg: @ = (T )y

sending ¢ € g into j(«(£))(g), where ¢(£) is the right-invariant vector field on
G whose value at the identity element of G is &, is the transitive subalgebra
Jo(T; ), of J(T),. The solutions of J|(T; w) (resp. Q,(T; w)) over connected
subsets of X are the restrictions of right-invariant vector fields on G (resp.
right-translations of G).
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We no longer suppose that Y is a point, and assume now that G is the trivial
bundle of Lie groups pr,: Y X G, —» Y, where G is a Lie group. If g is the Lie
algebra of G, endowed with the discrete topology, then g is the trivial vector
bundle Y X g, of Lie algebras, and for y € Y we have the isomorphism of
linearly compact Lie algebras

(24.18) 80 ® F,~J(8;Y),

sending £ ® j_( f)(y) into j(s)(y), where f is a real-valued function on Y and
s is the section of g over Y defined by s(b) = f(b)§, for b € Y. Moreover, the
left-invariant Maurer-Cartan form w,: T; — go of the Lie group G, de-
termines a section of V* ®y g over X, which is in fact equal to the Maurer-
Cartan form w of the bundle G of Lie groups. According to the discussion at
the end of §22, the sequence (22.36) is exact for x € X and 1 < k < o0;
therefore J,(T; w) is a formally transitive and formally integrable p-projectable
Lie equation whose kth prolongation is J,_ (T; w). From (22.32), we deduce
that

(24.19) [4(T;5 @), 1(V; )] CH(V; w),

if fz(T; w) = v Uy(T; w), and that J_(V; w), is a closed ideal of the transitive
Lie algebra J (T; w),, for x € X. With respect to a structure of analytic
manifold on Y compatible with the structure of differentiable manifold of Y
and the structure of analytic Lie group of G, the Lie equations J\(V; w) and
J (T, w) are analytic and satisfy (24.19). Hence for x € X and j > 0, we have

H/(J(T; @) Jo(Vs @),) = H(J(V; @), = 0,

(24.20) A (I (T; 0) 0 Jo(V; 0),) = B (J(V; @), =0,

by Proposition 22.4 and Theorem 24.1; moreover by [16, Corollary 13.1] and
Corollary 10.1, we obtain

H/(J(T; w),) = H/(J(T; ©)), =0,

HY(J(T; 0),) = H(J(T; 0)), = 0,
for all x € X and j > 0. According to Proposition 22.4, the characteristic
variety V. (J,(V; w), C) of Ji(V; w) is equal to p}Ty , ., ® C. Hence by Theo-

rem 16.4 (i), the characteristic variety V(J(T; w),, J(V; w),,C) is equal to
the image of p}Ty, ,(,, ® C under the injective mapping

aFov* ' ®id: T*®C - J (T; w)*® C.
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If x=(y,8) € Y XG,, setting Z = G, z = g and w, = w,, according to
the discussion at the end of §22, we see that under the isomorphism (21.4) the
image of the semi-direct product

M= (Joo(TGo; wO)g ® Ev) ® Joo(TY; Y)y

is the transitive subalgebra J (T; w), of J(T; p), and that the image of the
closed ideal J (T, ; wp), ® F, of M is the closed ideal J(V; ), of J(T; w),.
In fact, the diagram

L 1
8o ® F) ———J.(Tg,; @) ® F,

)

Ju(8; V), —————— I (V; w),,

whose vertical arrows are the isomorphism (24.18) and the restriction of
the isomorphism (21.3) and where ¢,: g, - Jo(T5,; wo) and ¢, are isomor-
phisms, is commutative. If g, is a non-abelian and simple Lie algebra, then
Jo(T5,; @) ® F, and J(V; w), are non-abelian minimal closed ideals of M
and J_(T; w), respectively; moreover
M DU (T;,;Gy),®F, D0,
J(T; 0), DI (V;0),D0
are Jordan-Holder sequences for the transitive Lie algebras M and J_(T; w),
respectively. From the commutativity of diagram (21.6), we deduce that the
characteristic variety V(M, J(T;; @), ® F,,C) of the closed ideal
Jo(T,; wo)g ® F, of M over C is equal to the image of T3 , ® C under the
injective mapping (21.7), with L = J_(T5,; wo),-
From the above discussion, we obtain:
Proposition 24.5. Let G, be a Lie group and g, the Lie algebra of G,
endowed with the discrete topology. If w, is the Maurer-Cartan form of G, then
for g € G we have an isomorphism

lg: 80 ™ Joo(TGo; “’o)g-
If w is the Maurer-Cartan form of the bundle of Lie groups X =Y X G, for
x € X with p(x) =y, there is an isomorphism of transitive Lie algebras
(90 ® F;) @Jw(TY’ Y)y - Joo(T9 w)x
mapping the closed ideal g, ® F, of the semi-direct product onto the closed ideal
J(V; w), of J(T; w),.
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Let g be a finite-dimensional real Lie algebra; then g endowed with the
discrete topology is a transitive Lie algebra. Let G, be a Lie group whose Lie
algebra g, is isomorphic to g. We deduce from (24.20) and Proposition 24.5
the following:

Theorem 24.2. Let g be a finite-dimensional real Lie algebra. Then for
y € Y, we have

H/((s ®F,) ®J(Ty;Y),,6®F,) =0
forj >0, and
A'((a®F,) ®J,(Ty;Y),,a®F,) =0.

If we take Y to be a point in Theorem 24.2, we obtain:

Corollary 24.1. Let g be a finite-dimensional real Lie algebra. Then for j > 0,
we have

H/(g) =0, H'(g)=0.

25. The contact algebra with parameters

Assume throughout this section that the rank g of V' is> 1. Let w be a
nowhere vanishing section of ¥ and let W be the sub-bundle of V' of
codimension one consisting of all vectors £ € V satisfying (£, w)= 0. We say
that w is a contact form along the fibers of p if the mapping

(25.1) W — w*

sending £ into (§Ady,yw)y is an isomorphism of vector bundles. This
condition is equivalent to the fact that the rank of V is odd and equal to
g=2p+ 1, with p>1, and that the section w A (dy, yw)? of /\9V* does
not vanish at any point of X. We assume throughout this section that  is a
contact form along the fibers of p. The restriction wy of « to a fiber X, with
y €7, is a contact form on the odd-dimensional manifold X,. If X is the
product Y X Z of Y with a manifold Z and p: X — Y is the projection onto
the first factor, and if w, is a contact form on Z, the section &, of V*
determined by w, is a contact form along the fibers of p.

Let (z, y) be a local coordinate for X on an open neighborhood of a € X

compatible with p, where y = (y',---,y™) is a local coordinate for Y on a
neighborhood of p(a). According to Darboux’s theorem with parameters, there
are functions ¢, v',- - -,0?, w!,- - -,w” on a neighborhood of a such that w is the

restriction to V of the 1-form

P
(25.2) dr + Y (wdv’ — v’ aw’),
j=1
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and #(a) = v/(a) = w/(a) = 0, for 1 <j < p. From the properties of w, we see
that

(,’ v',- 0P, w',- . -,w”,y',- . -,y'”)
is a local coordinate on a neighborhood of a € X compatible with p.

Proposition 25.1. Let ', w’ be two contact forms along the fibers of p. If
a, b € X, there is a p-projectable local diffeomorphism f: X - X defined on a
neighborhood of a such that f(a) = b and f*w = w’; moreover if p(a) = p(b),
there is such a diffeomorphism inducing the identity mapping of Y.

Proof. There are local coordinates (z, y) and (z’, y’) on neighborhoods U
of a and U’ of b respectively compatible with p, where y = (y!,---,y™),
y = (y"",---,y’™) are local coordinates for Y on p(U) and p(U") respectively.
If p(a) = p(b), we may assume that y = y’. From the above discussion, we
may also suppose that w is the restriction to ¥ of the form (25.2) on U, with
t=1z v/ =z/* and w’/ = z/*P*! for 1 <j < p, that &’ is the restriction to V'
of the form (25.2) on U’, with t =z"', v/ = z*! and w/ = z/*7*! for
1 <j<p, and that z(a) = z'(b). Let f be a local diffeomorphism Y — Y
defined on a neighborhood of p(a) with f(p(a)) = p(b); if p(a) = p(b), we
suppose that f is the identity mapping of Y. The mapping f defined on a
neighborhood of a sending the point x of U with coordinate (z, y) into the
point of U’ whose (z’, y’) coordinate is equal to (z, y'( f(p(x)))) is a p-projec-
table diffeomorphism and satisfies f(a) = b and f*w’ = w, since z" o f = z.

If {w} is the sub-bundle of V" generated by the section w and ¢: V* - W* is
the canonical projection, we have the exact sequence

0-{w) - V*Sw* >o.

Let P: V- 9* be the first-order linear differential operator sending ¢ into
pL(¢)w. We denote by E the vector bundle over X which is the quotient of
V* @ /\*W* by its sub-bundle generated by the section (w,(dy,y@) A 2w),
and we let : V* ® A 2W* - E be the canonical projection. Let Q: g, > & be
the differential operator sending £ into Y(£(§)w, (2(§)dy, yw) A 2p), and
Pie—1(Q): J(T5 p) — Ji—1(E)

be the morphism of vector bundles sending j,(£)(x) into j,_,(Q§)(x), where
teg .

Letp’f: X - X be a p-projectable local diffeomorphism defined on a neigh-
borhood U of a € X, with f(a) = b, and £ a p-projectable vector field on U;
then f,¢ is a p-projectable vector field on f(U). If ¢ =i, ,(f)a), the
isomorphism

¢:J (T3 0) = T (T ),
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sends j(§)(a) into ji ( f,.£)(b) and J(V'), onto J,(V),. Let
(25.3) ¢ S (AV*)y = T (AV*),

be the isomorphism sending j, _,(a)(b) into j, _ ,( f*a)(a), where a € AV, If
f*w = w, since f*dy,yw = dy, yw, by passage to the quotient the mapping
(25.3) determines isomorphisms
¢: Jk—l(W*)b - Jk—l(W*)a’
¢ S (E)p = S i(E),

From relation (22.16), it follows that the diagrams

P
T, 2@ v,

) i
Py—1(P)

Jk(V)b Jk—l(w*)b

r@o, 219 @),

J¢ ‘[q,
-(©
1@, 2219 5 @),

are commutative. From Proposition 25.1, with o’ = w, we deduce that p, _ (P),
Pi—1(Q) and the restriction of p,_,(Q) to J(V) are morphisms of vector
bundles of constant rank.

Let J(V; W), R (V; w) and R,(w) = R (T; w) be the kernels of the mor-
phisms

Pi—(P): J(V) = J (W),
Pe-(Q): (V) = J_((E),
Pi—1(Q): I (T; p) = J,_\(E),
respectively. From the above discussion, we see that J,(V; W), R (V; W) and

R,(w) are vector bundles and that m,: J, , (V; W) - J(V; W) is of constant
rank for all k, /> 1; moreover the kth prolongations of Ji(V; W), R(V; w)
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and R\ (w) are J, . (V; W), R, (V; w) and R, (w) respectively. The sub-
bundle J,(V; W) of J,(V) depends only on ¥ and W, and is equal to

{g€erM)[g 2.(W)] cu (W)},
or to
(€1 (V) |R(E)J(W) CI(W), with & = »p~I¢}.
Indeed, if £ = j (§)(x), with §{ €V, x € X, then ¢ belongs to the kernel of
Pr—(P) if and only if
Je=1({m, E(§)@))(x) = i1 ([§, 0], @))(x) = 0,
for all n € U, or equivalently if and only if j,_,([$, n])(x) is an element of
J_ (W) for alln € U, . Since
[£, j(m)(x)] = £(&)jimr(n) = i[85 n])(x),
where £ = »~'¢, n € U, we obtain the above descriptions of the kernel of
Pr—1(P). Moreover j($)(x), with § € V, belongs to J,(V; W) if and only if
there is an element f € 0 , such that
Ji=1(E)e — fw)(x) = 0.
We denote by @ the section »*~'w of Jy(V)*. An element ¢ € J,(V) belongs to
J(V; W) if and only if L(¢)® = cw for some ¢ €ER, where £ =»7'¢, or
equivalently if and only if (2(£)@) A @ = 0. It follows that Ji(V; W) is a Lie
equation whose solutions are the vertical vector fields ¢ satisfying £(£)w = fo,
for some real-valued function f on X. If £ is a solution of J,(V; W) over an
open set U and g is a real-valued function on p(U), then (g © p)§ is a solution
of J)(V; W) over U. By (22.18), the restriction of P to U is the mapping
U — U* induced by the isomorphism of vector bundles (25.1). Therefore the

sequences

Pi—(P)
0> (V; W) > J (V) —— J_(W*) -0,

a5 0

are exact. From [10, Theorem 3], we infer that
(25.4) H/(J(V;Ww)) =0, forj>0.

From the definition of the operator Q, we see that j({)(x), with §{ € V.
(resp. § €, ), belongs to R,(V; @) (resp. R,(w)) if and only if there are
elements f € O, , and « € V¥ such that

Je(B(§)w = fw)(x) =0,

(255) jk_l(ﬁ(f)dxﬂ“’ _fdx/Yw —a w)(x) =0.
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Therefore
(256) [Rk+l(“’)’ Rk+l(V; w)] - Rk(V; w)’
(25.7) [Rk+|("~’)’ Rk+1(‘*’)] - Rk(‘*’),
(25.8) R, (V;w) CJ(V; W).

We denote by @ the section »*'dy, yw of /\%J(V)*. An element ¢ € Jy(V)
(resp. J|(T; p)) belongs to R,(V; w) (resp. Ri(w)) if and only if there are
elements ¢ € R and a € Jy(V)* such that

(25.9) PE)o=ca, L(E)Q=cQ+aANa.

If ji 4 1(§)(x), with § € V., belongs to J,,. (V; W) and f is an element of O, ,
such that j,(£()w — fw)(x) = 0, then

jk—l(dX/Y(g(f)‘*’ —fw))(x) =0,
or equivalently
jk—l(B(g)dX/Yw _fdx/y‘*J - dX/Yf/\ ‘*’)(x) =0;
thus j,(§)(x) € R(V; w) and so
(25.10) T S (V; W) CR(V; w).
From (25.8) and (25.10), it follows that
R (Vi w) =T (V:W),
(25.11) Sol(R,(V; w)) = Sol(J,(V; W)).
The morphism of vector bundles
Yt LV W) - Jk—l(/\ ZW*)»
sending j,(§)(x), with § € Y, into
jk~|((g(§)d)(/y"’ _de/Y"’)V\Zw)(x)’

where fis an element of O | satisfying

Je-1(B(§)w = fw)(x) =0,
is well-defined, and by (25.5) its kernel is equal to R (V; w). We set Ry(V; w)
=Jy(V); if

g CSM(T)* ®Uy(V), hy CSKH(T)* ®Jy(V)
are the kernels of the mappings
Ty Re(V; @) = Jy(V),
Tyt MR (V5 @) > T 4(V)
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respectively, where J_,(V') = 0, we have
(25.12) h, Cg,

for k =0, and g, = Jy(V).
If U is a finite-dimensional vector space, for u € U* @ U, a € /\U*, we
obtain an element ux a of A\ U*. If a € U*, then

(25.13) (¢ ura)y=(u(¢), a),
for¢ € U; if « € /\*U*, then
(25.14) ENn uray= (u(¢) A, a)+ (EAu(n), a),

for§,m € U. If u € Jy(T)* ® Jy(V), a € N\Jy(V)*, we also write uAa for the
element vAa of /A\Jy(V)*, where v = 0(u) is the restriction of u to Jy(V).
From the description (25.9) of R(V; w), we see that u € Jy(T)* ® Jy(V)
belongs to g, if and only if there are elements ¢ € R and a € Jy(¥')* such that

(25.15) Uk =cw, ur=c+aN@.

The sub-bundle p( Jy(Ty)*) of Jo(T')*, whose fiber over x € Xis v*~!(p* Yoo(x))s
is equal to the annihilator of Jy(¥'); hence p(Jy(Ty)*) ® Jy (V') is a sub-bundle
of g, and the sequence

(25.16) 0 p(Jo(Ty)*) @ I(V) = g1 = Jo(V)* ® (V')

is exact. The image g, = 0(g;) of g, consists of all u € J(V)* ® J(V)
satisfying (25.15) for some ¢ € R and a € Jy(V)*. If {&} is the sub-bundle of
Jy(V)* generated by the section @ and Q denotes the restriction of  to
N\ 2J(W), the kernel of the mapping

(25.17) g —{},

sending u € g, into ukw, consists of all u € J(V)* ® Jy(W) satisfying v A {2
=0, where v is the restriction of u to Jy(W), and contains the sub-
bundle {@} ® Jy(W) of Jy(V)* ® Jy(V). Indeed, if u € J(V)* ® Jy(V), by
(25.13) we see that uxw = 0 if and only if u belongs to Jy(V)* ® Jy(W); for
u € Jy(V)* ® Jy(W), by (25.14) the restriction of u & Qto N 2JO(W) is equal to
vAQ. Let a € X and choose an element £° of Jy(V), not belonging to Jy(W),,,
i.e., satisfying (¢°, ®)# 0. The unique element u, of (Jo(V)* ® Jy(V)),, whose
restriction to Jy(W), is the identity mapping of Jy(W), and which verifies
uy(£%) = 2¢£°, belongs to g, , and satisfies u, k@ = 2w, according to (25.13)
and (25.14); therefore the mapping (25.17) is surjective. If § is the subspace of
8., consisting of the elements u of (Jy(V)* ® Jy(W)), satisfying u(¢ =0
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and vAQ = 0, where v is the restriction of u to Jy(W),, then we easily see that
the fiber of the kernel of (25.17) over a is equal to

b ® ({6} ® JO(W))a'

Hence if {u,} is the subspace of g, , generated by u,, we obtain the decom-
position
(25.18) gl,a:b@({a’} ® Jy(W)), ® {uo},
which depends only on the choice of the element £° of Jy(V), satisfying
(&% @)+ 0 (see[37, §1.14)).

The proof of the following proposition is based in part on [23, §7].

Proposition 25.2. If w is a contact form along the fibers of p, then R(V; w) is
a formally integrable and integrable Lie equation, with

R(V; ) = m (Vs W),

(25.19) TR (V; @) = Jo(V).

Moreover g, is involutive and
(25.20) H/(R,(V;w)) =0, forj>0.

For a € X, the mapping

(25.21) Sol(R,(V; ©)), = O,

sending & into £ R w is an isomorphism, and the characteristic variety of R (V; w)
over C is equal to T} ® C.

Proof. Leta € X. If { is a vertical vector field on a neighborhood of a, we
write oy(£) = v§(a) and, whenever j,_,(£)(a) = 0, with £ = 1, we denote by
0,(£) the element j (£)(a) of (S*J(T)* ® J(V)),, which belongs to hy qif €is
a solution of R(V; w). Let (¢, v, w, y) be a local coordinate on a neighborhood
U of a compatible with p, where v = (v',---,0?), w=(w!,---,w?) and
y = (y',---,y™) is a local coordinate for Y on p(U). We write z = (z,- - -,29)
for (2, v, w). Assume that w is the restriction to V of the form (25.2) on U, and
that

t(a) =0, ov(a)=w(a)=0, y(p(a))=0;
then dy ,,w is the restriction to A *V of the 2-form
p .
2 Y aw’/ A dv’
Jj=1

on U.
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Sincg w(a) = (dt),, the subspace W, of V, is spanned by the elements
(3/9v7),, (3/3w’),, with 1 <j < p. We may therefore identify the quotient
W} of T} with the subspace

9 L\_ [ ,\_ = 1...
{gez:; <E’£>_<ay"’£>—0’ fori =1, ,m}

of T¥, and hence also the quotients S¥W>* of S¥T* and S*J,(W )* of S*J,(T)*
with subspaces of S¥T* and S*J,(T)* respectively. In fact, e(S*W?*) is equal to
the space of k-jets

{jk(f)(a)

f=f(v,w) is a homogeneous
polynomial of degree k in (v, w) |
Ifn €J,, (T), let

8rgn = 8, SKTU(T)* @ Jy(V) = SK(T)* @ Jy(V)

be the mapping sending u into
8,u=mmK8u = [n, u].

If n = j, . ,(3/0t)(a), we write 5= 8 moreover if n = j, (3 /3y")(a), we set
5 = 8 for 1 <i < m. Then (S"JO(W)* ® Jy(V)), is equal to the subspace

(SkI(T)* ® Jy(V)), N ker §, N ﬂ ker §,
i=1

of (SKI(T)* ® Jy(V)),
If § = j,(§€)(a), where § is a vertical vector field on a neighborhood of a, for
any multi-index a = (a,," - -, a@,,) We set

ye-§ :jk+|a|(ya - §)(a).
If £ belongs to (SXJ(T)* ® J(V)),, then
y - $=o(y%) € (SH'alJo(T)* ®JO(V))a'
If { is the vertical vector field

(25.22) t= 2 .

0<l|a|<k

with
za'(z)a . 0<|al<k,

on a neighborhood of a, since w is the restriction to ¥ of the form (25.2) on U,
we see that j,(£)(a) belongs to R (V; w), if and only if j,(£,)(a) is an element
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of Ry_(V; w), for all |a|< k; we infer that § =Jji(§)(a) belongs to g, , if
and only if §, = ji_,(£,)(a) is an element of g, , for all |a|<k. For
k=1, we set

8k = 8ka N (SkJO(W)* ®JO(V))a

and g, = Jy(V),. Since g, ., is the kth prolongation of g,, it is easily verified
that

(25.23) 8rr1 = (81)4s

for k = 0, where (g,). is the k th prolongation of g, considered as a subspace
of (Jy(T)* ® Jy(V)), or of (Jy(W)* ® Jy(V)), (see [9, §6]). From the above
discussion, we infer that { = j,(§)(a) belongs to g, , and 8¢ = 0 if and only if
we may choose £ to be a vector field (25.22) with

q ; 9
- [§1 ga(vv W)@

on a neighborhood of a, and ji_,(§.) € 64— for all | a|< k. We thus have
the decomposition

(25.24) 8k,a N kers,= @ y*- Bk—|of -

0<|a|<k

If f is a real-valued function on U, the vertical vector field

ot
« [ . ;9f ) z ( af) 9
j§, ( aw’ 0t ) 9o/ § avf Y ow’

on U satisfies

<£f’ (0) - _Zf’

af
moreover
d

(25.25) [E’ ¢) =t
and
(2526) (gop)gf-:g(gop)f’

if g is a real-valued function on p(U). Thus by (25.11), §; is a solution of
R,(V; w), and the mapping (25.21) is surjective. If £ is a solution of R,(V; w)
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over a neighborhood U’ C U of a satisfying £ A w = 0, then by (22.18)
L(§)w =§rdy yo = gw,

for some function g on U’. Comparing coefficients of df in the above equality,
we conclude that

gxdx/,,w =0, (rw=0.

Since w is a contact form, we infer that £ = 0, and so (25.21) is an isomor-
phism. This argument also shows that R (V; w), consists of all jets j.(§,)(a),
with f a real-valued function on U; therefore h, , is equal to the space of all
elements 0,(¢) of (S*X(T)* ® Jy(V)),, where ¢ is a solution of R (V; w) over
U satisfying j,_(§)(a) = 0 if k= 1. For k = 0, it follows that the space h}
consisting of all elements 6,(§,) = 0,(n,), where 7, is the vertical vector field
given by
P
- § (L2 )
j=1\00v/ aw/ 9w’ v’

and f is a real-valued function on U satisfying j,( f)(a) = 0, and the space h}

consisting of all elements
P
» (,,;L + w,-_a__) ,
j=1 dv’ aw/

a 2
ak(‘gf) = —"k(zf'& + 8—{

where f = f(¢, y) is a function on U satisfying j, _(f)(a) =0 if k=1, are
subspaces of &, ,, and that

(25.27) hyo="h,®hy, fork=0.
We now show by induction on k that
(25.28) 8ka = M o>

for k = 0. First, we consider the case k = 0. As

w5 ) = e w7 ) = k).

v’ ow’

forl1 <j<p,and

"o(%) = 00(§_§),

we have the equality hy = Jy(W),, and hy is the subspace generated by
v(0/0t),. Hence

hO,a = JO(V)a = 80,a>
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and the mapping m,: R_(V; w) = Jy(V) is surjective. Next, for k =1, the
space h} admits a decomposition

hi=a,®a,®a,,
where a, is the subspace consisting of all elements o,(n,), with f = f(v, w) a

homogeneous polynomial of degree 2 in (v, w), and where a, (resp. a,) is the
subspace generated by the elements

o) = et o125 ) = erlew),

with 1 <j < p (resp. by the elements
i a — i a —
01(y 5;;) =0(£ ), 01()’ m) =0,(¢,07)
with 1 <i<m, 1 <j<p). On the other hand, the space A} is equal to the
direct sum

,l, = {Gl(g_,)} ®b
of the subspace {0,(£_,)} generated by ¢,(£_,) and the subspace b generated by
the elements
ol(yi%) =0,(¢,,,), withl<i<m.
Clearly we have the equality
(25.29) a; ® b = (p(Jo(Ty)*) ® Jy(V)),-

Let ¢° be the element »(d/9¢), of Jy(V), as (£° w)=1, we have the
decomposition (25.18) of g, , corresponding to £°. In fact,

14
w2t 3 (v +wl )] <o)

=1\ 0’ ow’
and the mapping 6: g, , - g, , induces isomorphisms
0:a,-b,
0:a, > ({@) ®J(W)),.
From the exactness of (25.16) and from (25.18), we deduce that
(25.30) g1, = (P(S(Ty))* ®Jp(V)),® a; ®a, ® {0(£.,)};

from the above decompositions of 4}, A} and g, ,, and by (25.27) and (25.29),
we obtain the equality (25.28) with k = 1. Furthermore, from (25.30) we see
that

(25.31) g, = a,.
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We continue to identify W} and Jo(W)* with subspaces of T* and J(T)*
respectively as above, and for k = 0 let
T SKTIWE (SkJo(W)* ® JO(W))a
be the mapping determined by the relation
en(u) = %Uk("?/)7

if eu = ji(f)(a), where f = f(v,w) is a homogeneous polynomial of degree
k + 1in (v, w). If vy denotes the inverse of the isomorphism (25.1), then it is
easily seen that 7, is equal to the composition

Ay v 1®(v o v)
SKTIWE— (S W @ W) ,——— (S*(W)* ® Jo(W)),

and is injective; in fact, 7, is equal to the isomorphism » o y. It follows that the
diagram

0 0
Tk+
(p— L ! SEHLIL(WY* ® Jo(V)),
(25.32) 5 8
. id® 7,
0 — (W* @ SkHIw*) ———————— (W* @ Sk ,(W)* ® Jy(V)),
5 5

id® 7, _
0 — (A2W* ® Skw*), ——15 (A2W* ® S*¥~17,(W)* ® Jo(V),

is commutative and exact. In order to complete the proof of the equalities
(25.28), we now proceed to show by induction on k that g, is equal to the
image of 7, for k = 1. The equality (25.31) says that this assertion holds for
k = 1. Assume that g, is the image of 7, for some k£ = 1. By (25.23) and [9,
Lemma 6.3], g, is equal to the first prolongation of the subspace g, of
(S¥I(W)* ® Jy(V)),. It follows from this remark that, if u € (S**J(W)* ®
Jo(V)),, then u belongs to g, , if and only if du € W} ® g,, or equivalently if
and only if there is an element v of (W* ® S**!W*)_such that (id ® 7,)v = du.
By the commutativity and exactness of diagram (25.32), this property of v
implies that §v = 0 and so holds if and only if there is an element w of
Skt2W* satisfying (id ® 7,)8w = du; finally, this equality is equivalent to the
relation 7, ,(w) = u, and we conclude that g, , is equal to the image of 7, , ;.
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In particular, we have just shown that
(25.33) T SKTIwE S g,

is an isomorphism for k = 1, and that g, Ch) fork=1. As g, =Jy(V), =
hy,q» by (25.26) we have

Y8k Chyyiaar
for k = 0. From this inclusion and (25.24), it follows that
8k.aN ker§, C hy ., fork=1.
By (25.25), 8_, induces a surjective mapping
(25.34) 8: hesra= hiy fork=0.
Thus if (25.28) holds for some k = 1, the diagram
85

08411, Nker gt__)hk+1,a —h

L

0—>gk+l,a N ker gt—_)gk+1,a BRLIN gk,a——>0,

k,a_)o

whose vertical arrows are induced by the inclusions (25.12), is commutative
and exact; hence it provides us with the equality (25.28) with k replaced by
k + 1, and so (25.28) holds for all £k = 0. From the isomorphisms (25.33)
together with the commutativity of the top square of diagram (25.32), we easily
see that the basis

) o) A o)

of Jo(W), is quasi-regular for the subspace g, of (Jy(W)* ® J(V')),. Therefore
from the surjectivity of (25.34), the equalities (25.28) and (25.24), we infer that

the basis
s aym a,
Y2 a, awl a, sV ow? .

of Ji(T), is quasi-regular for g, ,, and so g, , is involutive (see [24, Appendix]).
Since every element of 4, , is of the form o,(£), where ¢ is a solution of
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R\(V; w) over U satisfying j, _,(§)(a) = 0 if k = 1, from (25.28) and (25.7) we
deduce that R\(V; w) is a formally integrable and integrable Lie equation.
From (25.8) and (25.10), we now obtain (25.19). Since the mappings ,:
Jeii(V; W) = J(V; W) are of constant rank for all k, / = 1, according to [10,
Proposition 8] we have

H/(R\(V; w)) = H/(J(V; w)), forj=0,

and thus (25.4) gives us (25.20). From the decomposition (25.30) of g, , and the
definitions of a, and a,, we easily see that the characteristic variety
V(R(V; w),C) of R\(V; w) over C is equal to T* ® C, concluding the proof
of the proposition.

We now construct a formally integrable finite form of the Lie equation
R\(V; w). Let P(V*) be the projectivized bundle of V*, and denote by [«] the
image of a € V*, with a # 0, in P(V'*). Let

D12 Qu(V) = T (P(V¥))
be the morphism of fibered manifolds over X sending j,(f)(a) into
Je—1([ f*w])(a), where f is a local diffeomorphism of X over Y defined on a
neighborhood of a € X; the subset Q. (V; W) of Q,(V) equal to
@, (ju—([w]) consists of all k-jets ¢ =j(f)Na) of QV) satisfying
Je—1(f*@ — gw)(a), for some g €0y ,, or equivalently ¢(J,_(W),) C
Je—1(W). Thus Q,(V; W) is a sub-groupoid of Q,(V). We now show that it is
a fibered submanifold of Q,(V) and a finite form of the Lie equation
J Vs W). If p € J(P(V*), with a € X and p = j([a])(a), where a is a section
of V* over a neighborhood of a satisfying a(a) # 0, then the mapping
Tl(V*) o = V,(J(P()),

sending j (B)(a), with B € V¥*, into

2 jlla+ B1)(a) |,y

is surjective, and its kernel is the subspace of J,(V*), generated by j (a)(a).
Therefore if p = j,((w])(a), the projection ¢: V* — W™* enables us to identify
V,(J(P(V*))) with J(W*),. If ¢ € Q\(V), with source ¢ = a, target ¢ = b,
the isomorphism (25.3)
(25.35) ¢: S 1 (V*) = T (V)
determines a diffeomorphism
¢: S (P(V*)) = T 1 (P(V*)) o

in turn, this mapping induces an isomorphism

by I/;J(Jk—l(P(V*))) - I/q#(p)(Jk—l(P(V*)))’
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which can also be obtained by passage to the quotient from the mapping
(25.35), that is, the diagram

T (V) — k-1(V*),

l 1

s
VolUr—a(PV*)) — V)1 (P(V*)))

commutes. If p = ®,_ (o) = ¢(j,_({w])(d)), an argument similar to the one
used to show that diagram (22.23) commutes gives us the commutativity of the
diagram

O, 14
Vo (Qu(V)) —— V, (4 (P(V*))

o b

T (V), = T (W),

Since J,(V; W) is a vector bundle, we see that ®, _, is of constant rank and by
[9, Proposition 2.1] that Q,(V; W) is a finite form of J(V; W). Let

Ji(D0): J(Qi(V)) = J(P(V*))
be the morphism of fibered manifolds sending j,(¢)(a) into j (P, (¢))(a),
where ¢ is a section of Q (V') over a neighborhood of a € X; then the diagram

Qk
Qk+ 1(V) - Jk(P(V*))

1% jid
J (P
T(@, (7)) 2B, T(P(V*))

is commutative. Hence by [9, Proposition 4.4], we have
MQini(Vs W) = N0y (V) N I(Qi(V; W)
= MQis1 NI(Q(Vs W),
since Q; (V) = (Qy(V)); therefore Q, . (V; W) is the kth prolongation of

o,V W).
Let

Y (Vs W) > Jk—l(/\ ZW*)
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be the morphism of fibered manifolds over X sending ¢ = j,( f )(a) into

jk—l((f*dX/Y‘*’ - ng/Yw)|/\2W)(a)’
where f is a local diffeomorphism of X over Y defined on a neighborhood of
a€ X and g is an element of Oy , satisfying j,_,(f*w — gw)(a) = 0. If
b = target ¢, the isomorphism (25.3) induces by passage to the quotient an
isomorphism
¢ S (ANW*)y > T (AW¥),;

an argument similar to the one used to show that the diagram (22.23)
commutes gives us the commutativity of the diagram

. Y1+ 2%
o0V W)~ g, (A2W),

I J
Vg1 °V

T VW), ————> T, (N*W*),,

where fk( V; W) = v'J(V; W). Since R,(V; w) is a vector bundle, we see that
W¥,_, is of constant rank, and by [9, Proposition 2.1] that the set P (V; w)
consisting of all k-jets ¢ € Q,(V; W) satisfying ¥, _,(¢) = 0 is a sub-groupoid
and a fibered submanifold of Q,(V; W). Therefore P,(V; w) is a finite form of
the Lie equation R, (V; w), whose solutions are the local immersions f: X - X
over Y which satisfy f*w = gw for some real-valued function g on X, or
equivalently ( f*w) A @ = 0. An element ¢ of Q,(V) belongs to P(V; w) if
and only if there is an element ¢ € R such that

(25.36) o(@) =cw, ¢(2)=cQ on A2(W).
Let
J(%): J(Q\(V; W) ~ Jk(/\ 2WN)

be the morphism of fibered manifolds sending j,(¢)(a) into j (¥())(a),
where ¢ is a section of Q,(V; W) over a neighborhood of a € X; then the
diagram

Vi 2%
Qk+1(V§ w)—__)']k(/\ w*)

K
J, (¥
T, (V; W)) SSON T(A2W*)

id
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is commutative. Hence by [9, Proposition 4.4}, we have
APV @) = N0 (Vs W) NI(P(V; )
=N Qr1 NI(P(V; w)),

since Q, . (V; W) = (Q\(V; W)),,; therefore P, , ,(V; w) is the kth prolonga-
tion of P(V; w).

Proposition 25.3.  If w is a contact form along the fibers of p, then P\(V; w) is
a formally integrable and integrable finite form of the formally integrable Lie
equation R (V; w), whose kth prolongation is P, (V; w).

Proof. We begin by verifying that

m: Py (V; w) » P(V; w)

is surjective. If a € X, let G, be the set of ¢ € P (V; w) with source ¢ =
target ¢ = a. If we take w’ = w in Proposition 25.1, we see that, in order to
show that the mapping m, is surjective, it is sufficient to prove that G, C
m P)(V; w) for all a € X. Let a € X and let (¢, v, w, y) be the coordinate on a
neighborhood U of a considered in the proof of Proposition 25.2. For A # 0,
let h, be the local diffeomorphism of X defined on a neighborhood of a
sending the point with coordinates (¢, v, w, y) into the point with coordinates

(A, A0h,- - AoP, W', WP, y);

then h{w = Aw and h,(a) = a, and so h, is a solution of P\(V; w). If ¢ € G,
satisfies (25.36) for some ¢ € R, then ji(h, ,.)(a) - ¢ belongs to G, and satisfies
(25.36) with ¢ = 1. To verify our claim, we need only show that every element
¢ of G, satisfying (25.36) with ¢ = 1 belongs to =, P,(V; w). Let ¢ € Q,(V)
with source ¢ = target ¢ = a satisfying ¢p(w) = @. If ¢: J(T), - J(T), is
given by
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with 1 <j <p, 1 <i<m, then the mapping f; defined by

P
v/o fy =3 (afo! + cjw'),
=1
wio fy= 3 (bp! + diw'),
=1
tofi=t, y'ofi=y,
for 1<j<p, 1<i<m, is a local diffeomorphism of X over Y on a
neighborhood of a; moreover it is easily verified that f*w = w if and only if
(Q) = Qon A (W),. Let

p
a= 3 (Ml — wol);

the mapping f, defined by
viof,=(1+a)o/ +Nt, w/of,=(1+a)w/ +pt,

tofp=(01+a), yof=y,
for 1<j<p, 1<i<m, is a local diffeomorphism of X over Y on a
neighborhood of a. It is easily verified that

fo=(1+ a)zw — 2tady ya,
and hence that
frdyyeo = (1+a)dy,yo +2(1 + 2a)dy,ya Ao

P
+2a ), (wfdx/yvj - vde/wa) Ndy,ya.

=1
Since a(a) = 0, we have ’
jl(fz*w —-(1+ a)zw)(a) =0
and
g By yo — (1 + a)’dy,yo +2(1 + 2a)dy ya A w)(a) =0,

which shows that j,( f,)(a) belongs to P,(V; w). Finally, the mapping f; defined
by

m m
vlofy=0l+ 3B, wiefi=w+ 3y,

i=1 i=1

m p
tofy=t+ 3 o+ T (Bw — /') |y,
i=1 =1

Yo fi=y,
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for 1<j<p, 1<i<m, is a local diffeomorphism of X over Y on a
neighborhood of a. It is easily seen that ffw = w and that
ifsefhofi)a)=9,

since a(a) = 0. Thus if ¢ is an element of P,(V; w), then f; is a solution of
P(V; w), and so j,(f;)(a) and j,(f;)(a) belong to P,(V; w); consequently
¢ = jy( f3 0 £, ° fi)(a) is an element of P,(V; w) satisfying m,¢ = ¢, and so our
assertion holds. Since g, is 2-acyclic and g, is a vector bundle for kK =1 by
Proposition 25.2, we apply [9, Theorem 8.1] to P,(V; w) and deduce that it is a
formally integrable finite form of R,(V; w). With respect to the analytic
structure on U determined by the coordinate (z, v, w, y), the form w is analytic
and the open sub-bundle of P,(V; w),, consisting of all elements ¢ € P\(V; )
with source and target belonging to U is an analytic and formally integrable
differential equation on U, and therefore integrable. That P,(V; w) is inte-
grable now follows from Proposition 25.1 with &’ = .

The following proposition is the analogue of Proposition 22.5 (iii) for
P,(V; w) and its proof is based on Proposition 22.5 (i) and (ii).

Proposition 25.4. Let u be a section of (T* ® Jy(V))" over X and let f be a
local immersion X - X over Y defined on an open set U. The section ¢ =
IWf)—fouow ofgl(V) is a section of@l(V; w) over U if and only if there is a
real-valued function g on U such that f*w = gw" and

(25.37) w“ A (f*d)(/}"" - g(dX/Y“’)u) =0.

Proof. According to Proposition 22.5 (i), ¢ is a section of QI(V). Letgbea
real-valued function on U. By Proposition 22.5 (ii), with a = gw, we see that
¢(w) = gw if and only if f*w = gw*; by (22.27) and (22.26), for £ € N\ 2J(,(W)
we have

& o(Q)y=((v" —u)é, [rdx,yw),
(& 8Qy=((»"' —u)¢, g(dX/Yw)u>'

Since the sub-bundle W* of V consisting of all vectors £ € V' satisfying
(¢, w*)= 0isequal to

We=(id—aor)W=(id+r"'ou)" W,

we deduce that $(2) = g on A\ %Jy(W) if and only if f*dy,yw = g(dy, yw)"
on A\ *W* this last condition is equivalent to

[rdy,yo — g(dX/Y‘*’)u =a
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for some section a of ¥* over U, and hence to (25.37). The desired result is
now a consequence of the description (25.36) of P(V; w).

If u is a section of V* ® Jy(V) and v is a section of \Jy(V)* ® J(V; W),
we have the relation

(25.38) (B (v)@) A w*-le* =0,

which we require for the next proposition. Indeed, if v = a ® £, with a a
section of /\Jy(V)* and £ a section of .f,(V; W), then

(E(0)®) Av* o =a A (E(Z)B)u A p*~ I
=aA((L(¥)z)na) =0.

The following two propositions are the analogues of Propositions 23.2 and
23.4 or of Proposition 24.4 for contact forms.

Proposition 25.5. Let w be a contact form along the fibers of p and u, be a
section of (T* ® J(V))" over X. If a € X, the following assertions are equiva-
lent:

(i) w*0 is a contact form along the fibers of p and

(25.39) W N (dX/Ywuo - (dX/Y"")uO) =0

on a neighborhood of a;

(i1) relation (25.39) holds on a neighborhood of a;

(iii) there is a section u of (T* ® R\(V; w))" such that myu = u, and D,u =0
on a neighborhood of a;

(iv) there is a section ¢ of @,(V; w) over a neighborhood of a satisfying
Do = ug;

(v) there is a local diffeomorphism f: X — X over Y defined on a neighborhood
of a such that

f*o = w0, WA (f*dx/yw - (dx/yw)uo) =0;

(Vi) there is a local diffeomorphism f: X — X over Y defined on a neighborhood
of a such that f(a) = a and f*w = w*°, and (25.39) holds on a neighborhood of a.

Proof. (iii) = (ii): Let u be a section of T* ® J(V; W) satisfying myu = u,
and Du = 0; then & = (»*~' ® »~')(u,) is a section of J(V)* ® J(V; W).
Since D, x,y(u;) = 0, we apply Proposition 22.3 to w and u,, and obtain

WA (dX/Y‘*’“° - (dX/Y“’)“O) =~ ArE(2)6 =0,

by (25.38), where v = ug,.
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(ii) = (i): If (25.39) holds on an open set U, then
wh A (dX/Y""uo)p = @ N ((dX/Yw)uo + (dX/Y"-’u" - (dX/Y‘*’)uO))p

= @ A ((dx/yw)“°)p = (w"“ A (d,(/yw)p)u0

Since id + »™' o uy: ¥ = V is invertible, (w A (dy,yw)?)*, and hence also
w' A (dy,yw")?, does not vanish at any point of U. Thus w* is a contact
form on U.

(i) = (vi) is given by Proposition 25.1.

(vi) = (v): Since f*w = w", we have f*dy, yw = dy,yw" and the desired
identity follows from (25.39).

(v) = (iv) follows from Propositions 25.4 and 22.5 (i).

(iv) = (iii): Since P,(V; w) is a formally integrable finite form of R,(V; w) by
Proposition 25.3, there is a section { of 63)2(V§ w) over a neighborhood of a
such that 7,y = ¢; then u = Dy is a section of (T* ® R,(V; w))” satisfying
Mo = ugand D,u = 0.

The following proposition, together with the equivalence of assertions (i) and
(iii) of Proposition 25.5, shows that the mapping T* ® J,(V') —» V*, sending u
into w*, with u, = myu, induces a surjective mapping from Z'(R,(V; w)), to
the set of germs at a € X of contact forms along the fibers of p.

Proposition 25.6. Let w be a contact form along the fibers of p and w' a
section of V* over X. Then ' is a contact form along the fibers of p if and only if,
for all a € X, there is a section uy of (T* ® Jy(V))" such that ' = w*o and

(25.40) W A (dyye’ = (dy,y0)*) =0

on a neighborhood of a.

Proof. Assume that ' is a contact form along the fibers of p.-Let W’ be
the sub-bundle of V consisting of all elements £ € V satisfying (&, )= 0.
According to Cartan’s lemma, there are frames {a;,---,a,,} for W* and
{a}, - -,a;,) for W™* over a neighborhood U of a € X such that

p ?
(dX/Yw)V\ZW = 21 o Nay;, (dX/le)l/\ZW’ = 21 0"2,'—1 Nayj,

J= J=
and there are sections {, {" of V" over U such that ({, w)=1, (¢, w’)= 1. Let v
be the unique section of V* @ V over U satisfying v({") = ¢ and whose
restriction to W’ is the section © of W’* ® W determined by v*(a;) = af, for
1 <j<2p. Let u, be a section of T* ® J(V) over U satisfying
Gd+»'o Ug)yy = v; since v +uy: V> Jy(V) is an isomorphism, u, is a
section of (T* ® Jy(V))" . Then &’ = w* and d,yw’ = (dy,yw)* on \*W’,
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hence (25.40) holds on U. The converse is provided by the implication (ii) = (i)
of Proposition 25.5.

Since P(V; w) is a formally integrable and integrable finite form of the Lie
equation R,(V; w) by Proposition 25.3, the implication (iii) = (iv) of Proposi-
tion 25.5 together with Proposition 22.7 (iii) gives us the following:

Theorem 25.1. Let w be a contact form along the fibers of p. Then for all
m=1,a € X, we have

H'(P(V; ©))a=0, H'(R(V;0)),=0.

The existence of the local coordinates for X satisfying the conditions with
respect to w described in the proof of Proposition 25.1 shows that sequence

o
0- Rk(V; w), ~ Rk(w)x _’Jk(TY; Y)p(x) -0

is exact, for x € X and 1 < k < o0; therefore by Proposition 25.2 and (25.7),
we see that R,(w) is a formally transitive and formally integrable p-projectable
Lie equation whose & th prolongation is R, , ;(w). From (25.6), we deduce that

(25.41) [R,(0). R, (V: 0)] € 8,(V: ),

if R,(w) = »"'R,(w), and that R_(V; ), is a closed ideal of the transitive Lie
algebra R_(w),, for x € X. With respect to the structure of analytic manifold
on an open set U C X determined by a local coordinate on U satisfying the
conditions with respect to w described in the proof of Proposition 25.1, the
section w is analytic and the Lie equations R,(V; w) and R,(w) are analytic
and satisfy (25.41); hence for x € X and j > 0, we have

H/(R (@), R (V; 0),) = H(R(V; w)), =0,
HY(R (@), Ry(V; @),) = H'(R,(V; @), =0,

by (25.20) and Theorem 25.1; moreover by [16, Corollary 13.1] and Corollary
10.1, we obtain

(25.42)

H/(R4(0),) = H/(R\(#)), =0,
ﬁl(Roo(w))x = ﬁl(Rl(w))x = 0’
for all x € X and j > 0. According to Proposition 25.2 and Theorem 16.4 (i),
the characteristic variety V(R ,(w),, R (V; w),,C) is equal to the image of
the injective mapping
¥ or* ! ®id: T*® C- R (w)f ®C.
If the manifold Y consists of just one point, then ¥ = T and w is a contact

form on X. Applying the above results to w, we see that R (w) = R(T; w)is a
formally transitive and formally integrable Lie equation on X. The solutions of
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R,(w) are the contact vector fields, R (w), is the contact algebra for x € X,
and the local diffeomorphisms solutions of P,(T; w) are the contact transfor-
mations of X. The transitive Lie algebra R_(w), is non-abelian, simple and
infinite-dimensional; moreover if Der(R (w),) denotes the Lie algebra of
derivations of R (w),, according to [7] the mapping

R (@); ~ Der(R,(w)s),

sending ¢ into the derivation ad(£) of R_(w),, is an isomorphism of Lie
algebras (see [23, §7] and [6, Corollary 2.2]).

We no longer assume that Y is a point. Let b € Y and Z be the submanifold
X, of X. We consider the contact form w, restriction of wto Z. If a € Z, a
local coordinate on a neighborhood of a satisfying the conditions with respect
to w described in the proof of Proposition 25.1 determines a local isomorphism
¢: Y X Z - X of fibered manifolds over Y defined on a neighborhood of
(b, a) such that p(b, a) = aand &, = ¢*(w). lf y € Y, z € Z, with ¢(y, z) =
x, the mapping ¢ induces an isomorphism (21.4) of transitive Lie algebras;
under this isomorphism, it is easily seen that the image of the semi-direct
product

M= (Roo(wZ)z ® F;,) 69Joo(TY; Y)y

is the transitive subalgebra R (w), of J(T; p),, and that the image of the
closed ideal R (w,), ® F, of M is the closed ideal R (V; w), of R (@),
Since R, (wz), is a non-abelian simple Lie algebra, R (wz), ® F, and
R _(V; w), are non-abelian minimal closed ideals of M and R _(w), respec-
tively; moreover

MDR_(v;),® F, D0,
Ro(©), D Ry(V; ), D0

are Jordan-Holder sequences for the transitive Lie algebras M and R_(V; w),
respectively. From the commutativity of diagram (21.6), we deduce that the
characteristic variety V(M, R (wy), ® F,, C) of the closed ideal R . (wz), ® F,
of M over C is equal to the image of the injective mapping (21.7), with
L=R_(wz),.

We restate some of these results in

Proposition 25.7. Let w be a contact form along the fibers of p: X — Y. Let
x € X withy = p(x), and Z = p™\(x). If w, is the contact form on Z, restriction
of w to Z, then the contact algebra R (w), is a transitive subalgebra of
J (T Z),; moreover, there is an isomorphism of transitive Lie algebras

(RW(wZ)x ® F_'V) ® Joo(TY’ Y)y - Roo(w)x
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mapping the closed ideal R (v ), ® F, of the semi-direct product onto the closed
ideal R (V; w), of R (w),.

Let w, be a contact form on a manifold Z. Let p: X - Y be the fibered
manifold pr;: Y X Z —» Y and w be the contact form &, along the fibers of p
determined by w,. We have the decompositions

R(w) =R (V;w) ®J(V";p),
and, forx = (y,z) € Y X Z,
R (0): = Reo(V: ©), @ 0,( L (Ty; Y),).
Therefore R (V; w), is a J(Ty; Y),-submodule of J,(V),, and the restriction
A: R (w7),® F, - R (V; 0),

of the mapping (21.3) is an isomorphism of J,(Ty; Y) -modules.

From (25.42) and Proposition 25.7, we deduce the following:

Theorem 25.2. If w, is a contact form on a manifold Z, then for z € Z,
y € Yandj > 0, we have

H/((Ro(wz), ® F) @ J(Ty; Y),, Ry(w7), & E)=o,
H'((Ry(wz), ® E) © I (Ty; Y),, R(w;), & E,) = 0.

If we take Y to be a point and Z = X in Theorem 25.2, we obtain:
Corollary 25.1. If w is a contact form on X, then for x € X and j > 0, we
have

H/(Ry(0),) =0, H'(R,(w),) =0.

26. The cohomology of non-abelian minimal closed ideals of real type

Let R be a simple real transitive Lie algebra. The commutator ring K of R
is the algebra of all R-linear mappings ¢: R - R such that

c([¢, n]) =[£ c(n)],

for £, 7 € R. If R is non-abelian, then according to [20, Proposition 4.4] the
ring K, is a finite algebraic extension of R; therefore Ky is always a field
which is either R or C.

If Der(R) denotes the Lie algebra of derivations of R, we may identify R
with the closed ideal of Der(R) of inner derivations of R. If R is finite-dimen-
sional, it is a classical result that Der(R) = R, and we let R® be any proper
subalgebra of R. According to the classification of the real simple infinite-
dimensional transitive Lie algebras (see [34] and [36]) and the computation of
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their Lie algebra of derivations given in [7], if R is infinite-dimensional and
Ky = R, there is an isomorphism of pairs of Lie algebras from (Der(R), R) to
one of the following pairs of transitive Lie algebras, whose restriction to R is
an isomorphism of transitive Lie algebras:

W) (J (T Z2),, J(T,; Z),), where Z is a manifold of dimension = 1 and
zEZ

(ii) (Jo(T5; wz),, Jo(Tz; wz),), where w is a volume form on a manifold Z
of dimension = 2 and z € Z;

(iii) (J (T wz),, J(Tz; wz),), where w, is a symplectic form on a mani-
fold Z of dimension =2 and z € Z;

@iv) (R (wz),, R (wz),), where w, is a contact form on a manifold Z of
dimension = 3 and z € Z.

This isomorphism endows Der(R) with the structure of transitive Lie
algebra in which the transitive Lie algebra R is a closed ideal of codimension at
most one. In all four cases, the images of Der(R) and R under this isomor-
phism are transitive subalgebras of J (T,; Z), and so clearly the subalgebra
Der®(R) of Der(R), whose image under this isomorphism is equal to the
intersection of the image of Der(R) with JX(T; Z),, is a fundamental subalge-
bra of Der(R) such that R® = R N Der®(R) is a fundamental subalgebra of R,
and

(26.1) Der(R) = R + Der’(R)

(see [6, Corollary 2.2}).
If F,=J,7),, with y € Y, as we have seen in §21, the semi-direct
product

Der(R ®r I}) = (Der(R) ®r Fy) ®J (Ty;Y),
is a transitive Lie algebra, and
Der®(R &g F,) = (Der®(R) ®g F, + Der(R) ®g E°) ® JA(Ty; Y),

is a fundamental subalgebra of Der(R ®g F, %,); moreover the closed ideal

R ®RF of Der(R ®RF) is a non-abelian rmmmal closed ideal if R is
non- abehan We denote by

m: Der(R ®r F,) > J(Ty; Y),

the natural morphism of transitive Lie algebras. In fact if Kz = R, then by [6,
Proposition 3.2}, Der(R ®gr F ,) is canonically isomorphic to the Lie algebra of
derivations of R ®R although this fact is used neither in this paper nor in
the proofs of any of the results of [6] which we need.
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From the above classification results, Proposition 22.10 and Theorems 23.2,
24.2 and 25.2, we deduce:

Theorem 26.1. Let R be a simple real transitive Lie algebra with Kz = R.
Then fory € Y, we have

Hj(Der(R ®r Fy), R ®g Fy) =0
forj >0 and
A'(Der(R ®g F,),R &g E,) = 0.

Moreover according to the computation of characteristic varieties of §§21,
23, 24 and 25, we see that R ®g F, is an elliptic ideal of Der(R ®r F)) if and
only if R is finite-dimensional and Y is zero-dimensional (i.e., F, = R).

Let L be a real transitive Lie algebra and / a non-abelian minimal closed
ideal of L. Then according to [20, Proposition 7.1], I possesses a unique
maximal closed ideal J of I and R = I/J is a non-abelian simple transitive Lie
algebra which is canonically associated to I. We say that the non-abelian
minimal closed ideal I is of real or complex type according to whether the
commutator field K is R or C.

Assume that the ideal I is of real type. We now prove that the non-linear
cohomology of I vanishes following the argument given in §13. We endow
Der(R) with a structure of transitive Lie algebra and let Der®(R) be a
fundamental subalgebra of Der(R) satisfying the conditions described above.
By [20, Proposition 6.2}, the normalizer N of J in L is an open subalgebra of L,
and is therefore of finite codimension in L. We now suppose that the
dimension of the manifold Y is equal to that of L/N, and let y € Y. By
Proposition 21.1, there is a transitive representation

¢: (L, N) = (Lo(Ty: Y),, J(Ty: Y),)
of (L, N) on J(Ty; Y),. Consider the transitive Lie algebra Der(R Rr F))
and its fundamental subalgebra Der®(R ®g F,). According to the topological

version [6, Theorem 4.2] of the structure theorem of Guillemin [20, Theorem
7.1], there is a continuous morphism of transitive Lie algebras

o: L Der(R Or Fy),
which induces by restriction an isomorphism
(26.2) ®:I>RQ®gF,

of closed ideals, such that 7 o ® = ¢. Since R ®g F, is contained in ®(L) and
(26.1) holds and since ¢(L) is a transitive subalgebra of J (7y; Y),, we see
that ®(L) is a transitive Lie algebra satisfying

(26.3) Der(R ®r Fy) =0(L) + DerO(R ®r Fy)
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Since (26.2) is an isomorphism, by [16, Corollary 13.1 (ii)] and Theorem 10.4
(iv), @ induces isomorphisms of cohomology

H*(L, 1) » H*(®(L), R @ F),
H'(L,I)~ A'(®(L), R®:F,).

Because of (26.3), from [16, Theorem 13.2] and Theorem 10.5 we obtain
isomorphisms of cohomology

H*(®(L), R®g F,) > H*(Der(R ® F,), R ®x F, ),
A'(®(L), R®x F,) > A'(Der(R & F,), R&R F,).
Composing these isomorphisms, we obtain isomorphisms of cohomology
H*(L,I) - H*(Der(R ®g F,), R ®g F,),
A'(L,I)- A'(Der(R &R F,), R®: F,).
From Theorem 26.1, we deduce that Conjecture I of §13 holds for non-abelian
minimal closed ideals of real type, and so we have:

Theorem 26.2. Let L be a real transitive Lie algebra and I a non-abelian
minimal closed ideal of real type. Then for j > 0, we have

H/(L,I)=0, H(L,I)=0

Furthermore, if K = R or C, since (26.2) is an isomorphism, Corollary 16.1
tells us that

WL, I,K) = (2* ®id)(V(®(L), R®& F,, K )),

where ®* ® id: ®(L)* ® K —» L* ® K is the injective mapping induced by .
By (26.3), if we compute the characteristic varieties of the closed ideal R ® ¢ F,
of Der(R ®g F. ) and of ®(L) using the fundamental subspace

(R ®x F,) N Der®(R &g F,)

of R® F, and the fundamental subalgebras Der’(R ®g F, 7)) and ®(L) N
Der’(R ®n F)) of Der(R ®r F ) and ®(L), we see that the mapping

(Der(R &g F,))* > ®(L)*
induces a bijective mapping
V(Der(R®g F,), R®g F,, K) > V(®(L), R®g F,, K ).
Therefore the mapping
®* ®id: (Der(R &g F,))* ® K - L* ® K
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induces a bijective mapping
V(Der(R ®& F,), R®x F,, K) » V(L, I, K).

We conclude that the closed ideal I of L is elliptic if and only if the closed
ideal AR ®r F, of Der(R ®r F)) is elliptic. This last condition holds if and only
if R ®p F, is a finite-dimensional Lie algebra. We have thus proved:

Proposition 26.1. A non-abelian minimal closed ideal of a transitive Lie
algebra of real type is elliptic if and only if it is finite-dimensional.
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