A TOPOLOGICAL VERSION OF OBATA'S SPHERE THEOREM

MARK A. PINSKY

1. Introduction

Let (M, g) be a compact Riemannian manifold of nonnegative sectional curvature K. The Laplacian acting on $L^2(M, g)$ has a discrete spectrum $0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots$ with $\lim_{n\to\infty} \lambda_n = +\infty$. It is well known [1] that λ_1 can be related to bounds on the curvature. For instance if K > k > 0, then $\lambda_1 > nk$ with equality in case of the sphere. Furthermore the theorem of Obata [3] states that the dual relations K > k, $\lambda_1 = nk$ imply that (M, g) is isometric to (S^n, g_0) , the standard sphere of radius $k^{-1/2}$ imbedded in R^{n+1} .

It has been conjectured that there exists $\delta > 0$ such that whenever (M, g) satisfies the dual relations $K \ge k$, $\lambda_1 \le nk(1 + \delta)$, then M is homeomorphic to Sⁿ. While we have not obtained this precise result, we have the following theorem.

Theorem. Let (M, g) be a compact n-dimensional Riemannian manifold with sectional curvature K satisfying the bound

$$(1) K \ge k > 0.$$

Assume that there exists a C^{∞} -function f, not identically zero, which satisfies the inequality

(2)
$$\left| \nabla_X \nabla_X f + \frac{\lambda}{n} (X, X) f \right| \leq \frac{\mu \lambda}{n} (X, X) |f|,$$

whenever $x \in M$, $X \in T_x(M)$; λ and μ are positive constants with $0 < \mu < 1$ and

(3)
$$0 < \lambda < \frac{16nk}{9} \left[\pi - \cos^{-1} \left(\frac{1-\mu}{1+\mu} \right) \right]^2.$$

Then M is homeomorphic to the n-sphere S^n .

This theorem, which generalizes the Obata sphere theorem, will be proved along the lines of the pinching theorems of Rauch and Berger [2, Chapter 6]. In this context, the hypothesis (3) is a substitute for the upper bound K < 4k

Received May 9, 1977, and in revised form, June 30, 1978. Research supported by National Science Foundation Grant MCS78-02144.

which is assumed in the pinching theorems. A crucial step in our proof is Lemma 5, which states that if P is a critical point of f, and Q is conjugate to P along some geodesic γ , then

$$d(P, Q) \ge (n/\lambda)^{1/2} \left[\pi - \cos^{-1}(1-\mu)/(1+\mu) \right].$$

2. Proof of the theorem

Lemma 1. If γ is any normal geodesic, then

(4)
$$\frac{d^2}{dt^2}(f\circ\gamma) + \frac{\lambda}{n}(f\circ\gamma) = \delta_{\gamma}(t),$$

where $|\delta_{\gamma}(t)| \leq (\mu \lambda / n) |(f \circ \gamma)(t)|$.

Proof. Indeed $d/dt(f \circ \gamma) = (df \circ \gamma)(\gamma'), \frac{d^2}{dt^2}(f \circ \gamma) = \text{Hess } f(\gamma', \gamma') + (df \circ \gamma)\nabla_{\gamma'}\gamma'$. The second term is zero since γ is a normal geodesic. From Condition (2), the first term $= -(\lambda/n)(f \circ \gamma) + \delta_{\gamma}(t)$ where $|\delta_{\gamma}| \le (\mu\lambda/n)|f|$. **Lemma 2.** If γ is a normal geodesic, and $\gamma(0)$ is a critical point of f, then

(5)
$$(f \circ \gamma)(t) = f(\gamma(0)) \cos \sqrt{\frac{\lambda}{n}} t + \sqrt{\frac{n}{\lambda}} \int_0^t \delta_{\gamma}(u) \sin \sqrt{\frac{\lambda}{n}} (t-u) du.$$

Proof. It is easily verified that (5) is the unique solution of (4) satisfying the initial conditions $(f \circ \gamma)'(0) = 0$, $(f \circ \gamma)(0) = f(\gamma(0))$.

We now obtain some estimates on the variation of f along a geodesic. For this purpose, let

(6)
$$t_{0} = t_{0}(\gamma) \equiv \min\{t > 0 : (f \circ \gamma)(t) = -(f \circ \gamma)(0)\},$$
$$\bar{t}_{0} = \bar{t}_{0}(\gamma) \equiv \min\{t > 0 : (f \circ \gamma)(t) = (f \circ \gamma)(0)\},$$
$$t'_{0} = t'_{0}(\gamma) \equiv \min\{t > 0 : (f \circ \gamma)'(t) = 0\}.$$

Lemma 3. If γ is a normal geodesic, $\gamma(0)$ is a critical point of f, and $(f \circ \gamma)(0) \neq 0$, then $\min\{t_0, \bar{t_0}\} \ge (n/\lambda)^{1/2}[\pi - \cos^{-1}(1-\mu)/(1+\mu)]$.

Proof. Without loss of generality we may assume that $(f \circ \gamma)(0) > 0$ (otherwise the proof below may be applied to -f). To prove the stated lower bound, we may assume that $\min\{t_0, \bar{t_0}\} \le \pi(n/\lambda)^{1/2}$, since otherwise there is nothing to prove. Now on the interval $0 \le t \le \min\{t_0, \bar{t_0}\}$ the sine function in (5) is positive, and we have the two-sided bound

(7)
$$\left|\sqrt{\frac{n}{\lambda}}\int_0^t \delta_{\gamma}(u)\sin\sqrt{\frac{\lambda}{n}}(t-u)\,du\right| \leq \mu(f\circ\gamma)(0)\left(1-\cos\sqrt{\frac{\lambda}{n}}t\right).$$

We analyze separately two cases.

370

Case 1. $t_0 < t_0$: In this case we use (7) as an upper bound for the integral in (4), with the result

$$(f \circ \gamma)(t) \leq (f \circ \gamma)(0) \cos \sqrt{\frac{\lambda}{n}} t + \mu (f \circ \gamma)(0) \left(1 - \cos \sqrt{\frac{\lambda}{n}} t\right),$$
$$(0 \leq t \leq \bar{t_0}).$$

Dividing by $(f \circ \gamma)(0)$ and setting $t = t_0$ we have $1 < \cos(\lambda/n)^{1/2} \bar{t_0}$ which implies that $\bar{t_0} > 2\pi (n/\lambda)^{1/2}$. This proves the result in this case.

Case 2. $t_0 \le \overline{t_0}$: In this case we use (7) as a lower bound for the integral in (4), with the result

$$(f \circ \gamma)(t) \ge (f \circ \gamma)(0) \cos(\lambda/n)^{1/2} t - \mu(f \circ \gamma)(0) \left[1 - \cos(\lambda/n)^{1/2} t\right].$$

Dividing by $(f \circ \gamma)(0)$ and setting $t = t_0$, we have

$$(\mu - 1)/(\mu + 1) \ge \cos(\lambda/n)^{1/2}t_0$$

which proves the result in this case.

Lemma 4. If γ is a normal geodesic, $\gamma(0)$ is a critical point of f, and $(f \circ \gamma)(0) \neq 0$, then $t'_0 \ge (n/\lambda)^{1/2} [\pi - \cos^{-1}(1-\mu)/(1+\mu)]$.

Proof. We first differentiate (5), with the result

(8)

$$(f \circ \gamma)'(t) = -\sqrt{\frac{\lambda}{n}} (f \circ \gamma)(0) \sin\sqrt{\frac{\lambda}{n}} t + \int_0^t \delta_{\gamma}(u) \cos\sqrt{\frac{\lambda}{n}} (t-u) du.$$

Case 1. $t'_0 < \pi/2(n/\lambda)^{1/2}$: In this case we see from Lemma 3 that $|(f \circ \gamma)(t)| \leq |(f \circ \gamma)(0)|$ for $0 \leq t \leq 7$. Therefore (8) yields

$$\begin{split} \sqrt{\frac{\lambda}{n}} &|(f \circ \gamma)(0)| \sin \sqrt{\frac{\lambda}{n}} t_0' = \left| \int_0^{t_0'} \delta_{\gamma}(u) \cos \sqrt{\frac{\lambda}{n}} (t_0' - u) du \right| \\ &\leq \mu \sqrt{\frac{\lambda}{n}} |(f \circ \gamma)(0)| \sin \sqrt{\frac{\lambda}{n}} t_0', \end{split}$$

which contradicts $\mu < 1$. Therefore this case is impossible.

Case 2. $\pi > t'_0(\lambda/n)^{1/2} \ge \pi/2$. If $t'_0(\lambda/n)^{1/2} \ge [\pi - \cos^{-1}(1-\mu)/(1+\mu)]$, there is nothing to prove. Otherwise we may again apply (8) and Lemma

3, in the form

$$\begin{split} \sqrt{\frac{\lambda}{n}} &|(f \circ \gamma)(0)|\sin\sqrt{\frac{\lambda}{n}} t_0' = \left|\int_0^{t_0'} \delta_{\gamma}(u) \cos\sqrt{\frac{\lambda}{n}} (t_0' - u) du\right| \\ &\leq \mu \frac{\lambda}{n} |(f \circ \gamma)(0)| \int_0^{t_0'} \left|\cos\sqrt{\frac{\lambda}{n}} u\right| du \\ &= \mu \sqrt{\frac{\lambda}{n}} |(f \circ \gamma)(0)| \left(2 - \sin\sqrt{\frac{\lambda}{n}} t_0'\right). \end{split}$$

Therefore $(1 + \mu) \sin(\lambda/n)^{1/2} t'_0 \le 2\mu$, which is rewritten in the form $\sin t'_0 \le 2\mu/(1 + \mu) \le 2\mu^{1/2}/(1 + \mu)$. Hence

$$\sqrt{\frac{\lambda}{n}} t'_0 \ge \pi - \sin^{-1} \frac{2\sqrt{\mu}}{1+\mu} = \pi - \cos^{-1} \frac{1-\mu}{1+\mu}.$$

This proves the required estimate in this case.

Case 3. $t'_0(\lambda/n)^{1/2} \ge \pi$: In this case there is nothing to prove.

Lemma 5. Let γ be a normal geodesic where $(f \circ \gamma)(0) \neq 0$, and $\gamma(0)$ is a critical point of f. If $\gamma(t)$ is conjugate to $\gamma(0)$ along γ , then $t \ge (n/\lambda)(\pi - \cos^{-1}(1 - \mu)/(1 + \mu)).$

Proof. Assume that γ is free of conjugate points for $0 \le t < t_c$, and that $\gamma(t_c)$ is a conjugate point. Let $\{Y(t), 0 \le t \le t_c\}$ be a Jacobi field along γ with $Y(0) = 0 = Y(t_c)$. Y(t) can be realized as the infinitesimal variation of the geodesic γ through the formula

$$Y(t) = \frac{\partial}{\partial s} \gamma_s(t) \Big|_{s=0},$$

where $Y_s(t) = \exp_{\gamma(0)} t V_s$, $V_s = \{sY'(0) + \gamma'(0)\}(1 + s^2 |Y'(0)|)^{-1/2}$. Now by the second variation formula [1, p. 135], we have

(10)
$$\frac{\langle Y'(t), Y(t) \rangle}{\langle Y(t), Y(t) \rangle} = \frac{d^2 L_t}{ds^2} \bigg|_{s=0},$$

where $L_t(s)$ is the length of the geodesic segment $\{\gamma_s(\tau), 0 \le \tau \le t\}$. To compute the right-hand member of (10), we apply Lemma 2 to γ_s . Thus

$$(f \circ \gamma_s)(t) = (f \circ \gamma)(0) \cos\sqrt{\frac{\lambda}{n}} L_t(s) + \sqrt{\frac{n}{\lambda}} \int_0^{L_t(s)} \delta_{\gamma_s}(u) \sin\sqrt{\frac{\lambda}{n}} (L_t(s) - u) du$$

372

We fix t and differentiate the equation with respect to s; thus

(11)

$$\frac{d}{ds}(f \circ \gamma_s) = -(f \circ \gamma)(0)\sqrt{\frac{\lambda}{n}} \frac{dL_t}{ds}\sin\sqrt{\frac{\lambda}{n}} L_t(s) + \frac{dL_t}{ds}\int_0^{L_t(s)}\delta_{\gamma_s}(u)\cos\sqrt{\frac{\lambda}{n}} (L_t(s) - u) du + \int_0^{L_t(s)}\frac{d}{ds}\delta_{\gamma_s}(u)\sin\sqrt{\frac{\lambda}{n}} (L_t(s) - u) du.$$

Upon taking second derivatives and setting s = 0, we see that

(12)

$$\frac{d^2}{ds^2}(f \circ \gamma_s)\Big|_{s=0} = \frac{d^2L_t}{ds^2}\Big|_{s=0} \times \left\{-(f \circ \gamma)(0)\sqrt{\frac{\lambda}{n}}\sin\sqrt{\frac{\lambda}{n}}t + \int_0^t \delta_\gamma(u)\cos\sqrt{\frac{\lambda}{n}}(t-u)\,du\right\} + \int_0^t \frac{d^2}{ds^2}\delta_{\gamma_s}(u)\sin\sqrt{\frac{\lambda}{n}}(t-u)\,du.$$

On the other hand, from (8), (10) we can write the above equation in the form

(13)
$$\frac{\langle Y'(t), Y(t) \rangle}{\langle Y(t), Y(t) \rangle} = \frac{G(t)}{D(t)},$$

where $D(t) = (f \circ \gamma)'(t)$ and

(14)
$$G(t) = \frac{d^2}{ds^2} (f \circ \gamma_s) \bigg|_{s=0} - \int_0^t \frac{d^2}{ds^2} \delta_{\gamma_s}(u) \sin \sqrt{\frac{\lambda}{n}} (t-u) du.$$

G(t) is a continuous function for $0 \le t \le t_c$. From Lemma 4, D(t) is nonzero for $0 \le t \le (n/\lambda)^{1/2} [\pi - \cos^{-1}(1 - \mu)/(1 + \mu)]$. Now $Y(t) \ne 0$ for $0 < t < t_0$ and hence $Y(r) \ne 0$ for sme r > 0 for some r > 0. Integrating (13) on [r, t] we see that

(15)
$$|Y(t)| = |Y(r)| \exp\left\{2\int_{r}^{t} \frac{G(u)}{D(u)} \, du\right\}, \ (r \le t < t_{c}).$$

To complete the proof of the lemma, assume that

$$t_c < (n/\lambda)^{1/2} [\pi - \cos^{-1}(1-\mu)/(1+\mu)].$$

Let $t \to t_c$ in (15), with the conclusion

$$0 = |Y(r)| \exp\left\{2\int_{t}^{t} \frac{G(u)}{D(u)} du\right\} \neq 0.$$

Hence $t_c \ge (n/\lambda)^{1/2} [\pi - \cos^{-1}(1-\mu)/(1+\mu)]$, which was to be proved.

MARK A. PINSKY

Lemma 6. Let P be a critical point of f, $f(P) \neq 0$. Then the geodesic ball of radius $(n/\lambda)^{1/2}(\pi - \cos^{-1}(1-\mu)/(1+\mu))$ is within the cut-locus of P.

Proof. Let Q realize the minimum distance from P to its cut-locus, and assume $t_1 = d(P, Q) < (n/\lambda)^{1/2} [\pi - \cos^{-1}(1 - \mu)/(1 + \mu)]$. Then by a known result [2, Lemma 5.6, p. 95] either there is a minimal geodesic from P to Q along which Q is conjugate to P, or there are precisely two minimal geodesics γ , σ from P to Q such that $\gamma'(P) = -\sigma'(P)$. From Lemma 5 the first case is impossible. Therefore we may apply the lemma again to Q to conclude that we can define a smooth closed geodesic $\gamma(t)$ with $\gamma(0) = P$, $\gamma(t_1) = Q$, $\gamma(2t_1) = P$. Let $\tilde{f}(t) = (f \circ \gamma)(t)$ for $0 \le t \le 2t_1$. Without loss of generality we may assume that f(P) > 0. Thus $\tilde{f}''(t) > 0$ for small t and hence $\tilde{f}'(t) \le 0$ for small t. Applying Lemma 4 we see that $\tilde{f}'(t) < 0$ for $0 < t < t_1 = d(P, Q)$. On the other hand by reversing the time along γ , we must have $\tilde{f}'(t) > 0$ for $t_1 < t < 2t_1$. Therefore $\tilde{f}'(t_1) = 0$ which contradicts Lemma 4.

We now let P_{max} (resp. P_{min}) be the location of the maximum (resp. minimum) of f on M. It follows from hypothesis (2) that $f(P_{\text{max}}) > 0 > f(P_{\min})$. Indeed, by taking the trace, we see that

$$\lambda \int_{M} f = \int_{M} \Delta f + \lambda f \leq \mu \lambda \int_{M} f.$$

If for instance $f(P_{\min}) \ge 0$, then $f \ge 0$ on all of M, which contradicts $\int_M f \le \mu \int_M f$.

Let R realize the maximum distance from $P_{\text{max}} = P$.

Lemma 7. Given $v \in T_P(M)$, there exists a minimal geodesic γ from P to R such that $(\gamma'(0), v) \leq \pi/2$.

The statement of Lemma 7 is essentially the same as that of Lemma 6.2 in [2], and the proof of Lemma 7 is therefore omitted.

Lemma 8. $M = B(P_{\max}; \pi/2k^{1/2}) \cup B(R, \pi/2k^{1/2}).$

Proof. Let $d(P_{\max}; x) > \pi/2k^{1/2}$. Let γ_2 be a minimal geodesic from P_{\max} to x, and by Lemma 7 choose a minimal geodesic γ_1 from P_{\max} to R such that $(\gamma'(0), \gamma'_2(0)) \leq \pi/2$. Thus the geodesic triangle formed by $(\gamma_1, \gamma_2, \not\leq (\gamma'_1(0), \gamma'_2(0)))$ satisfies the hypotheses of Toponogov's theorem. Therefore we can compare with a geodesic triangle of opening $\pi/2$ in a sphere of curvature = k. Following the steps of [2, Lemma 6.3] we see that $d(R, x) < \pi/2k^{1/2}$.

Lemma 9. If
$$(n/\lambda)^{1/2}[\pi - \cos^{-1}(1-\mu)/(1+\mu)] > 3\pi/4k^{1/2}$$
, then

(16)
$$M = B(P_{\max}; 3\pi/4k^{1/2}) \cup B(P_{\min}; 3\pi/4k^{1/2})$$

Proof. Note that by Meyers' theorem, (1) implies diam $(M) \le \pi/k^{1/2}$. Hence $d(P_{\text{max}}, P_{\text{min}}) \le d(P_{\text{max}}, R) \le \pi/k^{1/2}$. On the other hand from Lemma

374

5, we have $d(P_{\max}, P_{\min}) > (n/\lambda)^{1/2} [\pi - \cos^{-1}(1-\mu)/(1+\mu)] > 3\pi/4k^{1/2}$. Repeating the reasoning of Lemma 8, we apply Toponogov's theorem to the geodesic triangle $(\gamma_1, \gamma_2 \not\leq (\gamma'_1(0), \gamma'_2(0)))$ where γ_2 is a minimal geodesic from P_{\max} to P_{\min} , and γ_1 is a minimal geodesic from P_{\max} to R such that $(\gamma'_1(0), \gamma'_0) \leq \pi/2$. This shows that $d(R, P_{\min}) \leq \pi/4k^{1/2}$. Now if $d(x, P_{\max}) > 3\pi/4k^{1/2}$, we have $d(x, R) < \pi/2k^{1/2}$ (from Lemma 8) and hence $d(x, P_{\min}) < d(x, R) + d(R, P_{\min}) < \pi/4k^{1/2}$.

Lemma 10. Let $(n/\lambda)^{1/2}[\pi - \cos^{-1}(1-\mu)/(1+\mu)] > 3\pi/4k^{1/2}$, and let γ be a normal geodesic with $\gamma(0) = P_{\text{max}}$. Then there is a unique point x on γ such that $d(P_{\text{max}}, x) = d(P_{\text{min}}, x) \leq 3\pi/4k^{1/2}$.

Proof. Let $\psi(t) = d(P_{\max}, \gamma(t)) - d(P_{\min}, \gamma(t)), 0 \le t \le 3\pi/4k^{1/2}$. Clearly $\psi(0) < 0$ and $\psi(3\pi/4k^{1/2}) = 3\pi/4k^{1/2} - d(P_{\min}, \gamma(3\pi/4k^{1/2})) > 0$ by Lemma 9. Therefore by the intermediate value theorem there is a $\bar{t} \in (0, 3\pi/4k^{1/2})$ such that $\psi(\bar{t}) = 0$. If \bar{t}_1, \bar{t}_2 are two such values, suppose $\bar{t}_1 < \bar{t}_2$. Then $d(P_{\min}, \gamma(\bar{t}_2)) = d(P_{\max}, \gamma(\bar{t}_2)) = d(P_{\max}, \gamma(\bar{t}_1)) + d(\gamma(\bar{t}_1), \gamma(\bar{t}_2)) = d(P_{\min}, \gamma(\bar{t}_2)) = d(P_{\min}, \gamma(\bar{t}_2)$ to P_{\min} via $\gamma(\bar{t}_2)$ has the same length as the minimal geodesic from P_{\min} to $\gamma(\bar{t}_2)$. Hence this path must be a smooth geodesic and hence must pass through P_{\max} , which contradicts $P_{\max} \neq P_{\min}$.

Proof of the theorem. Let S^n denote the unit sphere in R^{n+1} , and P_1 , P_2 a pair of antipodal points. Let

(17)
$$I: T_{P_1}(S^n) \to T_{P_{min}}(M)$$

be an isometry of the tangent spaces at the indicated points. For each unit vector $v \in T_{P_{\max}}(M)$, define $\varphi = t_0 v$ by letting $\exp \varphi(v)$ be the point along the geodesic $t \to \exp_{P_{\max}} tv$ which is equidistant from P_{\max} and P_{\min} . Lemma 10 implies the existence and uniqueness of $t_0 \in (0, 3\pi/4k^{1/2})$. Let $\Phi(x) = \exp_{P_{\max}}(\varphi(I(\exp_{P_1}^{-1}(x))))$. Define $h: S^n \to M$ by the rule

(18)
$$h(x) = \begin{cases} P_{\max}, & x = P_1, \\ \exp_{P_{\max}}(2d(x, P_1)) \exp_{P_{\max}}^{-1}(\Phi(x)), & 0 < d(x, P_1) < \pi/2, \\ \exp_{P_{\min}}(2d(x, P_2)) \exp_{P_{\min}}^{-1}(\Phi(x)), & 0 < d(x, P_2) < \pi/2, \\ P_{\min}, & x = P_2. \end{cases}$$

Repeating step-by-step the proof of Theorem 6.1 in [2], we see that H is continuous, injective, and surjective from S^n to M. Therefore M is a homeomorphism, and the proof is complete.

Added in Proof. Recently some new results on the above problem were obtained by S. Gallot, Un théorème de pincement et une estimation sur la

MARK A. PINSKY

première valeur propre du laplacien d'une variété riemannienne, C. R. Acad. Sci. Paris 289 (1979) 441-444.

References

- [1] M. Berger, P. Gauduchon & E. Mazet, Le Spectre d'une Variété Riemannienne, Lecture Notes in Math. Vol. 194, Springer, Berlin, 1971.
- [2] J. Cheeger & D. G. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam, 1975.
- [3] M. Obata, Riemannian manifolds admitting a solution of a certain system of differential equations, Proc. United States-Japan Sem. Differential Geometry, Kyoto, 1965, Nippon Hyoransha, Tokyo, 1966, 101-114.

NORTHWESTERN UNIVERSITY