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1. Introduction

Let (Λf, g) be a compact Riemannian manifold of nonnegative sectional

curvature K. The Laplacian acting on L2(Λf, g) has a discrete spectrum

0 = AQ < λj < λ2 < with l i m ^ ^ \ = + oo. It is well known [1] that λx

can be related to bounds on the curvature. For instance if K > k > 0, then

\x> nk with equality in case of the sphere. Furthermore the theorem of

Obata [3] states that the dual relations K > k, \x = nk imply that (Af, g) is

isometric to (Sn, g0), the standard sphere of radius k~1^2 imbedded in Rn+ι.

It has been conjectured that there exists δ > 0 such that whenever (Λf, g)

satisfies the dual relations K > k, λx < nk(\ + δ), then M is homeomorphic

to Sn. While we have not obtained this precise result, we have the following

theorem.

Theorem. Let (M, g) be a compact n-dimensional Riemannian manifold

with sectional curvature K satisfying the bound

(1) K > k > 0.

Assume that there exists a C °°-function f not identically zero, which satisfies the

inequality

(2)

whenever x E Λf, X e TX(M); λ and μ are positive constants with 0 < μ < 1

and

(3) 0 < λ <

Then M is homeomorphic to the n-sphere Sn.

This theorem, which generalizes the Obata sphere theorem, will be proved

along the lines of the pinching theorems of Rauch and Berger [2, Chapter 6].

In this context, the hypothesis (3) is a substitute for the upper bound K < 4k
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which is assumed in the pinching theorems. A crucial step in our proof is
Lemma 5, which states that if P is a critical point of/, and Q is conjugate to
P along some geodesic γ, then

d(P, Q) > (n/λ)l/2[iτ - cos-'O - μ)/ (1 + μ)].

2. Proof of the theorem

Lemma 1. If y is any normal geodesic, then

(4)

r

Proof. Indeed d/dtfj ° γ) = (df ° γ)(γ'), d1 / dt\f ° γ) = Hess/(γ', γ') +
(4f ° v)^γy The second term is zero since γ is a normal geodesic. From
Condition (2), the first term = -(λ/n)(/ ° γ) + δy(t) where |δ γ | < (μλ/«)|/|.

Lemma 2. If γ is a normal geodesic, and γ(0) is a critical point off, then

(5) (/oγ)(0=/(γ(0))cos^/+^jΓ'δγ(M)sin^(ί- u) du.

Proof. It is easily verified that (5) is the unique solution of (4) satisfying
the initial conditions (/ ° γ)'(0) = 0, (/ ° γ)(0) = /(γ(0)).

We now obtain some estimates on the variation of / along a geodesic. For
this purpose, let

t0 = /0(γ) Ξ min{/ > 0 : (/ o γ)(/) = - (/ o γ)(0)},

(6) t0 = /o(γ) = min{ί > 0 : (/ o γ)(/) = (/ o γ)(0)},

t'o = φ) Ξ m i n { / > 0 : ( / o y)'(t) = 0}.

Lemma 3. If γ is a normal geodesic, γ(0) is a critical point of f, and

(/ ° Y)(0) Φ 0, then min{/0, t'o] > (n/X)1^ - cos'^l - μ)/(l + μ)].
Proof. Without loss of generality we may assume that (/ ° γ)(0) > 0

(otherwise the proof below may be applied to -/). To prove the stated lower
bound, we may assume that min{ί0, t0) < π(n/λ)1/2, since otherwise there is
nothing to prove. Now on the interval 0 < / < min{/0, t0] the sine function in
(5) is positive, and we have the two-sided bound

A/λ Γ δ γ ( " } Sίn V^Γ (' - «) «& < μ(/ o γ)(0)ί 1 - c o s ^ Γ λ

We analyze separately two cases.
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Case 1.t0 < t0: In this case we use (7) as an upper bound for the integral in
(4), with the result

(/ • γ)(0 < (/ - γ)(0) c ^ (

(0 < / < t0).

Dividing by (/ ° γ)(0) and setting t = t0 we have 1 < cos(λ/n)ι/2t0 which
implies that /0 > 2τr(«/λ)1/2. This proves the result in this case.

Case 2. /0 < t0: In this case we use (7) as a lower bound for the integral in
(4), with the result

(/" γ)(0 > (/° r)(0) cos(λ/*)1/2/ -

Dividing by (/ ° γ)(0) and setting t = t0, we have

which proves the result in this case.

Lemma 4. If γ w α normal geodesic, γ(0) w α critical point of /,

(/ ° Y)(0) Φ 0, then t'o > («/λ)'/2[W - cos-'O - μ)/(l + μ)].

P/w/. We first differentiate (5), with the result

(f°y)V) = -Vτ (/»#)

(8)

1. ίό < w/2(«/λ)1/2: In this case we see from Lemma 3 that
l(/ ° γ)(0l < l(/ ° γ)(0)| for 0 < t < 7. Therefore (8) yields

^ \(f ^(t'0 - u) du

£ t'o,
which contradicts μ < 1. Therefore this case is impossible.

Case 2. 7Γ > t'0(λ/n)ι/2 > π/2. If tf

Q{\/ή)ι/1 > [π - cos^l - μ)/(l +
μ)], there is nothing to prove. Otherwise we may again apply (8) and Lemma
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3, in the form
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jf \(u) jj ( ^ - «) du

Therefore (1 + μ) sin(λ/n)1/2/ό < 2μ, which is rewritten in the form sin t'o <
2μ/(l + μ) < 2μ'/2/(l + μ). Hence

- t'o > π - sin 1 + _
= 7Γ ~ COS

1 -
1 +

This proves the required estimate in this case.

Case 3. t'0(\/ήγ/2 > π: In this case there is nothing to prove.

Lemma 5. Let γ be a normal geodesic where (/ ° γ)(0) φ 0, α/w/ γ(0) w a
critical point off. Ify(t) is conjugate to γ(0) along γ, then

t > (Λ/λXπ - COS-̂ l - μ)/(l + μ)).

Proof. Assume that γ is free of conjugate points for 0 < t < tc, and that
y(tc) is a conjugate point. Let { Y(), 0 < / < tc) be a Jacobi field along γ with
Y(0) = 0 = Y(tc). Y(t) can be realized as the infinitesimal variation of the
geodesic γ through the formula

where Ys(ί) = expmtV,, Vs = {sY'(0) + γ'(0)}(l + s2\ Y'(0)\T1/2. Now by
the second variation formula [1, p. 135], we have

(10) , Y(φ
ds2

s-0

where L,(J) is the length of the geodesic segment (γ,(τ), 0 < T < /}. To
compute the right-hand member of (10), we apply Lemma 2 to γ,. Thus

T.X0 Y)(0) s-φ L,(s)
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We fix t and differentiate the equation with respect to s; thus

(11)

Upon taking second derivatives and setting s = 0, we see that

373

+ ί τ (

d2L,

ds2

+

X -
j « 0

- /

(12)

On the other hand, from (8), (10) we can write the above equation in the form

(Y'(ή,Y(φ

where D{t) = (/ ° γ)'(ί) and

(14)

is a continuous function for 0 < / < /c. From Lemma 4, Z)(/) is nonzero

for 0 < / < (n/λ)ι/2[π - c o s ^ l - μ)/(l + μ)]. Now 7 ( 0 φ 0 for 0 < t < t0

and hence Y(r) φ 0 for sme r > 0 for some r > 0. Integrating (13) on [r, ί]

we see that

I Λ />(«) J(15)

To complete the proof of the lemma, assume that

tc < («/λ)'/2[W - cos-'(l - μ)/(l + μ)].

Let ί —> tc in (15), with the conclusion

Hence /c > (λi/λ)1/2[77 - cos"^! - μ)/(l + μ)], which was to be proved.
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Lemma 6. Let P be a critical point off,f(P) φ 0. Then the geodesic ball of
radius O/λ)1/2(ττ - cos'^l - μ)/(\ + μ)) is within the cut-locus of P.

Proof. Let Q realize the minimum distance from P to its cut-locus, and
assume /, = d(P, Q) < (n/λ)ι/2[π - cos"!(l - μ)/(\ + μ)]. Then by a
known result [2, Lemma 5.6, p. 95] either there is a minimal geodesic from P
to Q along which Q is conjugate to P, or there are precisely two minimal
geodesies γ, σ from P to Q such that y\P) = -σ\P). From Lemma 5 the first
case is impossible. Therefore we may apply the lemma again to Q to conclude
that we can define a smooth closed geodesic γ(/) with γ(0) = P, y(tx) = Q,
y(2tι) = P. Let/(0 = (/ ° γ)(f) for 0 < t < 2tx. Without loss of generality we
may assume that/(P) > 0. Thus/"(/) > 0 for small t and hence /'(/) < 0 for
small /. Applying Lemma 4 we see that f\t) < 0 for 0 < t < tι = d{Py Q).
On the other hand by reversing the time along γ, we must have/'(0 > 0 for
tx < t < 2tv Therefore f{tx) = 0 which contradicts Lemma 4.

We now let Pmax (resp. P^n) >̂e t n e location of the maximum (resp.
minimum) of / on M. It follows from hypothesis (2) that f{Pma^) > 0 >
/(Λnin) Indeed, by taking the trace, we see that

λf f - f Δ / + λ / < μ λ Γ /f f
If for instance f(Pmin) > 0, then / > 0 on all of Λf, which contradicts

SMJ< VIMS-

Let R realize the maximum distance from Pmax = P.
Lemma 7. Given v E TP(M), there exists α minimal geodesic γ from P to R

such that (γ'(0), υ) < ττ/2.
The statement of Lemma 7 is essentially the same as that of Lemma 6.2 in

[2], and the proof of Lemma 7 is therefore omitted.
Lemma 8. M = B(Pmax; π/2kλ/2) u B(R, τr/2kx/1).
Proof. Let d{Pmax\ x) > π/2kι/2. Let γ2 be a minimal geodesic from Pmax

to JC, and by Lemma 7 choose a minimal geodesic γ! from Pmax to R such
that (γ'(0), 7^(0)) < ττ/2. Thus the geodesic triangle formed by
(ϊi> Y2>3(yί(0)> 72(0))) satisfies the hypotheses of Toponogov's theorem.
Therefore we can compare with a geodesic triangle of opening π/2 in a
sphere of curvature = k. Following the steps of [2, Lemma 6.3] we see that
d(R, x) < ττ/2/c1/2.

Lemma 9. If(n/λ)ι/2[π - cos^l - μ)/(l + μ)] > 3π/4kι/2, then

(16) M = B(Pmax; 377/4^/2) y β ^ . 3ητ/4kW2y

Proof. Note that by Meyers' theorem, (1) implies diam(M) < ττ/kx/2.
Hence d(Pmαx, P^) < d(Pmax, R) < π/kι/2. On the other hand from Lemma
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5, we have d(Pmax, P^) > (n/λ)1^ - cos~l(l - /x)/(l + μ)] > 3π/4k1/2.
Repeating the reasoning of Lemma 8, we apply Toponogov's theorem to the

geodesic triangle (γ,, γ2

<$(γ'i(0), γ2(0))) where γ 2 is a minimal geodesic from

Λnax t o Λnin> a n c * Yi *s a minimal geodesic from Pmax to R such that

(γ',(0), yβ < π/2. This shows that d(R, P^) < m/4k^2. Now if d(x, P ^

> 3π/4kι/2, we have d(x, R) < π/2kι/2 (from Lemma 8) and hence

d(x9 P^) < d(x, R) + d{R, P^) < 77/4/c1/2 = 37Γ/4/C1/2.

Lemma 10. Let (n/λ)ι/2[π - c o s ^ l - μ)/(l + μ)] > 3π/4kι/2, and let

y be a normal geodesic with γ(0) = ? m a x . Then there is a unique point x on y

such that d(Pmax, x) = d{P^ x) < 377/4*1/2.

Proof. Let ψ(/) = d(Pmax, y(t)) - d{P^ γ(/)), 0 < / < ?><π/4kλ/2. Clearly

ψ(0) < 0 am/ ΨC37Γ/4A:1/2) = 3ττ/4fc1/2 - t/(Pm i n, γ(3ττ/4^1/2)) > 0 by

Lemma 9. Therefore by the intermediate value theorem there is a t G

(0, 3π/4λ: 1 / 2) such that ψ(/~) = 0. If tv t2 are two such values, suppose t\ < t2.

Then d(Pmin, y(t2)) = d(Pm9 y(t2)) = </(Pmax, γ(/")) + rf(γ(/i), γC^)) =

(̂Λnin> Y(O) + rf(y(^"iλ Y('2»- Therefore the path from yfy to P ^ via γ(^)

has the same length as the minimal geodesic from PΏUn to yfy. Hence this

path must be a smooth geodesic and hence must pass through P m a x , which

contradicts Pmax φ PΏύΛ.

Proof of the theorem. Let Sn denote the unit sphere in Rn*1, and Pv P2 a

pair of antipodal points. Let

(17) I:TPι(S»)^Tr

be an isometry of the tangent spaces at the indicated points. For each unit

vector v E Tp^M), define φ = toυ by letting exp φ(t>) be the point along

the geodesic / -» exp^^ tv which is equidistant from P m a x and Pa^. Lemma

10 implies the existence and uniqueness of t0 E (0, 3ττ/4A:1/2). Let Φ(JC) =

expPmJίφ(I(expP\(x)))). Define h: Sn -* M by the rule

(18) h(x) =

P x = P
x m a x ' •* L 1»

9 P2)) e x p ^ ( Φ ( x ) ) , 0 < d(x, P2) < ττ/2,

X =

Repeating step-by-step the proof of Theorem 6.1 in [2], we see that H is

continuous, injective, and surjective from Sn to M. Therefore M is a homeo-

morphism, and the proof is complete.

Added in Proof. Recently some new results on the above problem were

obtained by S. Gallot, On theoreme de pincement et une estimation sur la
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premiere υaleur propre du laplacien (Tune υariete riemannienne, C. R. Acad.
Sci. Paris 289 (1979) 441-444.
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