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DEFORMATION OF COMPLEX STRUCTURES ON
MANIFOLDS WITH BOUNDARY. I:

THE STABLE CASE

RICHARD S. HAMILTON

This is the first of a series of papers generalizing the theory of deformation
of complex structures (which can be found for example in Morrow and Kodaira
[7]) to the case of manifolds with boundary. It is necessary to impose some
mild restrictions on the number of negative eigenvalues of the Levi form on the
boundary in order to guarantee the finite dimensionality of certain cohomology
groups (as in Kohn and Folland [1]) aside from this the results will be com-
pletely general. In this paper we consider only the stable case Hι(X ?ΓX) = 0,
where ZΓX is the holomorphic tangent bundle, so that all deformations are trivial.
In the second paper we discuss in very general terms families of linear non-
coercive boundary value problems and develop the required estimates and
operators to make the theorems in this paper work. In the third paper we will
discuss the extension of complex structures across the boundary. The fourth
paper will deal with the general case H\X J'X) Φ 0 and the construction of
a universal family.

In this paper we prove the following result. Let Y be a complex manifold
and X a compact subset whose boundary dX is smooth. We suppose that the
Levi form on dX never has exactly one negative eigenvalue; that is, either all
are strictly positive or else at least two are strictly negative. This implies that

dim H\X FX) < oo .

Theorem. Suppose Hι(X J~X) = 0. Then for any complex structure μ
on X sufficiently close to the given structure we can find a map f:X—+Y close
to the identity so that f is analytic from X with the new structure μ to Y with
the given structure. Thus any small deformation of the complex structure on
X can be induced by a small motion of X in Y.

To be precise, an almost complex structure μ on X is represented by a vector
valued one-form μa

β which is a section of the bundle L(^X, ZΓX). In the above
theorem μ and / are C°° (smooth) functions on X, up to and including dX. A
complex structure on X means an integrable almost complex structure, one
with dμ — \[μ, μ] = 0. The conclusion holds for all μ sufficiently close to 0
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that is, for all μ in a neighborhood |ίμ||cr(χ) < e in the topology of C°°(X). Thus
it is only necessary that some finite number of derivatives be small. That / is
analytic on X with the structure μ means that / satisfies the Cauchy-Riemann
equation df~1o3f = μ. Hence proving the theorem amounts to solving a non-
linear over-determined subelliptic boundary value problem. This is done using
a generalization of the Nash-Moser inverse function theorem [2]. The work
involved is to prove estimates on how the solution of the 5^-Neumann problem
depends on the complex structure μ.

We mention two applications. The first is when Y is a Stein manifold and
dX is strictly pseudo-convex. In this case H\X ZΓX) = 0 automatically and
the theorem applies. This case was considered previously in [3]. The second is
when Y — Cn and X is the region 1 < \z\ < 2 between two balls. If n > 3
then the Levi form has n — 1 > 2 strictly negative eigenvalues on the inner
boundary and all strictly positive on the outer boundary. Moreover H\X ZΓX)
— 0, so again the theorem applies. Hence any small deformation of the com-
plex structure cannot grow an isolated singularity inside. The situation is quite
different in C2 see Rossi [8].

We wish especially to thank Masatake Kuranishi for his invaluable assistance
in the preparation of this series of papers. His article [6], dealing with the
parallel case of deformation of complex structures on the boundary, has provided
a model for our case. We have borrowed several important ideas from that
paper in particular, the treatment of nonzero cohomology groups using spectral
theory, and the use of approximate splittings of cohomology sequences in con-
nection with the Nash-Moser inverse function theorem. We also wish to thank
J. J. Kohn, who suggested that the results in [3] for strictly pseudoconvex
domains extend to the case of sufficiently many negative eigenvalues of the
Levi form.

1. Deformation of complex structures

1.1. Complex structures on vector spaces. We begin with some linear
algebra. Let E be a real vector space of finite dimension. Write CE = C®R E

for the complexification of E. There is a natural real-linear inclusion E > CE
given by v —> 1 ® v. There is also a natural conjugation CE —• CE given by
c (g) v .= c®v. The image /'(£) (Z CE is the subspace RE of real vectors, those
which are self-con jugate.

If E also has the structure of a complex vector space, there is a natural
multiplication m: CE —> E given by m(c ®v) = cv. The kernel is a complex-
linear subspace which we call #, for reasons which will become clear. There
is a natural exact sequence

0 > i > CE ~^-> E > 0 .
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Since the composition E —U- CE —^> E is the identity, δ is complementary
to RE.

Conversely, suppose E is a real vector space, and we are given a complex
linear subspace £ of CE complementary to RE. Then there exists a unique
complex structure on E such that £ is the kernel of the multiplication m: CE
-> E. To show the uniqueness, observe that if δ = ker m then the map

E — U CE —?U CE//

is a complex linear isomorphism, since 1 ® zv — i (x) i; € δ = ker m for any
# e £ . To show the existence for a given <?, we give E the complex structure
which makes the real-linear isomorphism πj a complex-linear isomorphism.
This means that for each v € E we define ry to be the unique element with
1 (x) iv — i (8) v € # . Then these elements span both £ and ker ra, so £ •= ker m
for this complex structure.

The space 5(E) of complex structures on E can therefore be identified with
an open subset of a Grassmannian manifold. It is convenient to have natural
local coordinates on S(E) in a neighborhood if a reference point £ e S(E). For
this it is necessary to choose a complex-linear complementary subspace.
Fortunately there is a natural way to do this. Namely, if # 6 S(E) then the
conjugate of £ is a complex linear subspace i of C£ complementary to £, and
we have a direct sum decomposition

CE = £ Θ # .

Note that there is a natural complex-linear isomorphism of S to £ given by

Other authors sometimes write Ef and E" instead of £ and £. Suppose then
that £ e S(E) is a reference structure. There is a local one-to-one correspondence
between complex structures £μ near £ and small complex-linear maps

μ\ £ -+S given by £μ = {v — μv: v <= #} .

If 7Γ and π are the projections of CE onto £ and #, then /i is determined by
the commutative diagram

Λ

since TΓ: ^ —> ̂  is an isomorphism when <̂ Λ is close to δ. The diagram com-
mutes since for v — μv e £μ
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μπ(v — μv) = μV = — πO

Thus we have constructed natural local coordinates on the Grassmannian
manifold S(E) with values in the vector space L(#, $).

1.2. Almost complex structures on manifolds. All the preceeding gener-
alizes immediately to manifolds. If X is a manifold with tangent bundle TX
we can form the complexified tangent bundle CTX = C ®R TX, and a com-
plex structure on each fibre defines a subbundle FX — Ker m: CTX —• 7X
and a direct sum decomposition CΓZ = 3ΓX 0 ^ Z where ^ Z is the conju-
gate of FX. An almost complex structure on X is defined as a smooth com-
plex-linear subbundle FX of CTX complementary to the real subbundle RTX.
By the previous argument an almost complex structure on X can be identified
with a smooth section of the fibre bundle S(TX) obtained by applying the
functor S to each fibre. If FX e S(TX) is a reference structure, we can choose
local coordinates on S(TX) with values in the vector bundle L(^X,<TX).
Hence an almost complex structure μ close to the reference structure cor-
responds to a small smooth section μ of the vector bundle L(^λΓ, ZΓX).

If z\ , zn are complex coordinates on X, the bundles ZΓX and ΪTX are
spanned by the d/dza and d/dza respectively. An almost complex structure close
to it is represented by a tensor μ = μa

β dzβ ® d/dza, and FXμ is spanned by
d/dzβ + μ

a

β(d/dza).
1.3. The integrability condition. Let μ be an almost complex structure

corresponding to the subbundle FXμ. We say that μ is integrable if FXμ is
integrable. This means that for any two vector fields v and w with values in
FXμ the Lie bracket [v, w] again has values in SΓXμ. Note that the Lie bracket
is defined for complex valued vector fields, which are just sections of CTX. In
general there will be an obstruction J(μ) which is a smooth section of the bundle
Λ\^Xμ, 3~Xμ) of alternating 2-forms on <ΓXμ with values in ^Xμ, such that
if v and w are smooth sections of FXμ then

[v, w] = J(μ)(v, w) mod £ΓXμ .

Note that although the Lie bracket is an operator of degree 1, the error
J(μ)(v,w) is an operator of degree 0, i.e., a pointwise multiplication. We can
regard / as a partial differential operator of degree 1 as follows. S(X) is a fibre
bundle over X, and Λ\FXμ, ^Xμ) is a vector bundle over S(X) whose fibre
at μ(x) Ί&.A2(βtXμix),&'Xμ{x)). If μ is a section of S(X), then J(μ) is a section
of A\FXμ9 3TXμ) lying over μ.

We can compute J(μ) explicitly in terms of a ccomplex reference structure
z\ - , zn. It is more convenient to compute an equivalent tensor Q(μ) which
is a section of Λ\<TX, J'X) defined by

J(μ)(v, w) = πμQ(μ)(πV, πw) ,
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where π: ^Xμ -> ZΓX and πμ: FX -> 3ΓXμ are isomorphisms induced by the
projections

Suppose nv — p — pa(d/dza) and ftw — q = qa(d/dza). Then

and Q(μ)(p, q) is determined by

β(μ)(p, 4) = b , w] mod

Now clearly

where

Thus Q(μ) is a nonlinear partial differential operator of degree 1. If AP(^X, ZΓX)
denotes p-linear alternating forms on *ΓX with values in ZΓX, then μ is a sec-
tion of Λ\FX, 3ΓX) = L(FX, 3ΓX) and Q(μ) is a section of yfC^Z, ^ Z ) , so

Q : ̂ cr*, j z ) -> ̂ 2(,rz, J Z ) ,

and μ is integrable if and only if Q(μ) = 0.
If the almost complex structure μ is induced by a complex coordinate system

z\ - -,zn, then clearly μ is integrable since [3/3zα,3/3z'3] = 0. The classical
theorem of Newlander and Nirenberg asserts the converse if μ is an integrable
almost complex structure then μ is induced locally by a complex coordinate
system. Thus an integrable almost complex manifold is a complex manifold, at
least in the interior this argument breaks down at the boundary.

1.4. The δμ complex. Let X be a complex manifold. A vector valued p-
form is a section φ e C°°(Z Λp(iTX, J'X)) = λp(X) given locally by

φ = φa

A dzA (X)
dza

where A = (a^ , ap) is a multi-index, and dzΛ = dzα i Λ Λ ^Zαj>, and
the summation ranges over all strictly increasing indices Λl. We define ef to
be ± 1 if 4̂ is a permutation of 5 of sign ± 1, and define εi to be 0 otherwise.
The complex
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is defined locally by the formula

with summation over β and all strictly increasing B. It is easy to check that
this definition is invariant under a complex-analytic change of coordinates, and
that 3d = 0.

There is also a Lie bracket operation on the λp(X) which agrees with the
ordinary Lie bracket on λ°(X) = C°°(X; 3~X) and acts as a combination Lie
bracket and wedge product on higher order forms. If

Γ dzr

we define

dzβ

We can then verify the following rules (see Morrow and Kodaira [7, p. 152]):
Let p = deg φ, q = deg ψ, r = deg τ. Then

(~Όpr[φ, [ψ,.τ]] + ( - Ό M [ ψ , [r>f>]] + (-D r 9 [ r , [p, ψ]] - 0 .

The first is the antisymmetry relation, the second is the formula for the deriva-
tive of a product, and the third is Jacobi's identity. Using these formulas we
can write the integrabilίty condition as

Suppose now that μ is a complex structure, so that Q(μ) = 0. Then writing
χp(X) = C°°(X Λv(^Xμ, 3~Xμ)) we will have a complex 3 ^ which is just 5 in
the structure μ

. . . — > χp-\χ) -0™* χ*(X) ^A λp+1(X) —-> .

and again 8ίμldίμl = 0.
There is another complex associated to μ for any almost complex structure

close to the reference structure. Namely, we define
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by the formula

dμφ = dφ — [μ, φ] .

It is an easy consequence of the relations for the Lie bracket that

where Q(μ) = dμ — \[μ, μ] is the integrability condition. Thus oμdμ = 0 if and
only if Q(μ) = 0. We can also write the integrability condition as Q(μ) = 5μ/2μ.
There is a simple relation between oμ and dίμV Recall that we have isomorphisms

π: ?Xμ -> CTX = ^ Z 0

* CTX = JTX Θ

These induce an isomorphism

A*(fl, πμ): , ,

Write cμ = C™(X', Λp(π, πμ)) for the induced isomorphism

Then the relation between Q(μ) and J(μ) is expressed by J(μ) = cuQ(μ).
Theorem 1. There is a commutative diagram cβμ =.dίμlcμ

for every complex structure μ.
1.5. Local coordinates.
Proof. Let z\ >,zn be complex coordinates in the reference structure,

and w\ , wn complex coordinates in the new structure μ. Then

dwa __ dwa

 r

Ίzf~ ~dzrμβ'

It follows that

dw« Γ dzr ' W ) = _dw^ = 0

Szr I dΨ ^β dwδ J dzδ

When // is small, dwa/dzr will be invertible so we must have
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= 0
dΨ dwδ

Now

dzβ d dz" d

dW dW dzβ < dW dzη

so by the previous relation

3 - W [ 3 • d \

dw dw I dzβ ™ dzη i '

which is the fundamental relation in
Next observe that by definition

Suppose ψ

If A = (α1 3

it 3 -
dw"

= c^a. Write

- d-
Ψ ΨA

, , ocp) and

9z-*

91?"

B =

9
9 ^ '

9

dz° '

(i3,,

, 9 z " ( o l >

9 dwβ

dz" dz"

- Φβ dwB ®

we put

9
9H"»

9

9 K " 9

dwB * dwβl dwβp

Then locally cμ is expressed by

,β dzA dwβ

 a

dwB dz"

By definition

hrtVc = ercB dψβ

B/dW ,

which in turn is a sum of three terms. The first of these is

crB dzΛ dwβ dφ"A = zrB djθ dzΛ dwβ f dφ"A _ dφ"A \

° dwB dz* dW C dW dwB dz* I dz9 dz" / '

using the formula for d/dwr. Next note that

d v d \ dwβ

μ

_ y
μ°

\ dwβ

i dz*

1 _ dz9

J Sίv1-

dW dz* dW I dz9 μ° dz" i dz*

\ + dμj dwβ 1 dz9 dwβ

Jdw L dz* I dz9 μ° dzη J 9 r 9z7 J Sίv1- 3z' dz*
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since the term in braces is zero. Therefore the second term is

dW dwB dzη dza

For the third term observe that

d dzA
 A as dϊR

owr owΰ σwώ owrowσ

Hence the third term is

a _ ffr S _ σ Z A_ OZ

because ε7

c

σS is antisymmetric in γ and σ, while d2zp/dwrdwσ is symmetric, and
the summation convention applies. Also we observe that

c dW dwB D dwc

Hence we have

Therefore dίμlψ = cμ{dφ — [μ, φ]} if ψ = cμφ. This proves the theorem.
1.6. Induced complex structures. Suppose now that Y is a complex

manifold and X is a compact subset with smooth boundary dX. If /: X —> Y
is close to the identity we define the induced structure

or equivalent^ 3/ = 3/ o μ. Here df: TX -• TY has complexification Cdf: CTX
-> CTY, and under the direct sum decompositions CTX = J'X 0 !?X and
CTY = ZΓY Θ !TY the map is represented by a matrix

D
where dj TX-^ TY and df .FX^ £TY. Thus /ι = 3/"1 ° 3/: ^ Z -» 3TX
is a complex structure. In local coordinates
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dzβ dz" μβ '

If we write ^(X, Y) for the manifold of maps of X into Y, then M is a non-
linear partial differential operator of degree 1:

We wish to compute the derivative DM(J)g. Here g <= Tf^(X, Y) is an in-
finitesimal variation in the map /, which can be regarded as a section of the
pull-back bundle f*&Ύ. Suppose DM(j)g = v. Then a variation of g in /
must accompany a variation of v in μ. Applying this in local coordinates to the
equation

df _ df
~W ~ Ύz^β '

we must have

dzβ dzr β dzr

Define χ € X°(X) by the equation

g = dfoχ ,

which in local coordinates is

g" = -dί-χ>.8 dz'1

If / is near the identity, then df°/dzr is invertible so g determines χ. We have

dz«

However

so differentiating with respect to z'

dψ = dψ . df"
β

dzβdz' dz'dz' β dz' dz'

If we interchange γ and θ in some terms, we have
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Λ =
dz' \dzβ dz' Fβ

Since df"/dz' is invertible for / near the identity, we have

But this is just the local expression for

<iμχ = h — lμ> χl = ^

Hence the derivative of M is given by

The manifold of maps ^(X, Y) is modeled on the vector space λ°(X) near
the identity. To accomplish this we choose a spray σ: 3~X —> Y and define
the local coordinate chart

S:λ°(X).-*&r(X,Y)

by composition

S(φ) = σoφ =z f .

In local coordinates

where the σa(zβ, vr) are functions of variables z\ , zn on X and v1; , vn

defining the tangent directions, i.e., vr = dzr. We can make σ(z, 0) = z,
(dσa/dvr)(z, 0) = ί« and (dσa/dv')(z, 0) = 0 by a suitable choice of σ. The map
S has a derivative

given in local coordinates by

The composition P = MS is a nonlinear partial differential operator of degree 1

P:X°(X)-*

Its derivative is given by the Chain Rule
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DP(φ)ψ = DM(f)DS(φ)ψ == v .

Recall that

3/α 9σα , v . dσa , \ dψr , dσa , Λ dψ

Therefore ψ and χ are related by the equation

dz* dvr dzθ dv* dzθ

If 9? is close to zero, these equations can be solved either way. Let us write

Then "α" is an operator

fl: (£/ c ΛO(Z)) x λ°(X)

which is nonlinear of degree 1 in φ and linear of degree 0 in ψ. Moreover for
small φ the linear map aφ is invertible, and the solution

defines an operator

a-1: (i/ c r(Λr» x r(z) -> r w ,

which is also nonlinear of degree 1 in φ and linear of degree 0 in χ. We now
have the formula

DP(φ)ψ = 3μa9ψ Ί i μ - P(φ) .

1.7. The nonlinear complex. The operators P and Q define a nonlinear
complex

U c λ°(X) - ^ > A ^ ) - ^ > ^2(^)

where P(̂ ?) = Λf5(^) and β(//) = 3^^. Since the complex structure on Y is
integrable and P(φ) is its pull-back under the map / = S(φ), it follows that
μ = P(^) is always integrable so Q(μ) = 0. Thus β P ( 0 = 0 for all φ. We wish
to assert that this nonlinear complex is exact.

Theorem 2. // μ € (̂AΓ) w sufficiently small and Q(μ) = 0, then there exists
aφe λ°(X) with P(φ) = /i.
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Corollary. There exists an] — S(φ) e ̂ (X, Y) with M(/) = μ. Thus every
integrable almost complex structure μonX close enough to the given structure
can be obtained by a small wiggle f of X in Y.

This is the main result of this paper.
1.8. The Nash-Moser theorem. We shall prove Theorem 2 using a ver-

sion of the Nash-Moser inverse function theorem which is proved in § 2. We
state the theorem briefly here. A grading on a Frechet space E is an increasing
sequence of norms || ||n (n = 0, 1, 2, •) which define the topology. Two
gradings are said to be equivalent if for some r

I I 2

\\n+r >

A graded Frechet space is defined as a Frechet space with an equivalence class
of gradings. We also assume the existence of smoothing operators. If X is a
compact manifold with boundary and B is a vector bundle over X, then
C°°(X B) is a graded Frechet space with smoothing operators. We say that
a map

P: ί / C £ - > K C F

is tame if every x0 e V has a neighborhood on which for some number r we
have estimates

||P(*)||n<C(||jc||B + r + 1).

We say P is smooth if all its derivatives exist, and we call P a smooth tame
map if P and all its derivatives are tame. Every nonlinear differential operator

P: U C C°°(X ; β ) ^ F C C°°(Z C)

is a smooth tame map. Also the composition of two smooth tame maps is a
smooth tame map.

The Nash-Moser inverse function theorem says the following. Suppose 0 € U
and

is a smooth tame map with P(0) = 0 whose derivative

DP:(UQE) XE-+F

is invertible everywhere in U, and suppose also that the family of inverses VP
defined by the relation

VP(f)h = g <=Φ DP(i)g = h

is a smooth tame map
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VP: (UQE)χF-+E .

Then for possibly smaller neighborhoods V and V of the origin, P: U' -+ Vr

is invertible and the inverse P" 1 : V -^ V is also a smooth tame map.
We shall use a generalization which is the Nash-Moser theorem for nonlinear

exact sequences. Suppose E, F and G are graded Frechet spaces (with smooth-
ing operators as always) and £/, V and W are neighborhoods of the origin, and
we have a nonlinear complex

U C E —•> V C F -2-> W c G ,

where P and β are smooth tame maps with QP(f) — 0 for all / e l / . We wish
to find a condition under which the complex is exact, i.e., I m P = Ker Q.

We assume that for each / e l /

Im DP(/) - Ker DQ(Pf) ,

so that the linearized complex is exact everywhere in U. We assume moreover
that we can find a smooth tame splitting.

Theorem 3. Suppose there exist smooth tame maps

VP:(U^E) x F-+E , VQ: (U C £) X G — F ,

swcΛ /Λα/ VP(f)h and VQ(f)k are linear in h and k, and split the linearized
complex in the sense that

DP(f)VP(f)h + VQ(f)DQ(Pf)h = h .

Then the nonlinear complex is exact at 0, i.e., we can find a possibly smaller
neighborhood Vf of the origin such that if y € Vr and Q(y) = 0 then y = P(x)
for some x e U. Moreover we can find a smooth tame map

S:V'aF->UQE

such that if y e V then

PSy = y whenever Qy = 0 .

In order to apply the Nash-Moser theorem it is necessary to construct the
smooth tame splitting maps. This is done in § 5, where we prove their existence
under very general conditions. Suppose that P and Q are nonlinear partial dif-
ferential operators of degree 1 on a compact manifold with boundary. If we
choose families of hermitian metrics (which may depend on /) we can form
the adjoint operator D*P(/)Λ dual to DP(f)g. There will also be a boundary
condition d*p(f)h such that
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((DP(f)g,h)) + «g,D*P(f)*» = 0

for all g if d*p(f)h = 0. Suppose that for each feU the derivatives DP(f)g
and DQ(Pf)h form an elliptic complex. The important fact to verify is that we
have a uniform persuasive (or subelliptic) estimate for all / β U and all h with
d*p(f)h = 0 on dX we have

f \h\*dS & f \D*P(f)h\2dV + f \DQ(Pf)hfdV + f | * | W ,

where " < " means " < a constant times". This guarantees that

KerDβ(P/)/ImDP(/)

is finite dimensional. Suppose in addition that ImZ)P(O) = KerD<2(0). Then
Im DP(f) = Ker DQ(Pf) for all / in a neighborhood of 0, and there exist
smooth tame splitting maps VP and VQ as required. Consequently the theorem
applies.

The philosophy behind this method is clear. In dealing with coercive pro-
blems it is sufficient that the derivative at the origin be coercive, for any problem
close enough to a coercive problem is again coercive. For noncoercive problems
it is necessary to assume that all the derivatives remain uniformly within some
tractable class of problems. From there on, invertibility or exactness at the
origin will imply the same in a neighborhood of the origin, and we can crank
out the tame estimates needed for the Nash-Moser theorem.

In applying this theorem to the present problem it is somewhat more aesthetic
to work with the dμ complex than with the DP — DQ complex. They are es-
sentially the same since

DP(φ)ψ = Bμaφψ , DQ(Pφ)χ = Sμχ ,

the only difference being the operator aφ. But aψ is invertible with a smooth
tame inverse a'1 in fact it acts pointwise on ψ. Therefore, if Kμ and Lμ are
a smooth tame splitting for the 5μ complex so that

dμKμ + Lμdμ = 1,

then a~1KFψ and LPψ are a smooth tame splitting for the DP — DQ complex,
so that

DP(φ)a;'KPψ + LPψDQ(Pψ) = / .

We proceed to verify the uniform persuasive estimate for the dμ complex this
is known classically as Morrey's estimate.

1.9. The Levi form. Let Y be a complex manifold, and X a compact



16 RICHARD S. HAMILTON

subset with smooth boundary dX. The complex structure on X induces a
decomposition

CTX = 3~X 0 <TX

as before. At the boundary there is a more refined structure. We define the
distinguished tangent space

jrχ n

and its conjugate

9X = ^x n CTdx

Then 3)X has complex codimension 1 in J'X, and ^ Z 0 9X has complex
codimension 1 in CTdX. Now i^Z is an integrable subbundle of CTdX in the
sense that the Lie bracket of two vector fields in QfX lies again in <3X, and so
is 9X, but the direct sum ®X 0 9X is not in general. The obstruction to in-
tegrability is the Levi Form

Λ\9Xχ3X-» CTdX I ̂ X 0 9X

defined by the relation that if v is a vector field in Q)X and vP a vector field in
9X then

Λ(v, w) ΞΞ i[v, w] mod $X ® 9X ,

where [v,w] is the Lie bracket. The space CTdXj^X 0 9X is equipped with
a natural conjugation operation, and the Levi form is hermitian-symmetric

Λ(w, ϋ) = Λ(v, wj .

It therefore makes sense to speak of the "number of positive, zero and nega-
tive eigenvalues" of Λ as true invariants, even though the actual value of the
eigenvalues would depend on the choice of a basis in $~X.

Suppose that L19 ,Ln_19Ln form a basis locally for the vector fields in
ZΓX with Ll9 - - -, Ln_λ forming a basis for @X. Then we can write

[Ll9 Lj] = aκ

uLk - ak

nLk .

Suppose that we also choose Ln so that i(Ln — Ln) e TdX. Since [Lt, Lj] € CTdX
for /, / < n, we must have an

υ = an

jt and i[Ll9 Lj] = aΐμ(Ln — Z n ), mod @X
0 9X for l,j<n. Therefore the hermitian-symmetric matrix {ctfj : / ,/ '< n}
represents the Levi form A in the basis Ll9 , Ln_19 Ln.

Let z\ , zn be local coordinates. We introduce the notation that a = b
means that a = b at the origin. By a proper choice of coordinates we can make
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Tdx = {χn = 0} ,

where zn = xn + ίyn. Then we can choose

d
Li = vl

dzk

so that v\ = δϊ thus Lt = d/dzι. In this case i(Ln - Ln) = 3/a^w € Γ3X. Let
p be a smooth real valued function with p = 0 on 9AΓ and dp/dzn = 1. Since
Lj is parallel to 3 AT for / < n, we have

= v j J t - = 0 on dX .

Then if also / < « we have

oZ oZJ oz3

Thus

v7

dln dzm dzn
+

dz n 9z w

dyn

Therefore in local coordinates with TdX = {x11 = 0} if p is a real function with
p — 0 on BX and dp/dzπ = 1 then the Levi form at 0 is given by the matrix

3zW '

1.10. Adjoint operators. We now choose a hermitian metric h = <(,)> on
X. Let L l 5 , L n - 1 , L n be a basis for 5~AT as before, so that L19 , Ln_x are
a basis for ^ Z = 2ΓX Π CΓ3Z. Let ω ι, , ωn be the dual basis of forms.
Then the local representatives of h are the matrices hlj = <L ί 5 Lj} and hlj =
^ω1, ωJ> which are inverse to each other. If A is a multi-index A = (ax, , aq),
we write

(ij4=ύjffilΛύ)α2Λ Λ ωα« .
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For two multi-indices A and B, we let εi = ± 1 if B is a permutation of A
with sign ± 1, and otherwise εi = 0. In particular εj = 1 if .α = 6, and εj = 0
if α ̂  b. Then

where the sum ranges over all permutations π, and (— l)ff is the sign of π. By
analogy let

hAB = y* ( l)*/jαi«(δi)/jα2*(62) . . . faaqxibq)
π

If we choose coordinates with hab = εj at the origin, then /i"1^ = ε^ at the
origin.

Any vector valued g-form ψ e λq(X), which is a section of the bundle
Λq(J:X, fX), can be written locally as

φ = ψι

Aω
A ® U .

Here and later we adopt the convention that summation is only over strictly
increasing multi-indices. There is an induced Hermitian metric on the bundle

, SΓX) given by

(Note that A is a conjugate index so it comes second in hBA.) If dV is the
volume element arising from the hermitian metric, then

dV = det h = hMXω
M A ωN ,

and there is an inner product on λq(X) given by

The operator 3μ is given in local coordinates as

~oμφ\ = e c

A

c ( L c φ ι

c - μ a

c L a φ ι

c ) + ..••',

where the dots denote terms of degree zero. This leads us to define

Zfe = Le - tfLa ,

which we observe is a vector field in £ΓXμ. Then

Next we wish to calculate the adjoint 5*. We let the hermitian metric hμ depend
smoothly on μ. Then we have
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™ dVμ + • • ,

since ec£hfA = ε$Dhd

μ

chfc. Now we can move Lμ to the other side provided the
boundary integral vanishes. Let p be any real function with p = 0 on dX but
nonzero gradient say Lnp Φ 0. Then the direction of the vector Lμp is in-
dependent of the choice of p, and the boundary integral vanishes if and only if

ΐfn.ίn1 . P B h^rJhP hDC — 0
•L'cP ψC εdDnμYBnijnμ V

on dX. We introduce the dual operators

Td UcdJ μ

where Lμ

c is the conjugate of Lμ

c. We also let vd

μ = Ld

μp. Then the boundary
integral vanishes for all φ if and only if

= 0 on dX .

Write vμ = vd

μLd. Then vμ is a vector field in ̂ Z . Also if we let n*ψ|, =
V% then π* is the contraction map on vμ:

n* : (

wjψίi;!, , vq) = ψ ( ^ , Vp , vβ) .

Suppose n*ψ = 0 on dX. Then moving Z^ to the other side in the previous
integral we have

{(dμφ, ψ», = JJ^ ̂ ^ eB

dDldrBh^c dVμ

where

If we are careful we can arrange things so that the boundary condition
n*ψ = 0 is independent of μ. For this condition does not depend upon the
actual choice of the vector vμ but only upon its direction. Therefore we must
make the direction of vμ independent of μ. Recall that
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When /ί = 0we have Lcp = 0 for c < n, since Lί9 , Ln_! are parallel to
the boundary. Moreover we can choose Ln to be orthogonal to Ll9 , Ln_x

in the metric h = h0ίoτ μ = 0. Then hnd = 0 for d < n, so i/* = 0 for d < n,
and v = I n . Let I/y> = Ljp ωβ thus Lμp is a covector field in f*X. We now
choose the hermitian metric hμ to vary smoothly with μ in such a way that the
direction of the covector Lμp is always dual to the direction of Ln. Thus we
want

<v, Lnyμ = 0 4=^ L'piv) = 0

for all v β SΓX. Since the direction of Ln is that orthogonal to 9fX- in the
metric h0, this is the same as requiring

{v: L;(v) = 0} J_, {w: H> i_0^^}

It is clear that this requirement can be fulfilled even globally, with hμ depend-
ing smoothly upon μ. In this case we have

== Ld

μp = 0 tord<n.

This implies that the operators Ld

μ are all parallel to the boundary for d < n.
The boundary condition π*ψ = 0 is independent of μ. Since

..-9vq) = ψ(v9vl9 , v q ) ,

we see that n* defines a complex

, 3ΓX)

which is exact, i.e., Im n* = Ker n*. Write

.yΓ9 = Ker n* C y

Then ^Γ9 is a vector subbundle and n*ψ = 0 ̂  ψ € ̂ Γ9. Also n* : Λ*{βFX9

—> e/Γ9"1 is a surjective bundle morphism. We can consider n*^ as having its
values in JT*-1 c Λq"\^X9 ZΓX). In local coordinates i>d = 0 for d < n.
Therefore n*ψ = 0 Φ=̂  ψ^ = 0 whenever n e Λ.

1.11. The uniform Morrey estimate. This estimate was first proved for
the 3 complex by Morrey in the pseudoconvex case and by Hormander in the
general case. We show that the estimate holds for the complex 5μ uniformly
in μ. This involves no new techniques, only a casual glance at the effect of μ.
We follow more or less the argument of Kohn and Folland [1]. In particular
we adopt their convention that

" / ( * ) £ * ( * ) " means "aC y* /(*) < Cg(x)" .
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Let II || and | | denote the L2 norm on X and dX respectively. We say dX
satisfies condition Z{q) if the Levi form A never has q negative eigenvalues
i.e., at every point A either has at least n — q strictly positive or else at least
q + 1 strictly negative eigenvalues.

Uniform Morrey estimate. Suppose dX satisfies condition Z(q). Then for
all ψ e λq(X) and all μ in a neighborhood of zero

\ψ\ <> \\dμφ\\ + \\3*φ\\ + \\φ\\ when n*φ = 0

with a constant independent of φ and μ.
Proof. It is sufficient to prove the estimate for forms with support in a

single coordinate chart, since we can patch together with a partition of unity.
Indeed if Σ <ft = 1> then we will have

M 2 = Σ Wiψ\2 <> Σ \\3μσiφ\\2 + \\d*μσiΨ\\2 + \\ψ\\2

+ I I W + \\φ\\2

We choose as before a basis L19 ^Ln_x,Ln for 2ΓX with L19 -\hn_x a
basis for Q)X. Moreover we suppose for simplicity that the Lt are orthonormal
in the metric h0 for μ = 0, and that the matrix for the Levi form with respect
to the basis Lx, , Ln_19 Ln is diagonal at the origin of the coordinate system.
From the previous section we have the formulas

dμφ
ι

A = εc

A

clΐφι

c + • • , S*pi = 6&>Lfy£ +

where the dots denote terms of degree zero. Therefore

We have the identity

(In order to verify it, imagine a new coordinate system with htj = ε).) Since
hf

μ

eLμ

c — Uμ and hd

μ

eLμ

d = Le

μ, we can rewrite the previous integral as a difference
of two integrals

dVμ - ^ε^.Lfφί L.φί hϊjh™ dVμ

The first of these may be appropriately called HL^H2. For we have in that
case the relation

with a sum over all f,l,C. We return to this integral later. Meanwhile we
consider the other. We claim we can always move the operator Le

μ from φj

D onto
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Lf

μφ
ι

c without introducing any boundary integrals when n*φ = 0. If e < n then
Lμ is parallel to the boundary, and we can do it. When e = n we have n_e C
so ψι

c = 0 on dX by the boundary condition n*φ = 0. If / < n then Uμ is
parallel to the boundary so Lf

μψ
ι

c = 0 on dX, which would kill any boundary
integral. If / = n then neD and ψD — 0 on 9Z, which would do the same.
Thus we never get any boundary integrals. In integrating by parts we will
produce some lower order terms from Lμ falling on the metric however these
are all clearly bounded < | | L ^ | | | |^ | | . The new integral is

JC -D T e T f,Λ τij Uμ UFE AJ/

Using the commutator we write

This produces two integrals. The first is

dV
μ

Now we claim we can transfer Uμ back from Le

μφ
ι

c onto ψj

D without introducing
any boundary integrals. For if / < n then Lf

μ is parallel to the boundary, and
if / = n then f e D and φj

D = 0 on the boundary. Again we will have some
integrals of lower order of the form

\<PC'9D' * * dVμ .

We claim that in these integrals we can always move Le

μ to the other side. For
if e < n then Le

μ is parallel to the boundary, and if e — n then nzC and
φι

c = 0 on the boundary. Therefore the lower order integrals are <
+ | |φ ||2. Then, since .

δ*φι

E = εc

eELμφ
ι

c + ,

we can bound the main integral

JJχ
We then still have the integral from the commutator. We can write

The integrals involving Lg

μ will all be bounded < | | I ^ | | ||f>l| For the integrals
with Lf, when g < n we ^an move this operator to the other side as before
and bound the term <, \\Lμφ\\ \\φ\\ + \\φ\\2. We are left with
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dVμ

μ

Now if e = n then n e C and ^ ' = 0 on the boundary, and we can move Ln

μ

to the other side and bound the term as above similarly if / = n then n € D
and φj

D — 0 on the boundary. Hence we only need to consider those terms
a% with e9 f < n. Now when μ = 0, ή*> •= εj and Le = Le. Therefore for μ = 0
the matrix α*' is just the matrix of the Levi form A, as we showed in the sec-
tion on the Levi form. Moveover at the origin this matrix is diagonal. When
we move the operator Ln

μ to the other side we produce a boundary integral

Σ f
e,f<nJd

where pμ is the distance to the boundary in the metric hμ, and dSμ is the induced
volume on the boundary. In particular at μ = 0 we have Lnp = 1. To sum-
marize the situation so far, we have shown

Σ f
e,f<nJd

hF

μ

E dSμ

Now for any ε > 0 we can bound

Moreover if we choose the neighborhood of the origin on X and the neigh-
borhood U of 0 for μ to be sufficiently small, then the errors introduced by
replacing h1/ and a%Ln

μpμ by their values at the origin for μ = 0 will be bounded
<̂  ε \\Lμφ\\2 + ε \φ\2. For μ = 0 and at the origin we have h1/ = ε) while ae/nL

n

μpμ

becomes a diagonal matrix of eigenvalues λe. Thus

Σ ί ί Lμφ
ι

c-Lμφ
ι

cdV + Σ
e,l,CjJx l,C dX

< \\3μφ\\2 + \\Sίφ\\2'+ ε\\Lμ<P\\2 + Φ f + y M l 2

Now with any term'L%φι

G we can argue as follows (with no summation); if

e < n



24 RICHARD S. HAMILTON

• Lμψ
ι

c dV = -jjχ LμLμΨ

ι

0 .ψι

ΰdV

= - j j ^ [Lμ, I'M ψιcdV + \\χ LμΨ

ι

c • Lμφ
ι

c dV

f
with errors < εHL^H2 + ε\φ\2 + IMI7 ε We apply this argument only for
those eigenvalues λe < 0. For the others we use

Also we must hold out ε | | Z ^ | | 2 to cancel the term on the right. This however
will produce an error bounded by ε\φ\2 in the result. Therefore we have

Σ f Σ Σ H
l,C UeC neg ) J dX

£

Here we let Σneg (resp. Σ P 0 5 ) denote the sum only over negative (resp. posi-
tive) eigenvalues. Now

e€C neg pos neg
e€C eϊC

Thus

C I pos

<\\dμφ\\2 + \\5fφ\\2 + ε\φ\2 + ±
ε

Now suppose dX satisfies condition Z(q). If there are n — q strictly positive
eigenvalues, then every multi-index C must contain some e with λe > 0. On
the other hand if there are q + 1 strictly negative eigenvalues, then every
multi-index C of length q must omit some e with λe < 0. In either case

pos neg
e€C e&C

Therefore the term on the left is > η \ψ\2 for some η > 0. Then taking the
neighborhood so small that we can cancel the ε \φ\2 term we have for all φ with
n*φ = 0 on dX the estimate
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uniformly for all μ in a neighborhood of zero. This proves the uniform Morrey
estimate.

2. The Nash-Moser theorem for nonlinear exact sequences

2.1. Near-projections. We assume the reader is familiar with [2]. A Nash-
Moser interation algorithm is based on a near-projection. Let £ be a graded
Frechet space which we always assume to admit smoothing operators, and let
U be an open set in E. A projection is a smooth tame map

P:U^E->UQE with PoP = P.

The fixed point set tF(P) is defined as

JF(P) = {xeU:P(x) = x} .

For simplicity suppose U is convex. Define a smooth tame map

, w) = Γ DΨ(x + t[P(x) - χ\χv, w) dt .
J ί=0

A(x)(v

Note that A(x)(v, w) is bilinear in v and w. By Taylor's formula with integral
remainder we have

P(P(x)) = P(x) + DP(x)(P(x) - x) + A(x)(P(x) - x, P(x) - JC) .

If P is a projection, then P(P(x)) = P(x) and

DP(x)(P(x) -x) + A(x)(P(x) - x, P(x) - x) = 0 .

This motivates the following definition: Let G: U c E -> E. We say that G
is a near-projection if there exists a smooth tame map A: (U CZE) x E x E
—• E with A(x)(v, w) bilinear in v and w such that

DG(x)(G(x) -x) + A(x)(G(x) - x, G(x) - x) = 0 .

Thus every projection is a near-projection. Note that A represents a quadratic
error.

Given a near projection G with fixed point set

we would like to find a true projection P with the same fixed point set. The
classical way to do this would be by iteration
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P = G ° G o G o .

However for Fechet spaces this may not converge due to the "loss of deriva-
tives". Therefore we modify the iteration by inserting smoothing operators.
We set up the following algorithm. Choose starting values xoε U ClE and real

Algorithm: tn+ι = tψ ,

Xn+ι = [/ - S(tn)]xn + S(tn)G(xn) .

Thus xn+ί is a weighted average between xn and G(xn) which tends rapidly
towards the G(xn) side as n —> oo. Note that if x0 e ̂ ( G ) , then xn = x0 for all
π so x^ •= l im * w = jt0.

Of course in general the xn may not all be defined, and even if they are
they may not converge. However if they are all defined and do converge we say

P(xo) = *co = lim xn .

This defines a map P on some set including
Theorem. We can find an open set V containing ^(G) such that P is

defined on all of V, P maps V into itself, and P is a projection with the same
fixed point set as G, i.e., ίF(P) — ̂ (G). Moreover P is a smooth tame map
P:VQE-*V^E.

It suffices to prove the theorem in a neighborhood of each point in J^(G)
therefore we may assume U is convex. We can rewrite the algorithm as

*n+i = *π + Δxn , Δxn = S(tn)zn , zn = G(xn) - xn .

Here zn represents the error, and Δxn the correction. We can derive a recur-
sion relation for zn. Define a map

Φ: (£/ e E) x (U c E) x E x E -> E ,

Φ(x, y)(v, w) = Γ D2G((1 - t)x + ty)(v, w) dt .
Jί=0

Then by Taylor's formula we have

GOO = G(x) + DG(x)(y - x) + Φ(x, y)(y - χ , y - χ ) .

Moreover Φ(x, y)(v, w) is a smooth tame map and is bilinear in v and w. Also

G(xn+1) = G(xn) + DG(xn)Δxn + Φ(xn, xn+ί)(Jxn, Δxn) .

Then
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= G(xn) - xn - Δxn + DG(xn)zn - DG(xn)[I - S(tn)]zn

Then, since

DG(xn)(G(xn) - xn) + A(xn)(G(xn) - xn, G(xn) - xn) = 0 ,

we have

zn+1 = [I - DG(xn)][I - S(tn)]zn

- Λ(xn)(zn,Zn) + Φ(Xn,Xn + l)(S(tn)Zn,S(tn)zn) .

Thus zn+ι is a sum of three terms the first should go to zero rapidly since
/ — S(tn) does the second and third are quadratic in zn and should also go
to zero rapidly.

2.2. Low norm estimates. The following estimates will hold uniformly in
ί0 for all t0 > 3. We shall use the following simple fact.

Lemma. // t0 > 3, then Σo 'n1 < l
Proof, We have tn > 3"(3/2)n. Now (3/2)w = (1 + 1/2)* > 1 + Λ/2, SO

tn1 < 3" (1+w/2) < (/T)" w /3 . Then

V w S 3 V VVTV S 3 1 - (l 3 -

Pick a base point xb in the fixed point set «F(G). Then G(xb) = r̂δ. Since
G, DG, ^1, Φ are smooth tame maps, we can find Θ > 0 and numbers A:, s such
that for all x in the set

we have the following estimates for all / > k:

| |,_S< 0(11*11, + 1),

\\Λ{x){vM\\ι.s < aWvUwW,., +

and if also \\y - xb\\k < 2Θ, then

>y)(v>")\\ι- < c(\\v\\ι\\"\\*-. +•

For simplicity we always take s > 2. We can deduce the following estimate.
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Lemma. \\G(x) - G(y)\\t.s < C\\x - y\\t.
Proof. We have

G(x) - G(y) = Γ DG(tx + (1 - t)y)(x -y)dt .
Jί=0

We apply the estimate for DG and integrate. Observe that if x, y € N, then
tx + (1 - t)y € N for 0 < t < 1.

We will also have estimates on the smoothing operators if / < m, then

From now on we assume that xQ <-. N and t0 > 3. C will denote various con-
stants independent of x0 and t0. We suppose that some members *0, x19 , xn

of the sequence can be defined and lie in N. As soon as some xn falls outside
of N we terminate the algorithm.

Lemma. For all I > k

Proof, When n = 0 this is trivial. We proceed by induction. Suppose we
can find a constant Λn so that whenever * n is defined we have

Suppose xn € N so that *TO+1 is defined. Then

\\Xn -

\\ZnWl-s = \\G(xn) - Xn\\t_s

< \\G(xn) - G(* δ ) | | ,_, + \\xn

Thus

ll*n+1 -Xb\\ι ^CAJJWxo-XtWf

Then

A n + 1t
5

n

s

+1\\x0 - Xb\\t

provided CAnfi < An+ιt
δ

n

s

+1.
Now /n + 1 = ήί2 and we took s > 2, so ^ ^ 1 = /"s/2 < ς 1 . Thus we need

An+Ϊ > CAntn .



DEFORMATION OF COMPLEX STRUCTURES 29

But tn —> 0, so we can satisfy this with a sequence Λn —> 0, uniformly for all
t0 > 3. Since An —• 0 we have An < C. This proves the Lemma.

Corollary. | | z T O |U < Cl? | |*β - xb\\t.
Proof. We saw ||zn |U_e < C | | ^ n — ̂ Ili
Lemma. We can choose ε > 0, η > 0 sufficiently small so that if to>3 and

ll*o — *δll*+2δ* < V > \\G(x0) — XoWk-s < εtϊ12' ,

then xn is defined and belongs to N for all n9 and we have estimates

\\G(xn) - xn\\k_s < εt-1^ , \\Axn\\k < θt~^ .

Proof. We proceed by induction on n. Suppose that x0, x19 , xn are all
defined and belong to N, and that

\\G(xn) - xn\\k_s < εt-12s .

This says \\zn\\k^s < εt~12s. Then

\\Δχn\\k = \\s(tn)zn\\k < OίWznWu < α c 1 0 4 .

Thus \\Axn\\k < 6t~m provided ε > 0 is so small that Cε < θ. Now if η is suf-
ficiently small, we will have

1 1 * 0 - * * II* ^ o >

and then

il*n+1 ~ **ll* < 11*0 - *»||* + Σ IM^IU <2θ ,
* = 0

(using 2 *71Os < Σ ' J 1 ^ !)• This shows that xn+1 e N also and the algorithm
will continue.

Now recall the error recursion formula

zn+1 = [I - DG(xn)][I ~ S(tn)]zn

ί»)Z», S(tn)zn) .

We can make the following estimates:

| |[/ -DG{xnW - S(tn)]zn\\k.s < C\\[I - S(tn)]zn\\k ,

\\Λ(xn)(zn,zn)\\k-s < C\\zn\\k\\zn\\k.s ,

α j z n , 5 ( ί Jz n ) | | * . f < C\\S(tn)zn\\k \\S(tn)zn||Λ_,,

since ||Λ:TO||Λ < C and |μ n | | f c + 1 < C.
The A term is handled in this way. Write
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zn = [I - S{tn)]zn - SQn)zn ,

\\znII* <\\U- S(tn)]zn\\k + \\S(tn)znII, .

Then we use \\S(tn)zn\\k < Cξ s | |zn | | ,_ s and ||z»||*-. < C. Thus

\\Λ(xnXzn,zn)\\k.s < C\\[I - S(tn)]zn\\k + Ctf | | z , | | ϊ

For the Φ term we have

\\Φ(Xn, Xn + 1)(.S(tn)Zn, S(/n)Z.)||._, < Ctl° \\Zn\\l.s .

Thus all in all

l|z»+ill»-. < C\\[I - S(tn)]zn\\k + Cί«| |zn | | i_. .

Now

\\[I - S(tn)]zn\\k < Ct^\\zn\\k+2U .

By the previous corollary we have

l |Zn| |*+24» 5 ί £-/ B

ί | | .Xo — ^ s l l t + ΣόS '

| |[/ - S(tn)]zn\\k < Ct-1Qs\\x0 -. xb\\k+25s .

Using the induction hypothesis we obtain

provided e is so small that Cε < 1/2 and η is so small that Cη < ε/2. Then
4 + i = %*, SO

This verifies the induction step and proves the Lemma.
2*3. High norm estimates.
Lemma. Suppose as before that t0 > 3 and

ll^o - * 6 | | * + 2 β , - . < V ,

Then for every I > k we have estimates:

lβ, + l ) ,

\\G(χn)- XnWis < o

Proof. We proceed by induction on n. Suppose that for 0 < / < n we have
estimates
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\\zΛ\ι-*<Ajt]7s(\\x0\\ι+m+ 1.)

with a n increasing sequence of constants 1 < Λ o < ^ < ••• < Λn. T h e n
w e h a v e

\\JXJW, < CAjtj^Wx^^ + 1 ) .

Since Σ ' J δ s < Σ tj1 < 1» w e h a v e

Σ H ^ l l , < C^.(| | jco | | t + I M + 1)

using the fact that the Aό are increasing. Then

ll^lli + | |* n + ι | | ι ^ C ^ n ( | | j c 0 | | ι + 1 8 . + 1) .

Again we use the error recursion formula

zn+ι = [I - DG(xnW - S(tn)]zn

- Λ(xn)(zn, zn) + Φ(xn, xn+i)(S(tn)zn, S(tn)zn) .

Now we claim that

To show this we must show that every term in the estimate for zn+ι has this as
bound.

First

\\[I - DG(xn)]U - SiOtenWt-,

< || [/ - SOJfenlli + ||Λn |U|/ - S(tn)zn\\t-

We have

<Ct^%s\\x-xb\\ι+lss

since | | jc 6 | | l + i 8 β is a c o n s t a n t C . Also

IKII, ||7 - S(fn)]Zn\\*-, < CfJXnWt \\zn\\k.s

< CAnt-
lls(\\x0\\ι+m

since ||zj|fc_s < Ct~12s by the previous lemma.
Next
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M(*,)(z.,z.)||ί-. < ClίΛ.IUIz.Hi.. + Cflz.ldUz.lU-.

Now

ll*»llιl|z»llί-. < CAπt;™(\\Xl)\\um + 1) .

For the second we use

IIzn\h< IIU-S(t n)]z n | | ; + \\S(tn)zΛ .

The term | | [ / — S(/ B )]z n |U| |z n |U_, is easier to bound than \\U - S(tn)]zn\\ι
which we handled before. The term

using ||zn||,_, < Ant-
7s(\\x0\\ι+lss + 1) which is the induction hypothesis, and

I K I L - s < C f - m .
Lastly we have

\\Φ(Xn, Xn + l)(S(tn)zn, S(/,)Z»)||,_#

Then

z.ll.-. < CtfHz.tli-.llz.IU-.
Sa + 1) ,

(II*.Ik + ll*«+illιW.)z»llί-. < C/ίnί-
2OS(ll^ollί+18S + l)

Thus all the terms have been bounded as we claim and

l|z»+ill < CAπt-
n%\\x0\\ι+m + 1) .

Now C l l s = Cs/2C+i Thus

I|z,+,||I_, < Aπ+it-l\(\\x<>\\ι+m + 1) ,

provided An+1 > CAnt-
aβ. But as soon as C<"s/2 < 1 we can take An+1 = An

(recall the An were to be increasing). Hence the sequence An is bounded, and

llz.ll,.. < Ctzu(\\x«\\Um + 1)

The other estimates follow from the first part of the argument. Let V% be the
set of all x0 with
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Define P°(*o) == xn. Then P°n is a smooth tame map P°: V\ c £ -> E. For we
have seen that if JC0 € FJ then xn is defined for all n, and from the algorithm
it is clear that xn+ι is a smooth tame function of jtn. Moreover

Therefore, if xoeV°b, the sequence xn must converge to an element x^ e £ , and

\\Xn\\l < C(\\XO\\1 + 1SS + 1) ,

SO

We write Pi(jc0) = *«,. Then P i is a map PL: K°6 c E -> E. By the above
estimate we see that P i is tame. Moreover

\\G(xn) - xn | |ι_, < Cίn-7s(||jc0||z+18s + 1) .

Therefore in the limit G(JC J = Λ:^. Hence Im Pi C ^ ( G ) . Also if JC0 € F°6 Π
), then Λ:W = JC0 for all n, so c^ = xQ or Pi(jc0) = *o Hence ^ ( P l ) =

n F°6

Lemma. P i : K ° C E - > £ w continuous.

Proof. We have P i = lim P°n, and the P° are surely continuous. More-

over since

we see that the convergence is uniform on every bounded set of x0 and hence
on every compact set of x0. Therefore the P° —• P i uniformly on compact sets.
But V\ C E, and E is a Frechet space and therefore metrizable. Thus V\ is a
&-space (see Kelley [4, p. 231]), so P i is continuous.

We can also let V^ be the set of all xm such that

II *m ~ ^δllfc + 25S < V ,' \\G(Xn) — Xm\\k-s < ^ m m

If xm 6 Kf, then by the same argument ;cm + 1, , xn, are all defined and
we have the same sort of estimates, so again xn -» x^. Let us write (for m < ή)

Then P™: Vf £ E —• E is a smooth tame map, and P™ = lim PJ? exists in the
π-»°o
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sense of uniform convergence on compact sets, and P™: V™ c E -+ E is a
continuous tame map. Moreover, if x0 e V\ and xm = P°m(xo) e V™, then for
all n > m we have

and hence in the limit

Therefore P i = P^P^ (at least where the composition is defined).
2.4. More rapid convergence. If we are willing to involve arbitrarily high

norms of x0, we can make xn —> x^ as fast as any power of the tn. Let C(x0)
denote a constant which may depend on x0.

Lemma. For any c we have

\\ZnWk-s < C(xo)t~c

Proof. We proceed by induction on c. We already know the lemma holds
for c = 12s. Suppose that for some c the estimate

\\Zn\\k.-s

holds for all n. In the earlier argument we saw that

llz»+ill*-, < C\\[I - S(tn)]zn\\k

Now

using | |zn | | f c + 2 e + 3, < Ct~5s \\xQ - f̂tI|jt+2c+4. as was seen in an early lemma. Also
using the induction hypothesis

/3s j 1 — 112 <^
ln l | £ n l l * - ί Ss

Therefore

provided that 2( — 2c + 3s) < 3(—c — s) which holds if c > 9s. But we start
from c = 12s. Therefore we conclude that

llzJI*-, < C(χQ)t-c-s

for all n > 1. However it clearly holds also for n = 0, i.e., ||zo||*-ί < C(JCO)
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Therefore, if the lemma holds for c, it also holds for c + s. By induction (in
steps of s) it holds for all c.

Lemma. For every I and every c

\\ZnWl-s < C(xo)t-C .

Proof. We estimate ||Znltι-s as before from the error recursion formula.
We consider one at a time the terms which arose. The first was

II[/ - S(tn)]zn\\ι < Ci;"-»\\zn\\ι+2c+6s < C ω c 2 c ,

since -t|zn"IU+2e+β* < Ctδ

n

8\\x0 — xb\\i+2e+7» bY a previous lemma. The next term
was

since f|z,,||fc_, < C(xo)tή2c~7s by the previous lemma and

ll*» - xb\\ι < Cί?IIΛβ - xb\\t • so If*,H, = C(xQ) .

We can deal with all the remaining terms in a similar fashion. They are:

\\Xn\\l\\Zn\\l-s,

tls\\zn\\i-s\\zn\\k_s\

I n each case WxJ, < C(xo)ήί, | |zΛJU_, < C(xo)t*n°, \\xn+ι^ < C(xo)t*n°+1 < C(xo)t»n

s

and ||Zn||ι-c < C(xo)t-2c~m (or any power of tn), so surely each term above is
bounded by C(jco)ί"2c. Thus

l|z»+illi-. < C(χo)t;2c < C(xo)t-C

+1 .

This proves | |zn | |i-s < C(xo)tnc for all n > 1, but again it is trivial for n = 0.
Thus the lemma holds.

Corollary. For every I and every c

\Xn - X ~\\l <

Proof. ||zfjcn|U < C^II^IU-, and 11^ — ΛΓ̂ H, < ZIΓ^II^^IU.
2.5. Derivatives of the projection. We now wish to show that on the entire

set V°b the map P°b is smooth and all its derivatives are continuous and tame.
We begin by showing that this is true in a neighborhood of any fixed point.

Instead of working with derivatives it is convenient to work with tangent
functors. Recall that if F: U e E -> G, then the tangent of F is the map
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) = {F(x),DF(x)v).

The second tangent TΨ is the tangent of the tangent of F ; i.e.,

TΨ = T(TF) :(UQE)χEχEχE-*GχGχGχG,

Γ2F(JC, v, w,z) = (F(JC), DF(x)v,DF(x)w, DF(x)z + DΨ(x)(v,w))

Similarly the ifcth tangent Γ feF is defined as TkF = T{Tk~Ψ). It is a map

TkF:(UQE)χEχEχ ••• χ £ - G χ G χ C χ ••• X G .

If the function F and its derivatives up to DkF are continuous and tame, then
TkF will be continuous and tame. Conversely, if TkF is continuous and tame,
then so will be F and its derivatives up to DkF, since we can solve for the
DjF (0 < / < A:) in terms of the components of Γ fcF.

More precisely, let x0 6 £/,• and suppose TkF(x, v, w, , z) is continuous
and tame in a neighborhood of

*o = (*o,0,0, . . .,0) ,

say of the form (ε > 0)

Then each DjF(x)(v, w, , z) will be continuous and tame in a similar but
possibly smaller neighborhood (say e' > 0). However Z ) ^ ) ^ , w, ,z) is
multilinear in v, w>, , z. From this it follows that DjF{x)(v, w, , z) is con-
tinuous and tame on the set || JC — JCO||Z < «/ f°Γ all v, w>. , z without restric-
tion. Then the same will be true for TkF(x, v,w, , z).

The advantage of tangent functors is that they simplify the statement of the
chain rule. Namely we have

and more generally

Tk{Fx o F 2 ) = TkFx o TkF2 .

Now consider a near-projection G: U C1E -+ E. Recall that this means that
G is a smooth tame map, and we can find a smooth tame map

A: (U c £) x E x £ -» £

such that Λ(jt)(t;, w) is bilinear in v and w, with

DG(x)(G(x) - x) + Λ(JC)(G(Λ;) - JC, G(JC) - JC) = 0 .
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Lemma. If G: U cz E —> E is a near-projection, then so is

Proof. Temporarily we write a tangent vector as ( x ) instead of (x, v).

We define

vJ\z y) \DΛ(.x)(v)(w,u) + A(x)(w,y) + Λ(x)(z,u))

Clearly ψ is a smooth tame map and is bilinear in (w \ and ( " )• Now

x\ = (G(x) \

\(
 =

 (
v/\z/ \D

2
G(x)(w, v) + DG(x)w)

TG(
X
)-(

X
)=(

G(X)
-

X

\v/ \v/ \DG(x)v -v

DTG(
X
)(TG(

X
)-(

X
)) =

\v/\ \vJ \v)j
()( )

\v/\DG(x)v - v)

(x)(G{x)-x)

\D
2
G(.x)(G(x)-x,v)+DG(x)(DG(x)v-v))

=
 (DG(x)(G{x)-x) \

-v))'

If we differentiate the identity

DG(x)(G(x) - x) + Λ(x)(G(x) - x, G(x) - t) = 0 ,

we have

D2G(x)(G(x) - x, v) + DG(x)(DG(x)v - v) + DΛ(x)(v)(G(x) - x, G(x) - x)

+ Λ{x)φG(x)v - v, G(x) -x) + Λ(x)(G(x) - x, DG(x)v - v) = 0 .

Therefore

This proves that TG is also a near-projection.
Corollary. For all k, TkG is a near-projection.
Next consider the algorithm for G:
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x»+i = [/ - S(tn)]xn + S{tn)G{xn) .

We may define smoothing operators on E x E by the obvious formula

) (
υJ \S(t)v

Then the algorithm for TG is

vn

Then, if xn = P°n(x0), we will have

[I - S(tn)](Xn) + S(tn)TG(xA .

(x*\ = Γ/»

Hence the approximate projections for the algorithm of TG are just the tangents
TP°n of the approximate projections P°n for the algorithm of G. Now if xb is a

fixed point for G, then / ^ J is surely a fixed point for TG. Therefore TP°n will

converge (uniformly on compact sets) in a neighborhood of (XJ? J to a con-

tinuous tame map which is clearly TPt by the next lemma.
Lemma. // Fn is a sequence of continuously diβerentiable maps, and if

Fn —> F and DFn —> G uniformly on compact sets, then F is continuously dif-
eretiable and DF = G.

Proof: By the fundamental theorem of calculus

Fn(x + Δx) - Fn{x) = f DFn(x + tΔx)Δxdt .
J t = 0

Since Fn-*F and Z)Fn -> G uniformly on the compact set {* + tΔx: 0 < t]< 1}
we surely have

F(x + Δx) - F(x) = Γ G(x + tΔx)Δxdt .

Now DFn{x)Δx is linear in J*, so G(x)Δx must be also. Then

{F( hΔx) '- F(x)} = Γ G(Λ: + thΔx)Δxdt .
Jί = 0

Since G is continuous (being a uniform limit on compact sets of a sequence of
continuous functions on a metrizable space) we have
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lim i-{F(jt + hJx) - F(x)} = G(*)J* .
Λ-o h

Thus F is continuously differentiable, and DF(x)Δx = G(JC)JJC as claimed.
Returning to the argument, we see that TP0^ exists and is continuous and

tame, at least in a neighborhood of (vί )• Then by our previous reasoning the

same is true for all ( x \ with Λ; in a neighborhood ||JC — xh\\t < ε and v unre-

stricted. Exactly the same argument applies to each TkPl>. We would be done,

except that the neighborhood may shrink to a point as k —> oo, and we need

to show that all the Γ f cPi are continuous and tame on some fixed neighborhood

of xb. This follows by a slightly more complicated reasoning.
Lemma. TfcP!L(;t, v, w, , z) is continuous and tame for all x e V\ and all

v, w, - ' , z without restriction.
Proof. By our previous argument, it is enough to show that TkPi is con-

tinuous and tame in a neighborhood of (x0, 0,0, , 0) for each x0 € V\. Fix
such an jt0, and let x^ = P!L(Λ:0). Then x^ is a fixed point of G. Now we apply
our previous reasoning, not to G near xb, but to TkG near x^. It follows that
we can find numbers k and s and έ > 0, η > 0 such that if V™ is the set

\*m ~

|| TkG(xm, vm, , zn) - (xm, vny , z

then the maps Γ Λ P^ are all defined for (xm9vm9 , zm) e F ^ and converge
(uniformly on compact sets) as n —> oo to a continuous tame map which must
be TkP™. Thus P^ and its derivatives of order up to k exist and are continuous
and tame on the set FΞ Now

xm = i°θm^o) , Um, 0,0, . . . , 0) = ' TkP°m(x0, 0, . . . , 0) ,

and we have seen that for all I and c

Since TkG(xm, 0, - , 0) = ( G ( J C J , 0, . . -, 0), for all / and c we have

0, . . . ,0) - (xM%Q, ••• ,0) | | I < C C ,

and therefore (x m ,0, ,0) € V™ when m is sufficiently large. Then TkP™
exists and is a continuous tame map in a neighborhood of (xm, 0, •', 0). Also
we surely know that TkP°m exists and is a continuous tame map in a neigh-
borhood of (x0,0, , 0). Since
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P0 D m DO
oo * oo ϊ m 9

it follows that TkP^ exists in a neighborhood of (JC0, 0, , 0) and

TkP<L . = TkPZ TkP°m .

But a composition of continuous tame maps is a continuous tame map. Thus
Γ Λ Fi is a continuous tame map in a neighborhood of (JC0, 0, ••, 0) for any
x0 e F°. As we observed before, this implies that P i is a smooth tame map on
V\. This proves the theorem in § 1.

2.6. Nonlinear exact sequences. We are now in a position to prove the
Nash-Moser theorem for nonlinear exact sequences. Let E, F, G be graded
Frechet spaces which admit smoothing operators. Let U Q E, F C F , W CZG
be three open sets, and let P and Q be two smooth tame maps

such that the composition QP = 0.
Theorem. Suppose we can find two smooth tame maps

VQ: (U C£) x G->F ,

such that VP(x)v and VQ(x)w are linear in v and w for each x, with

DP(x)VP(x)v + VQ(x)DQ(Px)v = v

for all x e U and all v e F. Then for any x0 e U we can find a smooth tame
map

S:V'QF-*UQE

on some (possibly smaller) neighborhood V of PxQ in F such that

PSy — y whenever Qy = 0 .

It follows that I m F = K e r β , at least in a neighborhood of Px0, i.e.,
Im P Π V = Ker Q Π V. Also let

V" = {y e V PSy € V'} .

Then V" is also an open neighborhood of Px0, and PS: V" —> V" is a smooth
tame projection onto I m P Π V" — Ker Q Π V". We make the following
definition.

Definition. A set X c £ is a local smooth tame retract if for every x ζ X
we can ffnd an open neighborhood V of x and a smooth tame projection
π: K —> V with π o π = TΓ and Im TΓ = Γ̂ Π F.
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Corollary. Under the above hypotheses Im P is a local smooth tame retract. 
Observe that in the category of Banach spaces every local smooth retract is 

a submanifold. We have been unable to show that Im P is a submanifold ; in 
fact there is reason to doubt it in general. We hope that the notion of a local 
smooth tame retract will be an adequate substitute. For example, a local smooth 
tame retract has a well-defined "tangent bundle" ; namely if locally X = Im n, 
where n is a projection, then Tn is also a projection and we put T X  = Im Tn. 
It is not hard to see that T X  c E x E is independent of the choice of n. Also 
T X  is again a local smooth tame retract in E x E. 

Before we prove the theorem we make the following observation. 
Lemma. We may assume 

for all x E U and w E G .  
Proof. We know that 

and that DQ(Px)DP(x) = 0 since QP = 0. Then DQ(Px)VQ(x)DQ(Px) = 
DQ(Px) and DP(x) VP(x)DP(x) = DP(x). Therefore 

or DP(x)VP(x)VQ(x)DQ(Px) = 0. Now we may replace VP and V Q  by two 
other smooth tame maps 

We then have again 

and now also 

Corollary. We have 

Proof of  the Theorem. We set up the following algorithm. Let 
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be defined by 

Lemma. r is a near-projection. 
Proof.  Let 

We must show that there exists a smooth tame map @, bilinear in the last two 
arguments, such that 

First observe that 

Hence any expression which is bilinear in 

Ax, Ay, Az, Px - y 

has the required form. Now we have 

from Taylor's formula with integral remainder, where 

is a smooth tame map bilinear in u and v. Apply this with w = Px and we 
have 

Hence Q(y) + Az = @(Px, y)(y - Px, y - Px) has the form of an admissible 
quadratic error. 



DEFORMATION OF COMPLEX STRUCTURES 

AX - V P ( X ) ( D P ( X ) A X  - Ay) - D V P ( x ) ( A x ,  Px - y )  
AY - VQ(X)DQ(Y)AY - D VQ(x)(Ax,  QY) 
AZ - DQ(Px)(DP(x)Ax - Ay) - D2Q(Px)(DP(x)Ax,  Px - y )  

Now DVP(x) (Ax ,  Px  - y )  and D2Q(Px)(DP(x)Ax,  Px  - y )  are admissible 
quadratic errors. Since Q y  differs from Az by an admissible quadratic error, 
the term D V Q ( x ) ( A x ,  Q y )  is also an admissible quadratic error. For the other 
terms, we see that 

since Ax E Im V P ( x )  and V P ( x ) A y  = VP(x)VQ(x)Qy  = 0 because we may 
assume VP(x)VQ(x)  = 0. Also 

since Ay E Im V Q ( x ) .  This leaves a term 

However 

[ D Q ( y )  - DQ(Px) lv  = S D z Q ( ( l  - t ) y  + tPx)(y  - Px,  v)dt 
t = O  

= @(Px,  Y)(Y - Px,  v )  , 

where @ is a smooth tame map. Therefore 

is an admissible quadratic error. 
Also DQ(Px)DP(x)Ax = 0. The last remaining term is 

Now we have already seen that 

it an admissible quadratic error. Since Ay = VQ(x)Qy  it follows that 

is an admissible quadratic error. Therefore we are left with 
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Δz - DQ(Px)VQ(x)Δz = 0 ,

since Δz e lmDQ(Px). This proves that Γ is a near-projection.
It follows from the theorem in § 1 that on a neighborhood ί / ' x F ' x W

of (0, 0, 0) the algorithm

(Xn\ lXn

\zj \Zn

converges to a smooth tame projection π. Write

tx\ IS(x,y,z)\

π\ y \ = \T(x,y,z)\ ,

\z) \U(x,y9z))

and let S(y) = 5(0, y, 0). Then 5: F ' c F - ^ ί / C E is a smooth tame map
(on a sufficiently small neighborhood V of 0).

Lemma. Let y eV. Then PSy = y // Qy = 0.
Proof. We know that

η y0 = boo = lim J n I

w \zj nΛzJ
Now suppose Qy0 = 0. Then .

Δy0 = VQ(xo)Qyo = 0,

yι = [I — 5(/o)]jo + S(to)(yo — Δy0) = j 0

By induction we see that yn = y0 for all n, so y^ = yQ. We also know that

r(3"(ί:H
so jΛ:n -* 0, Δyn -> 0, J z n -> 0. Then

Pjcn - yn = DP(xn)Δxn + VQ(xn)Δzn > 0 ,

so Px^ = j ^ . Now put * 0 = 0 and z0 = 0, with Qy0 = 0 as above. Then

XTO = 5(0, ;y0,0) = 5(y0) , PS(y0) = PΛ:^ = y^ = y0 .

Thus P5Cy0) = y0 if Jo € V and β^0 = 0. This proves the lemma and hence
also the theorem.
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