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TEICHMULLER THEORY FOR SURFACES
WITH BOUNDARY

C. J. EARLE & A. SCHATZ

1. Introduction

(A) Recently Earle and Eells [9] determined the homotopy types of the
diffeomorphism groups of closed surfaces. Here similar methods are applied
to compact surfaces with boundary. As in [9] we form a principal fibre bundle
whose total space consists of the smooth conformal structures on the surface,
whose base is the reduced Teichmϋller space, and whose structure group is a
group of diffeomorphisms of the surface. Again, as in [9], we rely on a new
theorem about continuous dependence on parameters for solutions of Beltrami
equations. The proof of that theorem is given in § 8. The remainder of the
paper can be read independently of § 8, but the reader will find it helpful to
consult [9]. Fuller accounts of Teichmϋller theory may be found in [2], [5],
[10], [13].

(B) Now we shall state our main theorems. Let X be a smooth (C°°) surface
with boundary, and denote by £>{X) the topological group of all diffeomor-
phisms of X, with the C°°-topology of uniform convergence on compact sets of
all differentials. @0(X) is the subgroup consisting of the diffeomorphisms which
are homotopic to the identity and map each boundary curve onto itself, preserv-
ing orientation. We shall find later that S)Q(X) is the arc component of the
identity in ^ ( Z ) .

We denote by Jί(X) the space of smooth conformal structures on X, again
with the C°° topology. There is a natural action

Jί(X) x ®(X) -> Jί(X)

defined by letting μ-f be the pullback of the metric μ by the diffeomorphism /.
Theorem. Assume that X is compact and orientable and that the Euler

characteristic e(X) is negative. Then
(a) Jί(X) is a contractible Frechet manifold,
(b) ^ 0 ( I ) acts freely, continuously, and properly on J({X),
(c) the quotient map
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(1.1) Φ: Jί(X) -> Jί(X) I ̂ 0 ( Z ) =

{with the quotient topology on ^*(X)) defines a principal @Q(X)-fibre bundle.
y*(X) is the reduced Teichmύller space of the bordered surface X. The

theorem will be proved in §§ 3 and 4.
(C) Because of Teichmϋller's theorem [6], ?Γ\X) in (1.1) is a cell, and

the fibre bundle (1.1) is trivial. Since Jί{X) is contractible, the structure group
@Q(X) is contractible as well.

Theorem. Let X be any smooth compact surface with boundary.
(a) // X is the closed disk, annulus, or Mδbius strip, then @Q(X) has SO(2)

as strong deformation retract.
(b) In all other cases, @Q(X) is contractible.
The cases not covered by Theorem IB and Teichϋller's theorem (X not

orientable or e(X) > 0) are discussed in §§ 2, 5 and 6. In all cases Teichmuller
theory and the theory of Beltrami equations play central roles in our proofs.

Let C(X) be the homeomorphism group of X, with compact-open topology.
Hamstrom [11] has computed the homotopy groups of the identity component
of C(X) they coincide with the homotopy groups of @0(X) as computed from
the above theorem.

(D) Let &X(X) be the closed subgroup of @0(X) consisting of the g e @Q(X),
which are homotopic to the identity modulo dX (fixing dX pointwise). In § 7
we prove the following.

Theorem. Let X be a smooth compact surface with boundary. Then the
group ®SX) is contractible.

As one would expect, Theorem ID is a rather easy consequence of Theorem
1C. Moreover, our argument in § 7 is reversible and could be used to obtain
Theorem 1C from Theorem ID if a direct proof of the latter were available.

2. Beltrami equations

(A) Let D be a subregion of R2, bounded by smooth curves. If / is an open
subset of 3D, then D U / is a smooth surface with boundary. The Frechet space
C°°(D U /, C) is the vector space of smooth complex valued functions on D U /
with C°° topology. The subset C°°(D U /, Δ) consists of the smooth maps D U /
into the unit disk J = {zeC; \z\ < 1}. As usual, we identify that subset with
the space J((J) U /) of smooth conformal structures on D U / by assigning to
each μ: D U / —> Δ the conformal structure represented by

(2.1) ds = \dz + μ(z)dz\ , zeD U / .

The zero function corresponds to the usual conformal structure on D U /.
Give D U / the structure (2.1) and C its usual conformal structure. The

orientation preserving diffeomorphism w: D U / —» w(D (J /) C C is a conformal
equivalence if and only if it satisfies Beltrami's equation
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(2.2) w-z = μwz

where

(B) Now let D be the upper half plane °U = {z e C; Im z > 0}, and sup-
pose that |μ(z)| < k < 1 in ^ . There is a unique solution w, of (2.2), which
is a homeomorphism of the closure of °lί onto itself and leaves 0,1, oo fixed
[7, p. 277]. If μ e C°°(^ U /), then wμ is a diffeomorphism of °U U / onto its
image. Further,

Theorem. For each k < 1, ί/i£ map μ >-+ wμ is a homeomorphism of the
set of μzJK0// U /) with sup{|μ(z)|; z e ^ U 1} < k < 1 onίo to zmflge in
C~(% U /, C).

That theorem, which we prove in § 8, is fundamental in all that follows.
The easier case when / is empty was used in [9].

(C) As a corollary of Theorem 2B, we shall prove the simplest case of
Theorem 1C. Let X be the closed unit disk, and Xo its interior. Let @0(X; 1,
/, — 1) be the topological group of all difϊeomorphisms of X, which fix the
points 1, ΐ, and — 1. Define conformal maps hλ and h2 from % onto Xo by

Each μ in Jί(X) induces conformal structures μ19 μ2 e Jί(% U R) via the maps
hx and h2. Explicitly

and

(2.3) μλ{z) = μ2(Kz))f(z)/f(z) , Z € <2f U R .

Let w€ = w^., i = 1,2. Then f~ιow2of = wx because of (2.3); that is,

/, = h.ow^hϊ1 = h2ow2oh^ e S 0 ( Z ; 1, /, - 1 ) .

Of course /̂  is the unique element of @0(X; 1, i, —1) to satisfy the Beltrami
equation fΈ = μfz.

Theorem. The map μ^>fμ is a homeomorphism from Jt{X) onto

Proof. Apply Theorem 2B to wλ and w2, noting that if μn —• // in Jί(X),
there is a number & < 1 such that

sup {\μn(z)\ z €X} < & for all π .
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Corollary. The rotation group SO(2) is a strong deformation retract of

Proof. S0(Z) is homeomorphic to @0(X; 1, i, — 1) X Aut X, where Aut X
is the holomorphic automorphism group of X. But @0(X; 1, /, — 1) is homeo-
morphic to the contractible space Jί(X), and AutZ has SO(2) as a strong
deformation retract.

3. The proper action of @0(X), e(X) < 0

(A) Let G be the conformal automorphism group of the upper half plane
<%. Endowed with the compact-open topology, G is a Lie group; its identity
component Go consists of the Mobius transformations

A(z) = (az + b)(cz + d)~ι a,b,c,dz R; ad — be = 1 .

G is generated by Go and the transformation J(z) = — Z.
(B) Let X be a compact smooth oriented surface with boundary, and XQ

its interior. Each μ e Jί(X) determines a complex structure on XQ. If the Euler
characteristic e(X) is negative, there is a holomorphic covering map π: °U —> Xo.
The cover group Γ is a discrete subgroup of Go such groups are called Fuchsian.
Since X has boundary, Γ is a group of the second kind. That means the limit
set L(Γ) is a Cantor set in R U {oo}. The complement of L(Γ) is an open set
/ in R. Γ acts freely and properly discontinuously on /; π extends to a cover-
ing TΓ: °U \JI-*X.

From π we obtain the induced map TΓ* : Jί(X) —> Jί(% U /), whose image
Jί{Γ) consists of the Γ-invariant conformal structures on °U U /. These are
the μ € C°°(^ U /, Δ) which satisfy

(3.1) (μoγ)rΊf = μ f o r a l l r e Γ .

Let ^ ( Γ ) be the Frechet space of all μ e C~(% U /, C), which satisfy (3.1).
Proposition. Jί(Γ) is the convex open set of μeA\Γ) with sup{|μ(z)|;

z 6 ̂  U /} < 1, tfttd ί/ẑ  map TΓ* : ^ ( Z ) —> Jί{Γ) is a homeomorphism.
Corollary. Jί(X) is a contractible Frechet manifold.
The proofs are the same as the corresponding ones in § 5A of [9]. Note that

the corollary is part (a) of Theorem IB. Part (b) will be proved in the remainder
of §3.

(C) Let ®{?U U /) be the metrizable topological group of all diffeomorphisms
of % U /, with C°° topology, and 2{Γ) the normalizer of Γ in &(<% U /). Then
π*(/)o7Γ = τr°/ defines a continuous epimorphism TΓ*: ̂ (Γ) —• @(flί U /), and
the kernel of TΓ* is Γ.

Lemma, TΓ* is an open map.
The proof is given in § 5B of [9], except that we use here the hyperbolic

metric o n ^ U / U ^ * = C - L(Γ).
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Corollary, π^ induces an isomorphism between the topological groups
@(Γ)/Γ and @(X).

Now let ^ 0 ( Γ ) be the centralizer of Γ in 9>{Γ). Recall that QiJJC) is the set
of g in @(X), which are homotopic to the identity.

Proposition, TΓ* : @0(Γ) —• @0(X) is an isomorphism of topological groups.
Proof. It is proved in [6, pp. 98-100] that τr*(^0(Γ)) = @Q(X). The kernel

of π*: @(Γ) —» Sf{X) is Γ. Since Γ is a free group on at least two generators,
2JiΓ) Π Γ is trivial and TΓ* : 0 O ( Π -• W i s bijective. For the proof that TΓ;1

is continuous, see § 5B of [9].
(D) Using π, we transfer the action of @(X) on Jί(X) to an action of @(Γ)

on Jί{Γ), given by

(3.2) (π*μ).g = π*(μ.π*g) , g € 9(Γ), μ 6 JHX) .

Proposition.
1. TAe Λcίwn u?(Γ) X S(Γ) -> u?(Γ) defined by (3.2) w continuous.
2. The isotropy group of 0 e ^f(Γ) w ^ ( Γ ) Π G, ί/ze normalizer of Γ in G.
3. Γ = {g € 0 ( Γ ) g Λcto ίπvz'fl//}; on uT(Γ)}.
4. ^ 0 ( Γ ) αcί^ freely on Jί{Γ).
Corollary. The action of @(X) on Jί(X) is continuous and elective, and

@0(X) acts freely.
The proofs are given in § 5C of [9].
(E) Proposition. @0(X) acts properly on Jί{X).
Proof. We prove the equivalent proposition that @0(Γ) acts properly on

Jί{Γ). Since the action is free, we need to prove merely that the map Θ: Jt(Γ)
X ^ 0(Γ) -> J((Γ) X J((Γ) given by θ(μ, f) = (μ,μ- f) is closed. Let K c Jί{Γ)
X @Q(Γ) be a closed set, and ((μn,μn'fn)) a sequence in Θ(K) converging to
(μ,v). Let wn = wμn,w = wμ, and h = wυ. By Theorem 2B, wn->w(inC°°(^U/)).
Morever, since 0-wnofn = μn fn —> y and since wno/w leaves 0, 1, oo fixed,
^n°/n -> Λ. It follows that fn -> / = w^oή. Clearly (^n, /n) -> (//, /) e K, and
(μ, y) = Θ(μ, f) e Θ(K), completing the proof.

Remark. With more effort, one can prove that @{X) acts properly on Jί{X).

4. The fibre bundle, e(X) < 0

(A) To complete the proof of Theorem IB we need to show that the quoti-
ent map Φ: Jέ(X) —> Λ(X)/@0(X) has local cross-sections. For that purpose
we first map Jl(X) into Gn, where G is the conformal automorphism group
of ^ , and n = 1 — e(X) is the rank of the free group π^X). Our assumption
that e(X) < 0 remains in force.

Call (A, B) a normalized pair of Mobius transformations if each has two fixed
points, the fixed points of A are at 0 and oo, and the attractive fixed point of
B is at 1.
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Proposition. Let xQ be an interior point of X, and cλ, ,cn a free system
of generators for πλ(X, x0). For each conformal structure on X there exist
a unique point zQe<% and holomorphic covering map π: % —> Xo so that

(a) π(Zo) = x0,

(b) the cover transformations γ1 and γ2 determined by cι,c2, and z0 are a

normalized pair.
The proof is the same as that of Lemma 4C in [9].
(B) For any μ e Jt(X), let π: °U —> Xo be the covering map determined by

Proposition 4A, and γ19 , γn the generators of the cover group Γ determined
by the point z0 e °lί and the generators c19- -,cn of πx{X,x^. We define
P: JOX) -> Gn by P(μ) = (Γ l, . ., γn).

Let S be the set of points (g19 , gn) e Gn such that (g1? g2) is a normalized
pair of Mobius transformations. Then P maps Jί(X) into S.

Lemma. S is a locally closed real analytic submanifold of Gn of dimension
3n - 3 = -3e(X).

We omit the easy proof.
(C) Now fix any point μQ e Jί(X) and let π: °U —> Xo be determined by μQ.

The cover group Γ is generated by s0 = P(μ0) £ S. Composing P with the in-
verse of 7r*: Jί(X) -> Jt{Γ), we obtain a map, still called P : Jί(Γ) -> S.

Lemma. P(μ) = ^ o ^ o w ; 1 for all μ e Jί(Γ).
Corollary. P(μ0) = P(μd if and only if μ0 and μι are @0(X)-equivalent.

Thus, P induces an injection from Λ(X)/@0(X) into S.
These are proved in the same way as the corresponding assertions in § 6 of

[9].
(D) Let Q(Γ) be the real vector space of functions φ holomorphic in

°U U /, real on /, satisfying

(φoγXγ'γ = φ for all γ € Γ .

Q(Γ) is the lift to ^ of the space holomorphic quadratic differentials on X (with
its given conformal structure μQ) which are real on 3X. The Riemann-Roch
theorem tells us that the (real) dimension of Q(Γ) is — 3e(X), the dimension
of S. The next proposition is essentially due to Teichmϋller (see [1], [5]).

Proposition. P: Jt{Γ) —> S is continuous. The restriction of P to any finite
dimensional affine subs pace is real analytic. Moreover, the kernel of the
differential dP(0) at 0 is

Λ\Γ) ίmCvφdz Λdz = 0,vφε Q(Γ)\ .
x

Proof (see [8, Theorem 5]). The continuity and smoothness of P are con-
sequences of Lemma 4C and [4, Theorem 11]. In addition, if γμ = wμγw~x for
γ eΓ and μz Jl(Γ), then



TEICHMULLER THEORY 175

f(v)(z) = Hm [γtυ(z) - z]/t

exists for all z e % U / and v e ̂ ( Γ ) . Further,

(4.1) j(v) = for - ff ,

where / is real on / and satisfies f-z = v (see [3, p. 138] and [1]). If v e Ker dP(0),
then (4.1) vanishes for all γe Γ. Thus, if φ e Q(Γ), then w = fφdz is a 1-form
on X and real on dX, and

Im \vφdz /\ dz = lm I dw = 0 ,

which proves Ker dP(0) c βCΓ)-1. But

- 3έ?CY) = dim 5 > codim Ker dP(Q) > codim β ( Γ ) 1 = dim β(Γ) = - 3e(X),

= KerdP(0).
Corollary. P is an open continuous map with local sections.
In fact, dP(0) is surjective, where P: Jt(Γ)-*S. But 0 zJί(Γ) corresponds

to μ0 € Jt(X), which was chosen arbitrarily. The corollary is therefore an im-
mediate consequence of the implicit function theorem.

(E) The reduced Teichmuller space ZΓ*(X) is the quotient space
JKJOj^JiX). From Corollaries 4C and 4D we have the

Lemma. P: Jί(X) -+ S has the form P = hoφ, where Φ: Jί(X) -> F\X)
is the quotient map and h: ZΓ\X) —> P(Jί(X)} is a homeomorphism.

Thus, by Corollary 4D, Φ: Jί(X) -* <r*(X) has local sections. Combining that
fact with §§ 3D and 3E, we conclude that Φ defines a principal fibre bundle
with structure group @0(X). The proof of Theorem IB is now complete.

We remark that the homeomorphism h from y*(X) onto the image of P in-
duces a real analytic structure on ZΓ\X).

(F) According to Teichmuller's Theorem [6], &"*(X) is homeomorphic to a
Euclidean space.

As in § 8C of [9], we obtain at once
Corollary 1. The bundle Φ: Jί{X) -> ?Γ\X) is topologically trivial.
Corollary 2. Jl(X) is homeomorphic to F\X) x @0(X). Thus @0(X) is

contractible.
Corollary 2 gives us Theorem 1C for orientable surfaces X with e(X) < 0.

The non-orientable surfaces will be considered in § 5.

5. Surfaces with symmetries

(A) We still assume that X is oriented and that e(X) < 0. It follows that
for each μ $Jl(X) the subgroup of S){X) which leaves μ fixed is finite [16].
The converse is also true.
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Lemma. Let Ha @(X) be a finite subgroup. Then

Ji{XY = {μ e Jί{X) μ h = μ for all h e H)

is a non-empty contractible submanijold of Jί(X).
Proof. Choose a Reimannian metric p on X, and view p as a quadratic

form on the tangent space at each point. Then p0 = J] (p-h),he H, is an H-
invariant metric, and induces an H-invariant conformal structure on X. Thus
JίiXY is non-empty.

Now choose μQ e Jί(X)Ή and let π: W —> Xo be a holomorphic covering map
with cover group Γ. As in § 3, there exist an induced homeomorphism π*: Jί(X)
—> Jί{Γ) and a group homomorphism π*: ^(Γ) -> ®(X). Let # ' be the inverse
image of H in ^(Γ). Then 7r* maps JίQίY onto the ^-invariant elements of
Jl(Γ). By construction, the usual conformal structure of % is //'-invariant, so
ΈLf is a subgroup of the automorphism group G oi %. Let #£ be the orienta-
taion-preserving subgroup of H''. Then, for any μ e JK(Γ),

μ.h= (μoh)h'/h' iίheH'Q,

~Pk = (μoh)h,/h-z if ή e H7 - HJ .

It is clear from these formulas that the //'-invariant μ in Jί{Γ) form a con-
tractible submanifold of Jί(Γ}.

Corollary. @0(X) has no non-trivial subgroups of finite order.
In fact, S0(Z) acts freely on Jί{X), so if H is a non-trivial subgroup of

^ 0 (Z), then Jί{Xf is empty.
(B) Of course H acts on @0(X) by the action

Λ g = hghr\ hzH a n d g e

The fixed point set ^ 0 U 0 H is the subgroup of S0(Z) which maps Jί(X)u

into itself.
Let Φ: u^(Z) -> F\X) and β: ^(Z) -^ ®(X)/@0(X) = Γ(X) be the quotient

maps. #(#) is a finite subgroup of /XX), isomorphic to H because of Corollary
5A. Of course the group Γ(X) acts on F\X), and the fixed point set ^{X)HH)

includes Φ(Jί{X)H).
Theorem. Φ: Ji(X)Ή —• $~*(X)HH) is an open surjective map, and defines

a trivial principal fibre bundle with structure group @0(X)H.
(C) The proof of Theorem 5B will be divided into several steps. First we

define a non-negative integer d(H) as follows: Choose μ e Jί(X)H and let Q(X)
be the corresponding space of holomorphic quadratic differential real on 3X.
Since H consists of holomorphic and conjugate holomorphic maps, relative to
μ, H operates on Q(X) as a group of linear transformations [13]. d(H) is the
dimension of the (real) subspace Q{X)H fixed by H. There are several ways
to verify that d(H) depends only on H for instance we may appeal to the fol-
lowing important
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Lemma. ^r*(X)HH) is a closed connected subset of y*(X)9 homeomorphic
to Ra{H).

The lemma is due to Saul Kravetz [12, Lemma 5.1]. Kravetz considers
only closed surfaces, but his proof applies equally well to our situation.

(D) Lemma. Φ: Jt(X)H —> tΓ*(X)HH) is open and continuous with local
cross-sections.

A proof of this lemma, again for closed surfaces, is given by Rauch in [13].
This time we provide some details. Choose any μ0 € Jί(X)H and form the
corresponding covering π: °ll —» Xo and cover group Γ. Let ρ(z)\dz\2 = ds2

be the hyperbolic metric on °U U / U ^ * , and let ψ e Q(Γ). If ψ is close to
zero, then ψp~ι zJt(Γ). It follows from §§4B, C, and D that ψ ^> Φ{ψρ~ι)
defines a diffeomorphism from a neighborhood N of 0 in Q(Γ) onto a neighbor-
hood of Φ(μQ) in J Γ # ( Z ) . The intersection N Π Q(Γ)H is mapped into 5~%{X)HH\
The lemma follows, because Q{Γ)H and ^(X)Θ{H) both have dimension d(H).

(E) The rest of the proof is easy. Let H' c Q)(X) be a finite group, and
write H' ^ H if θ(Hf) = Θ(H). Then

= U Φ(Jί{X)H>), Hf ~ H .

Moreover, Φ{Jt{X)H') and Φ{Jί{X)H) are disjoint unless H' = gHg\ g e ^ 0

when they coincide. Now Lemma 4D implies that Φ{_Jί(X)H) is open, hence
closed, in F\X)9™\ so Φ{Jί(X)Ή) = 3~\Xy{U\ by Lemma 4C. Since φ
is open and continuous, ^{X)HH) can be identified with the quotient
Jί{X)H\QιlX)H. Since Φ has local cross-sections, Φ defines a ^0(Z)^-fibre
bundle. By Lemma 4C, the base space of that bundle is contractible, so the
bundle is trivial, and Theorem 5B is proved.

(F) Proposition. // H is a finite subgroup of @0(X), the group @0(X)H is
contractible.

Proof. By Theorem 5B, @0(X)H X 3Γ\X)Θ{H) is homeomorphic to the
contractible space Jί(X)H.

Corollary. Let Y be a non-orίentable compact surface with boundary. If
e(Y) < 0, then @Q(Y) is contractible.

Proof. Let π: X —> Y be a two-sheeted covering by the orient able surface
X, and let H c @(X) be the cover group. ^ 0 (Y) i s homeomorphic to the con-
tractible group 3fjJC)H.

(G) Remark. The action h g = hghr1 of the finite group H on 3>JJC)
determines the pointed cohomology set Hι(H,&JίX)). The considerations of
§5 E show that H\H, <20(X)) is trivial. In fact, Θ(H) = β(Hι) if and only if
Hι = gHg-1 for some g e 9<pC).

6. The annulus and Mδbius band

(A) Fix the point x0 on the boundary of the annulus X, choose a simple
loop c which generates πx(X, x0), and put / = R — {0}.
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Lemma. For each μ e Jt(X) there is a unique μ-conformal covering map
π: <% ΌI-+X so that

(a) π(x0) = 1,
(b) the loop c determines a generator γ(z) = kz, k > 1, for the cover gronp Γ.
As in § 3, π induces a map TΓ* from Jί(X) onto the space Jί{Γ) of Γ-

invariant conformal structures on % U /. Once again, we let A\Γ) be the space
of μ e C~(β U /, C) such that

(6.1) μoγ = μ .

Proposition. Jί(Γ) is the convex open set of all μ € A\Γ) with sup {\μ(z) |
z e °U U /} < 1, and TΓ* : ^ ( X ) -> Jl{Γ) is a diffeomorphism.

Corollary. Jί(X) is contractible.
(B) Continuing by analogy with § 3, we let @0(Γ) be the centralizer of Γ

in S)(fy U /) and ^ 0 ( Γ 1) the subgroup fixing 1. Define π*: ^ 0 <T 1) -> ®(X)
by π^(f)oπ = πof.

Proposition, π* is an isomorphism of @0(Γ 1) onto the group @0(X x0) of
diffeomorphisms of X, which fix x0 and are homotopic to the identity.

The proof is given in § 5B of [9], except that we use here the Γ-invariant
metric ds = \z\~ι \dz\ on C — {0}.

(C) Once again we transfer the action of @Q(X JC0) on Jί(X) by π to the
action

(6.2) μ/'S = μfog

of S 0 ( Γ ; 1) on Jί(Γ). Analogous to Propositions 5C and 5D of [9] we have
Proposition. The action Jί{Γ) X @0(Γ; 1) -> Jί{Γ) by (6.2) is free, con-

tinuous, and proper.
Corollary. The natural action Jt{X) x £)Q(X x0) -> Jί(X) is free, continu-

ous, and proper.
(D) Define P: Jί{X) -+ R+ by P(μ) = log A:, where γ(z) = A:z is determined

by Lemma 6A. We also denote by P the composed map Po{π*)~ι: JC{Γ) —> l?+.
Lemma 1. Le* P(0) = log fc0

- log (wμ(kQ)) for all μ € JUT) .

Proof. πμ = πow-χ: % U /—» A" is the covering map determined by Lemma
6A, for all μ € ^ ( Γ ) . Thus, ?-0(z) = (exp P(0))z and ^(z) = (exp P(μ))z satisfy

Lemma 2. P(//) = F(ι̂ ) // αnrf on/v // μ and v are 30(Γ; \)-equivalent.
Proof. We may assume v = 0, so P(/i) = P(y) if and only if wμ commutes

with γo; this happens if and only if wμ e @0(Γ; 1).
(E) Proposition. P : Jί{Γ) —> /?+ w continuous and surjective. Further,

σ: R+ -
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σ(t)(Z) = * ~ l θ g k° -*• , Z € Φ U / ,
ί + log k0 z

w <2 continuous cross-section of P.

Proof. To check that Poσ: # + —• R+ is the identity map we note that

where a log kQ — t.

Corollary. P: Jί(Γ) —> 2?+ w <z

In fact a neighborhood of 0 e ^ ( Γ ) covers a neighborhood of P(0) in R+.
But 0 e ^ ( Γ ) corresponds to any μQ € Jί(X).

(F) Consolidating the above we obtain the following.
Theorem. The quotient map

Φ: JίiX) -> F\X) = Jί{X)\®iX\

defines a trivial principal fibre boundle, and 3~%(X) is homeomorphic to R+.
Corollary. L^ί X be an annulus. Then @0(X; xQ) is contractible, and

has the circle as strong deformation retract.
(G) The theorem and corollary of § 6F are valid for the Mδbius band as

well as the annulus. For the proof we fix x0 on the boundary of the Mδbius
band X and choose a simple loop c generating πλ{X, * 0 ) . All the results of
§§ 6A, B, C, D, and E hold, provided we make these modifications:

1. In Lemma 6A, the cover group Γ is generated by γ(z) — —kz,k> 1.
2. Formula (6.1) becomes (μoγ) = μ.
3. In § 6D, P(μ) = log k, where γ(z) = —kz.
4. Lemma 1 of § 6D becomes P(μ) = —log ( — wμ( — k0)).
For emphasis, we repeat the proposition corresponding to Corollary 6F.
Proposition. Let X be the Mδbius band. Then @0(X; x0) is contractible,

and @0(X) has the circle as strong deformation retract.
The proof of Theorem 1C is now complete, modulo Theorem 2B.

7. Homotopy modulo the boundary

(A) Until further notice we assume that e(X) < 0, but we do not require X
to be orientable. Let Q)λ(X) be the normal subgroup of &<pθ consisting of the
/ e @0(X), which are homotopic to the identity modulo 3X (holding dX point-
wise fixed). Let π: W U / —> X be a covering map whose cover group Γ con-
sists of conformal automorphisms of <%. As in § 3 there is an isomorphism π^
from the centralizer 9Q{Γ) of Γ in 9(°U) onto S)0(Z). 2X{X) is the image under
7r* of the group ^λ(Γ) of maps / e @Q(Γ), whose restriction to / is the identity.
Let ^ ( Γ , /) be the centralizer of Γ in the diffeomorphism group of /.

Proposition. The restriction map
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defines a trivial principal fibre bundle with fibre Q)X{Γ).
Proof. Since @λ(Γ) is a closed subgroup of the topological group ^ 0 (Γ), all

we need is to define a continuous map

so that resoσ is the identity. That is a simple matter; we shall outline the
procedure.

Each interval lό of / determines a noneuclidean halfplane Hj bounded by ls

and the noneuclidean line in °tt which joins the endpoints of Ij. Let H be the
union of the Hό. For / e @(I, Γ), we put σ(f) equal to the identity in °U — H.
Each Hj is mapped into itself by a cyclic subgroup Γό of Γ {Hj covers an an-
nulus in X with one boundary curve on 3X). The given map /: Ij —» Ij com-
mutes with Γj. We need to define σ so that σ(f) maps Hό onto itself, equals
the identity near the noneuclidean line which bounds Hό in tfί, and commutes
with Γj. We leave the construction to the reader.

Corollary. Q)X(X) is contractible.
In fact ^o(I) is contractible because e(X) < 0.
(B) The proof of Theorem ID when e(X) > 0 is a simple modification of

the above argument. All that is necessary is to replace @0(X) or its analog @0(Γ)
by a contractible subgroup. For the annulus or Mobius band the group @0(X ;x0)
suffices, as we saw in § 6. For the unit disk, we saw in § 2 that the group
@Q(X ô? *i5 χ2) fixing three boundary points is appropriate. In any event, Q)λ{X)
is a closed normal subgroup of the above groups and the homogeneous fibra-
tion is trivial, as in Proposition 7A. We conclude that Q)λ(X) is contractible in
all cases, as Theorem ID asserts.

8. The continuity theorem

(A) In this section we shall prove Theorem 2B. In fact, we shall prove
the corresponding statement for functions of class C m + α , and first need some
definitions.

Let D be a subregion of R2 bounded by smooth curves, and / an open sub-
set of 3D. For any integer m > 0 and real number 0 < a < 1, the Frechet
space Cm+a(D U /) is the vector space of complex valued functions on D U /,
whose partial derivatives of order m satisfy uniform Holder conditions with
exponent a on each compact subset of D U /. Convergence in Cm+a(D U /)
means convergence in the norm || | |£ + α (see e.g. [15, pp. 6, 8]) on every
compact s e t G c D U / .

If 3D is compact, the Banach space Cm+α(dD) is the vector space of com-
plex valued functions on 3D, whose m th order derivative (with respect to arc
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length) satisfies a uniform Holder condition with exponent a on 3D. We shall
denote the usual norm by || \\dJ)

+a (see e.g. [15, p. 18]).
Let us note two inequalities. If D is bounded and /, g <= Cm+α(25), then

(8.1) l l fe l l£ + «<C| |/ | |£ + α | | ^ | |£ + β ,

(8.2) l | / | | ^ « < C | | / | | £ + α ,

where the number C depends on ra, a, and D, but not on / or g.
(B) Let D = <%, and let J<m+a(W U /) be the set of functions ^ e C m + a ( f U /)

such that \μ(z)\ < 1 for all z <= °U U /. If \μ(z)\ < k< 1 in %9 then there is a
unique solution wμ of Beltrami's equation (2.2) which is a homeomorphism of
# onto itself and leaves 0, 1, oo fixed. If μ e J(m+a(W U /), then wμ e C m + 1 + α

and is a C m + 1 difϊeomorphism onto its image. Theorem 2B is an immediate
consequence of the following

Continuity theorem. For each k<l, the map μ>-+wμ is a homeomorphism
of the set {μ <= Jϊm+a(W U /) sup \μ(z)\ <k< l,zeW U 1} onto its image in
Cm+ι+a(W U /).

Here the integer m > 0 and the number 0 < a < 1 are fixed but arbitrary.
We remark that Ahlfors and Bers [4] have shown that the above map μ*-+wμ

is continuous with respect to the compact-open topology in C(% U /). If there
were no boundary segments our continuity theorem would be a consequence of
the Ahlfors-Bers theorem and standard interior estimates (see [7]). The
boundary estimates are harder to obtain. Our method yields an essentially self-
contained proof of the complete continuity theorem. Of course we rely on the
Ahlfors-Bers theorem.

(C) Since (wμ)z Φ 0 in °U U /, the map wμ *-* μ is continuous. Thus, to
prove the continuity theorem we need only show that μ\-+wμ is continuous.
The proof will be given in three steps. We shall always assume that our func-
tions μ(z) are bounded by a fixed number k < 1.

(Q) Step 1. D C C Dγ will mean that D is a compact subset of R2 con-
tained in Dj. By supp(/) we mean the closure of the set of points z where
f(z) Φ 0. We shall first show that if μn -> 0 in J<m+a(W U R), with

supp (μn) C G C C % U R

for some fixed G, then wμn -+z in C m + 1 + α ( ^ U R). It is obviously sufficient
to show that wμn —> z in Cm+ί+a(G1) for any region Gx for which G C Gλ c C
°U U R, where we may assume without loss of generality that Gx is simply
connected and dGλ is of class C°°.

We first remark that by a theorem of Ahlfors and Bers [4, p. 399], wμn —»z
uniformly on any compact subset of % U if. Extend each of the mappings wμn

to R2 as homeomorphisms by reflecting with respect to R. Denoting the ex-
tended mappings by wμ we have
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(8.3) wκ(z) =

where it is easily verified that

μn(z) for z e °U U R ,

/zn(z) for z e ^ .

We remark that μw and the derivatives of w* may have jump discontinuities
across those points of R which belong to dGγ. Set wn = w* it follows from
the above formulas that wn —> z uniformly on any compact subset of R2 and

| | Γ u ; ) II ΐ

+ α — \\\wnh\\m + a

where Gf is the reflected image of Gλ. Let G2 = {z; |z| < R} where R is so
large that Gx U Gf C G2, and set 4̂ = G2 — G1# A is a doubly connected region
with C°° boundary. Since μn and (wn)Έ vanish outside Gλ U Gf we have

(8.5) ll(w»-2)slli+. = 11(^-^-11^.

We wish to estimate ||w — z\\^+1+a. For z e G2 the Pompeiu formula [15, p.
41] gives us the representation

(8.6) ^ _ r r (w.(g) - f) ? dd-ξ

2πi J J f - z

= /1>n(z) + /2)B(z) + 73>n(z) .

From here on, C will denote a number which depends at most on m and α.
Now

(8.7) l|/i,»l£1

+i+. < C (sup \wn{z) - z\) .
\z\=R

The functions /2jn(z) and 73jn(z) are continuous on i?2, and from classical esti-
mates (see e.g. [15, p. 56])

(8.8) \\l2Al\^

(8.9) | |/3,X+i+« < C ||(wn - z), | |^+ α = C ||(wn - z),|&+α ,

where we have used (8.5). By (8.2) and (8.9) we have

II / ll3Gi <? C II fw 7^ ll^i
lly3,n||m + l + α S ^ \\\}rn — Z)s\\m + a .
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But I3 n(z) is analytic in Gλ and continuous across dGx; therefore (see e.g. [15,
p. 22])

(8.10) \\h,n\\ί\1+a < C \\(wn - z\\t\a

Now wn(z) — z satisfies the non-homogeneous Beltrami equation

(wn — Z)-Z = μn(wn — Z)z + μn in Gλ .

Hence

(8.11) ||(wn - z\\t\a < C{\\μn\\G

m\a \\{wn - z)z\\g\a + \\μn\t\a) ,

II(w« ~ Z\\t\« < C(\\μn\\l\a \\wn - z | |£ + 1 + β + \\μn\\%+a) .

Applying the estimates (8.7), (8.8), (8.10) and (8.11) to (8.6) we obtain

II Wn - Z\\ί\i+a < C(s\Xp\wn - Z\ + \\μn\\g\a\\wn - Z\\g\1 + a

(8.12) w=R

Since wn —> z uniformly on any compact subset of R2 and H/inll̂ +α —*• 0, we
have that \\wn — z\\%+1+a -+ 0 which was to be shown.

(C2) Step 2. Suppose that μn -> μ in J(m+a(ty U i?) where

supp (μn) C G C C t U Λ ,

for some fixed G. We wish to show that wμn ^ wμ in C m + 1 + α ( ^ U /?). The
mappings win — wμnow~ι € C m + 1 + α ( ^ U R) are homeomorphisms of the closure
of °U onto itself fixing 0, 1, oo, where

= Γ /in

L 1 -

Since (wμ)z € Cm+a(W U /?), (wμ)z Φ 0 on ^ U R and sup {|^/i| z e ^ U #} <
A:2 < 1, it follows easily that Λn -> 0 in Jίm+a(% U i?). Since

supp (λn) c w,(G) c c t U ] ? ,

we have from the result of Step 1 that win -+z in C m + 1 + α ( f U Λ). Since
precomposing wλγι with wμ is a continuous operation in C m + 1 + α ( ^ U R) we find
that wμn -^ w^ in Cm + 1 + α(^r U # ) , which was to be shown.

(C3) Step 3. We are now in a position to complete the proof of the con-
tinuity of the map μ •-• wμ. Let μ e Jtm*a(?tt U /) and suppose that μn -» /̂  in
Jtm+a(ty U /). We wish to show that w/,n -^ w^ in Cm+1+a(^ U /). It is suffi-
cient to show that for each point z0 € °ti U / , there exists a neighborhood F of
z0 such that wμn -* wμ in Cm+ι+a(¥JJT(TV). Setting w/ln = wn and w^ = w,
we remark that wn -+ w uniformly on any compact subset of % U R.
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Let us first suppose that z0 € / . Let Nj be the open disk Nj = {z; \z—zQ\<jd}
where / = 1, 2 and d>0, and choose d so small that μn->μ in C m + α ( ¥ U 7 7 W 2 ) .
Let β{x) be a real valued C°° function of the real variable x defined for x > 0
with 0 < β(x) < 1, β(x) = 1 for 0 < x < d and β(x) Ξ 0 for JC > 2d. Defin-
ing viz) = j8(|z - zo|)μ<A> a n d *n(*) = jS(|z — zo|)/infe) for z € <2f U R we have
that yn -> v in Jϊm+a(ty U J?) and supp (yn) c f U/ΠiV 2. Setting JFW = wϋw

and W = wB we have from Step 2 that Wn -* W in Cm+1+a(W U R); as a con-
sequence JF; 1 -> PF"1 in C m + 1 + α ( ^ U i?).

Let TV, τvn, P^, PFW, PF"1, ί^"1 be the homeomorphisms of I?2 onto itself
obtained by extending w,wn,W, etc. by reflection with respect to R. That is
we define w etc. as in (8.3). It then follows that wn —» TV and W'1 —> W~ι uni-
formly on AΓ2 where μn = vn and μ = v on Nλ. By the representation theorem
of Morrey (see e.g. [15, p. 100])

(8.13) wn(z) = ψn(Wn(z)) on N, ,

where the 0W are conformal mappings of the domains Wn{N^) onto the domains
τvw(Nj). Now there exists a neighborhood N of z0, NdNλ, such that
fF(iV) C WniNJ for all n sufficiently large. Then since ψn = WnoW'1, it follows
that the ψn converge uniformly on W(N) and therefore the derivatives of ψn

of any finite order converge uniformly on any compact subset of W(N). In
view of (8.13), wn -• w in C m + 1 + α ( ^ U / Π V) where V is any neighborhood
of z0 with V CZN. Thus the proof is complete for z0 € / ; for z0 e ^ we repeat
the above argument, omitting the step in which the mappings are reflected.

Added and Proof

1) The paper of Z. G. SefteΓ [17] came to our attention recently. The
continuity theorem of § 8 can be derived from Theorem 1 of that paper to-
gether with interior estimates. We feel that our short self-contained proof has
merit.

2) Since our continuity theorem deals with functions of class C m + α , we
can construct an analogue of our bundle (1.1) with the Banach manifold of
Cm+a conformal structures on X as total space. As a corollary, Theorem 1C
remains true for diffeomorphisms of class C m + 1 + α , for m > 0.
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