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REDUCIBILITY OF EUCLIDEAN IMMERSIONS
OF LOW CODIMENSION

STEPHANIE ALEXANDER

1. Introduction

By a theorem of Kobayashi, the holonomy algebra of a compact D-dimen-
sional Riemannian manifold M, isometrically immersed in Euclidean space
RD+\ is the full orthogonal algebra (M is not reducible, therefore). Suppose
M is a reducible compact D-dimensional manifold having an isometric immer-
sion ψ in RD+2. A theorem of R. L. Bishop gives the holonomy algebra of M
at m to be the sum o(K) + o(D — K) of two orthogonal algebras acting on
complementary orthogonal subspaces of the tangent space Mm. We show
(Theorem 8.2) that, at least when φ is one-one, ψ is in fact the product of
two immersions of hypersurfaces, with an exception occurring in the case
K= 1 or D - 1.

In § 9, certain Euclidean immersions are shown to be cylindrical. The follow-
ing result, for example, follows from the codimension one case and a well-
known theorem of Hartman and Nirenberg: If a complete D-dimensional
manifold M has an isometric immersion φ in RD+1, then M is a Riemannian
product MXX RD~K, where the restricted holonomy group of Mx acts irreduc-
ibly, and φ is (D — IQ-cylindrical.

Throughout, M indicates a connected Riemannian manifold, and all struc-
tures are C°°.

This material is from the author's doctoral dissertation submitted to the
University of Illinois. The author is very grateful to Professor Bishop, her
advisor, for many interesting and helpful discussions.

2. Isometric immersions

Some basic material concerning an isometric immersion φ: M-+M is out-
lined here, largely to establish notation.

Let K and K be the Riemannian tangent bundles of M and M respectively.
K_ is identified through the tangent map dφ with a metric sub-bundle of
K\M; KL will be the sub-bundle with complementary orthogonal fiber over
each m (we write: Mm + M^ = Mm). Letting $ be the algebra of smooth

Received March 19, 1968. This work was supported by an American Association of
University Women fellowship.
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functions on M, we have the ^-modules X, X and X-1, consisting of the smooth
sections of K\M, K and K1 respectively. X is the direct sum of X and X1,
and P (P1) will be the corresponding projection of X onto X (X1).

Consider the Riemannian connection F on K: or, rather, the restriction
connection F: XX X—>X on K\M. Then the Riemannian connection on K
is F: X X X -> X: (X, Y) — F^Y where F^Y = PF^Y. We write

( 1 ) T ^ Y ^ P ^ Y , Z, Y i n X .

On K1, P 1 induces the connection

F^: X X X^ - X^: (X, Z) — F ^ Z ,

where FJ-XZ = P^PXZ. Here, we write

( 2 ) ΓZZ = PF^Z , X in X, Z in 3μ .

Let # : X X X X X -> X be the curvature tensor of M (that is, of the Rie-
mannian connection P on K). By definition, R assigns to every (X, Y) in
X X X the mapping Rxγ = F [ X > y ] — [F z , Fy] of X into X. # is trilinear over
g, hence determines, for m in M and x, y in Mm, the skew-symmetric curva-
ture transformation Rxy of Mm into itself. Let R^: X X X X X1 -»X1 be the
curvature tensor of F x on KL, similarly defined by the equation RL

XY

= V\χ%γ \ — WLz> F^Y] and determining the "normal curvature" transforma-
tions R^w Of Mm

L.
Then by the Ambrose-Singer holonomy theorem, the holonomy algebra at

m of M is spanned by the parallel translates to m of the curvature transforma-
tions Rxy at all of the points of M; and the holonomy algebra at m of the
connection F x on Kx is similarly determined by the transformations RL

xy.

3. The difference operator T

(1) and (2) define a bilinear mapping T over g of X X X into X. At each
m, the resulting bilinear transformation T of Mm X MTO into Mm satisfies, for
x, y in Λίm and z in Mm^: 7 > e Mm^; Γ,z € Mm; Γ_,y = Γ ^ ; and <Txy, z>
= — (Txz, yy. Here, <( , > is the inner product on Mm. Clearly, the action of
Tx on Mm is determined by its action on Mm. A more detailed discussion of
the tensor T may be found in [4].

The following two results are easily verified:
3.1. Lemma. Let R be the curvature tensor of M. Then for x, y in Mm,

Rxy = PRxy + [Tx, Ty],
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3.2. Lemma. M is totally geodesic in M under ψ (that is, geodesies of M
are geodesies of M, under ψ) if and only if T is zero everywhere.

The second fundamental form transformations Sz: Mm -> Mm otψatm are
defined by

( 3 ) Szx = Txz, z in Mm±, x in Mm .

Since (Szx, y} = — (Txy, z>, and Txy = Tyx, the Sz are symmetric.
Finally, suppose M1-^ M2-^ M3 is a chain of isometric immersions, with

Tij the difference operator of the immersion of Mi in Mό. Then for x, y in
( M ^ , we have

( 4 ) (Tu)xy = (Tl2)xy + (T23)xy .

4. Euclidean immersions

We apply Lemma 3.1 to an isometric immersion ψ: M —> RD+E of a Z>-
dimensional manifold M in (D + ^-dimensional Euclidean space. At any m
in M, the relation 7 ? ^ = [Tx, Ty] holds on M^,-1:

4.1. Lemma [2, p. 230]. The normal curvature tensor R1^ of ψ is zero at
m if and only if the second fundamental form transformations of ψ at m are
simultaneously diagonalizable.

Proof. Lemma 3.1 and (3) give <RL

xyz, zr> = <JC, [5,, Sz,]y}, for z, zf in
Mm

L. A set of symmetric linear transformations of Mm is commutative if and
only if the transformations simultaneously have diagonal form with respect to
some orthogonal basis, q.e.d.

In [1], the formula Rxy — [Tx, Ty] is given a useful expression in terms of
the second fundamental form transformations. The orthogonal algebra o(Mm)
(skew-symmetric endomorphisms of Mm) and the space M m

2 of Grassmann
bivectors on Mm are identified, according to the rule xy(w) = ζx, w}y
— (y> w}x. For later reference, we include the formula for Lie product in

[xy, vw] = <*, v}yw + <>, w}xv

— <Λ:, w}yv - < j , v}xw .

If zD+ι, , zD+E are a normal frame at m (an orthonormal basis of Mm

L),
setting Sa — SZa (D + 1 < a < D + E) and regarding Rxy as a bivector gives:

4.2. Lemma. Rxy = Σa(Sax)(Say) .

5. Relative nullity

The relative nullity index v of ψ: M -> M is the integer-valued function on
M defined as follows [3]: let the relative nullity space 0ί{jή) of ψ at m consist
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of all x in Mm satisfying Tx = 0, where T is the difference operator of ψ, and
let vim) be the dimension of 0t(ni).

In the case M = RD+E of interest here, we have:
5.1. Lemma [10], [5]. Suppose the relative nullity index of the isometric

immersion ψ: M —• RD+E is constant on M. Then the relative nullity distribu-
tion 0ί onM is smooth and integrable, its leaves are totally geodesic in RD+E,
and the tangent planes to M are Euclidean parallel on each leaf.

Proof. If Tx = Tγ = 0 for X, Y in 3E, then T?χY = 0; indeed, for any
vector field W in 3E,

ΎWVXY = W X Z W ι x ^

= T^Y - i^y = o.

Differentiability of 0ί follows from its definition. By the remark above, VXY
is nullity whenever X and Y are. Then by the Frobenius theorem, since
[Z, Y] = VXY — VYX, 01 is integrable; and by Lemma 3.2, each leaf L of
0ί is totally geodesic in M. Indeed, since T@{m)t%(m) = 0 everywhere, (4)
implies that L is totally geodesic in RD+E under ^ | L . The final statement is
immediate from the defining relation, T^(m)Mm = 0 for all m.

6. Relative nullity foliations

Let M be a manifold having an isometric immersion ^ in ΛZ)+£;. Suppose
JV is an open subset of M on which the relative nullity index of φ is constant,
and let 9t be the relative nullity distribution on N. Let m be a point of iV, L
the leaf through m o ί ^ , and m* any point of the closure of L in M.

For x in M m or &/„/, let JC* be the Euclidean parallel translate of x to m*.
By Lemma 5.1, we have Aίm, = (M m )* .

6.1. Lemma. ΓAere is an isomorphism U — U(m*) of Mm onto Mm+
satisfying, for all x and y in Mm,

( 6 ) (?χy)* = Tϋxy* ,

where T is the difference operator of ψ.
Proof. We will define a transformation C/(m*): Mm —> Mm* satisfying (6),

and non-singular on M(m). Then U(m*) is non-singular; by (6), Ux — 0 im-
plies Tx = 0, hence that JC is in 0l(m).

On ^ ( m ) , let E/(m*) be Euclidean parallel translation to m*. Since the
translate of 0t(jn) is ^ ( m * ) if m* lies in L, and hence is nullity if m* is any
limit point of L, (6) is satisfied for x in ^ ( m ) . We now define V(π&) on

By Lemma 5.1, if / is the dimension of 3t', the leaf L of Λ lies in a Eucli-
dean /-plane under ψ. For w in L, let P(ri) denote the complementary ortho-
gonal plane through φ(n). Each point of L has a coordinate neighbourhood C
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in N, for which the leaves of 01 \ C and the slices through C by the planes P(n)
are complementary coordinate slices.

Suppose m* is in L. Joining m and m* in L, with a path covered by coor-
dinate neighbourhoods C, we see that the leaves of 0ί establish a difϊeomorph-
ism from a neighbourhood of m in the slice through M by P(m), onto a
neighbourhood of m* in the slice through M by P(m*). Let ί/(m*) be the
corresponding tangent map at m, from 0t(m)L Π Mm onto ̂ (m*)1 Π Mm*. (6)
follows from the definition of T and the fact that tangent planes of M are
Euclidean parallel on each leaf of ^ .

Now suppose m* is in the closure of L. If the ^-image of each leaf of 0t is
extended to a complete /-plane in RD+E, these planes establish by intersec-
tion with PQn*), a difϊerentiable mapping into P(m*) from a neighbourhood
of m in the slice through M by P(m). If m* is in L, the corresponding tangent
map at m, from 0ίiyn)L Π Mm into ^(m*) 1 , agrees with £/(m*). This shows
that ί/(m*) is uniquely defined for any m* in L, and that if m* is not in L,
then U has a continuous extension to m*. q.e.d.

This lemma may also be deduced from the paper [5] by Philip Hartman.
Then we have the following theorem of Hartman (proved in an original ver-
sion by Barrett O'Neill [10], under the additional assumption that M be flat):

6.2. Theorem [5]. Suppose M is a manifold with isometric immersion φ
in Euclidean space. Let N be an open subset of M on which the relative nul-
lity index of ψ is constant, say v(N) — /, and let 0t be the relative nullity
distribution on N. Then v takes constant value I on the closure of each leaf
of m.

In particular, let N be the open subset having minimum relative nullity.
Then each leaf of 0t is closed in M; if M is complete, each leaf of 0t is com-
plete.

Proof. If m is in a leaf L of 0ί, and m* is in the closure of L, then by
Lemma 6.1 the relative nullity space of ψ at m* is ^(m)*. This verifies the
first claim, which, together with the fact that the leaves of 0t are totally
geodesic in RD+E, implies the rest, q.e.d.

We will need a generalization of Lemma 6.1 to the case where N is not
open in M. Again, let M have an isometric immersion ψ in RD+E. Suppose Λf
is a Riemannian submanifold of M such that (i) the relative nullity index of
the isometric immersion ψ\N of N in RD+E is constant, and (ϋ) at every n in
N, the relative nullity space of ψ \ N is the intersection of Nn and the relative
nullity space of ψ.

Let 0t be the relative nullity distribution of ψ \ N on N. Choose minN, and
choose m* in the closure in M, of the leaf L of ^ through m; let c* be the
Euclidean parallel translate of x from m to w*. Then (ii) implies Mm*
= (Mm)*. Of course, if m* is in L, Lemma 5.1 implies Nm* = (Λfm)*.

6.3. Lemma. There is an isomorphism U = ί/(m*) of Nm onto (Nm)*
satisfying, for all x in Nm and y in Mm,
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(7»* = Tϋxy* ,

where T is the difference operator of φ.

Proof. Condition (ii) is sufficient to allow a proof exactly corresponding
to the proof of Lemma 6.1.

7. Reducibility

We consider a reducible Riemannian manifold, that is, a manifold M for
which the holonomy group Hm has a nontrivial invariant subspace si{m) in
M m . si{m) extends to a self-parallel (hence integrable) distribution ^ o n M ,
Let A(ri) be the leaf through n of si, and #(«) the leaf through n of ^ = J / X .
These leaves are totally geodesic in M, and are complete if M is complete.

Every point m in M has a neighbourhood N for which each leaf A'(n) of
si\N intersects each leaf B'(ri) of 38\N exactly once, and for which the
mapping n-»(B'(ή) Π A\m), A'(rί) Π B'(m)) is an isometry of N and A'(m)
X £'(m).

If each leaf of si intersects each leaf of 38 exactly once, it follows that the
mapping n—> (B(ή) Π A(m), A(ή) Π B(m)) is an isometry of M and A(m)
X B(m). The de Rham product theorem states that when M is simply con-
nected and complete, the leaves of si and 38 have this unique intersection
property. When M is complete, the de Rham theorem applied to the (com-
plete) simply connected Riemannian covering manifold of M implies that each
leaf of si intersects each leaf of 38 at least once.

A more thorough discussion may be found in [7] (especially pp. 179-193,
p. 162).

8. Immersions of codimension two

Suppose M is a compact D-dimensional manifold isometrically immersed in
RD+2. We have the following theorem of Bishop:

8.1. Theorem [1]. // D Φ 4, the holonomy algebra hm of M at m has the
form o(U) + o(Ux) where U is a K-dimensional subspace of Mm (0 < K < D;
for convenience, we may say instead that hm has the form o{K) + o(D — K)).
If D = 4, the unitary algebra of some complex structure on Mm is also a pos-
sibility.

For any positive integers D and K < D, examples may be found of
Euclidean immersions of codimension two yielding holonomy algebra o(K)
+ o(D — K), as above. Indeed, two isometric immersions φι: A -+RK+1,
φ2: B —• RD~K+1 of hypersurfaces give rise to an isometric immersion φx X φ2

of the Riemannian product A X B in RD+2: for a in A and b in B, let
(φi X ψz)(a> b) — (φxa, φ2b). If A and B are compact, A X B has the required
holonomy.
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8.2. Theorem. Let M be a reducible compact manifold of dimension
D > 2, having an isometric immersion ψ in RD+2. By Theorem 8.1, the holo-
nomy algebra of M has the form o(K) + o(D — K) where 1 < K < D — 1.
Suppose (M*, π) is the simply connected Riemannian covering of M. Then
(i) if 2 < K < D — 2, φ o π: M* -+ RD+2 is the product of two Euclidean im-
mersions of hypersurfaces (ii) if K = 1 or D — 1, the same conclusion
holds under the additional assumption that the normal curvature tensor of φ
be zero.

8.3. Corollary. In case ψ is one-one, the statement "φ is the product of
two Euclidean immersions of hypersurfaces" may be substituted in Theorem
8.2.

Proof of Corollary 8.3. By assumption, M carries self-parallel distribu-
tions J / and ̂  = srfL of dimensions K and D — K respectively. Theorem 8.2
states that, under the hypotheses of (i) or (ii), the leaves A(m) of J / lie in
parallel Euclidean {K + l)-planes under φ and the leaves B(m) of 31 lie in
the orthogonal family of (D — K -f l)-planes. But if φ is one-one, the fact
that the ^-images of A(m) and B(m) intersect only once implies that A(m)
and B(m) intersect only at m; thus M is isometric to A(m) X B{m), and φ is
expressible as the product of an immersion of A(m) in Rκ+ι and an immer-
sion of B(m) in RD~K+l. q.e.d.

In order to prove Theorem 8.2, we first give some lemmas which apply in
both cases (i) and (ii), without restriction on the normal curvature tensor of
φ. As above, M carries self-parallel distributions J / and 38 — stfL of dimen-
sions K and D — K respectively. The holonomy algebra hm of M at m is the
sum of the orthogonal algebras on s/(m) and ^(m).

8.4. Lemma. The relative nullity space of φ\A(m) at m is the intersec-
tion of <$/(m) and the relative nullity space of φ.

Proof. By (4), since Aim) is totally geodesic in M, we need only show
that the relative nullity space of φ\A(m) lies in the relative nullity space of φ.
Furthermore, if x in s/(m) lies in the relative nullity space of φ\A(m), then
Txjtf{m) = 0, where T is the difference operator of φ. It remains to show
TMm) = 0.

Suppose instead that Txy Φ 0 for some y in 08(ni). Then

(Rxyx, y} = <[ΓX, Ty]x, y} = - <7\j>, Tyx)

where R is the curvature tensor of M. But it is an immediate consequence of
the local product structure of M that Rxy — 0. q.e.d.

Now at each m in M, let r(m) be the subalgebra of hm which is generated
by the curvature transformations of M at m. In bivector notation, we have
hm = sd(mγ- + @(m)\ and, by Lemma 4.2, r{m) generated by {Σa(Sax)(Say)
\x, y in Mm} where the za are a normal frame at m (D + 1 < a < D + 2).
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Let D(Sa) be the subspace of Mm, which is simultaneously the range of the
symmetric transformation 5α, the orthogonal complement of the kernel, and
the span of the non-nullity eigenvectors. Then the following lemma is a con-
sequence of [1], in which the possibilities for r(m) are determined.

8.5. Lemma. At any m in M there is a choice of normal frame for which
each Sa has the property: if the rank of Sa is not one, then D(Sa) lies in
j/(m) or in &(m).

Proof. We observe that if x and y are independent vectors in Mm, and xy
is in j/(m)2 + ^(ra)2, then x and y are both in s/(m) or both in @i(rri). Thus,
if V2 lies in <srf{m)2 + &(m)2, and the dimension of V is not one, then V lies
in j/(m) or in @{m).

Now if the normal frame can be chosen so that D(SD+1) Φ D(SD+2), then
D(SD+1)

2 + £>(SD+2y generates r(m) by Lemma 8 of [1], so that each D(Sa)
2

lies in j/(m)2 + 3§(m)2.
Otherwise, there is a subspace V of Mm for which, for every choice of

normal frame, D(SD+1) = D(SD+2) = V. By Theorem l(bθ of [1], r{m) is
either V2 or the unitary algebra of an isometric complex structure J on V. In
the first case, V2 lies in s/(m)2 + @l(m)2. In the second case, for an orthonor-
mal basis *1? , xD,, Jxλ, , JxD, of V, s/(m)2 + 38{m)2 contains all jq/jc*
and all xtxs + Jxjxj it follows from the initial remark that then V lies in
s/(m) or in ^(m).

8.6. Corollary. T^(m)^(m) = 0 // and only if there is a choice of normal
frame at m for which each D(Sa) lies in j/(m) or in <%(m).

Proof. Suppose Γ^(m)(^(m) = 0. Then Sa^(m) c j/(m), Sa@(m) c @{m)
for any Sa in particular, if Sa has rank one, then its range is in s/(m) or in
&(m). Choose the normal frame as in Lemma 8.5.

8.7. Lemma. Suppose that at every m in M, T^{m)^{m) = 0. Then ψ o π
is the product of two Euclidean immersions of hypersurfaces.

Proof. By hypothesis, & is Euclidean self-parallel on each leaf of J / , and
j / , on each leaf of 88. We will show that the leaves of J / lie in parallel Eu-
clidean (K + l)-planes under ψ, hence that the leaves of Λ lie in the ortho-
gonal family of (D — K + l)-ρlanes. By the de Rham product theorem, this
suffices.

We use the index convention 1 < /, / < K, K + 1 < r, s < D, D + 1 < a,
b < D + 2. A frame field Xl9 , XD+2 on M, for which the Xi lie every-
where in jtf and the Xr lie in «̂ , will be called "adapted". Then we have
VxXr = VxXr and FXrX, = VxXt.

Suppose N c A(rri) is an open subset carrying an adapted frame field for
which each Xr is Euclidean self-parallel. Since M is locally a Riemannian
product, this field may be extended locally to an adapted frame field satisfy-
ing VxXr = VXrXt — 0 on an open subset of M. For such an extension,
we have
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o = < ί W A χa> - <[rx<, F*r]*s, xay

Thus on JV we have

for

Consider a point m in M, at which Ta{m)&(m) Φ 0; such a point exists,
since M is compact. There is a choice of normal frame at m satisfying
D(SD+1) C j/(ra) and D(J5D+^ C ^(m). Indeed, suppose not; then both D(Sa)
must lie in &{m) by Corollary 8.6, and the corresponding second fundamental
form transformations S*oiψ\ B(m) at m are not scalar multiples (otherwise a
rotation of the normal frame would send one Sa into zero, and D(0) c s#(m)).
Let C be the connected component of m in the subset of Λ(m) consisting of
points at which the S* are not scalar multiples (for some choice of normal
frame and hence for every choice). C is open in A(m) and contains only
points n satisfying ΓJ/(Λ)Mn = 0. We may therefore choose a Euclidean self-
parallel, adapted frame field Xl9 , XD+2 on C. By (7), the corresponding
functions — (TXrXt9 Xa} — (βaXr, Xs} are constant on C. It follows that
C — A(m) is a complete X-plane under φy in contradiction to the compactness
of M.

Now, at the given point m, choose a neighbourhood N in Λ{m) as described
above (see (7)), with frame field X19 , XD+2l take N sufficiently small so
that Ta(n)^(n) Φ 0 everywhere. It is easily shown possible to assume a
smooth choice of the Xa satisfying D(SD+ί) c stf(yi) and D(SD+2) c @(ri) at
every n in N. (The line La{ή) in which Xa(ή) may be chosen is of course uni-
quely determined.) By (7), since <TXrXs, XD+ι} = 0 and TΛ{n)a(n) Φ 0, we
have <FZiXD+t9 XD+1> = 0. Since also <FτiXD+2, Z r > = - <VXiXr, XD+2>
= 0 and <FJΓ.Zz?+2, Xsy — 0, Z^+2 is Euclidean self-parallel on N. It follows
from (7) that the TΣrXs are Euclidean self-parallelel on N.

It may be concluded that Tsin)38(ri) Φ 0 for all n in A(m). And since then
the LD+2(ή) and 31 span on /l(m) a Euclidean self-parallel distribution ortho-
gonal to s/9 A(m) lies in a Euclidean (K + l)-plane P under ψ.

For any point m' in M, B(mO intersects A(m). Since J / is Euclidean self-
parallel on B(mf), j/(mθ is parallel in RD+2 to P. It follows that ψ sends
every leaf of s/ into a (K + l)-plane parallel to P.

8.8. Lemma. Suppose T*{m)3S(m) = 0 at every point m at which M has
non-zero curvature. Then T^^&im) = 0 everywhere.

Proof. We may assume K>D — K. Then K > 2.

Consider the open subset C of M consisting of points at which T^(m) J*(m)
:£ 0, and suppose C to be not empty. Let the relative nullity index v of ψ
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take its minimum for C on the open subset N of C, and let 9t be the relative
nullity distribution on N.

We have v(N) > D - 2 > 0. Indeed, r(m) = 0 at any m in C by assump-
tion. By the proof of Lemma 8.5, there is a choice of normal frame at m for
which each D(Sa)

2 is zero, hence for which each Sa has rank zero or one.
Since 0t(jm) is just the orthogonal complement of D(SD+ι) + D(SD+2), v(m)
> D — 2. (Note: This conclusion is of course already available in [3], where
it is proved that for a Euclidean immersion of codimension £, r{m) = 0 im-
plies v(m) >D — E.)

Consider a geodesic ray γ: [0, <χ>) —• M starting at m in N with initial velo-
city vector in 0t(m) — {0}. If ^[0, c) lies in N, then γ[09 c) is a geodesic seg-
ment in the leaf through m of 01. It follows from Theorem 6.2 that γ leaves
N when it leaves C: say, γ[0, c) c N and ^(c) = m* $ C. Here, the compact-
ness of M implies that γ is not complete in N. Then we have j/(m*) = j/(m)*
and &(m*) = ^(m)* (by Lemma 5.1), and the relative nullity space of ^ at
m* equal to 9t(m)*. Since Γ^^^ίm*) = 0, Corollary 8.6 implies
is spanned by vectors lying in j/(m*) and ^(m*). It follows that
intersects j/(m*); otherwise, by considering dimensions, ^(m)* =
= J*(m)* and TΛ ( m ) = 0, in contradiction to the choice of m.

We conclude that at any m in N9 0t{ni) intersects j/(ra) non-trivially. Thus
if n is a given point of N, the relative nullity of ψ\A(ri) is non-zero every-
where in A(ή) Π N by Lemma 8.4. Let N be the subset of A(ή) Π N on which
the relative nullity of ψ\A{n) is minimal, and let M = 01 Π J / be the corre-
sponding distribution on N. A geodesic ray γ in A(ri), starting at m in N with
initial velocity vector in Mini) — {0}, will lie in the leaf through m oiM until
leaving N, and hence until leaving C: say, at f(c) = m*$C. But then
Tjw&Km*) = 0 and T^^im) Φ 0, and by Lemma 6.3 that is impossible.

Proof of Theorem 8.2. We need only show that T^{m)^{m) = 0 at every
m in M at which r(m) ^ 0:

Case (i). 2 < K < D - 2.
Suppose Tjw&in) φ 0 and, say, r(ή) Π ̂ (AZ)2 =£ 0. Let Λτ be the open

subset of A(ri) consisting of all points there for which Γ^(m)@(ni) Φ 0. By the
local product structure of M, we also have r(m) (Ί 3§{m)2 Φ 0 for every m in
N. Then it follows from Corollary 8.6 and Lemma 8.5 that at each m in N
we may choose a normal frame for which D(SD+2) lies in &(m) and SD+ι has
rank one, so that the relative nullity of ψ\A(ri) is K — 1 > 0 on N. But then
Lemma 6.3 and the compactness of M again imply that no such original point
n exists.

Case (ii). K = 1 or D — 1 ψ has zero normal curvature everywhere.
Suppose X = D — 1. Let C be the open subset of M consisting of all points

m at which T^m)a(m) Φ 0 and r(m) Φ 0. Suppose C to be not empty.
At any m in C, there is a normal frame, for which D(SD+1) lies in s/(m)

and has dimension at least two (since 0 Φ r{m) c j/(m)2), and S ^ has rank
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one. Further, if y is a non-nullity eigenvector of SD+2, then y = cyγ + d;y2,
where yι and y2 are unit vectors in s/(m) and ^ ( m ) respectively, and cd Φ 0.
Since the Sa are simultaneously diagonalizable by Lemma 4.1, and y is not in
D(SD+ι), SD+Ϊy = 0. Then S ^ ^ = 0 and 5 u + l ( - φ i + c;y2) = 0. Since also
SD+2(— dyx + cy2) = 0, the relative nullity index v of φ is positive at m.

Let Λf be the open subset of C, on which v takes its minimum for C, and
let 0t be the relative nullity distribution on N. A geodesic ray, starting at m
in N with initial velocity vector in 0t(jri) — {0}, lies in a leaf of 3/ί until leav-
ing C at a point m*. Then y(m) == v(m*), and the relative nullity space of φ
at m* is the Euclidean parallel translate ^ ( m ) * of g/t(jγi) to m*. Finally, for
a vector j 2 φ 0 in ^ ( m ) , Γ y i Φ 0 implies T y 2, =̂  0.

Since y(m*) = ρ(m) < D — 3, we must have r(m*) ^ 0. Since m* is not in
C, it follows that T^ ( m # )^(m*) = 0. By Corollary 8.6, since T^* f̂c 0, some
D(Sa) equals «^(m*), and the relative nullity space of φ at m* lies in efi/(m*),
that is, ί^(m)* lies in j / ( m ) * . This is impossible, since ^(m) is not in j / ( m ) .
q.e.d.

The assumption of zero normal curvature in Theorem 8.2 (ii) cannot be
omitted; Y. H. Clifton has given an example, for any D > 1, of a compact
/^-dimensional manifold M reducible with holonomy algebra o(D — 1) and
having an isometric imbedding in RD+2, which is not a product imbedding.

It is a corollary to Theorem 8.2, that if an isometric immersion ψ: M
—* RD+2 (M is compact and of dimension D > 2) has non-zero normal holo-
nomy, then M is either irreducible or reducible to o(D — 1). The example
cited above shows that the latter situation can occur.

9. A cylindricity theorem

Let φ be an isometric immersion of the complete D-dimensional manifold
MΪΆRD+E.

φ is said to be (D—X)-cylindrical if M and φ can be expressed as Rieman-
nian products M = Mλ X RD~K and ψ = ^ X e9 where φ1 is an immersion of
Mx in Rκ+E, and t is the identity map of RD'K. φ is (D - £)-cylindrical if
and only if M carries a (D — X)-dimensional, Euclidean self-parallel distribu-
tion (that is, a self-parallel distribution 3S on M, which satisfies Taim) — 0
everywhere). Indeed, if Si is such a distribution, its leaves are complete paral-
lel (D — X)-planes under φ. The leaves of 3SL then lie in the orthogonal
family of (K + £)-ρlanes, and have the unique intersection property with the
leaves of 08 since φ is one-one on each leaf of ^ .

Certainly, then, if (M*, π) is the simply connected Riemannian covering of
M, and the immersion φ o π of M* in RD+E is (D — X)-cylindrical, then 0 is
also (D — ^-cylindrical.

Now let / = /(M) be the number of non-trivial factors in the restricted
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holonomy group of M, that is, suppose the simply connected Riemannian
covering manifold M* has de Rham decomposition

M* = M1 X X Mj X R»-**t,

where Kt > 2 is the dimension of the irreducible factor Mt.

9.1. Theorem. Let M be a complete D-dimensional manifold, and ψ an
isometric immersion of M in RD+E having zero normal curvature tensor.
Then I(M) < E. If 1(M) = E, then φ is (D - ΣKt)-cylindrical

For codimensions E = 1,2, the assumption of zero normal curvature need
not be made.

Of course, every immersion of codimension one has zero normal curvature.
Before giving the proof of Theorem 9.1, we also state the following theorem
of Hartman and Louis Nirenberg:

9 2. Theorem [6]. An isometric immersion φ in RD+ι of a flat, complete
D-dimensional manifold M is (D — \)-cylindrical.

Proof [10]. Since M is flat (that is, has zero curvature tensor), and we
may assume M simply connected, we have M isometric to RD. The relative
nullity of φ is D — 1 or D on M. Then Theorem 6.2 and the fact that com-
plete non-intersecting (D — l)-planes in RD are parallel guarantee the existence
of a self-parallel (D — l)-dimensional distribution & on M satisfying Γ,(m)

= 0 at every point, q.e.d.
We combine Theorem 9.1 for E = 1 and Theorem 9.2:

9.3. Corollary. Let M be a complete D-dimensional manifold having an
isometric immersion ψ in RD+1. Then M — MλX RD~K, where Mx is irreduci-
ble, and φ is (D — K)-cylindrical.

When M is not flat, the integer K in Corollary 9.3 is the dimension of the
subspace of a tangent space M m , which is spanned by the parallel translates
to m of all D(SZ), where Sz is a second fundamental form transformation of
rank at least two.

Richard Sacksteder proved in [12] that if every sectional curvature of M is
non-negative and at least one is positive, then Corollary 9.3 holds and K is
in fact the maximal rank of the second fundamental form transformations of
M. In this case, φx{M^ was proved to be the boundary of a convex body,
which contains no line, in Rκ+ι.

The result Corollary 9.3 was remarked by Simone Dolbeault-Lemoine [8]
in the special case that M has no flat open submanifolds.

The proof of Theorem 9.1 requires the following algebraic lemma obtained
by a method of [1]:

9.4. Lemma. Suppose ψ: M —> RD+E has zero normal curvature tensor.
At every m in M, there is a choice of normal frame for which ΣD+ι^a^D+ED(Sa)

2

generates r(m).
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Proof. By Lemma 4.2, we need only find a normal frame at m, for which
each D(Sa)

2 lies in r(m).
By Lemma 4.1, there is an orthogonal basis xλ, , xD of Mm, for which

Tx.Xj = 0 whenever iΦj. Then TMmMm is a subspace of M m

x and we may
suppose TXlx19 -—,TXD,xD, are a basis. Choose the normal frame zD+ι,
• > £D+# SO that Γ ^ is a linear combination of zD+1, , Zχ>+< (1 < i < £>').

If £>' > 0, we have S ^ + Λ =£ 0 and 5 α ^ = 0 for a > D + 1. By Lemma
4.2, r(m) contains (SD+1x1)(SI)+lx) for all * in Mm, and then by (5), r(m) con-
tains D(SD+ιy. If />' = 1, then 5α = 0 for aU a > D + 1. If Df > 1, then we
have SD+3x2 Φ 0 and Sax2 = 0 for all a > D + 2, and r{m) contains all
(SD+ιx2XSD+ιx) + (SD+2x2)(SD+2x) and hence D(SD+2)

2, etc.

Proof of Theorem 9.1. By Lemma 9.4 and Lemma 8.5, all Euclidean
isometric immersions with zero normal curvature tensor and all of codimen-
sion two have the property: at any m in M, if r(m) lies in ΣV\ (where the \Ji

are orthogonal subspaces of Mm), then there is a choice of normal frame for
which each D(Sa) lies in one of the Ut or else has dimension one.

The conclusion 1(M) < E of Lemma 9.1 follows. Indeed, there is a point
m in M, at which r(m) lying in an algebra l Ί ^ / ^ t / ? has non-trivial inter-
section with each Ό\. Then Lemma 4.2 and the above remark imply that 7(M)
does not exceed E.

Now, given an immersion ψ: M —* RD+E with the property just discussed
and a simply connected and complete M with de Rham decomposition
Mx X X ME X RD-ΣX*9 we must show ψ to be φ - I^-cylindrical.
Thus if s/l9 . , stf E, St are the self-parallel distributions on M correspond-
ing to the given product structure, we must prove that Ta(m) = 0 everywhere,
that is, that ^(m) lies in the relative nullity space of ψ at every m in Λί.

Let C be the open subset of M consisting of all points n at which the rela-
tive nullity space of ψ does not contain &(ri), and suppose C to be not empty.
Observe that if r(m), which lies in -Γ^i^ ^ ί m ) 2 , intersects each of the
stfiQn)2 non-trivially, then m is not in C. Choose a point n of C, at which
r(ri) non-trivially intersects a maximal number (for C) of the J/^W)2, say
^ 7 , + 1 (n) , , jtfE(ri) where 1 < /' < E. Let L be the leaf through n of
stx + + sίv + a.

By the argument of Lemma 8.4, at any point m in L the relative nullity
space of φ \ L is the intersection of j/^m) + + jtfIf(m) + 8S(yri) and the
relative nullity space of φ. Thus LΓ\ C contains exactly those points m of L,
at which the relative nullity space oί ψ\L does not contain J*(m).

The choice of L ensures that L Π C contains only flat points of L. From an
examination of the second fundamental forms of φ at a point of L Π C it fol-
lows that we may choose a set of second fundamental form transformations
there for ψ \ L, for which at most V transformations are non-zero and of rank
one. Thus if Όf is the dimension of L, then the relative nullity index v of ψ \ L
takes values not less than D' — /' > 0 on L Π C. Let N be the open subset of
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L Π C, on which v takes its minimum for L Π C, and let ^ be the correspond-

ing relative nullity distribution on N.

Now suppose a geodesic ray γ in L, starting at w in Λf with initial velocity

vector in @(m) — {0}, leaves N, then by Theorem 6.2 we have γ[0, c) c Λf,

γ(c) = m* $C, and the relative nullity space of ψ \ L at m* equal to the Eu-

clidean parallel translate ^ ( m ) * of ^ ( m ) . Then ^ ( m ) * contains J*(m*)

= «^(m)*, and ^ ( m ) contains ^ ( m ) , in contradiction to the choice of m in

C. Thus we conclude that the leaves of 3ft, are complete (hence are complete

Euclidean ι>(7V)-planes under ψ).

We choose a Euclidean self-parallel vector field X on one of the leaves of

0t such that X(m) lies in ^ ( m ) and not in 0l{m) at some and hence every

point m of the leaf. At each m, the geodesic γm tangent to X(m) in L lies

entirely in a leaf of 8& and contains only flat points of L (since m is a flat

point of L). The union of the γm is easily seen to lie in a flat open subset of

L, and hence to form the image of jp<w+1 = p under a totally geodesic iso-

metric immersion φ of P in L.

Since y(ΛΓ) + 1 exceeds D 7 — Γ, then at p in P, the orthogonal projec-

tion of dφ(Pp) into s/i(φ(p)) is onto for some / (1 < i < Γ). Since p is totally

geodesic, and the geodesies of a product are products of geodesies, the pro-

jection mapping of φ(P) into any leaf of s$\ is onto this is impossible, since

φ(P) contains only flat points of L.
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