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COMPACT REAL FORMS OF A COMPLEX
SEMI-SIMPLE LIE ALGEBRA

ROGER RICHARDSON

Introduction

This paper gives a new proof of an old theorem, the existence of a com-
pact real form of a complex semi-simple Lie algebra. The theorem is a con-
sequence of the classification of real simple Lie algebras by E. Cartan in
1914 [1]. Later H. Weyl [8] gave an intrinsic proof based on the detailed
structure theory of semi-simple Lie algebras. Our proof, which is based on a
suggestion of Cartan [2, p. 23], is geometric in nature. The only results from
the theory of Lie algebras which we have used are the facts that if g is a semi-
simple Lie algebra, then the center of g is {0} and every derivation of g is in-
ner. On the debit side, however, our proof uses an elementary lemma from
algebraic geometry and does involve one long and unedifying computation.

We would like to thank S. Helgason, who greatly clarified Cartan’s brief
suggestion during a lecture at the Batelle Institute during the summer of 1967.

1. Preliminaries

R (resp. C) denotes the field of real (resp. complex) numbers. If S is a set,
then S™ denotes the m-fold Cartesian product § X --- X S. N, denotes the
set {1, ..., n}. If W is a vector space over C, then WR is the real vector
space obtained from W by restriction of scalars. If V' is a vector space over
C, then A™(V, V) denotes the vector space of all alternating m-linear maps
of V™ into V.

Let B={e, ---, e,} be a basis of V. If peA™(V, V), we write ¢(e,,, - - -,

€n) = i ;=1(Paye-ams)€j- The @q...am,, are the “coordinates” of ¢ with re-
spect to the basis B, and we often write ¢ = ¢(,,...an,,)- The basis B deter-
mines a positive definite Hermitian inner product on A™(V, V) as follows:
If ¢, gpeA™(V, V), then {op, ¢> = Y .0aps, Where the sum is taken over
al a=(a, ---, a,,,) e (N,)™*! and the bar denotes complex conjugation.
Let {¢, ¢, denote the real part of the complex number <{p, ¢>. Then (¢, ¢)
— <, ¢, is a positive definite inner product on the real vector space A™(V,
V)®. For peA™(V, V) we write |¢|* = {p, ¢) = {p, ¢Dr-
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Unless stated otherwise, all summation indices are understood to range from
1 to n. Thus, for example, in the expression 7, o) @pqr Ppqr» the sum is taken
over all (p, g) e (NV,).

2. Outline of the proof

A Lie algebra 8 = (V, g) consists of a vector space V' and an alternating
bilinear map o: ¥V X V — V which satisfies the Jacobi identity. We denote by
B, the Cartan-Killing form of (V, ¢). The Lie algebra § is semi-simple if the
form B, is non-degenerate. Now let g = (V, y) be a finite-dimensional semi-
simple Lie algebra over C. Then the Cartan-Killing form B, is non-degenerate,
and consequently we may choose a basis B = {e,, -- -, e,} of V such that
B,(e,, €;) = — 0,4, (3,, is the Kronecker delta). Henceforth we shall consider
A™(V, V) and A™(V, V)R to be given the inner products determined by the
basis B. We denote by ¥, the vector subspace of VZ spanned by {e,, - - -, €,},
and let A™(V,, V) be the vector subspace of A™(V, V)R consisting of all ¢
such that o(V,™) C V,. Suppose that ¢ = (¢,....am,,). Then ped™(V,, V)
if and only if each ¢,,....,,, isTeal. Let o = ¢, + ip, and ¢ = ¢, + ig, be
elements of A™(V, V) with ¢,, ¢,, ¢y, ¢eA™(V,, V,). Then one checks easily
that

$@s §Dr = Lp1s P17 + 25 P27 -

Let .# be the algebraic set in 4*(V, V) consisting of all Lie algebra multi-
plications, and .4~ the set of all ¢ ¢ 4 which satisfy the following conditions:
(1) (V, ¢) is isomorphic to g and (2) B, = B,. In order to show that g admits
a compact real form it suffices to show that &/ N A%V, V,) is non-empty.
For suppose that there exists ne A" N 4%V, V), and let ,: ¥V, X V, >V,
denote the restriction of 5. Then (V,, 7,) is a real form of (V, 5), and the
Cartan-Killing form of (V,, 7,) is negative definite. By a well-known theorem
(see [4, p. 122]) this implies that (V,, 3,) is a compact Lie algebra and hence
is a compact real form of (V, ). Since g is isomorphic to (V, 7), g has a com-
pact real form.

" Now let 5 = (3,4,) e #”. We have

77pqr = —By (v(ep, eq)’ er)
= _Bq (ep, ﬂ(eqa er))
= Tgrp -

Since we also have 7,,, = —4,-, it follows that 7,,, is skew-symmetric in
(p, g, r). By definition we have

2.1 apq =— Bq(ep’ eq) =—- Z(r,s) Nasrprs = Z(r.s) Ngrs Pprs +
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Hence we have 3, ., (75.,) = n. By considering real and imaginary parts
of 7,,, We see that

(22) ” 7 ”2 = Z(p,q.'r) |77pqr lz 2 n.

Furthermore we have equality in (2.1) if and only if 5e4*(V,, V).

This suggests that we try to minimize the function ¢ — || ¢ |2 on A". In §3
we shall show that /" is a closed set. Hence the function ¢ — || ¢ ||* attains a
minimum on /. In § 5 we shall show that if this function has a minimum at
ne A", then pe AV, V). This will prove the existence of a compact real
form of g.

3. First proof that A" is closed

There is a natural representation p of the general linear group G = GL(V)
on AV, V) defined as follows: If pe A%V, V) and g¢ G, then

3.1 (o(g) - o) (x,¥) = glop(g™*x, g7%y))

for x, ye V. The set A4 of Lie algebra multiplications on V is stable under
the corresponding action of G and the orbits of G on # are just the isomor-
phism classes of Lie algebra structures on V. Let H C GL(V) be the group
of all automorphisms of the form B,, and Y) the Lie algebra of H. In terms
of matrices with respect to the basis {e,, - - -, e,}, H is the group of all com-
plex orthogonal matrices and § is the Lie algebra of all complex skew-sym-
metric matrices. Let g¢ G and let ¢ = p(g) - . Then B,(x, y) = B,(g7'x, g7%y).
Thus B, = B, if and only if g¢ H. Hence we see that 4 is just the orbit
H(p).

Now let 4/ be the set of all ¢ e M such that B, = B,. It is easy to see that
A is an algebraic set in A%V, V). Let e N’ and let 8 = (V, ¢). Since B, =
B,, 8 is a semi-simple Lie algebra. The isotropy group at ¢ for the action of
G determined by p is just the group Aut(8) of all automorphisms of 3. It fol-
lows from standard properties of the Cartan-Killing form that Aut(3) C H.
The Lie algebra of Aut(8) is the Lie algebra Der(8) of all derivations of 3.
Since 8 is semi-simple, the center of 3 is {0} and every derivation of 3 is inner.
Thus dim Aut(3) = dim Der(8) = dim V (here dim denotes the complex
dimension). Consequently dim H(¢) = dim H — dim Aut(3) = dim H — dim
V. Thus we see that all orbits of H on ./ have the same dimension.

We shall need the following lemma, which is a special case of an elementary
result from the theory of algebraic groups.

Let 7:S — GL(W) be a rational representation of a linear algebraic group
S(over C), X be an algebraic set in W which is stable under the corresponding
action of S, and xe X be such that dim S(x) < dim S(y) for every ye X. Then
the orbit S(x) is closed.
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For a proof, see [1, Prop. 15.4].

Since the representation of H defined by p is rational, it follows from this
lemma that each orbit of H on /7 is closed. In particular, 4 = H(p) is
closed.

4. Second proof that ./ is clesed

For the benefit of the reader who wishes to avoid the use of algebraic geo-
metry, we give an alternate proof that 4" is closed.

A Lie algebra s = (V, ¢) is rigid if the oribt G(¢) is open in .#. Nijenhuis
and Richardson have proved that a semi-simple Lie algebra is rigid [6, § 7].
We shall give the proof here for the sake of completeness.

First we introduce some notation. If ¢, g AV, V), we define ¢ R ¢ ¢
A¥V, V) by

o N Px, ¥, 2) = olg(x, ¥), 2) + (¢, 2), ) + ¢($(z, X), y) .

One sees easily that ¢ X ¢ = 0if and only if ¢ satisfies the Jacobi identity. For
later use it is convenient to express ¢ A ¢ in terms of coordinates. If ¢ = (¢,q,)
and ¢ = (¢,,,), then we have

“.1) (0 N Pogrs = 2t PpatPers + Prot Pras + Pare Peps) -
Similarly, if e AV, V) and ¢ A%V, V), we define ¢ X 1 A%V, V) and
t AopeA*(V, V) by

o K t(x,¥) = p(z(x), ¥) — o(z(3), x) , T N o(x, ) = lp(x, ¥)) .

Now let 8 =(V, ¢) be a Lie algebra. An element ¢ ¢ A%V, V) is a 2—cocycle
of 3if ¢ X ¢ + ¢ A 0 = 0. Similarly ¢ is a 2—coboundary of 3 if there exists
e ANV, V) such that g = ¢ A 7 — t X 0. Z%8, V) (resp. B8, V)) denotes
the space of 2—cocycles (resp. 2—coboundaries) of 8. One checks easily that
B8, V) C Z%3, V). We define H*3, V), the second cohomology group of 3
with coefficients in ¥, to be the quotient space Z*@3, V)/B*3, V).

Proposition 4.1. If H8, V) =0, then 8 is rigid.

Proof. Define P:A*(V,V)— A%V, V) by P(p) = ¢ A ¢. Then 4 =P-1(0),

We have

Hence dP,, the differential of P at ¢, is just themapp—~d A ¢ + ¢ Ao. In
particular, Z%3, V) is the kernel of dP,. We define Q:G — AXV, V) by Q(g)
= o(g) - o. It follows easily from (3.1) that the differential dQ,:A(V, V)
— AV, V)isthemapr+— o A ¢ — t A ¢. Since G(¢) C 4 we have P - Q(G)
= {0}. Since H*(8, V) = 0, the kernel of dP, is equal to the image of dQ,.
An elementary argument using the inverse function theorem (see [7, Lemma
1]) shows that G(g) is an open subset of M. It follows immediately that G(o)
is open in M.



SEMI-SIMPLE LIE ALGEBRA 415

Proposition 4.2 (Whitehead). If g = (V, p) is semi-simple, then H(g, V)
= 0.

Remark. This is a special case of a theorem due to Whitehead (known in
the literature as “ Whitehead’s second lemma ). For the proof, which is purely
computational, see, e.g., [5, p.- 89, Lemma 6]. For the case at hand, the pro-
of in [5] can be shortened quite a bit as follows: Choose a basis {e,, - - -, €,}
of V as in §1. Then one can show by an easy computation using (2.1) that
—Y.;ade; o ade; (denoted by I in [5]) is equal to 1,, the identity operator
onV.

Corollary 4.3. A semi-simple Lie algebra over C is rigid.

The proof that 4" is closed is now immediate. If ¢ e A4, then G(¢) N A~
is relatively open in A”. Hence the complement of 4" = G(g) N A" is rela-
tively open in /4. Therefore 4 is relatively closed in 4" and hence is closed
in AXV, V).

5. Conclusion of the proof

Let F: A" — R be defined by F(¢) = {¢, ¢>, (=|¢|) and assume that F
achieves a minimum at . We may write y = a + ig with a, e A4*(V,, V),
and wish to show that 8 = 0.

Since F has a minimum at 5, we must have

0= T‘iit_ {o(exptX) - 7, p(exp tX) - ), |,
= 2 {dp(X) - 9, n),

for every X ¢ hR, where exp:hR — H denotes the expotential map of the (real)
Lie group H.

Let h, = hN A (V,, V,). (With respect to the basis B, §, is the Lie algebra
of all real skew-symmetric matrices.) The real Lie algebra )& is a vector space
direct space direct sum Yy, + ify,. If X ¢ ), then it is easy to see that dp(X) is
skew-symmetric with respect to ( , ,, and hence (5.1) holds. If X ={Y
with Y ¢}, then (5.1) becomes

= idp(Y) - (@ + ip), a + if),

S.1

5.2
62 =<dp(Y) - (la — p), @ + i),

= — (dp(Y) - B, a), + <dp(Y) - @, B}, .
Since dp(Y) is skew-symmetric with respectto { , >,, (5.2) gives
(5.3) dp(Y) -, B, =0 for Yeb,.

At this stage it is easier to work in terms of coordinates. Let Y e ), and (Y ,,)
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be the corresponding skew-symmetric matrix. Since (7,,,) is skew-symmetric
in (p, g, 1), so are (a,,,) and (8,,,). Equation (5.3) is equivalent to

0= 2 parn Y pe@prsBars + Y prgpsfors — Y 0% oBars)
= 32 pare) ¥ pa@prsBars -

(The second equality follows from the skew-symmetry of (Y,,), (e,,,) and
(Bper) -) Set Spq = 3.6y XprsPlyrs, and let S = (S,,). Then (5.4) becomes

(5.5) 0= Z(p,q) YNSM .
We have

(5.4

Ope = —By(€ps €) = X175y Narsprs -

If we take real and imaginary parts of this equation, we obtain

(.6) Z("-3) (aqnapﬂ - Aqus.Bprs) = 6pq,
(57) Z(r,:) (apn.qus + aqraﬁpn) =0.

But (5.7) gives S,, = — S,,, and hence S is a skew-symmetric matrix. Thus
(5.5) is satisfied for every skew-symmetric Y if and only if S is the zero matrix
or, equivalently, if and only if s = ], ,, (5,,)* is equal to 0. We shall show
that this implies that 8 = 0.

Let ay, = 355y Xprs@qrsy Dpg = X5 (r.0BprsPars and A (resp. B) denote the
matrix (a,,) (resp. (b,,)). Then 4 and B are symmetric matrices, Tr(B)
=| 811 (here Tr denotes the trace), and equation (5.6) becomes

(5.9 A—B=1,

where I is the nX n identity matrix. Let ¢ = Tr(AB). Then (5.8) gives AB =
B? + B and hence, taking traces, we find ¢ = Tr(B? + || 8]>. Since B is a
real symmetric matrix, Tr(B% > 0. Consequently, we see that

(5.9) c>|Bl*.

Now let 7,4,s = X5: @pgeBirs- It follows from the skew-symmetry of («,,,)
and (B,,,) that

(5.10) Toars = — Taprs = — Tpgsr +
We also have
(5.11) ¢ =Tr(A4B) = T p.q.r0) Tpars)* -

We define e = 3] ;.4.7.5) TparsTarps- Using (4.1), one checks easily that
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(@ A Bpgrs = Trspa + Tosar + Tasrs -
Hence we have
le & Bl
= Yparsy Trspg + Tosar + Tasrn) Wrepg + Tosqr T+ Tasrp) -

When we expand this sum we get a sum of nine terms. Using (5.11) we see
that three of these terms are equal to c. Furthermore it follows from (5.10)
that the remaining six terms are equal to e. Thus we get

(5.12) la & BII*= 3¢ + 6e .
Since 7 satisfies the Jacobi identity, we have
O0=pAp=(x+ip) A (x+ ip)
=@Ra—BARP+i(@ARp+pRa).
This gives
(5.13) aAB=—PARa, aRa=BARB.
We have
(B R @pgrs = Tpars + Tarps + Trpas -
Making use of (5.10), this leads to
—{aR B, B a)r == 3T (n.qr0) Trspal pars — 6€ -

But, recalling that S is skew-symmetric, one checks immediately from the de-
finitions that

2 p.0.r.9) Tropalpars =— S -
Hence
(5.19) —<KaRBBA &)y, =35— 6e.
Combining the information from (5.12), (5.13) and (5.14), we obtain
(5.15) 3¢ + 6¢ = 35 — 6e,
(5.16) 35— 6e>0.

We now wish to compute |[a Aa|*={a A&, BA B),. Let 7,0, =
20t ApqiQirss Opgrs = 2.t BpaeBirs - Then one checks from the definitions that
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(5.17) 2.4 Toarsfpgrs = S
From (4.1) we have

(@R a)pqrs = Tpgrs T Tarps + Trpgs >
(13 N .B)pqrs = 0pqrs + 0471’8 + 0"1"18 °

Thus

OLllaARal’!=Ka A B~ B

(5.18)
= Do Toars + Tarps Trogs) Opgrs + Ogrps + Orpgs) -

When the last expression is expanded, one gets a sum of nine terms. Using
(5.17) one sees that three of these terms are equal to s. Using the fact that
(ctpqr) and (B,,,) are skew-symmetric one checks that each of the remaining
six terms is equal to e. Thus (5.18) becomes

(5.19) 0< 35+ 6e.
We see from (5.16) and (5.19) that
(5.20) s>|2e].

Since (5.5) is satisfied for every skew-symmetric Y = (Y ,,), we know that
s = 0. By (5.20) we then have e = 0, which, by (5.15), implies that ¢ = 0.
Finally, by (5.9) this implies that ||8|> = 0, and hence that § = 0, which
completes the proof.

6. Concluding remarks

In H. Weyl’s paper [8], the existence of a compact real form of a complex
semi-simple Lie algebra g comes as a by-product of the general structure
theory of complex semi-simple Lie algebras (in particular the existence of a
Weyl basis). This proof involves, among other things, Lie’s theorem, Engel’s
theorem, the existence of Cartan subalgebras and the root space decomposi-
tion of a semi-simple Lie algebra. It seems to us that it is considerably longer
than the proof we have given here. But since Weyl’s proof of the existence
of a compact real form of g also leads to the detailed structure theory of g, it
seems clear that for most purposes it is more satisfactory than the proof we
have given here. However we hope that our proof may be useful to someone
who wants to obtain the existence of a compact real form of g without worry-
ing about the structure theory of g.

As pointed out by S. Helgason, our proof of the existence of a compact
real form of g gives a proof of the existence of Cartan subalgebras of g with-
out the use of Lie’s theorem. This proof goes as follows: Let g, be a compact
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real form of g, G, a (necessarily compact) Lie group with Lie algebra g,, T
be a maximal torus of G,, and t, the Lie algebra of T. If t is the complexifi-
cation of t, (considered in the obvious way as a subalgebra of g), then t is a
Cartan subalgebra of g.
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