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COMPACT REAL FORMS OF A COMPLEX
SEMI-SIMPLE LIE ALGEBRA

ROGER RICHARDSON

Introduction

This paper gives a new proof of an old theorem, the existence of a com-
pact real form of a complex semi-simple Lie algebra. The theorem is a con-
sequence of the classification of real simple Lie algebras by E. Cartan in
1914 [1]. Later H. Weyl [8] gave an intrinsic proof based on the detailed
structure theory of semi-simple Lie algebras. Our proof, which is based on a
suggestion of Cartan [2, p. 23], is geometric in nature. The only results from
the theory of Lie algebras which we have used are the facts that if g is a semi-
simple Lie algebra, then the center of g is {0} and every derivation of g is in-
ner. On the debit side, however, our proof uses an elementary lemma from
algebraic geometry and does involve one long and unedifying computation.

We would like to thank S. Helgason, who greatly clarified Cartan's brief
suggestion during a lecture at the Batelle Institute during the summer of 1967.

1. Preliminaries

Jϊ (resp. C) denotes the field of real (resp. complex) numbers. If 5 is a set,
then 5 m denotes the m-fold Cartesian product 5 X X S. Nn denotes the
set {1, , n}. If W is a vector space over C, then WR is the real vector
space obtained from W by restriction of scalars. If V is a vector space over
C, then Am(V, V) denotes the vector space of all alternating m-linear maps
of Vm into V.

Let B = {ex, , en} be a basis of V. If φεAm(V, V), we write φ(eaι, ,

O = Σ j - i W . α * ^ - The φaτ...am+t are the "coordinates" of φ with re-
spect to the basis B, and we often write φ = p(βl...αw+1) The basis B deter-
mines a positive definite Hermitian inner product on Am{V, V) as follows:
If φ, ψεAm(V, F), then (φ, ψy = Σ«9*$«> where the sum is taken over
all a = (έij, , am+ι)ε(Nn)

m+ι and the bar denotes complex conjugation.
Let <( ,̂ ψyr denote the real part of the complex number ζcp, ψy. Then (φ, ψ)
—* (φy ψyr is a positive definite inner product on the real vector space Am(V,
V)*. For φeA*(V, V) we write ||^||2 = (φ9 φ> = <<p, φ)r.
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Unless stated otherwise, all summation indices are understood to range from
1 to n. Thus, for example, in the expression Σ ( P i β ) φvqrφpqr> the s u m ιs taken
over all (p, q) ε (Nn)

2.

2. Outline of the proof

A Lie algebra § = (F, σ) consists of a vector space V and an alternating
bilinear map σ: V X V-+V which satisfies the Jacobi identity. We denote by
Bβ the Cartan-Killing form of (F, σ). The Lie algebra § is semi-simple if the
form B, is non-degenerate. Now let g = (F, μ) be a finite-dimensional semi-
simple Lie algebra over C. Then the Cartan-Killing form Bμ is non-degenerate,
and consequently we may choose a basis B = {e19 ., en) of F such that
Bμ(ep, eq) = — δ P 9 (δpq is the Kronecker delta). Henceforth we shall consider
Am(V, F) and Am(V, V)R to be given the inner products determined by the
basis B. We denote by Fo the vector subspace of VR spanned by {e19 , en},
and let Am(V0, Fo) be the vector subspace of Am(V, V)R consisting of all ψ
such that φ(y™>) c Fo. Suppose that ψ = (9αlt...,αro+x). Then <pεAm(VQ, Fo)
if and only if each (pai...am+t is real. Let φ = φ1+ iφs and ^ = φx + i^2 be
elements of Λm(F, F) with <px, <p2, φ19 Φ^A^VQ, F O ) . Then one checks easily
that

<#>> ΦX = <ψu ΦlX + <<P2> Φ2>r

Let ^ be the algebraic set in A\V, V) consisting of all Lie algebra multi-
plications, and Jί the set of all φεJί which satisfy the following conditions:
(1) (F, φ) is isomorphic to g and (2) Bμ = Bφ. In order to show that g admits
a compact real form it suffices to show that Jί Π A2(V0, Fo) is non-empty.
For suppose that there exists ηεrf Π A2(V0, Fo), and let τjo:Vo X F o -» Fo

denote the restriction of η. Then (Fo, ̂ 0) is a real form of (F, 9), and the
Cartan-Killing form of (Fo, ̂ 0) is negative definite. By a well-known theorem
(see [4, p. 122]) this implies that (Fo, gy0) is a compact Lie algebra and hence
is a compact real form of (F, 57). Since g is isomorphic to (F, 97), g has a com-
pact real form.

Now let η = (ηpqr) ε Jί. We have

Since we also have ηpqr =—7]qpr, it follows that ηpqr is skew-symmetric in
(p, <7, r). By definition we have

(2.1) δpq = — Bv(ep, eq) = — Σ (
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Hence we have Σ ( J,, ς, r ) (ηpqry = n. By considering real and imaginary parts
°f yPqr w e s e e that

Furthermore we have equality in (2.1) if and only if ψA2(V09 Vo).
This suggests that we try to minimize the function ψ *-+ || φ ||2 on Jf. In § 3

we shall show that Jf is a closed set. Hence the function φ*-*\\ψ\\2 attains a
minimum on Jf. In § 5 we shall show that if this function has a minimum at
ηεJr, then ηεA\V0, Vo). This will prove the existence of a compact real
form of g.

3. First proof that Jf is closed

There is a natural representation p of the general linear group G = GL(V)
on A\V, V) defined as follows: If <pεA2(V, V) and gεG, then

(3.1) Ote) <p) (*, y) =

for Jc, jεF. The set ^ of Lie algebra multiplications on V is stable under
the corresponding action of G and the orbits of G on Jί are just the isomor-
phism classes of Lie algebra structures on V. Let H c GL(F) be the group
of all automorphisms of the form Bμ, and ί) the Lie algebra of H. In terms
of matrices with respect to the basis {el9 , en}, H is the group of all com-
plex orthogonal matrices and ί) is the Lie algebra of all complex skew-sym-
metric matrices. Let g ε G and let φ = pig) μ. Then Bφ(x9 y) = jB/g""1*, g^y).
Thus Bφ = Bμ if and only if gεH. Hence we see that Jf is just the orbit
H(μ).

Now let Jfr be the set of all φ ε M such that Bψ = Bμ. It is easy to see that
Jf' is an algebraic set in A\V, V). Let σεN' and let § = (F, *). Since Bo =
β^, § is a semi-simple Lie algebra. The isotropy group at σ for the action of
G determined by p is just the group Aut(§) of all automorphisms of §. It fol-
lows from standard properties of the Cartan-Killing form that Aut(§) c H.
The Lie algebra of Aut(§) is the Lie algebra Der(§) of all derivations of §.
Since § is semi-simple, the center of § is {0} and every derivation of §> is inner.
Thus dim Aut(§) = dim Der(§) = dim V (here dim denotes the complex
dimension). Consequently dim H(σ) = dimJ? — dim Aut(§) = dim H — dim
V. Thus we see that all orbits of H on Jf' have the same dimension.

We shall need the following lemma, which is a special case of an elementary
result from the theory of algebraic groups.

Let τ:S -» GL(W) be a rational representation of a linear algebraic group
S(over C), X be an algebraic set in W which is stable under the corresponding
action of S, and xεX be such that dim S(x) < dimS(y) for every yεX. Then
the orbit S(x) is closed.
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For a proof, see [1, Prop. 15.4].
Since the representation of H defined by p is rational, it follows from this

lemma that each orbit of H on Jί' is closed. In particular, Jί = H(μ) is
closed.

4. Second proof that Jί is closed

For the benefit of the reader who wishes to avoid the use of algebraic geo-
metry, we give an alternate proof that Jί is closed.

A Lie algebra s = (F, σ) is rigid if the oribt G(σ) is open in Ji. Nijenhuis
and Richardson have proved that a semi-simple Lie algebra is rigid [6, § 7].
We shall give the proof here for the sake of completeness.

First we introduce some notation. If φ, ψεA2(V, F), we define φ7\φε
A\V, V) by

φ A ψ(x, y, Z) = φ(φ(x, y), z) + φ(φ(y, z), x) + φ(ψ(z, x), y) .

One sees easily that φ A ψ = 0 if and only if ψ satisfies the Jacobi identity. For
later use it is convenient to express φ A φ in terms of coordinates. If ψ = (ψpqr)
and φ = (ψpqr), then we have

(4.1) {ψ A φ)pqrS = Σt (Φpqtψtrs + Φrpt ψtqs + ψqrt ψtps)

Similarly, if τεAHV, V) and φεA2(V, V), we define ψ A τεA\V, V) and
τ7\φεAW, V) by

φ 7\ τ(x, y) = φ(τ(x), y) - φ(τ(y), x) , τ A φ(x, y) = τ(φ(x, y)) .

Now let §> = (V, a) be a Lie algebra. An element φ ε A\V, V) is a 2-cocycle
ot % \i σ 7\ φ + φ 7\ σ = 0. Similarly φ is a 2-coboundary of § if there exists
τεAKV, V) such that φ = σ?\τ -τ7\σ. Z2(§, F) (resp. S2(§, F)) denotes
the space of 2-cocycles (resp. 2-coboundaries) of §. One checks easily that
£2(§, V) C Z 2 ^, V). We define /^(g, F), the second cohomology group of §
with coefficients in F, to be the quotient space Z2(g, F)/2*2(§, F).

Proposition 4.1. // H2(β, V) = 0 , //ẑ « § fe rî ίrf.
Proof. Define P:A2(V, V)->A\V, V) by P(0 = φ7\φ. Then uT =P~1(0),

We have

P(σ + φ) = σ7\φ-\-φ7\σ + φT\φ.

Hence JP,,, the differential of P at σ, is just the map φ>-*σ 7\ φ + φ 7\ σ. In
particular, Z 2 ^, F) is the kernel of dPo, We define Q:G — ^ 2 ( F , F) by β(g)
= /o(g) σ. It follows easily from (3.1) that the differential dQβ:A

ι(V9 V)
— A2(V, V) is the map τ ^ σ A r — τ A σ . Since G(σ) C Jί we have P o (2(G)
= {0}. Since H2(§, F) = 0, the kernel of dPc is equal to the image of dQe.
An elementary argument using the inverse function theorem (see [7, Lemma
1]) shows that G(σ) is an open subset of M. It follows immediately that G(σ)
is open in M.
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Proposition 4.2 (Whitehead). If g = (F, μ) is semi-simple, then #2(g, V)
= 0.

Remark. This is a special case of a theorem due to Whitehead (known in
the literature as " Whitehead's second lemma"). For the proof, which is purely
computational, see, e.g., [5, p. 89, Lemma 6]. For the case at hand, the pro-
of in [5] can be shortened quite a bit as follows: Choose a basis {e19 , en)
of V as in § 1. Then one can show by an easy computation using (2.1) that
— Σjβdtj ° a^ej (denoted by Γ in [5]) is equal to 1F, the identity operator
on V.

Corollary 4.3. A semi-simple Lie algebra over C is rigid.
The proof that Jί is closed is now immediate. If ( j e / ' , then G(σ) Π Jί'

is relatively open in Jί'. Hence the complement of Jί = G(μ) Π Jίr is rela-
tively open in Jί'. Therefore Jί is relatively closed in Jίf and hence is closed
in A\V, V).

5. Conclusion of the proof

Let F:Jί -> R be defined by F(φ) = (φ9 ψ}r ( = || φ ||2) and assume that F
achieves a minimum at η. We may write η = a + iβ with a, βeA\V0, Vo),
and wish to show that β = 0.

Since F has a minimum at η, we must have

0 = J L <p(expίAO . 7 , ^(exp tX)
(5.1) *

for every Zε ί ) Λ , where exp:ί)R-*H denotes the expotential map of the (real)
Lie group H.

Let ί)0 = ί) Π A\Vto Vo). (With respect to the basis B, ί)0 is the Lie algebra
of all real skew-symmetric matrices.) The real Lie algebra ΐ)Λ is a vector space
direct space direct sum f)0 + iί)0. If X ε ί)0, then it is easy to see that dρ(X) is
skew-symmetric with respect to < , >r, and hence (5.1) holds. If X = iY
with Yεί)Q, then (5.1) becomes

= <idp{Y) • (β + iβ), α + iβ}r

β, ά)τ + <d/o(y) a, β>τ .

Since dp(Y) is skew-symmetric with respect to < , >r, (5.2) gives

(5.3) <dp(Y) • a, β}r = 0 for Y $ 0 .

At this stage it is easier to work in terms of coordinates. Let Y ε b0, and (YP9)
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be the corresponding skew-symmetric matrix. Since (ηpqr) is skew-symmetric
in (p, q, r), so are (apqr) and (βpqr). Equation (5.3) is equivalent to

sr Λ\ = 2-j(p,g,r,s) (<* pq&prsβqrs + •* pr^qpsβqrs * sp&qrpβqrs)

= "^2-i(ί>,9,r,s) •* pq&prsjpqτs

(The second equality follows from the skew-symmetry of (Ypq), (apqr) and
(βpqr).) Set Spq = Σir,s) apTiβqn, and let S = (5 M ) . Then (5.4) becomes

We have

^p? = = ~~βv\ep> eq) = Σ(r,s) VqrsVprs

If we take real and imaginary parts of this equation, we obtain

(5.6) Σ<r.») ( t f g r ί α p r s — βqrsβprs) = ^p<p

(5.7) 2 ( r t t ) (αp r ίj9ς y s + «,„&„) = 0 .

But (5.7) gives Spq = — 5 ρ p , and hence 5 is a skew-symmetric matrix. Thus
(5.5) is satisfied for every skew-symmetric Y if and only if 5 is the zero matrix
or, equivalently, if and only if s = Σ<p.«> C^) 2 ^s equal to 0. We shall show
that this implies that β = 0.

Let apq = Σ(rff>αpr/κ,r« ^p9 = Σ(r, ArArι and y4 (resp. B) denote the
matrix (ΛP Q) (resp. (bpq)). Then 4̂ and JB are symmetric matrices, Tr(B)
= || β ||2 (here Tr denotes the trace), and equation (5.6) becomes

(5.8) ^ - B = / ,

where / is the nX n identity matrix. Let c = Tr(AB). Then (5.8) gives AB =
J52 + B and hence, taking traces, we find c = 7Y(β2) + \\β\\*. Since £ is a
real symmetric matrix, Tr(#2) > 0. Consequently, we see that

(5.9) c > U/31|2.

Now let γpqrs = Σt<xPqtβtrs- It follows from the skew-symmetry of (αp<7r)
(βpqr) that

VD.IUJ Tpqrs = = Tqprs = =

We also have

(5.H) C = ίPQ p 9

We define e = ΣiP^r^TpqrsϊqTps' Using (4.1), one checks easily that



SEMI-SIMPLE LIE ALGEBRA 417

\(X A βjpqrs = = Trspq ι fpsqr ι fqsrp

Hence we have

= =
 2-ι(P,<?,r,s) \frspq ~T Ypsqr "T Tqsrp) \Trspq T

When we expand this sum we get a sum of nine terms. Using (5.11) we see
that three of these terms are equal to c. Furthermore it follows from (5.10)
that the remaining six terms are equal to e. Thus we get

(5.12) | | t f Λ i 8 | | 2 = 3 c + 6*.

Since η satisfies the Jacobi identity, we have

0 = η 7\ η = (α + iβ) A (a + iβ)

= (α A α - j3 A j8) + i(α 7ί jB + β7\oc) .

This gives

(5.13) cc7\ β = - β7\a, a7\a = β7\β

We have

\p A (X)pqrs = = Tpqrs "T Tqrps *T frpqs

Making use of (5.10), this leads to

- <α A j8, ]8 A α>r = -

But, recalling that S is skew-symmetric, one checks immediately from the de-
finitions that

2^(p,q,r,s) TrspqTpqrs = = S

Hence

(5.14) - <α A β, β A α>r = 3s - 6e .

Combining the information from (5.12), (5.13) and (5.14), we obtain

(5.15) 3 c + 6 e = 3.y-6e,

(5.16) 3J-6*>0.

We now wish to compute || a A a ||2 = <α A cc, β A β}r Let r3)(7rί =
Σ ί <xPqt<Xtrs> θpqrs = Σit βpqtβtrs Then one checks from the definitions that
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(5-17) Σ(P,q,r,s) ΐpqrβpqrs = S

From (4.1) we have

\0t Λ OC)pqrs = Tpqrs -p Έqrps ~Γ ̂ Vpgs >

(β A β)pqrs = = #p$rs + 0<?rpί + r̂ptfs

Thus

(5 18) 0 < II" A * | | 2 = <α A α, j3 A ]3>r

= = λj(P,q,r,s) \Tpqrs T ^ςrps ^rpqs) \"pqrs T* "qrps T" "rpqs)

When the last expression is expanded, one gets a sum of nine terms. Using
(5.17) one sees that three of these terms are equal to s. Using the fact that
(apqr) and (βpqr) are skew-symmetric one checks that each of the remaining
six terms is equal to e. Thus (5.18) becomes

(5.19) 0<3s + 6e.

We see from (5.16) and (5.19) that

(5.20) s>\2e\ .

Since (5.5) is satisfied for every skew-symmetric Y = (Ypq), we know that
5 = 0. By (5.20) we then have e = 0, which, by (5.15), implies that c = 0.
Finally, by (5.9) this implies that || β||2 = 0, and hence that β = 0, which
completes the proof.

6. Concluding remarks

In H. WeyΓs paper [8], the existence of a compact real form of a complex
semi-simple Lie algebra g comes as a by-product of the general structure
theory of complex semi-simple Lie algebras (in particular the existence of a
Weyl basis). This proof involves, among other things, Lie's theorem, EngeΓs
theorem, the existence of Cartan subalgebras and the root space decomposi-
tion of a semi-simple Lie algebra. It seems to us that it is considerably longer
than the proof we have given here. But since WeyΓs proof of the existence
of a compact real form of g also leads to the detailed structure theory of g, it
seems clear that for most purposes it is more satisfactory than the proof we
have given here. However we hope that our proof may be useful to someone
who wants to obtain the existence of a compact real form of g without worry-
ing about the structure theory of g.

As pointed out by S. Helgason, our proof of the existence of a compact
real form of g gives a proof of the existence of Cartan subalgebras of g with-
out the use of Lie's theorem. This proof goes as follows: Let g0 be a compact
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real form of g, Go a (necessarily compact) Lie group with Lie algebra &>, T
be a maximal torus of Go, and t0 the Lie algebra of Γ. If ί is the complexifi-
cation of l0 (considered in the obvious way as a subalgebra of g), then t is a
Cartan subalgebra of g.
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