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I. INTRODUCTION

In the paper [12] D. C. Spencer defines the resolution

of the sheaf Θ of germs of solutions of a regular elliptic system of linear par-
tial differential equations on a differentiable manifold M by jet forms C r,
which are in a canonical way associated with the given system. This resolu-
tion is a generalization of the classical de Rham resolution, and of the Dolbe-
ault resolution of the sheaf of germs of holomorphic functions on a complex
manifold M. The laplacian DD* + D*D, where D* is the adjoint of D with
respect to some chosen metric, is elliptic if and only if the original system of
partial differential equations is elliptic.

Let Co = ®rC
2r, d = ®rO

r+1 . Then

D + £>* : Co — Cλ

and the adjoint operator, which also is denoted D + D*9 maps Cx into Co. If
M is compact (closed), the system is elliptic and the resolution exact, the
analytic index of the operator D + D* is therefore the Euler-Poincare charac-
teristic X(M, 0), where

X(M, Θ) = Σ ( - l ) r dim Hr(M, Θ) ,

and n is the dimension of the manifold M. By the Atiyah-Singer theorem the
topological index it(D + D*) of the differential operator D + D*, where
D + D* is an elliptic operator, is equal to the Euler-Poincare characteristic.
In his paper [7], Kodaira gives sufficient conditions which a complex line
bundle over a complex compact manifold M should satisfy to force the van-
ishing in positive degrees of the cohomology groups with values in the sheaf
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of germs of holomorphic sections. The method of the proof is similar to that
used by S. Bochner, Curvature and Betti numbers, Ann. of Math. 49 (1948)
379-390, and Curvature and Betti numbers, II, Ann. of Math. 50 (1949)
77-93.

In this paper, sufficient conditions are given for the vanishing of the coho-
mology groups Hr(M, Θ), r > 0, where M is a compact diίferentiable mani-
fold and Θ is the sheaf of germs of solutions of a homogeneous regular elliptic
system S o n M mapping the sections of one vector bundle into the sections
of another. The condition is stated in terms of sufficient positivity of the cur-
vature of the operator @, which is a generalization of the conditon given by
Kodaira in terms of the characteristic class of a complex line bundle over a
complex manifold M. Using the expression for the Euler-Poincare charac-
teristic we obtain from the vanishing theorem the relation between the dimen-
sion of the space of global solutions of the regular elliptic system on M and
topological invariants of M and Q.

To Q) there is canonically associated a vector bundle R over M. If we in-
troduce a riemannian metric along the fibres of the vector bundle R and on
M, we obtain another resolution, the so-called "^-resolution"

of the sheaf θ, which is in some sense simpler than the one above. The sec-
tions of Br are differential forms with coefficients in a vector bundle, and βDQ

is a first order differential operator. This resolution is equivalent to the origi-
nal one so far as exactness is concerned, and if the differential equation is
the Cauchy-Riemann equation on a complex manifold M, the β-resolution
reduces to the classical Dolbeault resolution. Theorem 3.3 gives sufficient
conditions for the vanishing of Hr(M, 0), r > 0, in terms of the ^-sequence,
and then the dimension of £Γ°(Af, 0) is equal to the topological index

The author wishes to express his gratitude to D. C. Spencer for many help-
ful discussions, comments and suggestions during preparation of this paper.

II. NOTATION AND FUNDAMENTAL NOTIONS

1. Jet bundles

Let M be a C°°-manifold of dimension n, and let E and F be vector bundles
over M with fibre dimensions m and /. For each x e M let us identify smooth
(i.e. C00) sections of E at x if their Taylor expansions agree up to the order
μ. We call an equivalence class a jet of order μ at the point x and denote by
Jμ(E)x the vector space of these equivalence classes. Moreover, JP(E)
= u JΛE)X is called the bundle of //-jets of E. If we denote by E the sheaf

xεM —
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of sections of E, we have the natural map

7, :E->J, (E) ,

which, to a section s of E and a point x e M, associates the //-jet of s at x.
If 5^(7*) is the μ-th symmetric product of the cotangent bundle Γ* of M,

we see that the following sequence is exact, for all μ > 0,

where γ is an injection and π the ordinary projection of jets.

Definition 2.1. The jet differential is a first-order differential operator

(2.1) D : Jμ+ί(E) ® ΛrT* -* Jμ(E) ® Λr+1T*

having the following properties:

(i) D(σ A 37) = Do A T] + (— l)rτrσ A *fy

for a € J^+1(E) ® τίrT*, and any real-valued 1-form η on M,

(ii) the sequence

^->JU(E)®T*

is exact for all non-negative integers r, μ.
The operator D is uniquely determined by (i) and (ii) and D2 = 0 (see [13],

[14]). In terms of a local coodinate (JC1, , xn) covering the neighborhood
U on M, we consider a local section σ of Jμ+ι(E)(g) ArT* over ί/; then
σ = {σQ\\q\ < μ + 1} where <? = (ςr15 -., qk, , qn) is an ordered n-tuple
of non-negative integers qky \q\ = q1 + + qn, and σQ = {σJ

q\l <j < m)
where

The jet differential operator D applied to a has the form

Do = dπσ — δσ ,

where d is the ordinary differential, and δ the so-called formal differential.
The formal differential δ is a mapping given by

= | ; dxj A σq+1J,
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where <? + 1, = (ql9 , qs.l9 q5 + 1, qJ+19 -,qn). Let us notice that
δ2 = δδ = 0, and that 5 is a bundle map (linear over the functions).

The operator δ is actually defined by D in the sense that the following
diagram is commutative:

0 — — E ® SP+1(T*) 0 ΛT* _ Jμ+ι(E) ® ΛT* " »- Jμ{E) ® ΛT* — 0

D \ D
(2.2) . j

From (2.1) and the definition of the operator δ we see that the sequence

E ® Sμ+\T*) ® Λr-ιT* > E ® Sμ(T*) ® ΛrΓ* • £ ® S^^T*) ® Ar~ιT*

is exact. Let us consider a sequence J / = {jtfμ'r} of sub-bundles
j ^ / .r (- E®Sμ(T*)® ΛrΓ* such that <5j/^r c j / A ' ~ l r + 1 . The sequence

δ δ

^ z +i.r-1 * j/e>r • j / ^ - 1 ' r + 1 is not exact in general, but we still have
δ2 = 0. The corresponding cohomology will be called the ^-cohomology of
the sequence {s/μ'r} and the cohomology groups are denoted by Hμ'r(<srf).

2. Differential equations

A differential operator of order μ0 from E to F is a sheaf map $: E —> F
which is locally defined as follows. Let U be a coordinate neighborhood and
let E\U^UXV,F\U^UXW be trivializations of the corresponding
vector bundles. Then, for a section s oί E\U,

(2.3) ®s= Σ aaDas, a = (al7 , an) ,

where the αβ are smooth (/ X /τi)-matrix-valued functions, and

Da = d l
(dxx)aχ - - - (dxn)an

in terms of the coordinates in U.
The mapping 3ι can be factorized through Jμo(E) in the sense that there

exists a unique bundle map ρμo(β) = pPo ' Jμo(E) —• F such that the following
diagram commutes:

(2.4)
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The differential operator 3V: E -> JV(F) given by Qιy — /„ o Q is of order

v + μ09 and is the so-called i>-th prolongation of Sd.

Definition 2.2. A system of partial differential equations of order μQ given
by 3 on M is the kernel Rμo of the map pμo in the exact sequence

(2.5) 0 •R.
Pμo

A solution of the system Rμo is a smooth section / of E such that jμo(f) is a
section of Rμo over M. A system of partial differential equations given by
the prolonged operator Q)v is of order μ0 + v and is the kernel Rμo+V of the
map pμo+u following in the diagram:

Definition 2.3 The differential operator Q> (and also the corresponding
system of partial differential equations) is said to be regular if

(i) for each μ > μ0, the Rμ are vector bundles over M\

(ii) for each μ > μ0, the map π: Rμ+ι —• JR^ is subjective.

The bundle Rμ can be "trivialized" by choice of linearly independent sec-
tions of Rμ over a suitable neighborhood U on M. Whenever we speak about
trivialization of iR ,̂ we have in mind this procedure.

The condition (ii) in Definition 2.3 actually requires that the homogeneous
equation Q)s — 0 has formal solutions [10].

Let ξ e T%, xεM, be a non-zero cotangent vector. We define the symbol
o{β, ξ) of 3> at ξ to be the composed map

EX^EX® S»(T*) 1* JμQ(E)x — Fx .

The first map is given by e —• (e® ξμ°). Then, in terms of a local

coordinate (JC1, - , xn) on U, with ξ = ξ^x1 + . . + ξndxn, the symbol
σ(βτ ξ): Ex —> Fx is given by the formula

(2.6) σ(9,ξ)e= Σ ".We.

Now let us consider the exact sequence of vector bundles for μ> μ0
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where Rr

μ = Rμ® ΛT* and gr

μ = gμ® ΛrT*. The subbundle gr

μ of i?J is de-
fined by this sequence. It is obvious that gr

μ is a subbundle of E(g)Sμ(T*) ®
ΛrΓ*. In terms of the sequence g = {#£}, μ > μ0, r > 0, we have the follow-
ing definition for the system of equations to be involutive (see [13]).

Definition 2.4. The system of regular partial differential equations Rμ (or
the operator 3μ) is said to be involutive if the cohomology groups Hvr(g)
vanish for v > μ + 1 and all r.

Remark (see [3], [11]). (i) The vanishing of H»r(g) for v > μ + 1, r =
0, 1, 2, is equivalent to the exactness of the sequence

δ δ δ
0 — g^n -> £+„_! -*• >gΓ->0, v> μ .

(ii) If 3 is a regular differential operator of order μ0, then there exists μx

depending onn = dim M, m = dim E and μ0 such that Hp'r(g) = 0 ίov μ> μx

and all r (d-Poincare lemtna).

3. Spencer's resolution

Let us denote by Θ the sheaf of germs of solutions of the homogeneous
equation @f = 0. We shall describe the construction, due essentially to R.
Bott [2], of Spencer's resolution

(2.7) o - > 0 - ^ c ^ q ^ > q ^ . . . ^ 9 - o

of the sheaf Θ by sheaves Oμ of jet forms of order μ > μx and degrees r =
0, 1, . . ,n .

For μ > μl9 let

for all non-negative integers r. Then /4J is a subbundle of Rμ. Let us define
the vector bundles

c; = R;+1/A;+1 .

We see that, for μ > μ19 we have the first-order differential operator

given by the commutative diagram
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(2.8) J - * [D i Ό>

The mapping £>' factors through Cr

μ in the sense that there is a unique map
D : C£ -> C ^ 1 such that D' = Dp. We have then the resolution (2.7), where
C° = /^ + 1 and £ is the inclusion map. The resolution (2.7) is not always ex-
act actually the question of exactness is discussed in part III of this paper,
and it is one of the main problems. The operator D in (2.7) is different from
the one defined by (2.1). Whenever we use the operator (2.1) in what follows
it will be stated explicitly, to avoid misunderstanding. It is useful to have an
explicit description of Cr

μ.
Proposition 2.1. Each element u e Cr

μ, μ > μl9 r > 0 can be represented
as a pair (σ> ξ) such that σ = πp, ξ = δp for some element pεRr

μ+1, and
Du = (dσ - ξ, -dξ). Moreover, D2 = 0.

Proof. If we take any element p e Rr

μ+1 which represents a class in
Rμ+1/Ar

μ+1, we get the same pair (πp, dp), because any other element of the
same equivalence class has the form p + ζ, ζ e Ar

μ+1 c gμ+1 and then πp =
π(p + ζ),δp = δ(p + ζ).

From the diagram (2.8) we see that, if σeRr

μ+1, then Uo = (dπσ — δσ,
— dδσ) because dδ = — δd, where we consider the representation of the ele-
ments of Cμ by pairs. Let

p : σ —> (πσ, δσ) .

Since D is defined by U = Dp, we have Du = D(σ, ξ) = (dσ — ξ, — dξ). It
follows at once that D2 = 0.

This representation of the elements of Cr

μ is not very useful if the adjoint
of the operator D (with respect to some metric) is to be considered. This will
be discussed later. We shall identify ueCμ with a pair of independent ele-
ments.

Proposition 2.2. To a given splitting λ: Rr

μ —> Rμ+1 of the exact sequence

(2.9) o — g ; + 1 -> R;+1 -+R;-^O

there corresponds an isomorphism Cμ = Rr

μ® Λr

μ

+1, and

Du = (ZV - ζ, DQ(Doσ - O) ,

where u = (σ, ζ) 6 Rr

μ Θ Λr

μ

+\ Do = d - δλ .
Proof. Let u = (σ, ξ) be an element of Cμ which is represented as in

Proposition 2.1. We see easily that the mapping Cr

μ -* Rr

μ Θ Ar

μ

+1 defined by
((7? f) _^ ( σ ? f _ d2σ) is an isomorphism. Let ζ = f — 5^σ. Then DM =
D(<7, f) = D(σ, ζ) = (dσ - δλσ - ζ, - dξ - δλ(dσ - δλσ - ζ)) = (ZV - C,

ζ)) = D(σ, ζ).
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Remark. The first-order differential operator DQ = d — δλ defined on
sections of Rr

μ is actually the covariant differential of a connection on the
vector bundle Rr

μ. In fact, for any element σ e Rj and any function / on M,
we have DQfσ = fDoσ + dj®σ. In terms of a trivialization of Rμ by choice
of independent local sections, we can write Do = d + e(Λ), where A is the
local 1-form of the connection and e denotes the exterior multiplication.

Now let us introduce a riemannian metric along the fibres of the bundle
Rμ, where μ is a fixed integer, μ> μλ. Then at each point x € M we have a
scalar product (σ, τ}x of vectors σ, τ belonging to the fibre of JR, over x. We
also introduce a riemannian metric on M (i.e. along the fibres of the tangent
bundle Γ of M), and denote by < , ) x the inner product on Rr

p for r = 0, 1,
2, , n; and by | | x the corresponding norm. Denote by Br

μ the orthogonal
complement of the subbundle Λr

μ in Rr

μ with respect to this inner product.
Then Br

μ is a well-defined subbundle of Rr

μ. Let us denote by a and β the
orthogonal projections of Rμ

r onto Λr

μ and BJ respectively. We identify Cr

μ

with JR£ 0 Ar

μ

+\ and write Λj = Ar

μ φ y4;+1 we then have the exact sequence
of vector bundles

Using the inner product along the fibres of Rr

μy and the splitting λ of the
exact sequence (2.9), we introduce the sequence

Theorem 2.1. The diagram

0 0 0

1 ϊ I
0 • A\ - ^ - > Λ\ - ^ - > - ^ - > A; • 0

(2.ii) o — * θ — • c°μ - ^ * c» - ^ -^-> c;—>-o

I I I
o o o

is commutative, and the last row is exact if and only if the middle one is.
The first row is always exact.

Proof. Let (p, ζ) e Λ£, and suppose that D(p, ζ) = 0, i.e., (Dop — ζ,
DoiDvp - O) = 0; then (p, ζ) = (p, DoP). This implies that -D(0, p) = (p, ζ).
Thus the first row of the diagram is exact at ΛT

μ for r > 1. If (p, ζ) e yl», the
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assertion D(p, ζ) = 0 implies that Dop = ζ, where p ε A°μ, i.e., (p, Q = (0, 0),
and the first row is an exact resolution of 0. Since D2(βσ, 0) = 0, we see that
(βDQ)2 vanishes on sections of Br

μ.
From the assumption of exactness of the second or last row follow the

exactness and commutativity of the diagram, since the vertical rows are exact
by definition.

4. Ellipticity

In this section we shall discuss the concept of ellipticity and a fundamental
inequality for an elliptic differential operator.

Let Sd: E —> F be a regular differential operator of order μ0, and let
Rμ, gμ, be the corresponding vector bundles introduced above.

Definition 2.5. A non-zero cotangent vector ξ e T*9 x e M, is said to be
noncharacteristic for Rμo (or @) if the symbol map σ(@, ξ): Ex —• Fx is in-
jective.

Remark. It is easy to see that the property of being noncharacteristic is
independent of the prolongation of 3 [10],

Definition 2.6. The differential operator 3 is said to be elliptic at the
point x e M if all the nonzero cotangent vectors ξ ε T* are noncharacteristic,
and 2 is called an elliptic operator if it is elliptic at each point xsM.

It is easily seen that locally the notion of ellipticity is the classical one. Let
us consider the coordinate neighborhood U and the trivialization E\U, F\U.
We can then write the operator ^ : E | U - - > F | U in the form (2.3). For
ξ = ξtdx1 + + ξndxn the symbol σ(β, ξ) has the form (2.6). The defini-
tion and (2.6) give the local meaning of ellipticity.

Proposition 2.3. The ellipticity of an operator 3) is equivalent to any one
of the following properties:

(i) the symbol of ω in the following diagram is injective,

0

0

0 •

0 >

0
i
gμ —

I
E<S>Sμ(T*) —

1
E®S"(T*)/gμ -

I
0

0
1

-> Rμ

I

iω

-/,(£).
I
0

i.e., for every ξ € Γ*, ξ Φ 0, x <= M, the composition
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(2.12) Ex A Ex ® 5'(ΓJ) - U /„(£) -ί

w injective, where i(ξ): £ —> e ® f*
(ii) the composition

(T*) ->E® S"(T*)/i(ξ)E

is injective for each ξ
(iii) for each ξ the composition

is injective;
(iv) the sequence

0 -> d(gμ) -> δ(gμ ® Γ*)

is exact for each nonzero ξ, μ > μ1.
Proof, (i) follows immediately from the difiuαition.
(i) <-» (ii). From (i) it follows that for each ξ, the fibres γ o i(ξ)Ex and

over JC have only the 0-vector in common, because the composition ω o γ o ι(
is an injection and ^(JR^U) = 0. Thus i(ξ)Ex and ^ | x have only zero in com-
mon, i.e., the mapping in (ii) is an injection. In order to prove the converse,
let us assume that for some ξ € Γ* and some x e M the mapping in (i) is not
an injection. This means that, for some e <=. Ex, γ o i(ξ)e € Rμ\X9 but from the
above diagram it follows that γ o i(?)eί -R -̂iU We conclude that i(ξ)eegp\x

for that particular ξ and some eeEx. This contradicts the injectivity of the
mapping in (ii).

( i i )^(i i i ) . Let us notice first that, for each ξeT*, the kernel of the
composition of the maps

Ex ® S'iT*) ^Ex® Sμ-\T*) ® Γ* -1 £"x ® S'-'CΓ*) ® ̂ f2T*

is i(ξ)Ex, and thus has only zero in common with gμ\x. This proves the neces-
sity of (iii). The reverse follows by an argument similar to that used in the
proof that (ii) implies (i).

(iii)<->(iv). This equivalence is an obvious consequence of the fact that
δ(gμ) is a subbundle of gμ_λ and δ(gμ) is a subbundle of gj.1#

If μ > μλ we say that μ is in the stable range, and then we have the identity
δ(gμ) = Ar

μt\. The ellipticity of the involutive operator can be formulated in
the following way (β is involutive if μx = μ0 + 1).

Proposition 2.4. The prolongation @μy μ> μxof the operator 3) of order
μ0 is an involutive operator, and it is an elliptic operator if and only if the
diagram, for each nonzero cotangent vector ξ e T*,



VANISHING THEOREM 391

0

ϊ
0 >

I

I

I
0

0
i

A\

I

ί
c\
ϊ
0

0

1
-Ϊ+Al

I

ί

I
0

ϊ
(2.13) 0->/?;-^KJ-2UΛ!-l-* ^ ^

0

is exact and commutative for μ> μλ.

Proof. It was proved by D. G. Quillen [10] that the last row of this dia-

gram is exact if and only if the short sequence 0 —> C° σ - ^ i Cμ is exact. In

terms of the representation u = (σ, ζ) <= Rr

μ φ y4j+1 of some element w € Cj ' x ,

we can write explicitly σ(D9 ξ)(σ, ζ) = (f Λ σ, - f Λ C). Then the exactness

of the short sequence § -+ A\ > Aμ for all f is equivalent to the exactness
of the first row of the diagram. But the exactness of this short sequence for
μ > μι is equivalent to the ellipticity of the operator 3). Thus the ellipticity is
equivalent to the exactness of the first row in the diagram. As was pointed
out by R. Bott [2], the exactness of the first row is equivalent to the exact-
ness of the bottom row, because the central sequence is always exact for each
nonzero ξ € T* and the vertical rows are exact by the definition.

Let ώ: 5* = S*(M) —• M be the unit cotangent sphere bundle. We then
have the map s: ώAμ —»ώ*Aμ which, to an element λ of the fibre lying over
ξ e 5*, associates an element s(λ) = ξ /\ λ. In the stable range there is an in-
jective map δ: ώ*gμ+J —> ώ*Aι

μ, and by the composition of these two maps we
o b t a i n t h e m a p sod: ώ*gμ+1 —> ώ*Aμ.

P r o p o s i t i o n 2 . 5 . The operator Sd is elliptic if and only if the map sod
defined above is infective.

Proof. This follows from Proposition 2.3 and the definition.
Now let us recall that the vector bundle Br

μ is orthogonal to Ar

μ with respect
to the inner product < , > on Rr

μ. Then the adjoint f* of the exterior left
multiplication by any nonzero cotangent vector ξ e Γ* of the elements of Ar

μ \x

is well defined. Let us denote by d* the (formal) adjoint to d with respect to
the scalar product

( , ) = J < , > dM

We can now state
Proposition 2.6 [12]. The ellipticity of an operator Q is equivalent to the

existence of a positive number c such that, for each section ζ e Ar

μ, μ > μ19
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1 < r < n, over any coordinate neighborhood U C M with compact support,
the following inequality holds:

(2.14) ({<*(«<**) + (fitd*)d\ ζ, ζ) > c || ζ ||*α) - || ζ ||2 .

Remark. The norm || | | ( ί ) is the usual s-form in the Hubert space
JP{8)(M9 Cr) defined, in the case of euclidean space, by the formula [6],

Jα
where ii{rj) is the Fourier transform of M. In the sequel we shall consider
JF0(M9 Cr) — L2(M, Cr) as a Hubert space with the product ( , ) =

ί < , > dM, and use the notation || || = || || ( 0 ) .

M

Proof {of Proposition 2.6). First let us remark that exactness of the first
row of the diagram (2.13) is equivalent to the existence of a positive constant
c/ such that, for each nonzero ξ € Γ* and any λeA*\X9 0 < r < n, the in-
equality

(2.15) \ξm + \(ccξ*)λ\i>c'\ξ\l\λ\i

holds at each point x e M. The norm | \x is defined by the inner product < , ) x

in Rμ\x, and | ξ \l = fj(αc) + . . . + ξ2

n(x), where ξ = ξ^dx1 + . . + ξn(x)dx*.
Using Fourier transforms, we obtain the quivalence of (2.14) and (2.15).

Proposition 2.7. The operator 3d is elliptic if and only if the sequence

(2.16) o ̂ fiJLβft)-*->... JLβ(gϊ)-+0

is exact for each non-zero cotangent vector ξ e Γ* and μ> μτ.
Proof. The ellipticity of the operator 3 is equivalent to the exactness of

the first row of the diagram

0

0

0 •

— K -^-* i

0

I

I
R\ -?-+

I
3(*i) — /

1
0

0
1

A\

I
R*r

I

I
0

f

f

-iL

ξ

• • - ί - »

.. JL

0

1
^
i

K"Γ
1
0

— 0

— 0

for each non-zero ξ e T*. The second row of this diagram is always exact;
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hence the last row is exact for all non-zero ξ e Γ*. Diagram chasing shows
that ellipticity is equivalent to the exactness of the sequence (2.16) as is easily
seen from the following diagram:

0 -»

0 —

0 —.

0

I
si
I

B°μ

I

ϊ
0

0

ϊ
— β(gl) -* •

ϊ
- BJ -

1

-* Rl-ι ~* •

i
0

0

i

ϊ
• • - » B ?

I
0

l - » 0

— 0

— 0

III. VANISHING THEOREMS

1. Formalism of orthonormal frames

This part is concerned with the differential geometric aspects of the bundles
Rμ. The forms and curvatures, which play an essential role in the vanishing
theorems, are studied, together with the formulas for integration by parts in
the orthonormal frame on the manifold M.

Let M be a C°% /i-dimensional compact manifold. Let Θ be a regular
elliptic differential operator of order μ0 from E to F. Let μ be a fixed integer,
μ > μι, and Rμ, gμ9 the vector bundles, as defined in the previous part.
We shall assume that there is introduced a riemannian metric into the fibres
of Rμ, and < , ) denotes the corresponding inner product, and ( , ) the
global scalar product on M.

Let us introduce a riemannian metric on the manifold M, and let
{α>\ , ωn} be the orthogonal coframe in the coordinate neighborhood
U C M with respect to the chosen metric. This means that

α,*.ω* = δί; i, k = 1,2, ••-,«,

where " " denotes the scalar product. We have

where a{9 b\ are C°°-functions such that cήb*k = i j . Let

be the tangent vector, dual to ω\ i.e.
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ω
dωj

But — — also represents derivation in the exterior algebra of differential

forms on M, in particular we have the formulas:

ω
ϋω3

To the given riemannian metric there is uniquely associated the metric con-
nection, which can be given by the local 1-form π = (πkω

k), πk = (7r}fc). Let
us notice that π)k are symmetric in the lower indices if and only if dώ1 = 0;
i = 1, 2, , n. This is seen from the relation between the connection sym-
bols Γ)k, Γ)k — Γ\j in the coordinate system (JC1, , xn) and the symbols
π)k in the orthonormal frame {ω\ , ωn}, namely

-* __ Γi nihmhn — r*πjk — 1 mnalDj Dk cjk

Let us denote by F, V = ωι Λ F ί 5 the covariant differential with respect to
this metric connection. If, for example, ωι is considered as a section of the
cotangent bundle T*(M), we have Fωi = dωi + π)kω

j Λ ωk. Since {ω1, , ωn}
is an orthonormal coframe, we get Vωι = 0, i = 1, 2, , n, or

dωi = π)kω
k Λ ωj .

The curvature from of the riemannian metric on M is the 2-form R = F(π),

We shall use the usual star operation " * " on forms with values in a vector
bundle; * maps r-forms into (n — r)-forms. The symbol A is used for inte-
rior product, for example, if φ is a scalar r-form on M, then we denote by

φ A the (r — l)-form which is an interior product of φ and . The
dωκ dωk

volume element of M will be denoted by

* (1) = ω1 Λ Λ ωn .

Let {^(x), , lm(x)} be a frame in the fibre Rμ over xzU. Then the
choice of the frame {^(x), , lm(x)} in Rr

p\x gives a trivialization of Rr

μ over
U for all r, and any section σ gR^jU can be written in the form

(3.2) <7 = 1 Σ Σ ^ Λ Λ^I..

The matrix a = α(x) = (<3e/9(jc)) is the matrix of the metric tensor, with com-
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ponents aaβ(x) = </«(*), lβ(x)}. Remember that the global product on M is
given by the formula

(3.3) (σ, p) = J <σ, p) * (1) = J σ Λ a * p
M M

for sections σ, p oί Rr

μ. The 1-form # = \crλάa, the connection form of the
metric connection uniquely associated to the riemannian metric along the
fibres of Rμ. The curvature form of this connection is given by the formula

Π = dθ + θ A θ .

We have seen already that A is the 1-form of connection on Rμ, which is
given by the covariant differential Do = d + e(Λ). Let us define further the
operators DΓ: Kτ

μ —> Rτ

μ

+1 by the formula

(3.4) DΓ = D0 + e(Γ), Γ = a^Doa .

The operator DΓ is again the covariant differential of some connection on Rμ,
Considering the commutator of Do and DΓ, we define a local 2-form Ω by the
formula

(3.5) Ωσ = (D0DΓ + DΓD0)σ ,

for each σ e R .̂ Using the local orthonormal coframe introduced above, we
have

(3.6) Z>Γ = ω y Λ % , D0 = ω*ΛDj .

The formula (3.5) can be written explicitly in the form

(3.7) (Spk - Dk^d)σa

ir..ίr = Ω;jk <...<r ,

where a is given by (3.2).
Definition 3.1. The 2-form Ω is called the curvature form of the operator

3) and the corresponding tensor the curvature tensor of ^ .
Let Df be the formal adjoint operator to Do with respect to the global pro-

duct ( , ). Then for the "laplacian" Πo =D<P* + ^o*^o and any element
a 6 R* the Weitzenbock formula can be written in the form

{(DQD

(3-8)
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where

R{9 = Σ

are components of the Ricci tensor. The formula (3.8) can be written sym-
bolically in the form

(3.9) Πoσ= -Σ ®iDi<y - \Rσ - Rσ + Ωσ ,

where Rσ,Rσ, Ωσ are defined by (3.8) and (3.9).
Remark. If Do is the covariant differential of the metric connection asso-

ciated to the riemannian metric along the fibres of Rμ, i.e., if θ = Λ, then
Γ = 0, DΓ = Do, and we get the usual Weitzenbock formula, which in the
complex case is in [4]. But, in general, if the differential operator 2d and,
therefore, Rμ is given, A is not a 1-form of any metric connection on Rμ.
Nevertheless, there are some special elliptic differential operators such that
the splitting λ of the sequence (2.9) can be chosen in such a way that A is
the 1-form of the metric connection associated to the given riemannian metric
along the fibres of Rμ (see III. 5, for example).

Let us now define the quadratic forms

Ω(σ, σ) = (Ωσ, σ) ,

(3.10) R(σ,σ) = (Rσ, σ) ,

R(σ, σ) = (Rσ, σ) .

Lemma 3.1. For each element σ e R* the following identity holds:

Σ
(3.11) i»*

= Ω(σ, σ) - R(σ, σ) - $R(σ, σ) .

Proof. An element σ eKτ

μ can be written in the form (3.2) then

and if we denote by " " the covariant derivative with respect to the connec-
tion given by the operator Do, we have
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where A = (Λβ

βM), Γ = (Γβ

aJc). Then we have the formula

Σ «* Λ {9jDk - Dk9j} { ^ ~ ) = ̂  Σ {(flj,*f -

which proves the statement.
For each ζ e A* we define the quadratic forms

(3.12) β(ζ, ζ), Λ(ζ, ζ), #(ζ, ζ)

by the formula

The explicit form of expressions (3.12) is easy to see from the proof of Lem-
ma 3.1.

Now we assume, in what follows, that the manifold M is a finite submani-
fold of the C°°-manifold M'. This means that M is an open submanifold of
M', the closure M of M is compact, and the boundary bM of the manifold
M is a regularly imbedded C°° submanifold of M' of codimension 1. Let M'
be a riemannian manifold, and let r be the C°° distance function, defined in
the neighborhood of bM. For x € M', r(jc) is the geodesic distance of x e M'
to fcM r(x) > 0 if ̂  6 M, r(^) = 0 if x e bMy and r(x) < 0 for Λ in the exterior
of M.

Let us consider the coordinate neighborhood U on M' with the coordinates
(JC1, , xn) = x, x e U, and assume that U Π Z?M ψ 0. Then

dr/\*(dr) = ̂ r rfr*(l) = * (1) ,

where

The form σ e Rj, | U is called normal at x € 6M if dr Λ σ = 0, and the form
^ € Rτ

μ IU is called tangential at x e bM if, for each normal σ at * € 6M,
<̂ o, σ ) x = 0. Thus each σ € Rj; | U can be written in the form

a — to + w ,

where ίσ is tangential and ΛCΓ normal at each x € bM. In particular, we get
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t(ωΛ Λ Λ ωι Λ Λ ωn) = ( - 1 ) 1 " 1 - ^ - * (dr) .
oω

Let a, f, g be C°° functions defined on U then

d(jcLg ω1 A * Λ <oι Λ Λ <on)
(3.13)

dωι

where 5j is defined by this formula. Since Stokes' formula can be written in
the form

ϊd(fag ωιΛ'- ΛωιΛ - Λωn) = {fag t(ωι Λ Λ ωι Λ Λ ωn)
M M

g

we have from (3.13) the formulas:

& 3£

(3.14) *

J^7—m- -

Moreover on the basis of the identity

we get

JLαJiL*(l)= ΓJLaJL..Q)
dωj dωk J dωk dωj

ldωk dω} dωJ
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I I -f I ^" VO OU'C
J
3f

9ω*

2. The Z>-Neumann problem

In this section we formulate the D-Neumann problem, and briefly indicate
the Hubert spaces associated with it.

Let us now assume that 3 is an elliptic differential operator, and let D* be
the formal adjoint to the operator D in the resolution (2.7) of the sheaf Θ.
This means that, for any v € O~ι with compact support in Λf', and each
u e Cτ

μ the identity (D*w, v) = (w, Dv) holds, where ( , ) is the global product
on M''. Considering now the representation of u e Cr

μ by the pair (σ, ζ), we
have the formulas

Du = D(σ, Q = (Doσ - ζ, Do(Doσ - ζ)) ,

D*M = D*{σ, ζ) = (Pf(σ + D*ζ), - a(σ + Dfζ)) .

The first formula is part of Proposition 2.2, and the second follows by
straightforward computation. It is easy to see that D2

Q and Df2 are linear
maps over the local rings of C°°-functions. Then we have the well-defined
mapping

(3.16) • = £>£>* + D*D: Oμ -> Cμ

which is called the laplacian.
Let us assume further that μ is a fixed integer and that μ > μlm Proposi-

tion 2.4 shows that the laplacian • is elliptic if and only if the operator 3 is
elliptic in the stable range.

We introduce the following notation:
C : the restriction of the space of sections of Cμ = 0 r Cr

μ to M, elements
which are smooth up to and including the boundary

Co : the completion of C in the norm || ||
D,D*: the extensions to Co of the operators D, D* in Spencer's sequence

(we keep the same notation despite the fact that the spaces on which
these operators are defined are different, and the spaces will be
specified if necessary.)

CΊ : the elements of Co which are in the intersection of the domains of D
and£>*;

TV : the elements u € Co such that Du lies in the domain of Z>*, and D*w
lies in the domain of D
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H : the subspace of N composed of the elements of N which are annihi-
lated by the laplacian L = DD* + D*D (L is actually the Friedrichs
extension of the laplacian • on N).

We observe that these spaces have the structure of graded vector spaces,
for example H = ®rH

r.

Definition 3.1. We say that the weak Neumann problem is solvable for a
finite manifold M, and the elliptic differential operator @^ if LTV is a closed
subspace of Co.

We observe that the operator L is self-adjoint and that (L + J)"1 is a
bounded operator on Co. We define next the orthogonal projection

(3.17) H:C0->H.

If the weak Neumann problem is solvable, we have the orthogonal decom-
position

(3.18) Co = DD*N@D*DN® H ,

i.e., for each M S C 0 , U = Lw -f Hw, where w <= N. We define the map (Neu-
mann operator)

(3.19) N:C0-+N

by the relation: Nu = w — Hw.

Proposition 3.1. The weak Neumann problem is solvable if and only if
the operators H and N have the following properties: N is a self-adjoint
bounded operator satisfying

(i) NH = HN = 0,

(ii) u = DD*Nu + D*DNu + Hu

for each uzC0.
Proof. The proof follows essentially the lines of the proof of Proposition

2.8 [8].
For each u,vεCΛ we define the Dirichlet inner product

(3.20) β(w, v) = (DM, DV) + (D*w, D*v) + (M, V) ,

and the norm Q(u) by Q{uf = Q(u, u). If the norm Q is completely continu-
ous with respect to the norm || |i and this is expected to be true generally
only in positive degrees, then the weak Neumann problem is solvable, or
solvable in positive degrees. But it seems that the relation DN ~ND lies
deeper.

Definition 3.2. We say that the D-Neumann problem is solvable if the
weak Neumann problem is solvable and if the Neumann operator N com-
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mutes with D, (i.e., if u belongs to the domain of D, then Nu also belongs to
the domain of D and NDu = DNu).

Proposition 3.2. //, for each uεC^ the irregularity

(3.21) Q(u,u)> e

holds for some ε > 0 then the D-Neumann problem is solvable and

(3.22) H s Z(Q)/D(C0)

where Z(C0) is the kernel of the map D: Co-+ Co, and Hr is a finite dimen-
sional vector space for r>\.

Proof. That the solvability of the D-Neumann problem follows from the
assumption of the proposition is a consequence of the fundamental theorems
proved in the paper [9].

If the D-Neumann problem is solvable, we have the Neumann decomposition

(3.23) u = D(D*N)u + (D*N)Du + Hu

for each u e Co. This decomposition provides a cochain homotopy

1 - H = D(D*N) + (D*N)D ,

and the isomorphism (3.22) follows.
The inequality (3.21), together with the ellipticity, implies the complete

continuity in positive degrees, of the Dirichlet norm Q with respect to the
norm || | |. This finite dimensionality of the harmonic spaces in positive
degrees follows from a standard argument.

Let H = ®rH
r be the space of elements u e C, which satisfy the conditions

( 9 ) (
{ ' (D*Du, v) = (Du, Dv)

for all v <= C, and which are annihilated by the laplacian • . The solvability
of the D-Neumann problem implies the isomorphism Hr = Hr, r > 1.

Remark, (i) There is another cohomology, namely the cohomology
defined by the formula

J? =Z(&ID(C),

where C is the space of sections of Cμ = ®rC
r

μ over M. The relation between
tf = ®r3fr and H = ®rH

r requires further investigation even if the Neumann
problem has been solved, although these spaces are probably isomorphic in
positive degrees, as was conjectured by D.C. Spencer.

(ii) The condition (3.21) is not necessary for the solvability of the D-
Neumann problem, and a weaker condition, for example,
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β(w, u) > c || u || (β) for 0 < s < £, c > 0, u <= C,

may suffice (see [14]). But for our purpose (vanishing theorem) these condi-
tions are not very important.

One of the main problems is to determine the set C(@μo) of finite manifolds
for which the D-Neumann problem is solvable. The manifolds of C{β^
would be in some sense, generalizations to elliptic operators of the classical
holomorphy domains (see [12]).

W. J. Sweeney has recently shown that the Neumann problem for an
elliptic system with constant coefficients on a spherical domain is not always
solvable in terms of the euclidean metric.

3. Vanishing of the harmonic space in positive
degrees for open manifolds

The harmonic space H is the subspace of C composed of those elements,
which satisfy both boundary conditions and are annihilated by the laplacian
•. It would then be enough to calculate an explicit form of the Dirichlet
integral yielding a fundamental inequality for a vanishing theorem for elements
satisfying both boundary conditions. Nevertheless, we give a formula for the
Dirichlet integral under somewhat more general conditions, namely, we
assume that the elements are smooth up to and including the boundary and
satisfy only the first boundary condition (3.24).

In view of the remark made at the end of the preceding section, the signifi-
cance of this section, so far as vanishing of cohomology is concerned, is
dubious.

Let {Ua} be a finite covering of M by coordinate neighborhoods in M'9
and U be a neighborhood of this covering such that U Π bM Φ 0 .

Proposition 3.3. Let u be a section of Cr

μ over U which is smooth up to
and including the boundary bU of U and is such that the first boundary
condition (3.24) is satisfied. Then, for the elements σ, ζ is the representation
(σ, ζ) of u, and the following identities hold on bU:

(3 25) Sβ

(3.26) Σ ^

(3.27) ^ - τ > A ^-) + ^ ^ r l σ Λ -2-1 = λ-dr

dωι I dωι dwk \ da>1 I dωk

(3.28)
dω'dω1 V dωι I dωι Bω" V 3ωι I 3ω
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Proof. Let u € Cr

μ \ U, v e Cr

μ'
1 \ U, and let u belong to the domain of the

operator £>*; then, using the representation u = (σ, ζ), v = (p, ή), we have
by Proposition 2.2 the formula

<D*κ, v) * (1) - <w, Dv) *( l ) = φ Λ f l ^ - ζ Λ ΰ * i

Since (3.24) holds for such u € C and all i; € C, we have the identity

Γ((<7

Thus

t(σ Λ a * /o) = t(ζ A a * η) = 0 ,

on bU, l

The last

Since

identities are equivalent to

dr bU

9 - V
dr 7 9α)J'

dr l\bσ

9

a®' '

= 0 .

we obtain (3.25), (3.26). The equations (3.27) and (3.28) are obtained by
derivation of (3.25) and (3.26).

Definition 3.3. The finite manifold M will be said to be "strongly pseudo-
convex" with respect to the differential operator 3d if at each point of the
boundary bM, the condition

(3.29) ΣLja(ζ7\ d

where

is satisfied for all ζ satisfying (3.26).
Remark. The condition (3.29) is too restrictive in general to be the right

"Levi criterion" for the determination of an existence domain (analogue of
holomorphy domain) for an elliptic operator.

Lemma 3.2. For any uzC which satisfies the first boundary condition

(3.24), we have the following identity:
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(3.30) || Du j | 2 + j| D * u |j2 + || « ||2 = K(u, «) + Γ(u, w) + J * L , ( M , H) * (A) ,
bM

where

K(u, u) = Ω(σ, σ) - R(σ, σ) - *Λ(σ, σ)

, ζ) - ^(ζ, ζ) - i«(ζ, ζ) .

Γ(H, a) Σ IIAΛII1 + Σ ll^σll2 - (β(Dhζ A - ^ - ) , ̂ (Z),ζ A

(aDf)ζ, {ha + 2ψk + afk + 2aΔk}[ζ A

- 2 (D*<7, {/*-<*
d

dω'
II 3 \

(3.33) -
oω3

/ i Λ + 22j
dωk

+ dkaψj — ψjψj + Σ Ck

lhaCj

hl) (ζ 7\

A 9

4dωk

- 2(ζ5 D0(7) - 2(D0ζ, D?σ) + 2|| ζ ||2 + || Z)2

0σ ||2 + 2(D*σ, D*%)

- l l ^ o £11 + \\<xσ\\ -r \\σ

where

αrZ)̂ , ^ λ = ^ A α — a$k, Δk — aΔka'\ ψk = aψkcrι ,

dk = I & + Λ + ^ - s k - ^, /, = - A k - Λk - r k + s k + θk,-- .

Proof. For each u = (σ, ζ) eC satisfying the first boundary condition
there are the formulas
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|| Du | | 2 = | | £ V II2 + II Doζ I!2 - 2(C, Daσ) - 2(D0ζ, D 2

σ ) + || ζ |

|| D*ιι f = || £>0*σ | |
2 + || αD 0 *ζ | |2 + 2(D*σ,

+ 2(aσ, aDfζ) + \\D*% ||2 + || aσ |

By definition of the adjoint Df of £>0 we have

II I V I!2 = Σ II * V I!2 - ( * V A -^τ> Dkσ Λ - ?

Using the formulas (3.14) for integration by parts, the formulas (3.27), (3.28)
and the identity

dωh

which is easily proved to be valid for σ <zR^ and any r, we obtain the formulas
stated in Lemma 3.2 by straightforward calculation.

Theorem 3.1. // the curvature of the operator 3) is such that the quadratic
form K(μy u) is sufficiently positive for all u e CΓ, r > 1, and if both conditions
(3.24) and condition (3.29) are satisfied, then

Hr = 0, r > 1 .

Proof. Since Hr = Hr, r > 1, it is enough to consider elements smooth
up to and including the boundary bM. If we write T'(u, u) = Γ(w, w) — \\u\\2,
we obtain from (3.30) for a harmonic element u e C the identity

K(u, u) + T'(μ, u) + CL(U, u)*dr =

And from here we can conclude that if K(μ, u) is sufficiently positive in a
sense that the left side of the above equality is >0, then u = 0.

4 . V a n i s h i n g o f the c o h o m o l o g y g r o u p s Hr, r>l,

for a c o m p a c t m a n i f o l d

We continue to assume that the operator @ is elliptic and assume, in addi-
tion, that the manifold is compact. Moreover, we assume that the resolution
(2.7) is exact for μ > μj7 i.e., the resolution of the sheaf Θ of germs of solu-
tions of the homogeneous equation by the fine sheaves CJ, μ > μu is exact.
Let μ be a fixed integer μ > μJ9 and let C = ®rC

r be the graded vector space
of sections of Cμ = ®rC

r

μ over the manifold. Then
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Hr(M,Θ)ςzZ(Cr)/D(Cr-1)

(de Rham's theorem). Let

Hr = {u I u e Cr, Du = 0, D*w = 0}

be the harmonic forms of degree r then

(3.35) Hr(M, Θ) = Hr

(Hodge's theorem). In fact, on the compact manifold the Neumann problem
is solvable by standard arguments and this yields the isomorphism (3.35).
Our purpose here is to give a vanishing theorem for the harmonic spaces in
positive degrees, i.e. by (3.35) for the cohomology in positive degrees.

The desired fundamental inequality can be derived from the formula (3.30)
for the Dirichlet integral. However, by restricting our attention only to har-
monic elements, we can proceed to the inequality somewhat more directly.
Let u = (σ, ζ) be an element of Cr in obvious identification. If this jet form
is harmonic, then Du = D*u = 0 and, by (3.15), Doσ = ζ, D*σ = -D*%
and aσ = —aDfζ. Thus, for any harmonic u = (σ, ζ), we have

+ DfD,)σ - D*ζ + DMX = 0 ,

{D,ocD* + aD*D0)ζ + Doασ - aDfDfr = 0 .

The "laplacian" £>0Df + Z)0*D0 is explicitly given by (3.8), and the following
formula can be regarded as the Weitzenbock formula for the "laplacian"
DoaDf

{DoaD* + aD*D0)ζ = -a Σ ®P& + «{<»* Λ Spkβ{ζ, A - ^

i>*) Λ

. 3

Since, for any harmonic « = (σ, ζ), (3.36) holds, we have the identities:

((£>0D0* + D*D0)σ, σ) - (D*ζ, σ) + (D0D*X, σ) = 0 ,

((DoaD* + aD*D0)ζ, ζ) + ψoaσ, ζ) - (ccDfD\σ, ζ) = 0 .

Straightforward calculation gives
Lemma 3.3. For any harmonic jet form u = (σ, ζ) e Cr, r > 1, where

(σ, ζ) is the obvious representation of u, the following identities hold:
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Ω(σ, σ) - ±-R(σ, σ) - R{σ, σ)

= - Σ II *V ||2 + (D*ζ, o) - (D0D*X, σ) ,

Ω(ζ, ζ) - - b ? ( ζ , ζ) - ά(ζ, ζ) = - Σ II D}ζ i|2 + II βD*ζ
2 3

A -A-), βsJζ A

(3.37) - ί^-βk Ά
Sm

ωk Λ
• <)

- L* Λ ^ Σ c*i(c A - \ ) > ί) - Φo^o , ζ) + (aD*Dlσ, ζ) .

Lemma 3.4. // 3d is an elliptic operator, then for any harmonic jet form
u = (σ, ζ) e Cr, r > 1, fΛere βjcίyί positive constants Ku K2 such that

(3.38)

where

(3.39) K(u, u) = Ω(σ, σ) - $R(σ, σ) - R(σ, σ)
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Proof. It is enough to prove this inequality locally, for u with compact
support in some fixed neighborhood U of a finite covering {Ua} of the compact
manifold M.

We shall consider first the term Σ II D A II2 — II βD*Z II2- Reasoning similar

to that in Proposition 2.6 shows that the ellipticity of a differential operator
Q} is equivalent to the existence of a constant c, o < c < 1, such that

(3.40) ||(/3d*)ζi(2<(l - c ) Σ K ζ | | 2

for any ζ € v4£, μ> μ^r> 1, with compact support in ί/, 2 <&' Λ d,-ζ = dζ
Then, from the identity

i i 2 = -
7

= - Σ ii <oc ii2 + [βdk b - i r ) , M (C A

- 2 Σ (Pjζ, Λjζ) + 2(β{Λf + Γj}(ζ A - ^ - ] , β&dCΛJL-

we obtain the inequality

I! βDfζ ||2 - Σ II Djζ ||2 < - c Σ II ̂ C I I 2 - 2 Σ ( D y ζ ,

(3 4 1 ) / Λ
+ 2[β{ΛJ + Γ

Let us observe now the following elementary fact. For any positive number
ε there exists a positive constant K(ε) such that, for any two elements σ, peRr

μ,
we have (σ, p) < ε || σ ||2 + K(ε) \\ p |j2. We then derive from the formulas
(3.37), for some ε2 > 0, ε2 > 0, ε3 > 0, the following inequalities:

Ω(σ, σ) - i-Λ(σ, σ) - R(σ, σ) < - Σ II * V II2 + î Σ II ̂ C IΓ + K(BJ \\σ\\\
£ J 3

Σ

Adding these two inequalities, and using (3.40) we obtain (3.38).
From the inequality (3.38) we infer the following:
Theorem 3.2. Let M be α compact manifold and 3) an elliptic differential

operator. If the quadratic form K(u, u) is sufficiently positive for all u € Cr,
r > 1, then

(3.42) Hr(M,Θ) = 0, r > 1 .

Remark. The condition that "the quadratic form K(u, u) is sufficiently
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positive" is equivalent to the statement "the curvature of the operator 2 is
sufficiently positive with respect to the curvature of the riemannian metric
on M".

We were using so far only the resolution (2.7) of the sheaf Θ. Considering
the resolution (2.10), we are led to the laplacian D$βD0 + βD0D$, the cor-
responding Weitzenbock formula and another formulation of the vanishing
theorem for a compact manifold and elliptic differential operators. The con-
dition for vanishing of the cohomology groups (3.42) is then given by sufficient
positivity of the quadratic form K(u, u) on sections of the bundles Br

μ, r > 1,
i.e. on elements u = (βσ, 0) in the natural isomorphism and representation
of u by a pair as in Proposition 2.2.

Under the assumptions we have made at the beginning of this section, we
can conclude from Theorem 2.1 that the resolution (2.10) is exact. Then
the cohomology H(M, θ) is isomorphic to the space B = ®rB

r of sections
over M of Bμ = Θr#£, where μ is fixed, μ > μl9 which are annihilated by the
laplacian DfβDQ + BD0Df. Let pεB; then the Weitzenbock formula has
the form

(DfβD0 -

= -SjβDjp + β\ωk A {Spk - Dk®3)β(p A -£j-)J

+ β\ωk A {9P* ~ Dk@3)a(p A
t \ dωJ <

+ ωfc Λ

(3.43) + {Σ c%ωe + A,a>* + Γjω*} A βϋJp A

iω* A Dkp) - (ωfc Λ βDkp)] A d

dωj

dωj

Using this formula, we have the following
Lemma 3.5. For any p<iBr, r > 1 the identity

Ωfip, P) ~ ϊRβ(p> P) ~ *t(P> P) = (ΨfβD0 + βD0D*}p, p)

+ II aD* ||2 - Σ II DjP II2 + (βDjP, ΛiP)
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- (βDjP θjP) - {<βD)P, p}Ss * (1)

(3.44)

dωk

- (ίΣ c%ω' + Λsω
k + />*} Λ

— IS,\[(ωk Λ βDkρ) — β(ωk Λ Dkp)]

holds, where

A

Ωβ(p, p) — jRβ(p, p) — Rβ(p, p)

We shall write

κβ(p> P) = ®β(p> P) — ?Rβ(p> p) — Rβ(p> p)
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Theorem 3.3. Let M be a compact manifold and 2 an elliptic operator.
If the quadratic form Ωβ(p, p) is sufficiently positive in the sense that Kβ(ρ, p)
is sufficiently positive, then

Hr(M, Θ) = 0, r > 1 .

Proof. The statement follows immediately from the inequality

(3.45) Ωβ(p, p) - ±Rβ(p, p) - Rβ(p, p) < + k \\ p ||2 ,

which holds for all p € Br, r > 1, for some positive constant k. From (3.44)
follows the inequality for ε > 0, K(ε) > 0,

Ωβ(ρ, p) - ±Rβ(p, p) - Rβ(p, p) < II aDoP ||2

- Σ I I D J P II2 + ε Σ aj II DJP II2 + « W II P I I 2 ,

where aj in general depends on the metric chosen along the fibres of Rμ and
on the splitting of the exact sequence (2.9). Since 2s is an elliptic operator,
we have the inequality

I * D o p I I 2 - Σ I I D j P I I 2 < c Σ I I D J P | | 2 + κ τ \ \ P

2

which holds for all pεBr, C and Kτ being positive constants. This proves
the inequality (3.45) and hence the theorem.

5. An example

Let M be a compact manifold of complex dimension m(n = 2m), and TC(M)
the complex tangent bundle of M. We have the obvious isomorphism
TC(M) ^V®V, where V is the bundle of holomorphic tangent vectors on
M. Further let E be a complex line bundle, and let

where F * is the dual bundle of V, the first order differential operator which
has in local complex coordinates z = (z\ , zn) on U c M the form

The vector bundle Rl9 as sub-bundle of JΎ(E), is locally given as the set of

elements of the form Is, —, —) for which — = 0 holds. The operator
\ dv dv) dv

2s is an involutive and elliptic operator. In this case μ0 = μ1 = 1 and every
element u = (σ, ξ) € Q = RJ/ Aϊ in the representation of Proposition 2.1 is a
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pair of independent elements, where ( j e R ; ^ E 0 ΛPΛ*ΛqV*> P + <7 = r,
and ξ belongs to the ideal of EΘΛp'V*Λq/V*, p' + <f = r + 1 generated
by E 0 V*, in the sense of exterior algebra. The differential operator D (see
Proposition 2.1) splits into two operators, namely D = Dλ + Z>2, where

D1(σ, ξ) = (da - ξ, - 3 f ) , D2(σ, ξ) = <βσ9 -3ξ) ,

and we have the exact commutative diagram (see [12])

0 > Θ • D ^ -?-• D ^ —^U - 1 + D°'m • 0 ,

where Θ is the sheaf of germs of holomorphic functions on M, and the second
sequence is the classical Dolbeault resolution of Θ by sheaves of complex-
valued differential forms.

The splitting λ of the exact sequence (2.9) can be chosen, in this case in
such a way that Do is the covariant differential of some metric connection
corresponding to a Hermitian metric in E. Then DΓ = DQ (see (3.4)), because
7̂  = 0, and the curvature Ω of the differential operator 3 is just the curvature
of the corresponding Hermitian metric. Theorem 1 of [7]—Kodaira's vanish-
ing theorem—then follows from Theorem 3.3 of this paper.

IV. THE BOTT CONNECTION

The construction of the bundles CJ, μ > μu r = 0, 1, , n of jet-forms,
given in Proposition 2.3, is due essentially to R. Bott. The construction was
originally formulated in terms of a so called Bott connection or, in the paper
[2], on the basis of a connection from Rμ to Rμ-τ. Such a connection is given
by a "derivation" D in Definition 2.1. In this section, we shall give some
characterizations of these connections, using the principal bundles associated
to the considered vector bundles. Because the operator D is well defined for
all μ > 1 we shall not make any restrictions on μ.

Let q:Pμ-+M be the principal bundle associated to the vector bundle
p; Rμ-+M, and let Gμ be the structure group. Let ®μ be the Lie algebra of
Gμ. Denoting by Vp the typical fibre of Rμ, we have the commutative diagram

μ X V μ μ

(4.1) I [[p
Pμ -U M .
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Assume that there are given the following mappings: projection π :Rμ—>Rμ^ί,
homomorphisms h:Gμ-^ Gμ_Ύ and k: Vμ -> Vμ_x such that k(gv) = h(g)k(v)
for all g € Gμ and any v eVμ. There exists the bundle map I: Pμ-+ Pμ_τ com-
patible with the operation of the group on the principal bundle. Namely, for
(z, v) 6 Pμ X Vμ9 π o s(z, v) € /?,,_!, there exists a unique z' e Pμ_λ such that
s'Cz', k(y)) — πo s(z, v), where s' is defined by the diagram

P. X K. — # ,

/, *> j

We then define z '=/(z) .

For any X € Γ(M), we denote by X € ΓίP^) a vector such that qjί = X.
The vector field X € T(PP) which projects on X € T(M) is called a projectable
vector field. Let ί / c M b e any neighborhood over which Rμ is trivial. If
σεΓ(UyRμ), then there is a unique section σ' z Γ(q-\U), Pμ X F,), such
that s o σ' = σ o q. The section σ' is given by a F^-valued function σ on P,,
in the sence that for any z e q~\U), σ'(z) = (z, σ(z)) holds. It is clear that
σ(zg) — g~Ύσ{z) for any geGμ. We shall speak about ϊ^-valued Gμ-ίunctions
on Pμ. There is a one-one correspondence between the sections of Rμ and
the sections of the sheaf of germs of F^-valued G^-functions over M.

Definition 4.1. A Bott connection from Rμ to Rμ_τ is given by the first
order operator

where the conditions (i) and (ii) of Definition 2.1 are satisfied.

Remark. This definition is actually exactly Definition 2.1. The only dif-
erence is that we use the symbol Dμ instead of D in order to make clear that
the Bott connection on the μ-th level is considered.

The "lifting" of the section σ e R^ into the G^-functions on Pμ will always
be denoted by σ. A long tilde over several symbols will be omitted for typo-
graphical reasons, but its presence should be clear from the context.

Proposition 4.1. To the Bott connection Dμ and any projectable vector
field X on Pμy there is associated an element ω{X) € Horn (Vμ, Vμ_x) by the
formula

(4.2) ω(X)σ = i(q*X)Dμσ - σ £ R, .

The element ω(X), considered as a mapping of Vμ-valued Gμ-functions on
Pμ, is linear over functions and satisfies the following two conditions:

(i) ω(λ) = kλ, where λ is a fundamental vector field on Pμ corresponding
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to λ e ®μ, and the composition on the right side is the composition of endo-
morphism λ on V μ and projection k.

And any Bolt connection can be given by such a I-form ω which satisfies (i)
and (ϋ).

Proof. Straight from the definition it follows that ω(X) is an element of

Let / be a lifting from M onto Pμ of a real-valued function /. Then

ω(X)fd = i(X)Dμ(fσ) - kX(fσ)

= fi{X)Dμσ + i(X)df <g> πσ - df(X) ® kσ - fkXσ

= fω(X)σ ,

so ω(X) is linear over functions.
The fundamental vector field λ on Pμ corresponds to some element of the

Lie algebra ®μ of Gμ in the homomorphism of the Lie algebra ®μ into the
vector fields on Pμ, given by the action of Gμ on Pμ. Then if γ is a 1-form
on Pμ with values in ®μ, such that the restriction to the fibre is the Cartan
form, we have the identity γ(λ) = λ. And since for any fundamental vector
field λ on Pμ the formula (4.2) has the form

ω(λ)σ(z) = -kλσ(z), zePμ ,

we obtain the relation

ω(λ)σ(Zog) = -kλσ(Zog) = -

where Zo is a fixed point of Pμ. This proves the identity (i).
The formula (4.2) and the diagram (4.1) give the identities

s(Kzg), ω{Xzg)σ{zg)) = s(l(zg), i(q*X)Dμσ{zg)) - s(l(zg), kXσ(zg))

= s(l(z)h(g), i(q*X)h{gy*Dμσ(z)) - s(l(z)h(g), h~\g)kXσ{z))

) , i(q*X)Dμσ(z)) - s(l(z), kXσ{z)) = s(l(z), w(Xz)σ(z))

In this formula the subscript z is added to X for better understanding. It is
immediate that (ii) follows from the relation

s(l(zg), ω(Xzg)σ(zg)) = s(l(z), h(g)ω(Xzg)g-ισ(z)) .

And now we shall prove the reverse statement. Observe that the Bott
connection on the μ-Xh level gives the linear mapping v(Xz), associated to
the vector Xz € Tz(Pμ), of a local section a of JR, over some neighborhood of
q(z) into the fibre of Rμ over q(z). This mapping is defined by the formula
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(4.3) v(Xz)σ = s(l(z)9 ω(Xz)σ) .

we then have the relation

v(Xz)σ = s(l(z), K<l*X)D*σ - kXσ)

= s(l(z), i{q*X)Dμσ) - s(l(z), kXσ)

= i(q*X)Dμσ - ίrj(z, Xσ) .

From these formulas it follows that the operator Dμ gives a Bott connection.
Let Wμ be the subspace of Horn (Vμ, Vμ_λ) generated by elements of the

form ω(λ), where λ is some projectable vector field on Pμ. If we denote also
by ®μ the representation of the Lie algebra ®μ in Vμ9 which is induced by the
action of Gμ in Vμ, we have:

Proposition 4.2. Wμ = ko®μ.
Proof. To the splitting τ of the exact sequence

and the Bott connection Dμ, there is associated the connection on the vector
bundle Rμ defined by the operator Dμ+1 o r. We have namely the relation

D μ = D μ o π o z = πo Dμ+1 o τ .

It is easily seen that Dμ+1 o r is the covariant dijfϊerential of an "ordinary"
connection on Rμ. If σ € R^, then

(D,+1 o z)fσ = Dμ+1(fτσ) = df ® σ + f(Dμ+1 o τ)σ .

But the linear mapping v(Xz) considered in the proof of Proposition 4.1
satisfies the following:

v(Xz)σ = i(q*Xz)Dμσ - s(l(z), kXzσ)

= i(q*Xz)πDμ+1 o rσ - s(l(z), kXzσ)

= 7Γ5(Z, ί(q*Xz)Dμ+1 o Γ(7) - π5(Z? X,<7)

= 5(/(z), Λ o i(q*Xz)Dμ+1 o re;) - J(/(Z), * o Xzσ) .

Hence, by (4.3),

ω(X)σ = A: o (i(q*Xz)Dμ+1 o rσ - J?zσ) .

Analogously as it was done for the Bott connection, we can find on Pμ the
©^-valued 1-form Λ such that

Λ(X)σ = Kq*X)Dμ+1 o τσ - Xσ .

It is obvious that A is a connection form. This concludes the proof.
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Now we shall give another characterization of the Bott connection from Rμ

to Rμ_τ on the basis of Proposition 4.1. Let us define a mapping

φ : T(Gμ) —> Gμ X Wμ ,

by ξ>(λa) — (a, k o λ o 0), where Λα € Ta(Gμ), λ is the left invariant vector field
on G, generated by λa, and & o Λ o a is the composition of homomorphisms.
Any section of the trivial bundle Gμ X Wμ —• Gμ, which is the ξ)-maρ of a left
invariant vector field on Gμ is said to be left invariant. The space of these
sections is isomorphic to Wμ itself. In this case we identify ξ> and k. Let
A{Wμ) = (&tA*(Wμ) be the exterior algebra of W*. The exterior algebra of
W*. The exterior algebra of differential forms on Pμ is denoted by E^^φ^E*,
the element of Wμ corresponding, in the obvious isomorphism, to λ e (&μ is
denoted also by λ. And let λ be the fundamental vector field corresponding
to λ.

Proposition 4.3. The Bott connection on Pμ is a homomorphism {with
respect to the exterior multiplication) ω*: A{Wμ) —*Eμ, such that

i(iω(χ)

Θ0)ω*(χ) = ω*(θ{X)X) ,

for any χeA(Wμ) and any λζ®μ. For the interior product and the Lie
derivative we use the symbols ί and θ.

Proof. We know that the Bott connection on Pμ is given by a W^-vahied
1-form ω on P^-Proposition 4.1. But we know also that ω = k o A and ί i
there is a homomorphism Λ* : Aμ —* Eμ (Aμ being an exterior algebra oi ' i j
on Gμ). Then ω* = Λ* © &*, where Λ*: A(Wμ) —»^4^ is an obvious homo-
morphism. We are to prove that, for any λ e ®μy

i(3)(A* o k*)(ώ) = (Λ* o ik*)(iy)α>), ωeAμ

But this is equivalent to the identity

i(ϊ)Λ*(k*ώ) =

since z*(A) commutes with k*. This follows from the fact that k*ω is the 1 -form
of an "ordinary" connection on Pμ (see [1]). Analogously

θG)Λ*(k*ω) = Λ*(θ(λ)k*ω) ,

as we deal with an "ordinary" connection again.
Definition 4.2. The mapping ft: A'(Wμ) — £*, where ft: χ -> d(ω*(χ)) -

ω*(dχ), is called the curvature of the Bott connection ω.
Denote by S(Wμ) the symmetric algebra associated to W* and by Wμ =

the so called Weil algebra of Wμ. As is easily seen it is
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actually the definition from [1] modified to suit our case. And one would
expect to get, on the basis of a chosen Bott connection, a homomorphism &
of the graded algebra Wμ into Eμ and then the characteristic classes of Pμ.
But the Bott connections are not useful in this direction, as the following
theorem shows.

Theorem 4.1. The curvature of a Bott connection is zero.
Proof. From Proposition 2.2, it follows that D2

Q is a bundle map from
Rr

μ into Ar

μ

+2. In the present contex, this means that the curvature form
dΛ + [Λ9 A], where ω = k o A, is a 2-form with values in the kernel of the
projection ®μ —• ®^_χ. This implies that

k o (dA + [Λ, A]) = 0 .

Considering the natural extension of d on Wμ, we observe that k commutes
with the operation d. Then, for any χ € A'(Wμ),

d(ω*(χ)) - ω*(dχ) = d(Λ* o A*(χ)) - A*d(k*χ) .

Using the usual notation <χ, v> = χ(v), where χ g ̂ (W^) and v e Wμ, we
can write the following relation

<ω*(χ), O = <χ, ω(ζ)>, χ e A\Wμ\ ζ € T(Pμ) ,

and analogously,

< ^ * ( χ ) , Ci A ζ2> = <χ, A»(Ci, Q > ,

where

yΛA\Wμ)\^ ζ2zT(Pμ) .

Then, for any χ € ̂ ( W , ) and ζ1 ? ζ2 € ΓCP^), we have

Ci Λ C2>

- (Λ* o λ*)dχ), ζ, Λ ζ2>

- Λ*d(k*χ)9 ζ1 A ζ2>

= (k*χ, dA(ζl9 ζ2)> - <rf(Λ*χ), Λ(O Λ

= <Λ*χ, dA(ζl9 Q > - <A:*χ, [^(Q, A(ζ2)]}

Λ, ^])(d, ζ2)>

[A, Λ])(ζl9 Q > = 0 .

From this formula we conclude that

<*(ω*(χ)) - ω*d(χ) = 0 for any χ € Λ'(W%)

and this yields the statement.
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