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1. Introduction

The object of this paper is to prove the following theorem and give
it a proper setting in differential topology.

Theorem 1.1. There exists a regular connected (n —1)-dimensional
manifold Mn_i of class C°° in a euclidean space En such that the focal
points of Mn_i are everywhere dense in En.

In particular there exists a simple regular curve M\ of class C°° in E2
whose centers of curvature are everywhere dense in E2. See §2.

The mainfold Mn_i of Theorem 1.1 is without any differentiable
singularity in En and without self-intersection. However it cannot be
compact by virtue of Theorem 1.2.

In Theorem 1.2 we refer to a subset of En of J-content zero. Given
a positive constant e, such a set is characterized by the property that
it is included in a finite number of n-rectangles whose total volume is
less than e.

Theorem 1.2. Let Mn_i be a regular manifold of class C m , m > 1,
in En, and let Mn_i and En be, respectively, relatively compact open
subsets of Mn_ι and En.

Then the set of focal points o/Mn_i in En has a J-content zero in
En, implying that the set of focal points of Mn-ι is nowhere dense in
En.

Note. It is not affirmed that the set of focal points of Mn_i in En

has J-content zero.
Theorem 1.2 admits an extension in which Mn_i is replaced by Mr

where 0 < r < n. Both Theorem 1.2 and its extension are provable by
methods used by the author in his colloquium lectures in treating focal
points of extremals "transverse" to a differentiable manifold. We shall
establish Theorem 1.2 by non-variational methods later in this section.
The extension of Theorem 1.2 can also be established by non-variational
methods and this will be done in an introduction to critical point theory
in global analysis and differential topology now being written.

Theorem 1.2 implies, but is not implied by, the theorem that the set
of focal points of the manifold Mn_i in Theorem 1.2 has a Lebesgue
measure zero in En.

We shall recall some essential definitions.
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Definition 1.1. Regular presentations. With 0 < r < n let V be
an open subset of Er and i?1, , vr rectangular coordinates of a point
U G F . Let x1,-" ,xn be rectangular coordinates of a point x G Ĵ n A
mapping

1

of class C m is termed regular if the n by r functional matrix of the
functions F1, , F n has the rank r at each point υ eV. Set F(V) =
X. If F is regular and a homeomorphism into En,F is called a C m -
embedding of F in E n , and a regular Cm-presentation (F : V,X) of X
in En.

Definition 1.2. Regular Cm-manifolds in En. For 0 < r < n let
Γ r be a "topological r-manifold" which is a "subspace" of En in the
sense of Bourbaki [1]. Suppose that there exists an ensemble of Cm-
presentations (F : V, X) of open subsets of Γr whose union is Γr. Then
the set of all regular Cm-presentations of open subsets X of Γr defines
a regular Cm-structure V on Γr. Γr taken with such a Cm-structure is
called a regular Cm-manifold Mr in En with carrier \Mr\ = Γr and set
of presentations VMr.

The inverse of a presentation F G VMr is called a regular chart of
Mr. Given a presentation (F : V, X) G T>Mr the coordinates v1, , vr

of a point Ϊ; G V are termed /oca/ coordinates of the point -F(t') in the
coordinate domain X of Mr.

Focal points of Mn_i. Let Mn_χ be a regular Cm-manifold in En,
with m > 2. Let c = (c1, , cn) be a point in En. let ζ be a sensed
straight line, meeting c and a point # G M r, cφ q, with ζ" normal to
Mn-\ at Q. Then c can be defined as a /ocαί point of Mn on ζ with base
point q in one of three equivalent ways, termed respectively definition
by

I. critical point characteristics,

II. a singular point of the field of normals to Mn_i,

III. a center of principal normal curvature of Mn-\.

I. Focal points as degenerate critical points of a distance function.
Let p be an arbitrary point on Mn-\ — c, and p —» f(p) the function on
Mn_i with values
(1.1)

/(p) = ||x - c\\ (p = x G Mn_i - c).

Then / is of class Cm on Mn_i — c, and has a critical point when p is
the above point q.

The point c is called a focal point of Mn-\ on ζ with base point q,
if q is a degenerate critical point of f.

We are assuming that the reader is familiar with the invariant char-
acterization of degenerate and non-degenerate critical points of a func-
tion / of class C2 on Mn_χ.

II. Focal points as singular points of the field of normals to Mn_i.
Let (F : V, X) G VMn-\ be a presentation of a neighborhood on Mn_i
of the point q given on Mn_χ. Set VQ = F~λ(q).
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Let λ° be the unit vector, normal to Mn-\ at q with the direction of
the given line ζ. The family of unit vectors λ = (λi, ,λ n) orthogonal
to Mn_i at points F(υ) G X, including the vector λ° when υ = VQ, can
be represented by Cm~ι mappings
(1.2)

v -> \i(υ) : V -> R (i = 1, , n)

for V C V a sufficiently small open neighborhood of v$. Set F(V) =
X. The normal to X at the point F(υ) with the direction X(v) has a
representation

(1.3)
x = F(υ) + sλ(v) {v G V)

in terms of an algebraic distance coordinate s, measured from the point
F(v) on the normal, and taken positive at points of the semi-normal
with the direction of λ(t ).

We shall make use of the Jacobian

noting that

(1.4)
) ^ 0 {veV).

Our second definition of focal points of Mn_i is as follows.

The focal points of Mn-χ with base points x = F(υ),v G F, are the
points x given by (1.3) when J(s,v) = 0.

Definition 1.3. Focal mappings. A mapping

(1.5)
(5, v) -> F(v)+5λ(v) ( S G Λ J U G V )

conditioned as above, will be called a focal mapping associated with the
base point q and directed line ζ orthogonal to Mn_i at q.

III. Focal points of Mn_χ as centers of principal normal curvature
of Mn-\. We shall not need this type of definition and so refer to it
only to complete the presentation. The interested reader may turn to
treatises on differential geometry or to [2], page 403, and in particular
to §21 of [2] on "Normals from a point to a manifold".

We state the following theorem.

Theorem 1.3. The three definitions of focal points are equivalent

A proof of this theorem is implied by the analysis in [2].

A corollary of this theorem is that the definition of focal points by
means of the vanishing of the Jacobian J(s, v) is independent of the
choice of the presentation (F : V,X) G DM n _i of a neighborhood X of
the given point q G Mn-\. One can also establish this independence by
dealing directly with the focal mappings (1.3) which are involved.
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A proof of Theorem 1.2 recalled. Theorem 1.2 is an almost
trivial consequence of Lemma 1.1 below. In Lemma 1.1 we refer to a
euclidean ra-space Um of coordinates u1, , um and to a euclidean m-
space Em of coordinates x1, , # m . Given a C1-mapping w —> x(w)
of an open subset W of Um into ϋ?m, the points u e W at which the
Jacobian

vanish are called the singular points of the mapping u —> x(u), and the
corresponding points in Em singular images.

In proving Lemma 1.1 we shall refer to generalized cylinders in Em.
If r and t are positive integers such that r + 1 = m a generalized m-
cylinder in JSm is the image in Em under an orthogonal transformation
of the product of a mutually orthogonal r-ball and euclidean ^-rectangle,
given in some auxiliary euclidean m-space. We shall refer to a gener-
alized m-cylinder in Em as an elementary volume V. It is clear that
a subset Y of En has J-content zero if corresponding to a prescribed
constant 77, Y can be included in a finite set of "elementary volumes"
V whose total volume is less than 77.

Lemma 1.1. Let there be given a C1-mapping
(1.6)

u —> Xi(u) — Xi (u G W] i = 1, , m)

of an open subset W of Um into Em.

If W is a relatively compact open subset ofW the image x(u) under
the mapping (1.6) of the singular points u G W of the mapping (1.6),
form a set of J-content zero in Em.

Proof of Lemma 1.1. The special case of Lemma 1.1 in which the
mapping u —> x{u) = grad f(u), where / is a function of class C" on
W, was established and applied by the author frequently between 1926
and 1932. It was first applied in [3] in 1927 and applied several times
in the author's colloquium lectures in 1932. It was noted by the author
around 1932, too late to put the result into his colloquium lectures, that
the proof of Lemma 1.1, in the case in which x(u) — grad f(u), was
applicable with at most trivial notational changes, to prove Lemma 1.1
in general.

To make clear the intimate relation between the general proof of
Lemma 1.1 and the proof when x(u) = grad f(u), we shall give the
proof of Lemma 1.1 by quoting briefly a proof of a lemma on the density
of conjugate points, as given on page 625 of [4] in 1930.

It should be noted that it is sufficient to prove Lemma 1.1 for the
case in which W is the open interior of a closed n-cube Q C W. In the
1930 quotation the "space (u)n means the space of the points u, and we
shall replace the original phrase "conjugate points with s < 0?" by the
phrase "singular images under (1.6) of points in Qn.
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The following paragraph is quoted from pp. 625-6 of the 1930 paper,
and, properly interpreted, gives a proof of Lemma 1.1.

"Let e now be an arbitrarily small positive constant. Let us break
up the space (u) into congruent m-cubes. If the diameter of each of
these m-cubes be sufficiently small, then such of the corresponding sets
[x(u)] as contain" (singular images under (1.6) of points in Q) "can be
enclosed in elementary volumes such as V whose ratios to that of the
cubes will be less than e. The sum of these volumes V will be less than
e times the total volume of the corresponding cubes. The sum of the
elementary volumes will then be arbitrarily small".

Lemma 1.1 follows.

See [5] for additional references.

Lemma 1.1 implies that the set of singular images in En of the
singular points of the mapping (1.6) has a Lebesgue measure zero in
En.

This measure theorem is weaker than Lemma 1.1 because it does not
conversely imply Lemma 1.1.

Lemma 1.1 applied to prove Theorem 1.2. Let (c, q, ζ) be a set of
three elements of which c is a point in ClEn, q a point in ClMn-\ — c,
and ζ a sensed straight line normal to Mr at q and meeting c. With
(c, q, ζ) there can be associated a "focal mapping" of the form (1.5)
such that q is a point F(υo) with vo £ V and ζ has the direction λ(υo).
We can suppose that V is a relatively compact open subset of V, where
V is given in a presentation (F:V,X) e VMn-\ of a neighborhood X
of q.

Let d be a positive constant greater than the distance of an arbitrary
point of ClMn-ι from an arbitrary point of ClEn. We introduce the
interval / = (—d,d) and restrict the parameters (s, v) of the mapping
(1.3) to the relatively compact subset

(1.7) IxVofR xV.

With n parameters s, v1, , vn~1 so restricted, it follows from Lemma
1.1 that the focal points of Mn_i with base points on X = F(V), on
normals to X with directions X(υ) for which υ G V, and with algebraic
distance coordinates s € (—d, d), form a set of focal points of J-content
zero in En.

The focal points of Mn_i are bounded from their base points because
of the condition (1.4). Because of this and because of the compactness of
the sets ClMn-\ and ClEn each triple (c, q, ζ), given and conditioned
as above, is "associated" with one of a finite set of focal mappings such
as (1.5).

Theorem 1.2 follows.

We turn to the proof of Theorem 1.1, beginning with the plane case
n = 2. We shall make use of plane involutes and evolutes.
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2. Theorem 1.1 in case n = 2

Admissible spirals. Let (/?, θ) be polar coordinates in a plane E2 of
rectangular coordinates x^\x^2\ A curve /I with a polar coordinate
representation

(2.1)
p = ω(0) > 0 (0 > 0)

in which the mapping 0 —• u;(0) is unbounded, of class C°°, and such

that

(2.2) ω(θ + 2π) > ω(0)

will be called an admissible spiral.
Such a curve is simple because of the condition (2.2). It is regular;

if one sets θ = t and

x ( 1 ) = α (ί) cos t, x{2) = ω(t) sin t,

one obtains a "representation" of A such that

where differentiation as to t has been indicated by a superimposed dot.
In §6 we shall complete the proof of the following theorem.

Theorem 2.1. There exists an admissible spiral whose focal points
are everywhere dense in E2.

Use will be made of the theory of involutes. Graustein [6], p. 74,
defines an involute of a regular plane curve h not a straight line, as a
curve H which cuts each tangent to h at right angles.

This definition is not adequate for our purposes because such an
involute of H of h is not necessarily regular or simple. We shall deal
with arcs h and their involutes which are much more restricted. We
begin with conditions on h.

Let i?+ be the open positive axis of reals.

Definition 2.1. Admissible arcs h. Let h be a simple, sensed regu-
lar arc of the form

(χQ\ x^) = (μ^(τ), μM(τ)) (0 < r < τ0)

of class C°°. We suppose that r is the arc length on h measured from
its initial point, and that the curvature

(2.3) κ(τ) = IA(1) (τ)/i<2> (r) - μ<2> (τ)μ^ (r) |

of h never vanishes. A final condition on h is that the mapping

(2.4) (r, r) -> μ(r) + rμ(r) = x : R+ x [0, r0] -> E2

of the subset i?+ x [0, TO] of the (r, r)-plane into ^2 be a homeomorphism
into E2.
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Note. To say that the mapping τ —• μ(τ) is of class C°° means that

it admits an extension of class C°° over some open interval containing

[0,τo].
Extending μ slightly, the mapping (2.4) has a jacobian in absolute

value,
(2.5)

= rκ(τ) > 0 (r > 0,0 < r < τ 0).
D(r,τ)

Since the mapping (2.4) is by hypothesis a homeomorphism into E2
and has a non-vanishing jacobian, it is a diffeomorphism into E%. We
shall term the mapping (2.4), so conditioned, a tangent diffeomorphism
(ft : To) into E*ι*

Example. A closed subarc of an open plane semi-circle is an ad-
missible arc ft.

We state a lemma.

Lemma 2.1. Given a "tangent diffeomorphism" (h : TQ), for each
constant a > To there exists an involute IP of h, admitting a represen-
tation
(2.6)

T - J3°(τ) = μ(τ) + (α - τ)μ(τ) (0 < r < r 0)

(ai) .if* is α simple, regular arc of class C°°.

(&2) H* i>s orthogonal at the point ίΓ*(τ) of IP to the straight line tangent
to h at the point μ(τ).

(aβ) For 0 < T < To there is one and only one "focal poinf of IP with
"base poinf IP(τ) £ IP, namely the point μ(τ) G h.

Verification of (ai). The curve IP in E<ι is the image in E<ι under
the diffeomorphism (2.4) of the arc in the (r, τ)-plane of the form
(2.7)

r = OL-r (0 < T < TO, α > TO).

IP accordingly has the properties (ai) since its antecedent (2.7) in
the (r, τ)-plane under the diffeomorphism (2.4) exists and has these
properties in the (r, τ)-plane.

Verification of' (a^). A tangent to IP at the point represented by
T has direction numbers μSι\τ), μS2\τ). These numbers are not both
zero since κ(τ) Φ 0. Moreover ||/i(τ)|| = 1 identically by hypothesis,
from which it follows that

(2.8) μW(τ)μV(τ)+μWμW(τ) = 0,

establishing (02).
Verification of (3,3). The open subarc of JET* on which 0 < r < To

may be considered as a 1-dimensional manifold Mi. A "focal mapping"
based on Mi exists in the form (cf (1.5))
(2.9)

(s, T) -» H*{τ) + sμ(τ) = x (0 < T < r 0 ) .
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The normal to IP at the point !P(r) meets the point μ(τ) on h when
s — T — α, as one verifies using (2.6). A simple calculation shows that
under (2.9)

(2.10)
D(s,τ)

where κ(r) is the curvature of h. Hence the jacobian (2.10) vanishes
when s = r — α, that is at the point s representing the point μ(τ) G ft
on the normal to IP at lP{τ).

This establishes (as) and completes the proof of Lemma 2.1.

Definition 2.2. Mated evolute h and involute IP. The arc h is ad-
missible in the sense of Definition 2.1. We term such an arc h and the
above involute IP of h a mated evolute and involute.

We shall restrict ourselves to mated evolutes and involutes.

3. Method of proof of Theorem 2.1

The only spirals of which we shall have need in proving Theorem 2.1 are
of a limited type which we now characterize in a series of definitions.

The annulus A(n',n"). Given two integers nf and n" such that
n" > n' > 0, by the annulus A(nf', nn) is meant the set of points x G E<ι
such that n' < \\x\\ < n".

The interval I(i). Given a positive integer i,I(i) shall denote the
interval [(2i - 2)τr,2iπ].

By an arc ξ spanning an annulus A(nf, n") over an interval I(i) is
meant a curve ξ in A(nf,n/f) with the properties (ai), (a2), (as).

(ai) ξ shall have a polar coordinate representation p = p(θ) > 0
where the mapping θ —• p(θ) is defined and of class C°° over I(i).

(a2) n' < p{θ) < n" (θ G

o

where I{i) is the open interior of I(i).
(as) The mapping θ —> p(θ) shall admit an extension of class C°°

over the #-axis such that

p(θ)=n' ( 0 < ( 2 i - 2 ) π )

Definition 3.1. Special spirals A. To define such a spiral there is
given an increasing sequence
(3.1)

n0 < nι < n2 < - - (n0 = 1)

of integers and for each positive integer i an arc
(3.2)

ξt:p = ωi(θ) > 0 (θe /(*))

in polar coordinates, "spanning" the annulus A(ni-i,τii) over the in-
terval I(ϊ). A spiral A, admissible in the sense of §2, is defined by the
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sequence £1, £2, £3, * of the above arcs. Otherwise expressed A shall
have a polar coordinate representation p = ω(θ) > 0 for θ > 0 such that
for each i
(3.3)

ω ( 0 ) = ^ ( 0 ) (β €J(i))

To indicate how such a spiral Λ, if suitably chosen, will satisfy The-
orem 2.1 a convention and definition are needed.

A convention. An arc 7 with a representation
(3.4)

p = R{θ) > 0 {ff < θ < 0")

in polar coordinates, will be regarded as real analytic if and only if the
mapping θ —•> R(θ) is analytic and admits a real analytic extension over
an open interval which includes the interval [θ', θ"].

Definition 3.2. A real analytic arc 7 of form (3.4) will be said to
belong to an annulus A(n', n") and interval I(i) if 7 is included in the
open interior of A(nf', n") and if [θ', θ"] is included in the open interior

J(i) of I(i).

The following lemma is readily proved.

Lemma 3.1. An analytic arc 7 of form (3.4) which "belongs" to
an annulus A(n',n") and interval I(ϊ), admits an extension in polar
coordinate form which "spans" the annulus A(nf,n") over I(i).

In §5 we shall study "mated" evolutes h and involutes H in which h
is a subarc of a quarter circle so oriented and placed in E2 that H has
the form (3.4) and "belongs" to an annulus A(n',n") over an interval
I(i). The circular arcs h admitted are such that there are infinitely
many choices of an annulus A{nf,n") and interval I(i) to which some
mated involute H of h belongs. In §6 we shall take advantage of this
freedom in the choice of the annuli A{n\nrt) and intervals I(i) to prove
the following lemma.

Lemma 3.2. In the class K (cf §4) of circular arcs h to be defined
in §4, there exists a countable sequence h\, /12, Λ-3, whose point set
union

(3.5) X = h1Uh2Uh3U'"

is everywhere dense in E2 and can be associated with a "special1 spiral
A in the following way.

For each integer i > 0 the circular arc hi is the evolute of an involute
Hi "mated to hi" which is an analytic arc of the form (3.4), "belongs"
to the annulus A(rii,ni+ι) and interval I(i) of A, and has an extension
which is the subarc ξi of A.

The spiral A of Lemma 3.2 has a focal set which includes the set X
of (3.5) and so satisfies Theorem 2.1.

In §4 we characterize a class K of circular arcs h which, in retrospect
(§6), will appear to be an adequate class of arcs to be used as evolutes
in proving Theorem 2.1. In §4 we show that there is a countable subset
of arcs h € K which is everywhere dense in K.
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4. The class K of circular arcs

The circular arc g. The class K shall contain that closed subarc g of
the circle

(4.1) ( z ^ - f l ) 2 + ( z ^ ) 2 = l

which meets the origin, is symmetric with respect to the x^-axis and
has a length b = 1/2. The arc g has a real analytic representation
(4.2)

x = 9(t) = (gW(t),gW(t)) (0<t<b = 2a)

such that g^(t) = cos(t — a) — 1, g^2\t) = sin(t — α). The parameter t
is the arc length on g measured from g's initial point (cos a — 1, — sin a).
The terminal point of g is (cosα — 1, sin a). The arc g meets the origin
when t = a and is there tangent to the x^-axis.

We note that g is in the open disc

(4.3)

Da = (xeE2\ \\x\\ <ά) {2a = b).

The set K of circular arcs. We shall define K by means of linear
transformations operating on g. With a as in (4.2) and c G (—a, a) let
T c be the translation of E2 such that

(4.4) Tc{χ(ι\χW) = {x^+c,χW).

Let N be the ensemble of positive integers. For p G N let Tp be the
radial expansion of E2 such that

(4.5) Tp(x<1\χW) = (pχM,pxw).

Set TpoTc = TP.

Let K\ be the ensemble of images h of g under Tc as c ranges on
the interval (-α,α). Set Kp = TvKλ and K = Union Kp. Finally let

I-Kpl be the point set covered by the arcs in Kp. We see that |UΓi| is a

neighborhood of the origin and is included in the open disc D2a with

radius 2a and center at the origin.

We shall verify the following lemma.

Lemma 4.1. There is a countable subset {hi} of the arcs h in K
whose point set union is everywhere dense in E2.

To prove Lemma 4.1 let ei, e2, e$, be a decreasing sequence of
positive numbers ê  such that ê  tends to zero as a limit as i | oo. For
each p G N let (h)p be a finite subset of the arcs h in Kp whose point
set union contains points within a distance ep of a prescribed point of
\KP\. The set of arcs
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{hΛ — Union (h)Ό

PEN V JP

is countable and satisfies the lemma.

In §5 we shall study a class of admissible involutes of arcs h e K.

5. Involutes of the arcs

itecall that the length of the circular arc g introduced in (4.2) is b = 1/2.
We have set b = 2a.

Involutes Gk of g. For each k > b an involute Gk of g, "mated" to
g, is defined by the mapping (cf (2.6))
(5.1)

t - Gk(t) = g(t) + (k- t)g{t) (0 < ί < 6).

This mapping is analytic, and according to Lemma 2.1, simple and
regular. It is extendable as a simple, regular, analytic mapping over an
open interval containing [0, b].

We shall verify the following.

(λ) For k > b the arc Gk is included in the half-plane of E<ι on which
xW > 0.

Statement (λ) follows on noting that the minimum value of x^ on

Gk is attained when t = b and is (k — b) cos a 4- sinα > 0.

The transformations T£, introduced in §4, are linear, conformal
homeomorphisms of JE72 onto E2. They carry circles into circles and
simple, regular, analytic arcs 7 into such arcs. If y is a focal point of 7
with a base point x on 7, Tgy is a focal point of T£η with the base point
T£x on TPη. Given g and a mated involute Gk of g, with k > b = 2α,
we infer that the arcs

(5.2) h = Ί*g, H = T£Gk

are mated evolute and involute.

An arc h = T^g has the representation
(5.3)

t _• v(t) - p(g(t) + c) (0 < t < b).

Its length parameter is pt and total length pb. An involute H —
T^Gk, k > b of h has a representation
(5.4)

t -> p(Gk(t) + c) = u(t) + (k-t)v{t) {0<t< b).

We shall verify the following properties of the circular arc h =
and its mated involute H, as given by (5.4).

Subject to the condition that k > 36 the following is true:
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(ai) The arc H is simple, regular and analytic, with an open analytic exten-
sion. On H, x ( 2 ) > 0.

(a2) The arc H is included in the open annulus

(5.5) p(k-2b)< \\x\\ <p(k + 2b).

(&s) No arc H is tangent to a ray from the oήgin.
(a^) An analytic polar coordinate representation

(5.6) p = R(t)>0, Θ = θ(t), {0<t<b)

of H exists in which R(t), θ(t) are polar coordinates of the points T£ Gk(t) of
H. In such a representation θ(t) > 0.

Verification of (ai). That H is simple, regular and analytic with
an open, analytic extension follows from the fact that Gk has these
properties. Since the point Gk(t) is in the open upper half-plane by
(λ), the corresponding point p(Gk{t) + c) of H is in the open upper
half-plane.

Verification of (a2). We first examine the case in which p = 1 and
c = 0. In this case TpGk = Gk.

Let u and υ be respectively points on g and Gk such that υ is on the
ray tangent to g at u. Let q be the origin. If x = v then \\x\\ = d(q, v).
Consideration of the triangle with the vertices u, υ, q shows that

(5.7) d(u, v) - d(q, u) < \\x\\ < d(u, v) 4- d(q, u).

Since d(q, u) < a and d(% v) = k — t > k — 2a for points υ G Gk in
accord with (5.1), it follows from (5.7) that

(5.8) k-3a< \\x\\ < ib + 3α.

For points x e TcGk it follows from (5.8) that

(5.9) k-2b< \\x\\ <k + 2b

since -a < c < a and TcGk(t) = Gk(t) + c. Since T% = Tp o Γc, the
inequalities (5.5) follow from (5.9) for x e T£Gk.

Verification of (aβ). We begin by verifying (aβ) for the case of an
involute TcGk of Tcg. Since k > 36 by hypothesis it follows from (5.9)
that TcGk does not meet the disc D^. On the other hand Tcg is included
in Db.

Suppose ^3) false for the case of TcGk. There then exists a ray ζ
from the origin, tangent to TcGk at a point υ. Such a ray ζ would be
orthogonal at v to a line r tangent to Tcg. Thus r Π ζ = υ. But the
point rΠζ must be the point on r nearest the origin. Since r meets D\>
the point rΓ\ζ = v must be in Z2&, contrary to the fact that no point of
TcGk is in Db.

Since Tp is a radial expansion with center at the origin, statement
(a,s) is true for TpGk, since it is true for TcGk.

Veήfication of (a4). A simple, closed, regular, analytic arc H on
which x^ > 0, admits infinitely many analytic polar coordinate rep-
resentations (5.6). In (5.6) θ is uniquely determined up to a function
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whose values are an integral multiple of 2τr. For no value of t € [0, 6]
is θ(t) = 0, since at a point #o of H at which θ(to) = 0 the ray from
the origin meeting x0 would then be tangent to H at xO This would
be contrary to (as).

It remains to show that θ(t) > 0.
Since Tp is directly conformal and no arc TcGk meets the origin it

is sufficient to prove that θ(t) > 0 in a representation (5.6) of TcGk>
Since θ(t) φ 0 it is sufficient to verify that θ(a) > 0, making use of the
relation

TcGk(t) = g(t)+(k-t)g(t)+c (cf. (5.1))

and the formula for g(t). If TcGk has the representation:^1) =φ(t), x^ =
φ(t) one finds that

φ(a)ψ(a) — ψ(a)φ(ά) = (k — a)2 > 0

from which it follows that θ(a) > 0.
Thus the properties (ai) to (3,4) of H hold as stated.

6. Proof of Theorem 2.1

The following lemma is a consequence of the properties of the mated
evolutes and involutes
(6.1)

h = Tig, H = TξGk (k > 36)

as recorded in §5.

Lemma 6.1. Let h = Tgg be prescribed in K, and positive integers
n' and i given. Then for a sufficiently large k > 3b the involute H =
T£Gk of h is included in the interior of the annulus A(n',n") for some
n" > n'\ and H has a unique analytic polar coordinate representation
(6.2)

p = η(θ) > 0 (0' <θ< θ")

such that

(6.3) [θ',θ"]cϊ(i).

The choice of k. Given h as in Lemma 6.1, whatever the choice of
k > 36, the corresponding involute T%Gk of h satisfies (5.5). Let k > 36
be chosen so that p(k - 26) > n'. Then H = T?Gk is included in the
open interior of an annulus A(n', n") for some choice of n" > nf.

The choice of η(θ) in (6.2). Let (5.6) be a representation of H so
chosen (as is possible) that

(6.4) (2i - 2)π < θ(0) < θ(b) < (2t - l)π

and set θ' = Θ(O),0" = θ(b). Since θ(t) > 0 in a representation (5.6),
a unique analytic representation of H exists of the form (6.2) with (6.3)
holding.
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This completes the proof of Lemma 6.1.

To prove Theorem 2.1 it is sufficient to prove Lemma 3.2.

Proof of Lemma 3.2. According to Lemma 4.1 there exists a sequence
of circular arcs
(6.5)

hi = TZgeK (< = 1,2, )

whose point set union is everywhere dense in E2-

According to Lemma 6.1, if k\ is sufficiently large the arc

is an involute mated to h\ as evolute, and admits an analytic represen-
tation (6.2) "belonging" to 7(1) and to an annulus A(no,ni) in which

no = 1.

Proceeding inductively, we assume that for some integer r > 0 there
exist integers
(6.6)

no < π\ < ri2 < - < nτ (no = 1)

and involutes
(6.7)

"mated" to the respective arcs hi as evolutes, and admitting analytic
representations of the form (6.2), "belonging" to the respective annuli
A(ni-ι,rii) over the corresponding intervals I(i).

Corresponding to the given arc /ι r+i, Lemma 6.1 implies the exis-
tence of a constant fcr+i > 36 so large that the involute

"mated" to hr+\ is included in the annulus A(nr, n r+i) for some choice
of n r + i > n r . According to Lemma 6.1 l ϊ r +i has a unique analytic polar
coordinate representation of form (6.2) "belonging" to A(nr,nr+ι) over
I(r 4-1). Thus there exist integers
(6.8)

no < ni < n<ι < (no = 1)

and involutes Hi = T^G^ mated to the respective arcs hi as evolutes,
and "belonging" to the respective annuli A(m-i,ni) over the corre-
sponding intervals I(i),i > 0.

According to Lemma 3.1, for i > 0, the involute Hi of hi admits an
analytic extension ξi in polar coordinate form "spanning" the annulus
A(ni-ι,rii) over I(i). The sequence of these extensions ξi defines a
spiral A admissible in the sense of §2.
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This completes the proof of Lemma 3.2.
Proof of Theorem 2.1. The set of focal points of the spiral A of

Lemma 3.2 includes the set

X = hi U h2 U Λ3 U

and so is everywhere dense in E2.
This establishes Theorem 2.1.

7 Proof of Theorem 1.1 and comments

Let E2 be a 2-plane of coordinates xι,x2 serving as a coordinate 2-plane
in a euclidean n-space En,n > 2, of coordinates x1, ,xn. Let π be
the projection of En onto E2 under which

Let
(7.1)

χ1 = φ1(t), x2 = φ2(t) (0<t<oo)

be a simple regular spiral A in E2 whose centers of curvature in E2 are
everywhere dense. Such a curve exists by virtue of Theorem 2.1. We
suppose that t is the arc length on the spiral Λ, measured from the
initial point of A.

The manifold M\. Let M\ be the regular manifold in E2 obtained
by restricting the representation (7.1) to the open interval 0 < t < oo.
Concerning Mi we shall prove the following lemma.

Lemma 7.1. The antecedent Γn_i inEn ofM\ under the projection
π is representable as a regular (n — 1)-manifold Mn_i in En of class
C°°. The focal points of Mn_χ are everywhere dense in En.

The set -Γn_i, with a topology induced by that of En, is the image
Xof a single "regular presentation" (F : V,X) in En in which Fis the
open subset of the euclidean space En_\ of coordinates u1, , vn~x on
which υ1 > 0. We define the presentation υ —> F(υ): F—> Xby setting

(7.2)

The resulting presentation of X is regular and of class C°°.
A "focal mapping" based on Mn_i and representing all normals to

Mn_i exists, with RxV the domain of the parameters (s, v), and with
the form

(7.3)
(s, υ) -»• F 1 ^ ) + sy>2(fx) = a;1

{s,v) -• F2(ϋ) - βy Hυ1) = x2 ((s,υ) € Λ x V)
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where j has the range 3, , n. Setting υ1 = t, the Jacobian

JV'V)-D(8,v\--,vn-1)- -ψ\t),φ\t)-sφ\t)

evaluated for arbitary (5, v) £ R x V, reduces to 1 + sk(t) where

k{t)=φ\t)φ2{t)-φ2{t)φ\t).

The relation J(s, v) = 1 4- sk(t) and the form of (7.3) show that
the focal points of Mn-\ are the antecedents under π of the centers of
curvature of M\ in E^ and so are everywhere dense in En.

This establishes Lemma 7.1 as well as Theorem 1.1.
Comments on the role of non-degenerate (ND) functions.

Focal points of a regular connected C°°-manifold Mn_i in En are sig-
nificant topologically largely because of their relation to ND functions
on Mn_i. It follows from Theorem 1.3 that if c is not a focal point of
M n _ 1 ? nor on Mn_χ, the restriction to points x e Mn_i of the distance
||x — c\\ between x e En and c gives the values of a ND function / on
Mn-i' Moreover the index of a critical point q of / is the number of
centers of principal normal curvature (counted with their multiplicities)
(cf [2]) of Mn_i, based on q, and on the normal from q to c between
q and c.

This theorem and the following extension are special types of "index
theorems" for a "critical extremal" of an integral in the variational
theory under admissible boundary conditions. In the book which the
author is now writing the exposition of these results will be in detail
and independent of the variational theory.

The preceding theorem has the following extension.
For 0 < r < n let Mr be a regular C°°-manifold in En and let

c = (ci, ,cn) be a point in En. Let q be a point in Mr — c such
that the directed line ζ = qc is orthogonal to Mr at q. Let p —> f(p)
be the C°°-function on Mn — c obtained by restricting the mapping
x —> \\x — c\\ to Mr — c. If q is a non-degenerate critical point of /, its
index k can be evaluated as follows.

Let P r+i be the (r + l)-plane determined by c and the r-plane
tangent to Mr at q. Let π be the orthogonal projection of En onto
Pr_l_i. The projection under π of a sufficiently small open neighborhood
of q, relative to M r, will be a regular C°° -manifold Mr in P r+i

The index k of the critical point q of f is the number of centers of

principal normal curvature in Pr+ι of Mr on ζ between q and c and

based on q.

Frankel and Andreotti [7] have made notable use of such proper-
ties in proving a fundamental theorem of Lefschetz on affine algebraic
manifolds [8].

A lacunary theorem. One of the most useful theorems on ND func-
tions on a compact differentiate manifold Mr is as follows. If / is a
ND function on Mr which has m > 0 critical points of index fc, but
no critical points of index k — 1 or k 4- 1, then the fc-th connectivity
of Mr is m. This follows from the author's inequalities between the
connectivities of Mr and the numbers m^ of critical points of index k.
This result is well-illustrated in [7] and in Milnor's elegant derivation of
the homology groups of a complex projective space [9].
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A homotopy theorem. The existence of a non-degenerate func-
tion / of class C°° on a compact connected C°° manifold Mr sharply
conditions homotopy relations on Mr in a way which we shall recall.

We can suppose that / has been so modified that it has just one
critical point of index 0 and one of index r (cf. [12]) and that its critical
values are all distinct. Let a < b be two critical values of / between
which there are no critical values of /. Suppose that a and β are the
critical points of / with the respective critical values a and b. Let h and
k be the indices of a and β respectively. Set

A = (peMr\f(p)<a)

B = (pςMr\f(p)<b).

There is then a deformation D of B — β on itself onto A leaving A
pointwise fixed and with especially simple properties which we shall
describe.

A family F of f-arcs. The deformation parameter under D is t and
increases from 0 to 1. When t = 0 each point is in its original position,
and when t = 1 in its final position.

By an f-arc 7 on Mr we mean a simple arc on which the value of /
at a point p G 7 is the parameter r of p on 7. Set

(7.6) H = (p G Mr\ a < f(p) < b).

There is a continuous family F of sensed /-arcs 7, with at least one arc
meeting each point p G H, and only one such arc, except for the points
a and β of H. An /-arc in F has an initial point at the /-level b and a
terminal point at the /-level a. On each /-arc of F, / decreases from b
to a.

The family F can be so defined that it has the following character-
istics.

Let c be a value such that a < c < 6, and set

We can make the arcs 7 G F correspond to the points q G fc in a 1-1-
manner, with q corresponding to that unique arc 7 G F which meets q.
F can then be so defined that there is a continuous map onto H

(7.7) (q,τ)^F*(q,τ):rx [a,b] -> H

with 7 G F defined by the "partial map" in which the parameter q
of 7 is fixed in (7.7). Moreover the family F can be so defined that the
arcs of F which meet β and on which the parameter / = r increases
from c to b are represented by rays of a topological A -disc, with all rays
distinct except for their intersection at the topological center β when
τ — b. Similarly the arcs of F which meet the point a and on which the
parameter s = τ decreases from c to a can be represented by rays of a
topological (r — /ι)-disc, with all rays distinct except that they meet in
a as a topological center when r = a.

Lemma 6.1 of [12]. The proof of the existence of the family F follows
the methods of [12], in particular, one uses the fundamental Lemma
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6.1 of [12]. A Riemannian metric is thereby assigned to Mr with the
following important special property. Near each critical point z of /
there is a special set of local coordinates u\, , ur of Mr in terms of
which the trajectories which are orthogonal in the Riemannian sense
to the level manifolds of / near z have representations defined by the
trajectories, orthogonal in the euclidean sense to quadric level manifolds
of a form

where the origin represents z and s is the index of z. It should be
clear that the global definition in [12] of a Riemannian metric on Mr

is a global extension of the author's earlier local euclidean "reduction
theorem".

Definition of the deformation D. Let L be the non-singular linear
transformation of the real axis onto itself such that L(b) = 0 and L(a) =
1. Under D a point p £ B—β shall remain invariant for 0 < t < L(f(p)).
If f{p) < α, p shall remain invariant for all t e [0,1]. If f(p) > a and
p G B — β let Tp be the unique arc of F meeting p. For each t on the
interval 1 > t > L(f(p))p shall be replaced under D at the time t by
the unique point pt on Tp such that L(f{pt)) — t.

Homotopy Theorem 7.1. The resultant deformation D is then
a continuous deformation of B — β on itself onto A, leaving A point-
wise fixed, and having the special properties implied by the nature of the
family F.

In particular there is no essential difference between homotopy rela-
tions on A and on B — β. The main problem is how does the addition
of the point β to B — β make B — β differ homotopically from B.

Thus Lemma 6.1 of [12] permits one to establish a fundamental basis
for a study of homotopy relations on Mr. This is without use of the
Whitehead theory of "homotopy equivalences".

In [5] the names of a few mathematicians are given who have con-
tributed significantly to the critical point theory and its applications in
recent years. The contribution [10] has just come to my attention. This
paper bears on the Lie theory as does the work of R. Bott. The work
of the Russian mathematician Vladimir Arnold [11] is of interest in this
connection.
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