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O B S T R U C T I N G F O U R - T O R S I O N 
IN T H E CLASSICAL 

K N O T C O N C O R D A N C E G R O U P 

CHARLES LIVINGSTON & SWATEE NAIK 

In 1961 Fox [5] presented the definition of the knot concordance 
group and summarized the proof that it contains elements of order 
2. Details of the argument were presented by Fox and Milnor in [6]. 
Whether or not there is torsion of other orders was left as an open 
question. Levine, in his classification of knot concordance [14], showed 
that 4-torsion exists in higher dimensional concordance groups and of­
fered candidates for 4-torsion in dimension 3. Since then no progress 
has been made in understanding possible torsion in the classical knot 
concordance group. Our main result is the following: 

0.1 T h e o r e m . Let K be a knot in S3 with 2-fold branched cover 
M K- If jHI(M K)j = pm with p a prime congruent to 3 mod 4 and 
gcd(p,m) = 1, then K is of infinite order in the classical knot concor­
dance group, C\. 

Our interest in this result is its application to the study of 4-torsion 
in the concordance group. There are 11 prime knots of 10 or fewer 
crossings, beginning with the knot 7-?, that represent elements of order 
4 in the algebraic concordance group. A simple calculation using this 
theorem yields: 

0.2 Corollary. No prime knot with fewer than 11 crossings repre­
sents an element of order 4 in C\. 

Of greater interest than obstructing individual knots from being of 
order 4 is that the obstruction depends only on an abelian invariant of 
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the knot. Hence corollaries like the next one concerning the Alexander 
polynomial of a knot, A ^ ( t ) , follow readily. 

0.3 Corollary. If Ax{t) = 5t2 — l i t + 5, then K is of infinite order 
in C\. 

By way of contrast, according to Levine [14], every knot with 
Aif(t) = ht2 - lit + 5 is of order 4 in C2fc-i for k > 1. 

1. In troduct ion 

In his classification of the knot concordance groups, Levine [13] de­
fined the algebraic concordance groups, G±, of Wit t classes of Seifert 
matrices and a homomorphism from the odd-dimensional knot concor­
dance groups C4n±i to G±. The homomorphism is induced by the func­
tion that assigns to a knot an associated Seifert matrix: it is an isomor­
phism on Cfc,k > 5; on C3 it is injective, onto an index 2 subgroup in 
the smooth category and surjective in the topological locally flat setting; 
for k = 1 it is surjective. However, Casson and Gordon [1], [2] proved 
that on C\ the kernel is nontrivial. (Casson and Gordon's original work 
applied in the smooth setting, but their results are now known to hold 
in the topological locally flat setting as well, a fact that follows from the 
existence of normal bundles in topological 4-manifolds, [7]. Similarly, 
our work applies in both categories.) Later, Jiang [10] extended Casson 
and Gordon's work to prove that the kernel of Levine's homomorphism 
is infinitely generated. 

Levine [14] also proved that G± is isomorphic to an infinite direct 
sum, G± = Z°° © Zf © Zf. There is 2-torsion in C\ arising from 
amphicheiral knots, but beyond this little is known concerning torsion 
in C\. Fox and Milnor [6], in the paper in which knot concordance is 
defined, made this observation concerning amphicheiral knots and asked 
if there is torsion of any order other than 2. This question reappears as 
problem 1.32 of [11], [12]. In a different direction, in 1977 Gordon [9] 
(see also [12, Problem 1.94]) asked whether every order 2 class in C\ is 
represented by an amphicheiral knot; as of yet the only result bearing 
on this question is the observation that in higher dimensions the answer 
is no, and in dimension 3 there are order 2 classes in G_ that cannot be 
represented by order 2 knots in C\ [4]. 

In this paper we will use Casson-Gordon invariants to derive results 
concerning 4-torsion in the classical knot concordance group. That 
Casson-Gordon invariants can obstruct an individual knot that is of 
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algebraic order 4 from being of order 4 in concordance may not be sur­
prising, though explicit calculations appeared daunting; the examples 
presented here are the first. That the method applies to the knot 7-j is 
pleasing in that this is the first knot identified by Levine [14] as a can­
didate to be of order 4. It is far more surprising that the obstructions 
we find depend only on the abelian invariants of the knot, such as the 
homology of the cover and the Alexander polynomial. In contrast to 
this, if a Seifert form represents 0 in G_, then there is a slice knot hav­
ing that Seifert form; as a consequence, if a knot is algebraically slice, 
then there is a slice knot having identical abelian invariants. A related 
result states that any integral polynomial A(t) with A ( l ) = ± 1 is an 
Alexander polynomial of some slice knot if and only if A(t) = f{t)f{t~l) 
for some polynomial f [16]. 

Outl ine . In the next section we review the definition of concor­
dance and of Casson-Gordon invariants. Section 3 presents the prop­
erties of the 3-dimensional bordism groups Çl^{Z p) and ^3(Z p © Z), 
and Section 4 describes how bordism invariants can be extracted from 
Casson-Gordon invariants. An implication of this work is Theorem 4.3, 
stating that if M 3 is a 3-manifold with jH\(M K)j = pm where p is an 
odd prime and gcd(p, m) = 1, then any Casson-Gordon invariant cor­
responding to a surjective Z p character on M 3 is nontrivial. Section 5 
reviews the use of Casson-Gordon invariants to obstruct slicing. 

The proof of Theorem 0.1 is fairly technical, so we begin with two 
special cases. In Section 6 we prove the theorem for the prime 3. This 
case is especially easy since there is essentially only one Z3 character 
on M K that must be considered. Section 7 presents a restricted form of 
Theorem 0.1, considering the case p = 7 but only proving that K is not 
of order 4. The point of isolating this case is to indicate how one can 
deal with the presence of more than one essential character. Finally, in 
Section 8 the full proof of Theorem 0.1 is presented. Section 9 discusses 
the corollaries. 

2. Concordance and Casson-Gordon invariants 

All our work holds in both the smooth and the topological locally 
flat categories. Throughout this paper p will denote a fixed odd prime. 
Homology groups are always taken with Z coefficients unless specifically 
noted otherwise. Manifolds are all orientable and compact. 
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2.1 . The knot concordance group 

A knot K in S3 is called slice if (S 3 , K) = d(B4, D) for some embedded 
2-disk in B4. Knots K\ and K2 are called concordant if K i # -K2 is 
slice, where - K represents the mirror image of K . The set of concor­
dance classes of knots forms an abelian group under connected sum, 
denoted C\. 

2.2. Casson-Gordon invariants 

Let ( M 3 , x ) be a closed 3-manifold with a homomorphism 

X : H i ( M 3 ) - > Z p © Z . 

The bordism group ^ ( Z pffiZ) = Z p (see Section 3 below), s o p ( M 3 , x ) = 
d(W4, 0), where W4 is a 4-manifold and 

4>: HX{W4) ^ Z p © Z . 

Let t ( W 3 , 0 ) G Lo(C(t)) denote the intersection pairing on 
H2(W4,C(t)), where the field coefficients are twisted by the Z action 
given by multiplication by t and the Z p action given by multiplication 
by e2m'p. This pairing is viewed as an element in the Wit t group of 
nonsingular hermitian forms on finite dimensional C(t) vector spaces. 
(In the case that the intersection form is singular, one must first mod 
out by the radical of the form to achieve a nonsingular pairing.) 

The invariant r is defined by 

T{M\X) = -(t(W4, 4>) - t0(W
4)) G L0(C(t)) ® Q, 

p 

where to is the class represented by the standard intersection form on 
H2(W

4,C). 
If K is a knot in S 3 , M K its 2-fold branched cover, and x a char­

acter from HI(M K) to Z p, then there is a naturally induced character 
X- HI(M K,O) —> Z p © Z, where M K,O is the 3-manifold obtained from 
M K by performing 0-surgery on the lift of K. This follows from the fact 
that HI(M K,O) naturally splits as H\(M K) ffi Z with the generator of 
the Z factor given by the meridian of the lift of K. Hence, \ is defined 
by mapping the meridian to (0,1) G Z p © Z. 

2.3 Def init ion. The Casson-Gordon invariant r is defined by 

T(K,X) = T(M K,0,X) G L0(C(t)) 0 Q. 
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An associated signature invariant is defined as follows. For a class in 
Lo(C(t)) the signature is defined by evaluating a representative of the 
class at a unit complex number and taking the limit of the signature 
of the resulting complex valued form as the unit complex number ap­
proaches 1. This map induces a homomorphism a: Lo(C(t)) (g> Q —> Q-

2.4 Def init ion. The Casson-Gordon signature invariant a is de-

fined by CT(M3,X) = a ( r ( M 3 , x ) ) , and a(K,X) = <T(T(K,X)). 

Note, in [1] this is denoted OIT(K,X)-

2.5. Additivity 

Given a knot K = K\ # K ^-, wehave M K = M ̂  # M K2 and any Z p-
valued character x on H\(M K) can be written as xi ® Xi- A key result 
of Gilmer [8] is that in this situation T(K,X) = T(KI,XI) + T ( K 2 , X 2 ) -

3. B o r d i s m results: the groups Q,^{Z p) and Q,^{Z p®Z) 

The properties of the 3-dimensional bordism groups follow most 
easily from a consequence of the bordism spectral sequence: ^(G) = 
Hs(G). Of course they follow as well from more general bordism theory; 
[3] is a good reference. 

First we have that Çl^{Z p) = Z p. The map to Z p is given as follows. 
F o r a p a i r ( M 3 , x ) w i t h x : H i ( M 3 ) ->• Z p we view x G ^ ( M ^ Z p). The 
quantity x ' bx) ( [M 3 ]p) is the desired element in Z p. Here b represents 
the Bockstein, b: H ^ M ^ Z p) ->• H 2 ( M 3 , Z p), the product is the cup 
product, and [M]p is the Z p reduction of the fundamental class of M. 

A useful alternative definition of the isomorphism is given using the 
linking form, ß: t o r s i o n H l (M 3 ) ) x t o r s i o n H l (M 3 ) ) —>• Q / Z . The re­
striction of x to torsion(Hi (M 3 ) ) is given by linking with some element 
x G torsion(Hi (M 3 ) ) ; that is, x(y) = ß(x,y) for a l ly G t o r s i o n H l (M 3 ) ) . 
The self-linking of x,ß(x,x), is in Q / Z , but since it is p-torsion, it can 
be viewed as an element in Z p. 

We have the following result: 

3.1 T h e o r e m . If jHi(M 3 ) j = pm with p and m relatively prime, 
then for any nontrivial Z p character, [M 3 ,x ] is nonzero in Çl%(Z p). 

Proof. For such a manifold the Bockstein is an isomorphism. By 
Poincare duality the cup product is nontrivial in H 3 ( M 3 , Z p). Hence, 
X • b(x) is nontrivial in H 3 ( M 3 , Z p) and the result follows. 
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We also will be using the fact that map Vt^(Z p) —> ^ ( Z p © Z) 
induced by inclusion is an isomorphism, with inverse induced by pro­
jection. This follows from either the Kunneth formula on homology or 
Kunneth results on bordism. Again, see [3]. 

4. Casson-Gordon invariants as bord i sm invariants 

If (Mf, xi) and ( M | , X2) represent the same element in the bordism 
group Çl${Z p © Z), then r(Mf,xi) and T ( M 5 X 2 ) differ by an element 
in Lo(C(t)). Hence the difference a(Mf,xi) — ̂ (M^x^) is an integer. 
It follows that a defines a homomorphism a' : ^ ( Z pffiZ) —> Q / Z . This 
homomorphism takes values in ( ( ^ )Z) /Z , and so can be viewed as a 
homomorphism ap: Ci^(Z p © Z) —> Z p. The induced homomorphism on 
Os(Z p) will also be denoted op. 

4.1 T h e o r e m . For p odd, p is an isomorphism. 

Proof. A calculation of [1] shows that for the lens space L(p, 1) given 
by p-surgery on the unknot in S3 with Z p character taking value 1 on 
the meridian, op = 2. Since p is odd, the result follows. 

4.2 T h e o r e m . For a knot K and Z p character x on H\(M K), 

crp(M K,o,x) = (Jp{M K,x)- Equivalently, 

po-(K, x) = op{M K, x) mod p. 

Proof. Since Çl${Z p © Z) —> Çl%(Z p) induces an isomorphism, it 
follows that Cp(M K,O,X)

 = ap(M K,0iX © (0)), where (0) represents the 
trivial character to Z. A Z p-bordism from (M K,O,X © (0)) to (M K,X) 
is constructed from M K X [0,1] by adding a 2-handle with 0 framing to 
M K x {!}• Note that x extends over this bordism since the 2-handle is 
added along a null homologous curve (the lift of K), and provides the 
desired Z p-bordism. 

We can now make one of our key observations. 

4 .3 T h e o r e m . If H\(M K) = pm with gcd(p,m) = 1 and p odd, 

then for any nontrivial x- H\(M K) —> Z p, a(K,x) 7̂  0. 

Proof. By Theorem 4.2, the nontriviality of o~(K, x) will follow 
from that of ap(M K,x)- Theorem 3.1 implies that [M3,%] is nontrivial 
in Cì^(Z p). So Theorem 4.1 gives the desired result. 
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5. Casson-Gordon knot sl icing obstruct ions 

There are a number of formulations of how Casson-Gordon invariants 
provide obstructions to slicing. For our purposes the following fairly 
simple statement will suffice. Let p be an odd prime and let H p denote 
the p-primary summand of H\(M K)- Again, we let ß denote the torsion 
linking form. 

5.1 T h e o r e m . If K is slice, there is a subgroup (or metabolizerj 
L p C H p with jL p j2 = jH p j, ß(L p,L p) = 0, and T(K,X) = 0 for all x 
vanishing on L p. 

6. T h e M a i n T h e o r e m : p = 3 

We now have the required material to prove Theorem 0.1. To sim­
plify notation, for any abelian group A, let A p denote the p-primary 
summand of A. 

6.1 T h e o r e m . If jH\{M K)j = 3m ; where gcd(3,m) = 1, then K is 
of infinite order in C\. 

Proof. We have that H\{M K)$ is isomorphic to Z3, generated by an 
element x with ß(x,x) = ± ( | ) G Q / Z . Suppose now that K is of order 
d in C\. Any nontrivial metabolizing element for H\(M dK)3 — (Z3)d 
is of the form (x i)i=i,...,d? where x i = ±x for r values of i and is 0 
otherwise. Hence, Theorem 5.1 yields that T(^ d M K-,{xÌ)i=I,...,d = 0 
with exactly r of the x i = ± 1 and the rest 0. Here Xy denotes the 
character given by linking with y. 

Now, applying Gilmer's additivity theorem and taking signatures 
we have that ra(K,xi) = 0, where we have used that O(M K,0) = 0 
and O(M K,X-I) = O ' ( M K ) X I ) - It follows of course that a(K,xi) = 0, 
contradicting Theorem 4.3. 

7. T h e C a s e p = 7 

The case of p = 7 introduces an issue that we want to consider 
before dealing with the general case. One interesting observation about 
the following argument is that the result does not follow from knowing 
the vanishing of the Casson-Gordon invariants for a spanning set of 
metabolizing elements, or even their multiples. This demonstrates the 
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very nonlinear property of these invariants, and it is the first application 
we know of in which that nonlinearity plays such an essential role. 

7.1 T h e o r e m . If jH\(M K)j = 7m, where gcd(7,m) = 1, then K is 

not of order 4 in C\ • 

Proof. For such a knot K, a metabolizer for HI^M ^K) 7 ^ (Z 7 ) 4 can 
be seen to be generated by a pair of elements < (1, 0, 2, 3), (0 ,1 , —3, 2) > . 
(There are other possibilities differing only in order and sign from this 
one.) Denoting by Xa the Zy-character that takes value a on fixed 
generator of HI(M K)Ì, we find from either of these metabolizing vectors 
that T(M K,XI) + TÌM KIXZ) + T(M K,X3)

 = 0. However, adding the 
generators we see that the metabolizer must also contain the vector 
(1 ,1 , 6, 5) and its multiples, (2, 2, 5, 3) and (3, 3,4,1) . From this we get 
the relations 3 T ( M K , X i ) + T ( M K , X 2 ) = 0, 3 T ( M K , X 2 ) + T ( M K , X 3 ) = 0, 

and 3 T ( M K , X 3 ) + T(M K,XI) = 0- Combining these one finds that 
2 8 T ( M K , X I ) = 0 again contradicting Theorem 4.3. 

8. T h e general case 

We now prove Theorem 0.1. 

8.1 T h e o r e m . If jH\(M K)j = pm with p a prime congruent to 3 
mod 4 and gcd(p,m) = 1, then K is of infinite order in C\. 

Proof. Suppose that dK is slice. The existence of a Z p-metabolizer 
implies that d is a multiple of 4. (The linking form of H\{M K) represents 
an element of order 4 in the Witt group of Z p linking forms.) We begin 
by setting up some formalism to simplify the sort of linear algebra that 
appeared in the previous section. The example below illustrates the 
notation we develop next. 

Any metabolizing vector for the linking form on Hi(M K, Z p) (in the 
subgroup L p given by Theorem 5.1) can be written a s x = (x)i=i,...,d G 
(Z p)d. The condition that a corresponding Casson-Gordon invariant 
vanishes yields X^x/o T(M K-,x i) = 0. Now the x i are in the cyclic 
group of nonzero elements in Z p. Denoting a generator for this group by 
g, each nonzero x i corresponds to gai for some ai. If we introduce further 
shorthand, setting tai = T(M K,x i), we find that each metabolizing 
vector leads to a relation P x i-é0t

ai = 0. Note that at this point the 
symbol ta does not represent a power of any element "t", it is purely 
symbolic. However it does permit us to view the relations as being 
elements in the ring Z[Z p_i] . Furthermore, since x i = rp-x i, we have 
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that t j = t j+(p- 1) / 2 . (Recall that g p ' 1 ) ! 2 = - 1 . ) Hence, we can view 
the relations as sitting in Z[Z q], where q = (p — l ) / 2 . 

Suppose that the metabolizing vector x corresponds to the relation 
f = 0, where f is represented by an element in Z[Z q]. Then a calculation 
shows that ax corresponds to the relation taf where ga = a. Hence it 
follows that the relations between Casson-Gordon invariants generated 
by a given element x G L p and its multiples forms an ideal in Z[Z q] 
generated by the polynomial f. Before applying this to complete the 
proof, we should pause for an example. 

E x a m p l e . Consider the metabolizing vector x = (2, 3,15,16) in 
(Zig)4 . The nonzero elements of Zig are generated by 2, and we have 
2 = 21 , 3 = 21 3 , 15 = 21 1 , and 16 = 24 . Hence in the notation just 
given, the vanishing of the corresponding Casson-Gordon invariant can 
be written as tl + t 1 3 + t n + t4 = 0. Here we are in Z[Zig]. Switching 
to Z[Zg] we have that t1 + t4 + t2 + t4 = 0. Notice that xi5 and X4 
yield the same Casson-Gordon invariant, and that X15 corresponds to 
t11 , while X4 to t2 (since 22 = 4) and t1 1 = t2 G Z[Z9j. 

Now consider the metabolizing vector ox = (10,15,18,4). Since 
10 = 21 7 ,15 = 21 1 ,18 = 29 , and 4 = 22 , all mod 19, the corresponding 
relation in Z[Zi8] is t17 + t n + t9 + t2 = 0. Reducing to Z[Z9] gives 
t8 + t2 + l + t2. 

Hence by multiplying x by 5 we have gone from the equation 
t1 + t4 + t2 + t4 = 0 to t8 + t2 + 1 + t2 = 0. Notice that the second 
polynomial is obtained from the first by multiplication by t7. Finally 
5 = 216 mod 19, and t16 = t7 G Z[Z9]. 

To return to the proof, we must analyze the possible metabolizers 
L p for (Z p)4k, where d = 4k. Such a metabolizer must be generated 
by 2k elements. Applying the Gauss-Jordan algorithm to a basis for 
L p, and perhaps reordering, we find a generating set {v i}i=i...2k where 
the first 2k components of v i are 0, except the i-component which is 1. 
Summing this basis produces the element ( 1 , 1 , . . . , 1, a\,... , a ̂ k) G L p 
where the first 2k entries are 1 and the a i are unknown. 

The corresponding relation is of the form f = 2k + P i=i ^ i = 0. 
(The sum may not contain 2k terms if any of the a i = 0; hence k! is 
less than or equal to 2k.) We next show that the ideal generated by 
f in Z[Z q] contains a nonzero integer. This will follow from the fact 
that f and t q — 1 are relatively prime, which will be the case unless f 
vanishes at some q-root of unity, LO; however, by considering norms and 
the triangle inequality we see that this will be the case only if kl = 2k 
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and u)a i = -1 for all i. But since q is odd, no power of u> can equal - 1 . 
Since we now have that f and t q — 1 are relatively prime, it follows 

that with Q coefficients (so that we are working over a PID) there is a 
polynomial g satisfying gf = 1 mod (t q — 1). Clearing denominators we 
find that for some integral polynomial h, hf = n mod (t q — 1) for some 
positive integer n. 

The proof of the theorem is concluded by observing that we now 
have the relation corresponding t o n e Z[Z q]. That is, n r ( M K,xi) = 0. 
As before, this would imply that O(M K, XI) = 0) contradicting Theorem 
4.3 

9. Corollaries 

9.1. Low crossing number knots 

Based on the work of Levine, Morita [15] developed an algorithm to 
determine the order of a knot in the algebraic concordance group using 
only its Alexander polynomial. Based on this, he enumerated all prime 
knots of 10 or fewer crossings that are of algebraic order 4. There are 
eleven such knots, including 7j, 934, and nine 10 crossing knots. Of 
these, seven have H\(M ^) satisfying our criteria for p = 3. Three more 
satisfy the condition for p = 7, and the last, 10s6, has Hi(M3) = Z§3. 
Hence, Corollary 0.2 follows. 

9.2. Polynomial conditions 

A special case of Levine's results states that a knot K with AK(t) 
quadratic is of finite order if AK(t) = at2 — (1 + 2a)t + a for some a > 0, 
and in that case it is of order 4 if for some prime p = 3 mod 4, AK(—1) = 
pam with a odd and gcd(p, m) = 1. Our theorem applies only in the 
case that a can be assumed to be 1. However that is sufficient to give 
an infinite family of examples, beginning with AK(t) = ht? — lit + 5, 
where A K ( - l ) = (3)(7). 

9.3. Infinitely many linearly independent examples 

Knots formed as twisted doubles of the unknot we among the first knots 
used to construct algebraically slice knots that are not slice [1], [2]. Jiang 
[10] used these knots to demonstrate that the set of algebraically slice 
knots contains a infinite set of knots that is linearly independent in 
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concordance. Here we demonstrate that twisted doubles also provide 
such independent families of knots that are of algebraic order 4. 

To achieve independence within a family of examples, our theorem 
must be extended somewhat. Here is the statement we need. 

9.4 Theorem. If jH\(M K)j = pm with p a prime congruent to 
3 mod 4 and gcd(p,m) = 1, and if J is any knot with jHi(M J)j = q, 
where gcd(q,p) = 1, then dK#J is not slice for all nonzero integers d. 

Proof. If we consider Z p characters on the 2-fold branched cover, 
the characters all vanish on H\(M J) so by the additivity of Casson-
Gordon invariants we are reduced to considering the character restricted 
to Hi(M dK), which places us in the setting of the proof of Theorem 0.1 
in Section 8. 

To apply this, let K n denote the (-n)-twisted double of the unknot, 
withn > 0. Then AK n(t) = nt?- (l + 2n)t + n, and Hi(M K n) = Z4n+i . 
To pick an appropriate set of these knots, let fp i g be an enumeration 
of the primes that are congruent to 3 mod 4. Let n = {p2i-ip2i — l ) /4. 
Then the previous theorem quickly yields the following. 

9.5 Corollary. The subset of the set of twisted doubles of the unknot 
given by fK n i g, is a linearly independent set in the concordance group 
and consists only of knots of algebraic order 4-
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