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THE THEORY OF SUPERSTRING WITH FLUX ON
NON-KAHLER MANIFOLDS AND THE COMPLEX
MONGE-AMPERE EQUATION

JI-X1ANG Fu & SHING-TUNG YAU

Abstract

The purpose of this paper is to solve a problem posed by Stro-
minger in constructing smooth models of superstring theory with
flux. These are given by non-Kéhler manifolds with torsion.

1. Introduction

The purpose of this paper is twofold. The first purpose is to solve
an old problem posed by Strominger in constructing smooth models
of superstring theory with flux. These are given by non-Kéhler mani-
folds with torsion. To achieve this, we solve a nonlinear Monge-Ampere
equation which is more complicated than the equation in the Calabi con-
jecture. The estimate of the volume form gives extra complication, for
example. The second purpose is to point out the connection of the newly
constructed geometry based on Strominger’s equations in realizing the
proposal of M. Reid [19] on connecting one Calabi-Yau manifold to an-
other one with different topology. In Reid’s proposal, the construction
of Clemens-Friedman (see [9]) is needed where a Calabi-Yau manifold
is deformed to complex manifolds diffeomorphic to connected sums of
53 x §3. These are non-Kihler manifolds.

There is a rich class of non-Kéhler complex manifolds for dimensions
greater than two. It is therefore important to construct canonical ge-
ometry on such manifolds. Since for non-Kéahler geometry, the complex
structure is not quite compatible with the Riemannian metric, it has
been difficult to find a reasonable class of Hermitian metric that ex-
hibits rich geometry. We believe that metrics motivated by theoretic
physics should have good properties. This is especially true for those
metrics which admit parallel spinors. The work of Strominger provided
such a candidate. In this paper, we provide a smooth solution to the
Strominger system. This has been an important open problem through
the past twenty years. Our method is based on a priori estimates which
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370 J-X. FU & S.-T. YAU

can be generalized to elliptic fibration over general Calabi-Yau mani-
folds. However, in this paper, for the sake of importance in string the-
ory, we shall restrict ourselves to complex three-dimensional manifolds.
The structure of the equations for higher-dimensional Calabi-Yau man-
ifolds is a little bit different. They are also more relevant to algebraic
geometry and hence will be treated in a later occasion.

The physical context of the solutions is discussed in a companion
paper [3] written jointly with K. Becker, M. Becker, and L.-S. Tseng.

Acknowledgement. The authors would like to thank K. Becker, M.
Becker, and L.-S. Tseng for useful discussions. J.-X. Fu would also like
to thank J. Li and X.-P. Zhu for useful discussions. J.-X. Fu is supported
in part by NSFC grant 10471026. S.-T. Yau is supported in part by NSF
grants DMS-0244462, DMS-0354737 and DMS-0306600.

2. Motivation from string theory

In the original proposal for compactification of superstring [5], Can-
delas, Horowitz, Strominger, and Witten constructed the metric prod-
uct of a maximal symmetric four-dimensional spacetime M with a six-
dimensional Calabi-Yau vacuum X as the ten-dimensional spacetime;
they identified the Yang-Mills connection with the SU(3) connection of
the Calabi-Yau metric and set the dilaton to be a constant. Adapting
the second author’s suggestion of using Uhlenbeck-Yau’s theorem [22]
on constructing Hermitian-Yang-Mills connections over stable bundles,
Witten [23] and later Horava-Witten [13] proposed to use higher rank
bundles for strong coupled heterotic string theory so that the gauge
groups can be SU(4) or SU(5).

At around the same time, Strominger [20] analyzed heterotic super-
string background with spacetime supersymmetry and non-zero torsion
by allowing a scalar “warp factor” for the spacetime metric. He consid-
ered a ten-dimensional spacetime that is a warped product of a maximal
symmetric four-dimensional spacetime M and an internal space X; the
metric on M x X takes the form

0 _ _2D(y) Q;u/($) 0 ) .
=e , x e M, € X,
I ( 9:i(y) !

the connection on an auxiliary bundle is Hermitian-Yang-Mills connec-

tion over X:
FAw?=0, F*=F"=0.

Here w is the Hermitian form w = T_l gﬁdzi/\dzj defined on the internal
space X. In this system, the physical relevant quantities are

h=—V—-1(0 — 0)w,

1
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and
0 2 -1
gij — ¢ ¢0||Q|| Gij»
for a constant ¢q.
In order for the ansatz to provide a supersymmetric configuration,
one introduces a Majorana-Weyl spinor € so that

1
(5’¢M =VME— ghMNP’)/NPE = 0,

1
SA = yMonre — EhMNP'YMNPG =0,

ox =N Fyne =0,
where 1)y is the gravitino, A is the dilatino, x is the gluino, ¢ is the
dilaton and h is the Kalb-Ramond field strength obeying

/

dh = %(trF/\F —ttRAR),

where o is positive. Strominger [20] showed that in order to achieve
spacetime supersymmetry, the internal six manifold X must be a com-
plex manifold with a non-vanishing holomorphic three-form €2; and the
anomaly cancellation demands that the Hermitian form w obey!

/
V—100w = %(trR AR—trF AF)

and supersymmetry requires?

d*w = v/~1(0 — 9) log |||,,-
Accordingly, he proposed the system

(2.1) Fy Aw?® = 0;

(2.2) F20_ 02 _

(2.3) V—100w = Oi(‘ch AR —trFy A Fi);
(24) d*w = V=1(0 - 0) In |-

This system gives a solution of a superstring theory with flux that allows
a non-trivial dilaton field and a Yang-Mills field. (It turns out D(y) = ¢
and is the dilaton field.) Here w is the Hermitian form and R is the
curvature tensor of the Hermitian metric w; H is the Hermitian metric
and F' is its curvature of a vector bundle E; tr is the trace of the
endomorphism bundle of either E or T'X.

In [17], Li and Yau observed the following:

'The curvature F of the vector bundle E in ref.[20] is real, i.e., c1(E) = 4. But
we are used to taking the curvature F' such that ¢i(E) = %F So this equation
corrects eq. (2.18) of ref. [20] by a minus sign.

2See eq. (56) of ref.[21], which corrects eq. (2.30) of ref.[20] by a minus sign.
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Lemma 1. Equation (2.4) is equivalent to
(2.5) d(|| 2 [l w?) = 0.

In fact, Li and Yau gave the first irreducible non-singular solution
of the supersymmetric system of Strominger for U(4) and U(5) prin-
ciple bundle. They obtained their solutions by perturbing around the
Calabi-Yau vacuum coupled with the sum of tangent bundle and triv-
ial line bundles. In this paper, we consider the solution on complex
manifolds which do not admit Kéahler structures. Study of non-Ké&hler
manifolds should be useful to understand the speculation of M. Reid
that all Calabi-Yau manifolds can be deformed to each other through
conifold transition.

An example of non-Kihler manifolds X is given by T2-bundles over
Calabi-Yau varieties [2, 4, 10, 12, 14]|. Since we demand that the
internal six manifold X is a complex manifold with a non-vanishing
holomorphic three form 2, we consider the T?—bundle (X,w, Q) over
a complex surface (S,wg, Qg) with a non-vanishing holomorphic 2-form
Qg. According to the classification of complex surfaces by Enriques
and Kodaira, such complex surfaces must be finite quotients of K3 sur-
face, complex torus (Kéhler), and Kodaira surface (non-Kéhler). If
(X,w, Q) satisfies Strominger’s equation (2.4), Lemma 1 shows that

1

d(|| @ [Jw w?) = 0. Let o =|| Q |2 w. Then dw? = 0, ie., ' is
a balanced metric [18]. The balanced metric was studied extensively
by Michelsohn. She proved that the balanced condition is preserved
under proper holomorphic submersions. Note that Alessandrini and
Bassanelli [1] proved that this condition is also preserved under mod-
ifications of complex manifolds. Hence if a holomorphic submersion 7
from a balanced manifold X to a complex surface S is proper, S is also
balanced (actually 7,w’ is the balanced metric on S, see Proposition
1.9 in [18]). When the dimension of complex manifold is two, the condi-
tions of being balanced and Kahler coincide. Hence there is no solution
to Strominger’s equation (1.4) on 7% bundles over Kodaira surface and
we consider T2-bundles over K3 surface and complex torus only.

On the other hand, duality from M-theory suggests that there is no
supersymmetric solution when the base manifold is a complex torus (see
[3]). This class of three manifolds includes the Iwasawa manifold. But
the solution to Strominger’s system should exist when the base is K3
surface. In this paper we prove the existence of solutions to Strominger’s
system on such torus bundles over K3 surfaces.

3. Statement of main result

Let (S,wg,s) be a K3 surface or a complex torus with a Kéahler
form wg and a non-vanishing holomorphic (2,0)-form Qg. Let w; and

wo be anti-self-dual (1,1)-forms such that $* and 52 represent integral
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cohomology classes. Using these two forms, Goldstein and Prokushkin
[10] constructed a non-Kéhler manifold X such that 7 : X — S is a
holomorphic T?2-fibration over S with a Hermitian form wy = m*wg +
@«9 A 6 and a holomorphic (3,0)-form = Qg A 6 (for the definition
of 0, see section 3). Note that (wg, () satisfies equation (2.5). (Sethi
pointed out that in papers [6] and [2] similar ansatz was discussed.
However the major problem of solving equations was not addressed in
the literature.)
Let u be any smooth function on S and let

=

-1
wy = 1 (e%wg) + TG NG.

Then (wy, ) also satisfies equation (2.5) (see [10] or Lemma 12), i.e.,
wy, is conformal balanced. The stability concept can be defined on a
vector bundle over a complex manifold using the Gauduchon metric [16],
and hence for complex manifolds with balanced metrics. Note that the
stability concept of the vector bundle depends only on the conformal
class of metric. Let V' — X be a stable bundle over X with degree
zero with respect to the metric w,. (Such bundles can be obtained by
pulling back stable bundles over a K3 surface or a complex torus, see
Lemma 16.) According to Li-Yau’s theorem [16], there is a Hermitian-
Yang-Mills metric H on V, which is unique up to positive constants.
The curvature Fp of the Hermitian metric H satisfies equation (2.1)
and (2.2). So (V, Fy, X, w,) satisfies Strominger’s equations (2.1), (2.2)
and (2.4). Therefore we only need to consider equation (2.3). As w;
and w9 are harmonic, Owy = Owy = 0. According to O-Poincaré Lemma,
we can write wy and wsy locally as

wi = 0¢ = 0(&1dz1 + Eadza)
and B -
wy = 0C¢ = 0(C1dz1 + (odza),

where (z1, 22) is a local coordinate on S. Let

B:<£1+\/j1(1)
S+V-1¢ )

We can use B to compute trRg A Ry of the metric wy (see Proposition
8) and trR, A R, of the metric w, (see Lemma 14). Then we reduce
equation (2.3) to

/ /
(3.1) V—180e" Aws — %83(6_“tr(53 ANOB* - g71)) — %85u A Odu
/ /

a a 1 w2
= ZURS N Rg — ZtrFH AN Fg — 5(” w1 ||3,S + H wy His)?‘?,

where g = (g,5) is the Ricci-flat metric on S associated to the Kéhler

1

form wg and g~ is the inverse matrix of g; Rg is the curvature of g.
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Taking wedge product with w, and integrating both sides of the above
equation over X, we obtain
(3.2)
2
w

o// {tng/\RS—trFH/\FH}/\wu—2/(H w1 HE,S + || weo HiS)Q—'S/\wu =0.

X X :
When S = T4 Rg = 0. We obtain immediately

Proposition 2. There is no solution of Strominger’s system on the
torus bundle X over T* if the metric has the form e“wg + @9 AB.

This situation is different if the base is a K3 surface. If F is a
stable bundle over S with degree 0 with respect to the metric wg, then
V = #*FE is also a stable bundle with degree 0 over X with respect
to the Hermitian metric w,. In this case, equation (3.1) on X can be
considered as an equation on S. Integrating equation (3.1) over S,

2
w
(3.3) O//S{trRs ARg —trFyg A F} = 2/5(” wi |25 + || we His)?f.

As [4trRg A Rg = 87%cy(V) = 87% x 24, and [¢trFy A Fg = 872 x

(c2(E) — 3c3(E)) > 0, we can rewrite equation (3.3) as
1 2 2
(3.4) o (24— (ex(BE) - =E2(E)) ) = / Hﬂ‘ vs
2 s \l2r ws) 21
For a compact, oriented, simply connected four-manifold S, the Poincaré
duality gives rise to a pairing

Q: Ho(S;Z) x Ho(S;Z) — Z

2 w9
y +H§

defined by
Q(B,7) =/SﬁA'y-

We shall denote Q(3,3) by Q(8). Then for an integral anti-self-dual
(1,1)-form %L, the intersection number Q(%2) can be expressed as — [ ||

2
L2 “;—? On the other hand, the intersection form on K3 surface is
given by [7]

3( (1) (1] > @ 2(—Eyg),

2 0 -1
0o 2 0 -1
-1 0 2 -1
-1 -1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 2

where
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Hence Q(5%) € {—2,—4,—6,...}.
We shall use the following convention for vector bundles over a com-
pact oriented four-manifold:

K(E) = ca(E) for SU(r) bundle E,
1
=c(F) — gcf(E) for U(r) bundle E,
= f%pl(E) for SO(r) bundle E.

Then (3.4) implies
w w
(3.5) o2 -r(E)+(Q(2)+Q(52)) =0,
27 27
which means that there is a smooth function p such that
/ /

o leY 1 w2 w2
(3.6) ZtrRs/\RS — ZtrFH A Fyy — §(H w1 H2 + || weo \\2)2—f = —uz—f

and [ ,u“Q’—!2 = 0. Inserting (3.6) into (3.1), we obtain the following
equation:

(3.7)

_ OZ/ _ _ Of/ _ _ CU2
V—=100e" Awg — Eﬁﬁ(e_utr(aB/\aB* g ) - 5(‘)8u/\88u+u2—‘? =0,
where tr(OB A OB* - g~1) is a smooth well-defined (1,1)-form on S. In
particular, when ws = nwy, n € Z,

1+ n?

tr(0B AOB* - g7') = v/—1

2
[ wr ll5s ws
(see Proposition 11). Hence if we set f = # | wi |12, we can rewrite
equation (3.7) as the standard complex Monge-Ampere equation:

det u;;

/
(3.8) Ale" — Oéfe_“) +4d/ +pu =0,

det g5

where U denotes 828_28"2_ and A = 2g’3 8;_9;2_. We shall solve equation
7 J ? J
(3.7) by the continuity method [24]. Our main theorem is

Theorem 3. The equation (3.7) has a smooth solution u such that
/
W' = etwg — %\/ —le “tr(OB AOB* - g~ 1) + o/v/—100u
defines a Hermitian metric on S.

1
Our solution u satisfies (/. g e )1 = A < 1. Actually we can prove
that infu > —In(C1 A) (see Proposition 21) where A must be very small
(see Proposition 22) and our solution u must be very big.
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Theorem 4. Let S be a K3 surface with a Ricci-flat metric wg.
Let wy and wo be anti-self-dual (1,1)-forms on S such that $+,52 €
H?(S,Z). Let X be a T?-bundle over S constructed by wy and wy. Let
E be a stable bundle over S with degree 0. Suppose wi, wy and k(E)
satisfy condition (3.5). Then there exist a smooth function u on S and a
Hermitian- Yang-Mills metric H on E such that (V = 7" E, 7* Fr, X, wy,)
is a solution of Strominger’s system.

Since it is easy to find (w1, w2, kK(F)) which satisfies condition (3.5),
this theorem provides first examples of solutions to Strominger’s system
on non-Ké#hler manifolds.

4. Geometric model

In this section, we take the geometric model of Goldstein and Pro-
kushkin for complex non-Kéhler manifolds with an SU(3) structure [10].
We summarize their results as follows:

Theorem 5. [10] Let (S, wg, Qg) be a Calabi-Yau 2-fold with a non-
vanishing holomorphic (2,0)—form Qg. Let w1 and wy be anti-self-dual
(1,1)-forms on S such that $~ € H*(S,Z) and $2 € H*(S,Z). Then
there is a Hermitian 3-fold X such that 7 : X — S is a holomorphic
T2-fibration over S and the following holds:

1. For any real 1-forms a1 and ao defined on some open subset of S
that satisfy daqp = w1 and das = we, there are local coordinates x
and y on X such that dx +idy is a holomorphic form on T?-fibers
and a metric on X has the following form:

(4.1) go = g + (do + 7" ) + (dy + ¥ ),

where g is a Calabi- Yau metric on S corresponding to the Kdhler
form wg.

2. X admits a nowhere vanishing holomorphic (3,0)-form with unit
length:

Q= ((dx+7"a) +i(dy + m*az)) A 7" Q.

3. If either w1 or wy represents a non-trivial cohomological class then
X admits no Kdahler metric.
4. X is a balanced manifold. The Hermitian form

(4.2) wp = mwg + (do + 7 an) A (dy + 7 )

corresponding to the metric (4.1) is balanced, i.e., dw? = 0.
5. Furthermore, for any smooth function u on S, the Hermitian met-
Tic

wy =71 (e"wg) + (dr + 7 ar) A (dy + 7 az)

is conformal balanced. Actually (wy, ) satisfies equation (2.5).
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Goldstein and Prokushkin also studied the cohomology of this non-
Kahler manifold X:

hHO(X) =

hOH(X) =

In particular,
RO (X) = MO (X) + 1.

Moreover,
b1(X)=0b1(S)+1, when wy = nwi,
b1(X) = b1(S), when wy # nwy;
ba(X) = b2(S) — 1, when wy = nw,
ba(X) = b2(S) — 2, when wy # nwy
and
x(X) =0.

The above topological results can be explained as follows. Let Lq be
a holomorphic line bundle over S with the first Chern class ¢;(L;) =

[—5%]. Then we can choose a Hermitian metric by on Ly such that its

curvature is v/—1w;. Let Sy = {v € L; | hy(v,v) = 1} which is a circle
bundle over S. Locally we write w; = daqy for some real 1-form aqy
on some open subset U on S. Such ajy define a connection on Sy, i.e.,
there is a section £y on S7 such that

Vér = V—law @ &

The section &y defines a local coordinate zy on fibers of S |y, i.e.,
we can describe the circle ST by eV~1#U ¢y, If we write w; = dagy on
another open set V of S, then there is another section &y such that

(4.3) Ve = V-law ®@ &y

and this section £y defines another coordinate zy on fiber of Sy [i,. On
UNV,d(oaiy —ary) = 0 and there is a function fyy such that

(4.4) dfuv = oqy — a1y

On the other hand, on U NV, there is also a function gyy on U NV
such that & = emgvng. We compute

Vév = v(eV Ve
= (V=Tdguv + V—Taw) @ (e¥V~190vey)
= (V-1dguv + V—-1loqy) ® &y
Comparing the above equality with (4.3), we get

(4.5) —dguv = a1y — a1y
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So combining (4.4), we find

(4.6) guv = fuv + cuv,

where cyy is some constant on UNV. On U NV, from
eia?U&J _ eirvgv — V-lay eﬁgUV&“

we obtain

(4.7) ry = xv + guy + 2kw = xv + fuv + cyy + 2k

(4.4) and (4.7) imply

(4.8) dry — drvy = dfyy = —oqy + aqv.

So dxy+aqy is a globally defined 1-form on X. We denote it by dz+a;.

We construct another line bundle Lo with the first Chern class [~52].
Similarly, we write locally wy = dag, and define a coordinate y on fibers
such that dy + a9 is a well-defined 1-form on the circle bundle Sy of
Ly. On X, wy = d(dz + 1) and wy = d(dy + a2), and so [wi] = [wa] =
0 € H*(X,R). When wy = nwi, d(n(dr + 1) — (dy + az)) = 0. So
[n(dz + a1) — (dy + ag)] € HY(X,R). Finally we define

0 =dx+ar +V—-1(dy + a2).
Then 6 is a (1,0)-form on X , see [10] or the next section. Because

df = wy — /1w is a (1,1)-form on X, its (0,2)-component 96 = 0.
So [0] € Hy''(X) = HY(X, 0).

5. The calculation of trRA R

In order to calculate the curvature R and trR A R, we express the
Hermitian metric (4.1) in terms of a basis of holomorphic (1,0) vector
fields. Hence we need to write down the complex structure of X. Let
{U, zj = zj++v/—1yj, j = 1,2} be alocal coordinate in S. The horizontal
lifts of vector fields % and %, which are in the kernel of dx + 7*ay
and dy + 7*ao, are

0 0 0 0 0
X, = _ —_ ) = = — | — 1 ) =1,2
7 Oxj “ <8xj> P (83:j> dy rIEhs

0 0 0 0 0
v % (2L (2D o =12
T oy M (8%‘) ox <3Z/j> oy 7T

The complex structure I on X is defined as

IX; = Y;, 1IVj=-X;, for j=1,2,
-0 0 -0 0
I~ = =, [==-_.
Ox oy’ Oy Ox
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Let
U, = X;—V-1X;=X;—-1Y},
o -0 0 o
= — =Vl == —v-1-.
Yo ox or Ox y

Then {Uj, Uy} is the basis of the (1,0) vector fields on X. The metric
(4.1) takes the following Hermitian form:

(Qz‘j) 0

o1 Cx

as Uy and U; are in the kernel of dz + 7*aq and dy + m*as. Let
(5.2) 0 =dx+vV—1dy + 7" (a1 + V—1lag).

It’s easy to check that {7*dz;, 8} annihilates the {U;, Uy} and is the basis
of (0,1)-forms on X. So {7*dz;,0} are (1,0)-forms on X. Certainly
m*dz; are holomorphic (1,0)-forms and € is not. We need to construct
another holomorphic (1, 0)-form on X. Because w; and w; are harmonic
forms on S, Ow; = dws = 0. By 0-Poincaré Lemma, locally we can find
(1,0)-forms & = &1dz1 + £2dzo and ¢ = (1dz; + (adz2 on S, where §;
and (; are smooth complex functions on some open set of S, such that
wi; = 0¢€ and wy = OC. Let
O =0 —7"( +V-1()
= (dv + vV —=1dy) + (a1 + V—lag) — 7(§ + V-1().

We claim that 6y is a holomorphic (1,0)-form. By our construction,
6o is the (1,0)-form. But df = d(dz + v/—1dy + 7* (a1 + vV —1ag)) =
™ (w1 +v—1wsz) is a (1,1)-form on X. So

(5.3) 90 =0 and 00 = df = 7* (w1 + iws).
Thus,
00y = 00 — O1* (€ +V/—1¢)
= (w1 + V—1ws) — 7 (w1 + v~ 1wy) = 0.

So 6y is a holomorphic (1,0)-form and {n*dz;, 6} forms a basis of holo-
morphic (1,0)-forms on X. Let

@j:£j+\/—1<j for j=12
and
U =Uj+¢;Uy for j=1,2.

Then {U;,Up} is dual to {n*dz;,00} because U; is in the kernel of .
It’s the basis of holomorphic (1,0)-vector fields. The metric gy then
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becomes the following Hermitian matrix:

(5.4)
aitlei P gz +eid @ “B.-B* B
Hx = | g1 +92%1 gt |p2l® w2 :(g B 1 >
(21 2} 1

where g is the Calabi-Yau metric on S and B = (¢1, p2)".

According to Strominger’s explanation in [20], when the manifold is
not Kéahler, we should take the curvature of Hermitian connection on the
holomorphic tangent bundle 77X . Using the metric (5.4), we compute
the curvature to be

- _ Ry Ry
R=0(dHx - Hy') = ( B R >

where
Rii=Rs+0BA(0B*-g7')+ B-0(0B* - g7 1),
Riz=—RsB+ (8g-g')NOB—-0BA (0B*-¢g 1B
— BO(OB* - g "B+ B(dB* - g~ ') ANOB + d0B,
Ry; = 0(0B*-g7"),
Ry; = —9(0B*-g " \B+ (0B* - g~ ') A OB,
and Rg is the curvature of Calabi-Yau metric g on S. It is easy to check

that tr(OB A (9B* - g~') + B-9(0B*-g~')) — d(0B* - g~')B + (9B* -
g HYANOB =0. So trR = n*trRg.

Proposition 6 ([11]). The Ricci forms of the Hermitian connections
on X and S have the relation trR = n*trRg.

Remark 7. In the above calculation, we don’t use the condition that
the metric g on S is Calabi-Yau.

Proposition 8.
(5.5) trRA R = 7*(trRg A Rs + 2tr00(0B A 0B* - g™ 1)).

Proof. Fix any point p € S, we pick B such that B(p) = 0. Otherwise,
B(p) # 0 and we simply replace B by B— B(p). Hence in the calculation
of trR A R at p, all terms containing the factor B will vanish. Thus

trRAR
= trRg A Rg + 2trRg AOB A (8B* - g7 1)
+ 2trdg - gt AOB AD(OB* - g7 1) 4+ 2tr00B A 9(0B* - g7 1).

Proposition 8 follows from the next two lemmas. q.e.d.
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Lemma 9.

tr00(OB ANOB* - g~ ') =trRs AOB A (OB* - g™ 1)
+trdg - g~ ANOB A 0(0B* -g_l)
+trddB A O(OB* - g ).
Proof.

trdd(0B A OB* - g7 1)

= —tr0(0B A O(OB* - g7 1))

= tr00B AN O(OB* - g 1) + trdB A D

= trd0B AJ(OB* - g~ ') —trtdB A D

= tr00B AN O(OB* - g~1) —trOB A D
+trdB A (OB* - g7 Y)Y AD(Dg - g !

= trd0B AO(OB* - g~ 1) —trdB A D(OB* - g ) Adg - gt
+trdB A (0B* - g7 ') A Rg

=tr(00B AN O(OB* - g~ 1)) +tr(Rs AOB ANOB* - g™ 1)
+tr(dg- gt ANOB AD(OB* - g7 ).

(OB* Adg™h)

(0B* gt Ndg-gh)
(0B* - g~ ) Ndg-g7!
)
(

q.e.d.
Lemma 10. tr(0B A OB* - g7') is a well-defined (1,1)-form on S.

Proof. We take local coordinates (U, z;) and (W, w;) on S such that
UNW #0. Let J = (%};) and

(w1 + V—1ws) |u= 0(p1dz1 + padzo) = g1 A dz1 + Opa A dza,

(w1 + V=1ws) [w= d(y1dwy + yadws) = Iy1 A dwy + 972 A dws.
Then on U N W,

3 ; dw1 . ; ;3 le
(Om 8’72)A<dw2>—(3901 3@2)A<d22>.
So

(5.6) ( 5(,01 8_(,02 ) = ( 571 5’)/2 )J

On the other hand, we have

(5.7) g(z) = J'g(w)J,
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where g(2) = (g;;(2)) and g(w) = (g;;(w)). Then on UNW, using (5.6),
(5.7), we have

(?’Yl = - -1
tr< S > Ao 97 )9 (w)

(0 = =\ 71 7 -
— tx(J") 1<8Z;>/\(8@1 oo )T T g7 M) "

_ @Pl - = ). -1
—tT< 95y > A(0p1 0p2 ) -g ' (2),

which proves that tr(9B A OB* - g~1) is a well-defined (1, 1)-form on S.
q.e.d.

Although tr(0B AOB* - g~ 1) is a well-defined (1,1)-form on S, we can
not express it by w; and wy. But in some particular cases, we can.

Proposition 11. When wy = nwy, n € Z,

(5.8) tr(0B A OB* - g~ 1) V-l

=Y+ n?) e |2, ws,

where g is the given Calabi- Yau metric on S and wg is the corresponding
Kahler form.

Proof. We recall that locally,

wi =0¢, &= E&dan + Sade,
wy =0, (= (idz + Codao,
(pj:é-j_{_ V_1Cj7 for j:1727

®1 * _ _
< > > (@1 @2)
When ws = nwi,we take { = n&. Then 5Cj = négj,
a 5(,01 551
B=| 3 =(1 -1 =
(5 ) - (G

and

63*2(6@ 8@2):(1—n\/j1)( 651 352 )
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Using above equalities, we find
(5.9)
tr(0B AOB* - g7 1)

= (1+nPH)tr ( (?? ) A(0& 9&) gt
1+n? 861 ~dz; Ry D&y 922 —912
~ detg tr( ‘%zfd ) ( dzj azad ) ' < —g921 911 )

2 08 -
Lt (e A(QQ 8§2)'< 922 _m2)daAdz.
det g aﬁf 9z 9% —921  Gi1 !

In order to get the global formula, we need to calculate wi. As wq is
real,

& 9

(5‘10) aéj a 0z;

for 7,7 =1,2.

Since wy is anti-self-dual, i.e., w1 A wg = 0, we have

08 & 08 06

5.11 ;22 Dl g2 gt =0.
(5.11) 911622 + 923 o7, 912 o7, 9a1 9%,
Because
w2
(5.12) wiAwl = —wi Axwp = —wp xw1 = — ||wr His 2—“?,
locally we also have
1 0&1 O 0&1 0 1

(5.13) %106 98100 1y, e,

det(g) \0z1 0z2  0z2 07z 8

Now using above (5.10), (5.11) and (5.13), we calculate the component
of dz; Adz in (5.9) to be
(5.14)

L+n? (06 06 081 0 08 06 08 0o

7det(g) <922821821 - 92187216721 - 9125872 - 911621821>

_ L (06 (06 04 % 06 0
det(g) 071 911822 922821 ~ 92 071 9 1821 0%Zo

1+ n? <3§1 08 06 3§1>

= Totg) "\ 05, 05 95105
1+ n2
= e B

Similarly, the components of dZa Adz1, dz1 Adze and dZa Adze in (5.9) are
1+n || w1 ||ws 912, 1+n H w1 st go1 and 1+n

| wi |24 925 respectively.
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So we obtain
1+ n?

tr(0ANOA* - g1 = v/—1

lwr ll5s ws.

q.e.d.

6. Reduction of Strominger’s system

Consider a 3-dimensional Hermitian manifold (X, wg, Q) as described
in the section 2. Let wg be the Calabi-Yau metric on S. Let

0 =dxr+ a; +vV—1(dy + a9),

then the Hermitian form wg in (4.2) is
Jv=1
wy = T wg + T&/\@

Because || 2 ||,= 1, and w; and wy are anti-self-dual,we use (5.3) to
compute

6.1) Al 2 llwe wi)
= d(r*w% +V—1n*ws AOAB)
=vV—-1r*wg AdO NI —/—17*ws A O A dO
=V—17*wg A (w1 + V—=1wa) A — (w1 — vV —1ws) A 6)
=0.

According to Lemma 1, (wp, §2) is the solution of equation (2.4). Let u
be any smooth function on S and let

am B
(6.2) wy = 7 (e%wsg) + TG N6.
Then
9 _wy 1
1902=2 = 5
and
|2 lw, wi = w§+ (" — 1w

Using (6.1), we obtain
d(| Q |lw, w?) = dws 4+ d(e* —1) Aw?: =0
because e* is a function on S. Hence we have proven the following

Lemma 12 ([10]). The metric (6.2) defined on X satisfies equation
(2.5) and so satisfies equation (2.4).

Let V be a stable vector bundle over X with degree 0 with respec-
tive to the metric w,. According to Li-Yau’s theorem [16], there is a
Hermitian-Yang-Mills metric H on V, which is unique up to constant.
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Then (V, H, X, w,,) satisfies equation (2.1), (2.2) and (2.4) of the Stro-
minge’s system. Hence to look for a solution to Strominger’s system,
we need only to consider equation (2.3):

/
(6.3) V108w, = az(trRu A Ry — trFy A Fr),

where R, is the curvature of Hermitian connection of metric w, on the
holomorphic tangent bundle 7'X. Define the Laplacian operator A
with respective to the metric wg as

2
Aw% — V=109 A ws.

— 2 2
Lemma 13. /—190w, = Ae" - 55 + 3 (|| w1 |2, + | w2 [124) %55
Proof. Using (5.3) and (5.12), we compute

V—190w, = +—-190(e"ws + T_lﬂ AB)

= V—100€e" A wg — %59 A 0O

2
— u, Ys
= Ae 2!+

2 2 w%
(T s + T wa llas) 5y

N

q.e.d.
Lemma 14. B B -
trRy ARy = m*trRg A Rg 42/ =17 (00u A 00u) +21*(00(e " p)), where
p=—/—1tr(0BAOB* - g~ 1).
Proof. In the proof of Proposition 8 we don’t use the condition that
wg is Kéhler. So if we replace metric g by e"g, we can still obtain:

(6.4) trRy A Ry, =7*(trR% A RY + 2+/—100(e“p)),
here R¢ denotes the curvature of Hermitian connection of the metric
€"g on holomorphic tangent bundle 7"S. So
RY = 00u-I+ Rg
and
(6.5) trRE A RY% =trRs A Rg + 200u A 00u,

here we use the fact that trRg = 0 because the Hermitian metric g is
the Calabi-Yau metric on S. Inserting (6.5) into (6.4), we have proven
the lemma. q.e.d.

From Lemma 13 and 14, we can rewrite equation (6.3) as

/ /
V—=100e" A wg — \/—1%85(6_“,0) - %aéu A O0u
(6.6) o o )
= ZtrRS N Rg — ZU“FH NFg — 5(” w1 ||2 + || w2 His)

2
wg

2!
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Proposition 15. There is no solution of Strominger’s system on the
torus bundle X over T* if the metric is e%wg + \/%9 N2

Proof. Wedging the left-hand side of equation (6.6) by w, and inte-
grating over X, we get

/ /
(6.7) / {\/—1856“ ANwg — %Oé(e_up) - %Ogu A 85u} ANwy, =0
X

because Ow, = d(e*) Awg +20 A (w1 —+v/—1wz). When S = T4, Rps = 0.
Integrating both sides of (6.6) and applying (6.7), we get

1 w?
(6.8) O//XtrFH/\FH/\wu-I-2/X(|| on By + w2 12 A =0.

Certainly
w2
(69) 2 [ (o B + 1z 13058 A > .
On the other hand, it is well-known that
B L) — ealV) = (V) = = (2realV) — (r = DEV)),
where r is a rank of the bundle V' and that
r w?)
2r(ca(V) = (r = 1)ef(V)) Awy = 12 | fo 2 30
where Fy = Fyy — 1trFy - idy. So
P han = SEGV)— | Ry 222

Now according to equation (2.2), Fy Aw? = 0 and ¢; (V) Aw2 = 0. Thus
3

w
AV)Awy==]aV) [ 3¢
and
4 2 3 3
(6.10) / rF2 A w, = —”/ ey (V) 2 2u —/ | Fy 222 < 0.
X roJx 3! X !
Inserting (6.9) and (6.10) into (6.8), we get a contradiction. q.e.d.

This situation is different if the base is a K3 surface. At first we
observe

Lemma 16. Let E be a stable vector bundle over S with degree 0
with respective to the Calabi-Yau metric wg. Then V = 7*E is also a
stable vector bundle over X with degree 0 with respective to Hermitian
metric w, for any smooth function u on S.
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Proof. According to the Donaldson-Uhlenbeck-Yau theorem, there is
a unique Hermitian-Yang-Mills metric H on E up to constant. Since
we assume that the degree of E' is zero, the curvature Fy of H satisfies
the equation
Fg ANwg =0.
For the metric 7*H on V = 7*E, the curvature 7*(Fp) satisfies
™ Fy Aw? = m*(Fg Aws) A (7% (e*wg) + 7 (") A §) = 0.

So 7" H is also the Hermitian-Yang-Mills metric on V' = 7* E with degree
0. Thus V is a stable vector bundle over X with respective to the
Hermitian metric w, for any smooth function w. q.e.d.

We also have the following observation:

Proposition 17 ([3]). Let (V,H) be a Hermitain- Yang-Mills vector
bundle over (X,w,) with gauge group SU(r). If (X,wy,V,H) is the
solution to Strominger’s system, then there is a Hermitian- Yang-Mills
vector bundle (E, H") over S and a flat line bundle L over X such that

V=rE®L.

When we restrict ourselves to consider such a vector bundle (V =
7" E, 7" Fr) over X, we see that equation (6.6) on X can be considered
as an equation on S. Integrating equation (6.6) over S, we get

2
w
(6.11) a’/s{trRs/\Rg—trFH/\FH} :2/5(1 o g+l wn I2,)52.

As [¢trRs A Rs = 812ca(V) = 872 x 24, and JstrFy A Fy = 82 x
(c2(E) — 5c2(E)) > 0, we can rewrite equation (6.11) as

1 w w w?
/ 2 _ 12 2 2 S
(012 /(24— (o) = 5AEN) = [(15E 12, +1 52 125
Using notations of section 1, above equation implies:
w1 w2

6.13 ‘21-r(E)+(Q(2)+Q(52)) =0
613)  d@i-sE)+(Q(5)+Q (5
This equation implies that there is a smooth function p such that

o 1 w? w?
(6.14) ZtrRSARS—a’trFHAFH—§(|! wi [* 4 || we HZS)Q—f = _M?f

2
and [ p5f = 0. Inserting (6.14) into (6.6), we obtain the following
equation:

/ / 2
(6.15) v/~199e" Aws — \H%@é(e_“p) — %8(% A QOu + M% =0

where y is a smooth function satisfying the integrable condition | qu=0
and p = /—1tr(0B A OB* - g!) is a smooth well-defined real (1,1)-
form on S. In the next section we will use the continuity method to
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solve equation (6.15). We will prove that equation (6.15) has a smooth
solution wu.

Theorem 18. Let S be a K3 surface with a Calabi- Yau metric wg.
Letw; andws be anti-self-dual (1,1)-forms on S such that § € H*(S,Z)
and §2 € H*(S,Z). Let X be a T?-bundle over S constructed by wy and
wy. Let E be a stable bundle over S with degree 0. Suppose that w1,
wa and k(E) satisfy the condition (6.13). Then there exists a smooth
function w on S and a Hermitian-Yang-Mills metric H on E such that
(V=n*E, 7" Fg, X,w,) is a solution of Strominger’s system.

Proof. Because we assume that F is a stable bundle over S with
degree 0 with respect to the Calabi-Yau metric wg, according to the
Donaldson-Uhlenbeck-Yau theorem, there is a unique Hermitian-Yang-
Mills metric H on E up to constant such that the curvature Fg of metric
H satisfies

FRO=Fp?=0, FygAws=0.

So we have 7T*FI2{’O = TI‘*FIO{’Q = (0 and according to Lemma 16, we also
have 7* Fg Aw? = 0. Now according to our assumption, (w1, ws, F) satis-
fies the condition (6.13), and hence there is a function pu satisfying equa-
tion (6.14). Then we solve equation (6.15). According to Theorem 19
in the next section, there exists a smooth solution u of equation (6.15).
Combining equation (6.15) with (6.14), we know that u is the solution
of equation (6.6). So (7*Fp,w,) satisfies equation (2.3). On the other

hand, according to Lemma 12, the metric w,, = e*wg+ Y=IgAf on X sat-

2
isfies equation (2.4). Thus we have proven that (V = 7*E, 7*Fr, X, wy,)
satisfy all equations of Strominger’s system. q.e.d.
7. Solving the equation
As above section, we let
p=——1tr(dB AIB* - g ).

In this section, we want to prove

Theorem 19. The equation

B o _ o — B w2

(7.1) V/=189e" Awg — \/—1568((%) — — 00u A 00u + u2—f =0

has a smooth solution u such that

a/

W = e wg + Ee*“p + o/v/—100u

defines a Hermitian metric on S.
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Proof. We solve equation (7.1) by the continuity method. More pre-
cisely, we introduce a parameter ¢t € [0,1] and consider the following
equation

2
(7.2) V—190e" A wg — tar/—190(e”"p) — addu A ddu + t,u% =0.
We shall impose the following:
(7.3)  Elliptic condition : w’ = e%wg + tae “p + 2av/—100u > 0

and

W2\ 1 w2
(7.4) Normalization : (/ 6*4“—5) f= A, / 125 =1.
g 2! g 2!
Let C*20(S) be the space of functions whose k-derivatives are Hélder
continuous with exponent 0 < ag < 1. We consider the solution in the
following space

(7.5) Ba = {u € C?**(S) | u satisfies the normalization (7.4)}
and
(7.6) Bat={u€ Ba|u also satisfies the elliptic condition (7.3)}.

Let
(7.7)
T ={se[0,1] | for t € [0, s] equation (7.2) admits a solution in B }.

Obviously 0 € T with a solution u = —In A. Hence we need only to
show that T is both closed and open in [0, 1]. This will imply that 1 € T
and that our original equation has a solution in C*%0. To see that the
set T is open, we use the standard implicity function theorem.

Let t9 € T and uy be a solution of equation (7.2). Let By =
{(t,u) € [0,1] x Ba | u € Bas}. Then By ] is an open set of [0, 1] x Ba.
Let CS’QO(S) ={yp e OO | [ “;—TS = 0}. We have a map: L : By —
Cy**(9),

(7.8)

L(t, u) = %, (vV—=189e" Aws —/—1tadd (e p) —adduNdOu+tuwd /2!).
According to the definition of ¢, f)(to, ut,) = 0. The differential dL of L
at uy, evaluated at o is L(p), where the linear operator L from C%%0(S)
to 000 (S) is defined as:

(7.9)

L(p) = *us(V—=100(e™0 p) Aws+V—1tgadd(e "0 pp) —2ad0usy AOIp).

SodL =1L 7., Ba» Where Ty, Ba = {p € C20(S) | [eop = 0} is
the tangent space of B4 at ug,. The principle part of the operator *,,, L
is

(7.10) V=100 A (e“owg + toae™ "0 p + 20/~ 190y, ).
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From the elliptic condition (7.3), we get:

(7.11) wy, = e"ow + toae” "0 p + 200/ —19duy, > 0.
wj, can be taken as a Hermitian (not Kéhler !) metric on S. Let
(7.12) P= \/—1Aw20 d0.

Then P is an elliptic operator on S. Because uy, is a solution in %<0
and our p and p are smooth, according to Schauder theory, u;, is smooth.
So the operator P is smooth and can be defined by

(7.13) V=100 A wj, = P(¥)w2 /2!
for any C2(S) function 1 on S. For any ¢,v € C*%(S,R), we compute

2
/L*(w)sou;‘f

= /@b AV=100(e"0 9) A wg + V' —1tgadd(e "0 pp) —2adduy, A IOp}
= /90\/ —100¢ A (e"owg + toae "0 p + 200/ —100uy, )
= \/—1/4p85¢1 A wy,

2
= / P*(w)iﬂ%-
Thus using the Corollary in page 227 of [15], we obtain
ker L* =ker P =R
and

ker L = ker P*

={Ryo | po is a nonzero function that has constant sign}.

Now we are ready to prove dL is invertible. Because dL = L |Tut0 Bas
we only need to prove L |Tut0 Bat TuyBa — C’g’ao (S) is invertible. It
is clear that ker L N Tuto By =0. SodL =1L ‘Tuto B, is injective. Next
we prove that dL = L ’TutOBA is surjective. For any 1 € C’g’o‘o(S),
we have ¢ L ker L*. It is well known that there is a weak solution
@1 of linear elliptic equation L(yp1) = 1. The Schauder theory shows
that ¢ € C%2(S) when ¢ € C%%(S). Take ¢y = [ Mo then

IS
@1+ copo € Ty, Ba and L(p1 + copo) = 1. So dL = L |T“tOBA is
surjective. Hence dL of L at wuy, is invertible and L maps an open
neighborhood of (to, us,) in Byg 1) to an open neighborhood of L(to, us,)
in CJ*(S). This proves the set T is open.
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It remains to prove that T is closed. Let p = Qpﬁdzi A dzj, then

we can write gl’j as

ggj = e"g;; +tae” " p; + dau;.

By directly computation, we get

(7.14)
det g/ - - w?
— = 20" Au tag p; + 2tale ™ (v/=100u A p, =2)
det g;; 2!

+ t2042672“M + 16042%.

We can rewrite equation (7.2) as

(7.15)
det u,> B 2

a Y= e Au—2e" | yu |2 —t,u—tae_“(\/—laﬁu/\p,ﬁ)

det g5 2

2 2
+ tae " (V/—=10u A Ou A p, %) — tae " (v/—10u A dp, %)

2 2
+ tae”"(v/—10u A Op, %) + tae ¥ (+/—100p, %)

Then inserting (7.15) into (7.14), we find the Monge-Ampeére-type equa-
tion:
det(eg;; + tae™"p;; + 4au;)

7.16 = Fi.
( ) det g;7 e

where

det p;;

P 2
Tot e | vu |

Fyuy =€*" + tagijpij + t2a?e v
ij

_ wQ = w2
+ 2tae™U(v/—10u A du A p, 2—?) — 2ta’e " (v/—10u A dp, 2—"9)

2 2
+ 2ta’e™(v/—10u A dp, %) + 2ta’e(v/~100p, %) — 2tap.

In particular, when we = nws,

Fy oy, =(e" + tozfe_“)2 —2a(e" —tafe ™) | vu |2
—dtale sy u- 7 f 4+ 2ta’e T A f — 2tap.

If ¢4 is a sequence in T, then we have a sequence u, € C?20(S) such
that

2
det(e"1g,; + tgae™"1p;5 + da azigg_j )

(7.17)

= Flyu, -
det g;; ot
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Differentiating equation (7.17), we have

(7.18)

4o det (e“quj + tgae” ;s + Ao 8822(;]-) : Z 9:;5 8,:;2]' (gj:)

= 8Zk{det 9ij th,utq}

—det (e"1g+ tyae ™" pyy s 92,07 ) > 9’” (€155 + tgoe ™ pi5)

Proposition 25 (and Proposition 21-23 for a special case wy = nwy)
shows that the operator on the left-hand side of (7.18) is uniformly
elliptic. Proposition 26 (and Proposition 24 for the special case) shows
that the coefficients are Holder continuous with exponent « for any
0 < a9 < 1. The Schauder estimate then gives an estimate for the
C%0_estimates of du,/dzy. Similarly we can find the C**0-norm of
Ouy/0%k. Therefore the sequence {u,} converges in the C**-norm to
a solution of the equation

det(e“gg + toae™ pz] + 4a 6228,2] )

=F,,
det glj o

where tg = limg_.0 t;. Thus we find a C?90(S) solution uy, of equation
(7.16). But equation (7.16) is equivalent to equation (5.3). Certainly,
we also have |, g€ e~ 4t 2—,2 = A. Hence T is closed. So there is a solution
u of equation (7.1) in C%%°(S). Since p and (1, 1)-form —y/—1tr(0B A
OB*-g~1) are smooth, the Schauder theory provides the smooth solution
of equation (7.1). q.e.d.

8. Zeroth order estimate

From this section to the section 11, we give a priori estimates of
u up to the third order. In these sections, we deal with the simpler

case wp = nwi, where wp is an anti-self-dual (1,1)-form on S. Let

f= # Then the equation is

Fwr 1125

A — tafe™) +8a st |y —
(e" —tafe ™) + adetu—ku—,

2

. w
where f and g are smooth functions on S such that f > 0 and |, gHS =
0. According to our assumption, u € C?%(S). So by the Schauder
theory, the solution u is smooth. We denote partial derivatives by u;; =

Oizu = 82282‘ If we replace taf by f and tu by u, then the equation
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can be written as

det u,; N 0

(8.1) A(e" — fe™) + 8a

We impose the elliptic condition
W' = (" + fe ws + 2av/—100u > 0

and the normalization condition

CUQ i (4)2
8.2 ( —4"—5) — A, / 195 1,
(82) /Se 2! ¢ 2l

In this section we prove that if A is small enough, then the solution
u has an upper bound and a lower bound depending only on «, f, u,
Sobolev constant of metric wg, and A. In the next section, we shall
prove that if A is small enough, then the determinant of w’ has a lower
bound greater than 0 and the metric «’ is uniformly positive.

Let ¢’ = T_l gz’.jdzi A dz;, where

ggj = (e" + fe™")g;; + dau;.

We note that
w?  det 925 w?
21 detg; 2!

We shall denote the inverse matrix of (ggi) by (¢/). Then from the
definition (7.13) of the operator P, we have

P(p) = 29" ¢y3.
From (8.1), we have

det 9;3 det u;

(8.3) P(u) =(e"+ fe ") Au+ 16«

det 9i5 det 9i5
="+ fe ) DAu—-2A("— fe ) —2pu.

We shall denote the volume form to be é—?s unless it is clear from the
context. Then form (8.3),

w/2
(8.4) / P(e—’f“)i

2 —ku (o 1ij w' —ku (o ti] ”?
=k* [ e "(2g aiuaju)?—k e (29" O5u) —

”
> —k‘/e_k“P(u)u;‘

= —k:/e_k“(e“ + fe") Au
+ Zk/ek“ A (e — fe ™) + 2k/ek“u.



394 J-X. FU & S.-T. YAU

On the other hand, from (7.13),
(8.5) / P(e*k“) =v-1 / DO~k

_ / (" + fe-U)A(e—kU)

= —k/e_k“(e“ + fem) Au+ k2/e_k“(e“ + fe | wvu %,
where | u |?= 2g¥u;u;. Combing (8.4) and (8.5),
(8.6) k/(e“+fe“)ek“ | vu |2

> z/e—’w(eu b fe) Aut 2/6-’W<eu — feuy | wu 2
_2/6—(k+1)uAf_|_4/e—(k+1)uvU.vf+2/e—kuu’

where yu -7 f = gij(uif; + uj fi).
When k > 2, we integrate by part and obtain

(8.7) 2/e_k“(e“ +fe) Au
=2(k-1) /6_(k_1)“ | 7u |? +2(k + 1)/f6_(k+1)“ | vu |?

2 w2
e (k+1)u ws (k+1)u .
+k: 1/6 Af2! 4/6 vu-/f.

Inserting (8.7) into (8.6),

k/e—(k—l)u ’ u ‘2 +k/fe—(k+1)u ’ Tu ‘2

1
<2(1— — —(k+1)u _ / —ku,
< 2(1 k+1)/e ANf=2[e My

Because f > 0, the above inequality implies

(8.8) k/e(kl)“ | vu > < Co/ (k+Du 4 /

where Cj depends only on f (so also depends on «) and p. In the
following, Cy may depend on «, f, p and the Sobolev constant of S
about the metric wg. We use the constant Cy in the generic sense. So
Cy may mean different constants in different equations.

From the above inequality, if we replace k£ —1 by k, then when k& > 1,

(8.9) /\v )% [2< C k:/ <k+2>“+cok/e<k+1>u.
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The Sobolev inequality shows

_k _k _k
e [lr< Co(ll €72 [[Lr + | ve™2" ||1v

_ 4 _
where r = Ip =

In the case p = 2, we have

([ <o ferva [19emtie.

Inserting (8.9) into above inequality, we get

</(eu)2k>% = OO/(eu)k +C°k/(€")'”2 +C’o/€/(6u)k+1.

2
Since we normalize wg by |, S 1‘2—!5 = 1, we can apply Holder inequality

to the above inequality to obtain

(8.10) (/(@u)%)é <Cy (/(e“)kﬂ)’“iz + Cok(/(eu)kH)m
+ Cok/(e_u)k+2.

Note that when k = 2, above inequality has no use. This explains why
we need the normalization (8.2).
In the following we assume that

(8.11) A< 1.
There are two cases:
Case (1). For any k >4, [(e™*)* < 1. Then (8.10) implies

(5.12) (Jiem™)* < conl [rempe) ™=,

Applying the Holder inequality,

(8.13) /(e—u)k’-i-Q _ /(e—u)k—Q(e—u)4

<(fe ) T (ferr)

Inserting above inequality into (8.12), we see

(8.14) / ()% < okt ( / (™))" < ook / @)

Take k = 28 for 8 > 2. Then 3 > 2 and rewrite (8.14) as

/(eu)25+1 < 228 (/(eu)25>2'

Iterating above inequality, we get

(8.15) </(e“)25+1> P




396 J-X. FU & S.-T. YAU

We fix the constant Cy and denote it by C7, which depends only on
f, 1, a, and the Sobolev constant of S with respect to the metric wg.
Letting 8 — oo, we find

(8.16) exp(—infu) =|| e ||oo< C1A.

Case (2). There is an integer k such that [(e7%)* > 1. Let ko be
the first such an integer. According to the assumption (8.11), ko > 4.
Then for any k > ko, Hélder inequality shows [(e™%)* > 1. For any
k > ko > 4, inequality (8.10) and (8.13) imply

( / (e_U)2k>% < Cok / ()42
<o ) 7 ([

We see from the above inequality:
k-2

27
/(e“)% < Cok? (/(e“)k) U for k> ko > 4.

Using the above inequality for k& > k¢ and the inequality (8.14) for
k < ko, we get the estimate (8.16) of inf u, because A* < A when A < 1
and a > 1.

Next we estimate supg u. We also compute [4 P(eP*) “2—/,2 by two meth-
ods and get

(8.17) p/(e"—l—fe_")ep“ | vu 2> —2/ep“A(e“—fe_“)—2/ep“M.

Integrating by part, when p > 2,
(8.18) /ep“ A (e" — fe™™)
——p [ gul —p [ ef g

(1) [erear

and when p =1,

(8.19) /em(eu—fe—U):—/e2u\w ]2—/f\vu ]2—/uAf.

Inserting (8.18) or (8.19) into (8.17), because f > 0, we get

(8.20) p/e(p+1)“ | vu [2< Co/ep“ +Co/e(p_1)“ for p>2,

and when p =1,

(8.21) /62“|vu|2§2/6“u2/uAf§00/6“+Co/|u|.
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Remark 20. When ¢t = 0, f and p (actually taf and tu) are equal
to zero. From above inequality we have

/62“|VU|2§2/6“M2/UA]":O,

which implies | yu [>= 0. So when ¢t = 0, there is an unique constant
solution under the normalization and the elliptic condition.

We choose A small enough such that
(8.22) A<ort.
Then from e~ ™" < C1A < 1, u > 0. (8.21) implies

(8.23) /|ve“ 1°< Co/e“

and (8.20) implies

(8.24) / | ez |P< Cop/ep“ when p > 3.

Applying the Sobolov inequality and using (8.23), (8.24), we obtain

1
(/(6“)2”)2 < Cop/ep“, for p>2.

Take p = 20 for § > 1. Then

/(eu)2B+1 < 220 (/(eu)25>2'

Iterating the above inequality and taking the limit  — oo, we get

(8.25) exp(supu) < Cy (/ 62") %

Let [e* = M,, then [(e" — M,) = 0. The Poincaré inequality and
(8.23) imply

s20)  [er-([e) < [Ive - [

Let Uy ={z €S |e®>2}and Uy = {z € S| e ® < 4}. Then

A4:/e—4u:/ e—4u_|_/ €—4u
S Uy Uz

S /Ul 6_4infu+/(;2(A/2>4
— e~ Ainfuyol (1) 4 (A/2>4V01(U2)

= [ty — (a/2)*] Vol(un) + (A/2)4.
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So
At —(A/2) At —(A/2)
VOl 2 (=arayt — (a72)i = (G Ay — (A/2)7
2t 1
:(201)74_1 =mg > 0.
Thus

VO](UQ) =1- VOI(Ul) <1l—mg<1L1.

Applying the Young inequality, the Holder inequality, and then using
(8.26), we find

1+10)(/Ule“)2+(1+eo)</U e“>2

2

10) </Ul €2U)V01(U1) + (1 + €9)Vol(Us) / o2u

Ua
142 )<j>2+(1—|—eo)Vol(U2)/Se2“

1+ 610) (%)2 + (14 e)(1 —m0)<(/e“>2 —l—Cg/e“).

Take €¢g small enough such that
(I4+€)(1—mp) <1

Then from (8.27),
(8.28)

(1+2)(3)
</ €u>2— (1+60)(1—m0)00 /€u+ e )\ A <0
g 1 — (14 €)(1—mp) 1—(1+e)(d—=mp) ~
which implies an upper bound of [ €*. Now the estimate of [ e? follows
from (8.26) and the estimate of supw then follows from (8.25). We
summarize above discussion in the following:

Proposition 21. Let t € T and u is a solution of equation (8.1)
under the elliptic condition w' = (e + tafe ")ws + 2ay/—190u > 0

1
i 2
w3

and normalization (f 6*4“> Y= A and J153 =1. If A< 1, then there
is a constant C1 which depends on a, f, pu, and the Sobolev constant of

wg such that
igfu > —1In(C1A).

Moreover, if A is small enough such that A < (C1)~!, then there is an
upper bound of supgu which depends on o, f, p, the Sobolev constant
of wg, and A.
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9. An estimate of the determinant

In this section, we want to obtain a lower bound of the determinant,
which is equal to

(9.1)
det 9/7 det u.=
— Y= (e +tafe ™) + 20(e + tafe ™) Au+ 1602 —2
det g, det g;;

= (" Ftafe ) — 2a(e* — tafe ™) | vu |
—4ta’e g u- U f 4+ 2tate ™ A f — 2tapu.
From (9.1), we see
(9.2) e UF =1—20e " | Vu |2 +€72u0(1)7
where
03 O(1) = 2taf + t2a® f2e ™2 4 20’ fe ™ | yu |?
—dtafe sy u -7 f + 2taPe T A f — 2tapu.

The elliptic condition «’ > 0 implies that F > 0.

The first step is to derive an upper bound of | yu |2.

In the above section we have proven that e ™* < (1A and have
assumed that C1 A < 1. Using this assumption,

(9.4)
e U

=1 —2ae™" | u > +e240(1)
<1 -2 | vu |2 +(2ta? fe 3 4 2ta’e ™) | u |?
+ e 2 2taf + 2o fle 2 2tate ™ | U f P H2tate ™ A f — 2tau}
<1—2a{l —a(l+sup f)(C14)*}e " | vu [> +Co(C1A)?,
where
(9.5) Cy = 2asup f + o?(sup f)? + 2% sup | v f |?
+2a2sup | Af | +2asup | p | .
Applying F' > 0 to (9.4), we get
(9.6) 1 —2a{l —a(l+supf)(CrA)*}e | vu > +Co(CLA)? > 0.
If we take
A < {2a(1 +sup )} 207,

then we obtain

(9.7) 1 —a(l +sup f)(C1A)? > = > 0.

N
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From (9.6) and (9.7), we can get
2
< 1+CQ(ClA) u < 1+C26u.

(9-8) | vul?

200 - % © = «
Hence we have an upper estimate of | yu |2.

In the following we prove that for any given constant x satisfying
0 < k < 1, there is a choice of small constant A (depending on k) so
that e 2“F(t,-) > k. In the above section, we have seen that when ¢ = 0,
the equation has an unique solution u = —In A. So e 2“F(0,-) = 1.

By the continuity assumption (7.7), we only need to prove that there
isno t = tg € T such that inf(e 2% F(to,)) = . If not, thereisaty € T
and ¢ such that F(to,q1) = inf(e 2“F(tg,-)) = k. We fix this to and
will get the contradiction if we choose small enough value for A.

When t = ¢y, we assume

(9.9) inf(e “F) = k.

Applying (9.9) to (9.4), we get

(9.10) 1 —2a{l — a1 +sup f)(C1A)*}e " | vu |* +Co(C1A)? > k.
Then (9.7) and (9.10) imply

1— k4 Co(C1A)?

—u 2
(9.11) et vul®< 2a{1 — a(1 +sup f)(C1A)2}
— C
< 120[& + (;2 +1+sup f) (C1A)%.

We shall now apply the maximum principle to the function
(912) Gl = 1 — 2ae_u ‘ VU ’2 +20é€_€u _ 2a€—ainfu7

where ¢ is some constant satisfying 0 < € < 1 which will be determined
later. Comparing (9.12) and (9.2), we get

(9.13) eMF — Gy = e O(1) — 2ae™"" + 20~ MY,
From inf(eiZUF) = K, We see
(9.14) Kk —sup(e 2| O(1) |) — 2ce—e ™

<inf Gy < k +sup(e 2% | O(1) |) + 2aec 0t
We can use (9.5) and (9.8) to estimate
sup | O(1) | < 2asup f + o*(sup £)*(C1A)? + 2asup f {(1 + Ca)}
+2a{(1+ Cy)} +22*(C1A) sup | 7 f |2
+202(CrA)sup | Af | +2asup | 4
< Cy+2a(l +sup f)(1+ Cs)
and
(9.15) sup(e™2" | O(1) |) 4 2ae % < C)(C1A)°,
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where
Ch=2{Cy+2a(1 +sup f)}

depends only on «, f and pu.
Combining (9.14) and (9.15), we get

(9.16) K — Cé(ClA)E <infGy <K+ C’é(C’lA)a

Let G1 achieve the minimum at the point ¢o € S where we can apply
(9.15) and (9.16) to (9.13) to obtain
(9.17)

e 2R F(qy) = G1(q2) + €212 0(1)(qg) — 200e™=U®2) 4 95w

<inf Gy 4 sup(e 2% | O(1) |) + 9qve—cinfu
< Kk +2C5(C1A)".
We can also apply (9.16) to (9.12) to obtain
(9.18) e | 7 |2 (go)
(20)7H1 — G1(qa) + 20e™=4®2) _ 9qecfuY
> (2a) "Y1 — inf Gy — 2ae—= ™ ¥}
> (1= )/(2a) = (14 (20) 7 C5)(C1A)",

Let
C3 = max{a™'Cy + 1+ sup f,2C%, 1+ (2a) "1 Ch}.
Then (9.9) and (9.17) imply
(9.19) k< e BRI (gy) < k4 C3(CLA)S;
(9.11) and (9.18) imply

(9.20) (1-r)/(20) = C3(C1A)" < e @) | u|? (q2)
<

(1—-k)/(2a) + C3(C1A)°.

We now compute F'- P(G1) at the point g2. In the following we replace
taf by f and tu by p. At the point go, from vG1(g2) = 0, we have

(9-21) v vul?) = (| vu ? —ee' =) g u,

Because wg is Kéhler, we can choose normal coordinate (z1, z2) at the

point go, i.e., g;; = d;; and dg;; = 0. At the same time , we can assume

g—; # 0 and g—; = 0. As u is real, we can assume that 8%1 > 0 and

9w = 0. So at the point gy, us = ug and

(9.22) Quiuy = 2ugug = 2ujui =| vu |* .

If we assume
1

A< (iacIZ)ECfl’
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then
11—k

2a
Hence (9.20) implies | 7u |? (g2) > 0 and (9.21) implies

— C3(C1A)° > 0.

(9.23) un +ugp = g + g = (| vu [? =079 /2,
U12 + Uiy = U5 + uiz = 0.
In the following we denote

L(u)=e"+ fe " +alAu,

Li(u) = €e“ 4 fe " + dauyg.
and
Lo(u) = €“ 4 fe ™™ 4+ daugys.

From (8.3) and (9.1), we can see

(9.24) FP(u) =a"'F —a™'(e" + fe ") L(u).
We should compute F'P(G1) at the point go. At first we deal with
(9.25)

PQ2ae "")F

= —2ace “P(u)F + 20e%e ™" . g1 | vu |*-F
= —2ee™UF 4 2ee (e 4 fe ") L(u) + 20e%e ™ | yu |? La(u).
Using (9.21), we derive
(9.26) P(—2ae™" | u [H)F
— 2 4 fe ) | u P L)
+ {20e™ | yu |* —dace™" | yu [*YLo(u)
+2e7% | vu |? F —20e “P(| vu |*)F.

Combining (9.25) and (9.26), we get
(9.27)
FP(Gy) = {27 | wu|? —2ce *“}F

—{2e7U(e" + fe7) | vu |? —2ee (et 4 fe )} L(u)
+ {207 | u [* +(2ae? — dag)e ™" | u |?} La(u)
—2ae “P(] u [})F.
We now estimate the term
(928) aP(| vu [*)F > dag" {uguy, + ugpun}F + dag" {ugu; }F
+ 4agi3{ui1u1;}F + 4ag'ij{8i83 (gﬂ)ului}F.
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But the first term of (9.28) is equal to
dag' {uigrug + ugpur HE
_ 2 det U,LE
=2a(e" + fe ) v Au - yu + 16a° 7 (7) VAT
det g;;
Applying the equation to the last term, we find
4ozg'ij{ui;ku,-€ + uiﬁcuk}F
= “2a(e" — fe ) | gu? Du—2a(e" + fe) | pu !
—2a(e" — fe )V | vu P v u—dae™" v (Vu- v f) - vu
+ 6ae™ | u | yu- vf — 207 | vu |2 Af
+20e VY Af U =20 B u —2ae” H(u - f) A .
From (9.8), we see e~* | yu |?< Cy, where Cj only depends on a, f
and p and does not depend on A. In the following we use Cy in the
generic sense. We have gotten | yu |?< Cyge*. Our assumptions of A
imply e* > 1, | yu |[< Cye®. In the following we will deal with such
small terms and obtain
(9.29) 4ozg’ij{uzjku,; + uz-;,;uk}F
> —2a(e — fe ) | vu |? Au—2a(e + fe ) | vu |

—2a(e" — fe ")V | vul? - v u—dae " 7 (Vu- f) - vu
— C46u — C4L(u).
From (9.23),

(9.30)

—4ae™

vV (Vu-vf) - vu
> —dae”"{(ua +ug) f; + (uz +wzp) fitur — Ca
_ —20&67U{(| Tu ’2 _e(le)U)fi + (| Ju ’2 _e(lis)u)fl}ul —Cy

> —Cye".
Inserting (9.30) into (9.29) and applying (9.21), we find
(9.31) 4o<g'i5{uijku,; + uzpup

> 2| vu P F—2(e"— fe™) | vu |* L(u)
+ 20ee79) | gu |2 —Cye® — CyL(u).
Next we deal with the second term in (9.28):
(9.32) dog"™ (u;zup5) F
= ale" + fe ") (Au)?

u _uy fdetug; 9 det ug;
ij
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Using the equation, we have the following estimates

(9.33) 8a2 A u(det tij )

det g;;
> —a(e + fe ) (Au)? — ale — fe ) | vu |? Au
— Cye" — CyL(u),
and

- Sar(et u detuij
(9.34) —8a(e" + fe )M
> (e + fe_“)2 Au+ (e + fe ) (e" — fe) | vu ]2 —Cye*.

Inserting (9.33) and (9.34) into (9.32), we find the following estimate
for the second term:

(9.35) dog' (wpug;) F
> {a~ (" + feu)? — (¥ — fe¥) | yu [PHL(w)
—a Ne" + feT)F — Cye" — CyL(u).
Then we compute the third term in (9.28). Let

1 —&)u
a=5( vul? —ec=5).

We can use (9.23) to prove
(9.36) 4ag'i5(ui1ui3)F
= da(e" + fe ")a® — 8aale® + fe")uig
+da(e" + fe ")ul; + 16aa*uy;
et u;z det u;z

d
+ da(e” + fe ) uisusg + 160%u7 Y _320%a J
12U21 11

det g;5 detg;;

Using the equation again, we have the following estimates

det u,;-
(9.37)  1602ug +

det 9ij
> —dafe + fe ")ud; — dafe” + fe " Yuipusg
—afet — fev) | wu [P Aut 2a(e’ — fe) | gu [? uy
— Cye* — CyLyi(u)
and
(9.38) —32042ad(:ugij > Baa(e" + fem“)uii + 8aa(e” + fe " )uqs
ij

+ daale® — fe™) | vu |* —Cye.
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Inserting (9.37) and (9.38) into (9.36) and simplifying, we get

4ag/i5ui1uijF
1 1
> %FL(U) - g(e“ + fe")F —2aF — Cye" — CyL(u)

+ {4aa® + 2a(e" + fe ) + %(e“ — fe) | vu |*} La(u)

Recalling that a = %(| vu |2 —ee(1=9)%) | we can simplify above inequal-
ity and find

(9.39) 4ag’ﬁuﬂu13F

1
> — (1-g)u u —u 2
70 FL( )+ {Ee 5 (e"+ fe ") — | vu | }F

+ {(ge“ +a|vu|? —2aeet) ) | vu |? 66(2_€)U}L2(U)
- C4€u — C’4L(u).

The last term of (9.28) is
(9.40) 4ozg'”8 (g! )u1u1F> —Cy | vu |* L(u)

where Cy also depends on the curvature bound of the given metric wg.
Inserting (9.31, 9.35, 9.39, 9.40) into (9.28) and simplifying, we get

(9.41) aP(| u ))F
> { | vu | ——e* + eell™ 5)“}F+2aee (2=e)u | Gy |2
2a
L u —u\2 U po—u 2
F o F 4 (e fe)? =3 — fe) | vu P JL(w)
+{(Ge" +al Tu P —20se-9) | gu P —ee® 9} Lo(u)
- C46u - C’46”L(u).

where we used e " F < Cye®.
Now inserting (9.41) into (9.27), we finally obtain

(9.42)
FP(Gy)

F —2ce SUF — 2ze(279)u 4 O,

{i —gell=8)u _ C’4}L1(u)

200
{; U — 3ee(17U 4 (3 — 20627 | Yu 2 704}L2(u).
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Let
3
(9.43) ay = ZF — 2ee UF — 2?90 4
a
3
ag = ZeTUF — 286(1_8)u _ 04
a
3
a3 = —e"F — 67 46 | yu |2 —dac?e ™ | u |2 —Cy.
«

Then (9.42) implies

e' + fe " +daug e’ + fe " + dougs
+ a3
2 2
at the point go where F'P(G1) > 0.
Let 0 < K < 1 and € > 0 be chosen to satisty

(9.44) al 2 a9

(9.45) £ < min {1, a2, (204)*1&}
Then
3—2ae2 >0
and 3
—kKk — 6 > 0.
o
Choose A so that
3
2K — 6e
9.46 A< @ —1
( ) 04 1

Then k,e and A satisfy

zli — 6 — C4C1A > 0.
We find 5
as > e“{ae_QuF — 2ee” " — 046_“}
> e“{%m _25(CLA) — 0401A}
3
> eu{alf — 6 — 0401A} >0
and

as > e“{%n ~6e(C1 A — CiCiA} 2| Tu [ (3 - 202X(C1AY)

3
> e“{—n ~6e — 0401A} 12 vu 2 (3—2ae2) > 0.
«
Applying arithmetic-geometric inequality to (9.44), we find
e' + fe " 4+ duqg e" 4+ feT" 4+ daugs \ 2
+ a3 )
2 2
2az(e” + fe " +dugp)(e" + fe™" + dauys)
sasgk.

(9.47) a? > (ag

>a
>a
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Using (9.2), we can write a3 as
3

(9.48) a3 = =e"F+6 | vu|* —6ee1 7 —4ae?e™ | u |2 —Cy
et

3
= 2e — 617 — ae?e | u |2 —e"O(1) — Cy.
e

Inserting (9.43) and (9.48) into (9.47) and simplifying, we get
(9.49)  4e%e 25U F? 4 42227 19226 () | Gy |2 F2 4 Che

a
> 12ee179 | gu |2 F — Che,

> §€€(2—6)UF _ gse—euFQ + 46262(1—6)1LF
«

where C) may be bigger than C4 which we shall still denote by Cj.
Dividing (9.49) by 4ee~*“e?*F, we get

(9.50)
) e—Eu N ) e—(2—€)u
—eu [, —2u —u —_ou
ge (6 F)+€m+3€(€ ]VU,] )(6 F)+C4W
>3(e™ [ vu ).

Using the inequalities (9.19) and (9.20) to two sides of above inequality,
we obtain

(9.51)
—eu —(2—e)u

—eu(,—2u € —u 2 —2u e
ge € (6 F)+€e_27uF+35(6 |Vu’ )(6 F)+C4W
(C14)°

< E(ClA)E(R + Cg(ClA)E) +e—

K

1—

+3e(r+ O34 (5 (© 47~

~y 03(01A)5) Loyl

« ER

€ 3 Cy 3ek
< — P - P € - —
{1+/{+5<1+3ﬁ;+2 +303>C3+5/4}(01A) + 5 (1—k)

and

(9.52) 3(e | u |?) > %(1 k) — 3C5(CLAY

Applying (9.51) and (9.52) to (9.50), we see
Cy

3
{1+€+303+5<1+3n++303)03+
K 2c ER

} (Cr4)°
> 21— R)(1 - er)
> o K EK).
So finally we obtain that at (¢g, g2),
%(1—/{)(1—5/{) >
1+%+3C’3+5<1+3/@+%+3Cg>03+%

™ =

ot

(9.53) A> <
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Now it is easy to prove the following

Proposition 22. Let t € T and u is a solution of equation (8.1)
under the elliptic condition (e + tafe ")ws + 2ay/—100u > 0 and

1
1 2
the normalization (f 6_4“) Y= A and i lg—!s = 1. Given any constant

k € (0,1), we fix some positive constant € satisfying

(9.54) e <min{l,a"2, (2a) 'k}
Suppose that A satisfies
(9.55)

. _ 1y =R\ %—65 _
A < min {1,01 L {2a(1 +sup f)} 2071, (m) ot C ¢ 1}
and

2(1—-kr)(1— :
(9.56) A< < 25(1 = (1 ~ en) > i
1+§+303+e<1+3n+%+303)03+%

where Cy is determined in above section and depends on «, f and u,
and also depends on the Sobolev constant; Cs3 and Cy are determined
in above discussion and depend on «, f, u, and C4 also depends the
curvature bound of ws. Then F > ke?* > k(C1A)~2.

Proof. When t = 0, the equation has an unique solution © = —In A
and so e 2“F(0,-) = 1. According to our continuity assumption, we
claim that for any t € T, e 2“F(t,-) > k. Otherwise if there is a ty € T
such that the equation has a solution u and inf(e 2“F) = k. Fix this
to and apply the maximum principle to the function G; = 1 — 2ae™" |
U |2 +20e7" — 2067 Let G achieve the minimum at the point
g2. Then at point g2, P(G1)F > 0. From above discussion, we have
gotten the inequality (9.53) at point go under assumptions (9.54) and
(9.55), which contradict the assumption (9.56). So e ?“F > k and
F > re®™ > g(C1A)72 q.e.d.

10. Second order estimate

We now consider the second order a priori estimate of u. Since we
have proved F' > k(C1A)72 > 0, e¥+ fe “+alu > F2 > H%(ClA)_l >
0. It is sufficient to find an upper estimate of ¢* + fe ™™ + a A u. We
fix some point and choose the normal coordinate (z1,22) at this point
for the given metric g;;, i.e., at this point, g;; = d;; and dg;; = 0. We
replace taf by f and tu by p and rewrite the equation as

det ¢/~
(10.1) +

)

det g;; -
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where
F=("+ fe")? —2a(e" — fe™") [ vu ”
—dae " Ju-f + 207 A f—2au.

Following the method of [24], we compute

(10.2)
tag O i 000 0% Pl T T gy)
82i82j82k8,§l 0z, 0z 02,07

_ i 091995 | i3 90
0z Oz 02,07
1 0°F 1 9F9F
F 2,07, F2020%

As wg is Ricci-flat, we see
(10.3)

P(Au)F = =27V A" + fe) Y g F +4ag(g")5 - ug - F
+27 P AF — 2F) | OF 2 +gMggPig g o F
= — L(u) A (" + fe™) + 4ag (¢") ;5 - uyg - F
+27 P AF — (2F) | OF 2 +glggPigl o o F.
As above section, we denote
Lu)=e"+ fe"+alu.
We shall apply the maximum principle to the function
Gy = e—/\1u+/\2|vu\2 -L(u),

where A1 and Ay are some positive constants which will be determined
later.
The Schwarz’ inequality implies

(10.4) P(Gy) - e~ (Fhrutralvul®)
> L(u) - (=A1P(u) + A P(| vu |*)) + P(L(u))
~ L(u)™" | V'L(w) [3,

where we denote 2g’i31/1i¢3 by | ' |§/.
In computing the last term of (10.4), we assume that g;; = d;; and

u;; = uz0;; at a point. Using the method of [24], we get

(10.5) L(u) ™ | V'L(u) < Zglzzglkkgékzgkm

Note that when i # k,
(10.6) 92:1}1‘ = ggkk+(e“+fe_“)i—[(e“—l—fe_“)gi,;}k = ggkk+(e“+fe_“)i
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and
(10.7) g1z = Ghar+ (e +fe ™ )i—[(e"+ fe™ ") giils = g+ (e +fe ™ );.

Inserting (10.6) and (10.7) into (10.5), and then applying Schwarz in-
equality, we estimate

(10.8) L(u)™" | 'L(w) [

i tkk 1 / 122 122 1 / n1 11 s /
S99 Yk T 99 99219951 Y99 91129112

+gM M (e feT (et + fe)
£GP fe (e + fe),
< g/iig/kkg;]}jg;g{j + 05 (g/llglll + g/22g/22)
< 9" 9" gl 9155 + OsF 2 (g1 + 9h3)”
i tkk 2
< 9"9"" 9595 + CsL(w)",
where Cjs is some constant. In this section we will use the constant Cs
in the generic sense which depends on f, a, p, the curvature bound of
the metric wg, and u up to first order derivation. It can also depend on

the lower bound of F' as we have proven that F' > re?" > x(C1A)72
Note when we assume that g;; = d;; and u;; = u;0;5, the last term of

(10.3) is g’ﬁg’%ggl—ﬁjg;@F. Multiplying (10.4) by F' and then inserting

(10.3) and (10.8) into it, we obtain
(10.9) P(Gy) - e (Frrutrelvul)  p
> —ML(w)P(u) - F+ X L(uw)P(| vu [°) - F
— L(u) & (" + fe ) + dag (¢) juyg - F
+27VAF — (2F)7N | F P +P(e" + fe ") - F — C5L(u)*.

We assume that the function G2 achieve its maximum at the point
g3. Taking the normal coordinate (z1,22) at the point g3 with respect
to the given metric wg, we shall estimate every term in (10.9).

At the point g3, vG2 = 0 implies
(10.10) v Au=a 'Lu) (M vu— v | vu |?) —a v (e“+ fe ™).

At first we derive some inequalities which will be used to estimate terms
in (10.9).
Using the equation we compute
(10.11) 4029" gFuus = 40® (ug1 + ugs)? — 8a® det ug;
= ?(Au)? +a (e — fe ) +au
< L(u)* + Cs.
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Let
I = dg" gkiu,z‘kugz,
where indices preceded by a comma, e.g., u ;, indicate covariant differ-
entiation with respect to the given metric wg. At the point g3, we use

the normal coordinate. Therefore at g3, u;, = u;; and U= uj (see
p. 345 of [24] paper or the next section). Hence

I' = dujpuz; = 42 | w2
ik

As was done in above section, we take the normal coordinate at the

point g3 such that w3 = ui and ugs = uz = 0. Applying the Schwarz
inequality and (10.11),

(10.12) |7 | vu [*]* = 4(uipurp + ugpus, + uipus, + uipup) | vu ?
<2|wul? {r+ oz_zL(u)2} + Cs.

So,

(10.13) |7 | vu 2 V2 | vu | {T2 + o *Lu)} + Cs.

We also need to estimate

| v(vu-vf) P

= 2(uip f; + i fip + i fi + i fip) (Unp f + wr frp + uppfe + ugp frp)-

Changing the indices ¢ and k£ in some terms and then applying the
Schwarz inequality, we get

(10.14)
|V (vu-7f) P < Cs(2 | wip || wnp | + | wip || ugy | + | ugy 1] g |)
+ Cs(] wip | + [ wip |) + Cs
< C5T' + Cs L(u)? + Cs.

Hence

(10.15) | 7(] vu-f) |< Cs02 + C5L(u) + Cs.
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Applying (10.11), (10.10), and (10.13), we estimate
(10.16)
A vu = 2020wz + (207 uig)pur )
+ 497 gFuuy; + 497 gMugeusy
<2v Au-yu+T +a?Lu)? + Cs
=207 L(uw) (M | vu [P =Xev | Vu P v u)
— 207ty (e“ 4 fe ) - yu+T 4+ a 2L(u)? + Cs
<{a7?+2v2a7? | Yu |* X} L(u)?
+2v2a7! | u |? AL(uw)3 +T
+ Cs\M L(u) + Cs
< (C5M2 4 Csha + C5)L(u)? 4 2T + Cs A L(u) + Cs.

For the same reason we can also get the following estimate

(10.17) A(u-7f) ST 4 (CsA3 4+ Cshg + Cs) L(u)?
+ C5A1L(u) + Cs.

We now deal with every term in (10.9). For the first term, we use
(9.24) to obtain

(10.18) — M L(u)P(u)F
= M L(w)(a F —a ™t (e" + fe ™) L(u))
Z (aC’lA)_l)\lL(u)2 - C5)\1L(’LL)
Next we deal with the second term Ao L(u)P(] yu |?)F:
(10.19) P(| vu |))F > 49" (ugpu; + ugpup) F
+ 49" uipup;F — C5L(u).
Applying (9.29), (10.13) and (10.15), we estimate
(10.20) 49" (ugzuy, + ugzur) F
> =2e" — fe )V | vu [t -7 u—de”
> —CsT'2 — C5L(u) — Cs.

v (Vu-vf) - vu
Inserting (10.20) into (10.19), we obtain

(10.21)  XoL(u)P(| vu [*)F > AL (u) (49" uu;)F — T
— C5(A\3 4 \2)L(u)? — CsAoL(u).
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We assume that g;; = d;; and u;; = u;;0;; at the point g3. Then
(10.22) Ao L(u) (49" uipug;) F
1 /97 + 9hs

=4\ F— (7911 922 )u,kukg

95 2

> 2o Fugpug; > %(C’lA)_Qm)\QI‘.
Inserting (10.22) into (10.21), we find an estimate of the second term in
(10.9)
(10.23)  XoL(u)P(| yu |*)F

> (27HC1A)2kAg — 1)L — C5(A\2 + Xo)L(u)? — Cs Ao L(w).

The third term is
(10.24) — L(u) A (e" + fe ")

> —L(u){(e" = fee") Au+Cs}

> —C5L(u)? — CsL(u)
and the fourth term is
(10.25) 4ag (g") juy P
kl)

= 4a(gi7(9"M)9a + 9h3 (611 — 9156 )a1 — by (g™
= da(e" + fe)g" (g 5uy

+ 1602 (ur1(9") 23 + u2(9")11 — w1(9™)a1 — w21 (6™)12)ui
> —64a’ max | Rz | Z | ui; |2
> —C’5L(u)2 — (s,

k[)

where C5 depends the curvature of wg. Next we deal with the fifth term.
From the definition of F', we can easily get
(10.26)
2NAF >G5 | A vu | =C5 | A(vu-vf) | =Cs | v | vu P
= Cs | v(Vu-vf) | =CsL(u) — Cs.
We note that the inequalities (10.16) and (10.17) are also true for | A |y
ul?| and | A (syu - 7 f)|. Applying (10.16), (10.17), (10.13) and (10.15),
we get
(10.27) 27V AF > —CsT — (C5)3 + Cs\a + Cs) L(u)?
— (05)\1 + C5)L(U) - C5.

We also observe that

VF=-C5v | vul? —Cs v (Vu-vf) — Cs v u—Cs.
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Then applying the Schwarz inequality, and applying (10.12)-(10.15), we
get

(10.28) —(2F)7' | yF ]2
>—Cs | v | vu PP =Cs | v | vu |- | v(vu vf) ]
~Cs | v(vu-vf) P =Cs | v | vu

—Cs | v(vu-vf)| —Cs
Z —C5F - C5L(u)2 - C5L(u) - C5.
The last term is
(10.29) P(e" + fe ™)F
= (e" — fe ")P(u)F + (e" + fe™) - 29" uu; F
—e . Qg’ij(uifj +us fi) 4+ e “P(f)F
> —C’5L(u) — 05.

Inserting (10.18), (10.23), (10.24), (10.25),(10.27), (10.28), and (10.29)
into (10.9), at last we get

(10.30) FP(Gy) - e~ (Fhuthe|vul)
> {(aC1A) '\ = C5(A5 + A + 1)} L(u)®
—{Cs5A1 + Cs)a + Cs5}L(u)
+(27Y(C1A) 2kAg — C5)T — C5T'2 — Cs.
Fix the constant C5. Take As big enough such that
“HCLA) T2kA — C5 > 0
and then take A; big enough such that
(aCiA) "IN — Cs(\2 4+ X+ 1) > 0.

Fix A1 and A9. Then we can now estimate Go = e_>‘1“+’\2|vu‘2L(u). In
fact, it must achieve its maximum at some point g3 so the right-hand
side of (10.30) is non-positive. At this point,
0 Z {(aClA_l)\l C5 )\ + )\2 + }L
—{C5M1 + Csa + G5} L(u)
+ (2_1(0114)_2,‘4)\2 — C5)F — C5F% — 05
> {(aC1A) A\ — C5(A3 + A2 + 1)} L(u)?
— C5<)\1 + Ay + 1)L(u)
Cs

4(2_1(01A)_2HA2 — 05) B 05.
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Hence L(u)(g3) has an upper bound Cf depending on «, f, p, the cur-
vature bound of metric wg, A. Since G2 achieves its maximum at the
point g3, we get the estimate

—ArutAo|vul? — A1 inf u+Ag sup|yul?
sup(e e
L(u) < O} ( ) < o

inf(ef)\1u+)\2|vu\2) =5 e—)qsupu

As | 7u |? has the upper bound (7.8), we get an upper bound of e* +
fe " 4+ a A u. In conclusion, we have proved the following;:

Proposition 23. Let S be a K3 surface with Calabi- Yau metric wg
2
such that (153 = 1. Let u € C*(S) be the solution of the equation

det g/~
A(e* —tafe ™) + 8ad2tz’___ + ty = 0 which satisfies the condition (e +

ij

1
tafe " wg + 2a/—100u > 0 and (fs e‘4u> Y= A < 1 (see (9.55)
and (9.56)). Then e + tafe ™ + a /A w has an upper bound depending
only on a, f, i, wg and A. Moreover, combing with the Proposition 22,
e'+tafe " +dau;, fori = 1,2, have the positive lower and upper bounds

depending only on «, f, u, ws (both Sobolev constant and curvature
bound) and A.

11. Third order estimate

In this section we use indices to denote partial derivatives, e.g., u; =

_ Ou 9., _ D% : .
ou = P Uij = Oiju = 9205 Indices preceded by a comma, e.g., u

indicate covariant differentiation with respect to the given metric wg.
Let

_—
L' = gYg%upujr
17 1sj Ikt
O = g"g"7g" u s
1ij 1kl Ipg
= 979" g irpu iy

_nij 1kl ipG TS, _ _
o = ¢gYg"g"yg U i1pr U jkgs

v = g/ijg/k[g/pqg/r§u7izp§ujqu_
We shall apply the maximum principle to the function
(11.1) Gs3=N\3+aAu)O + (m+adu)l 4+ X5 | vu [>T + AT,

where all \; for ¢« = 3,4,5,6 are positive constants and will be deter-
mined later; m is a fixed constant such that m + o A u > 0. At first
we assume that A3 + a A u > 1. We shall use Cg as a constant in the
generic sense which depends only on «, f, i, wg, and u up to the second
order derivations.

Let the function G5 achieve the maximum at a point ¢4 € S. Before
computing P(G3) at g4, we need to derive some relations between partial
derivatives and covariant differentiations.

[1]
|
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Pick a normal coordinate at g4 such that g; = di;, 09;5/02 =
09;3/0z = 0. Then at g4, we have
UG = U, Uij = Uij, U= U,
U ijk = Uijk> Uik = Wik U5k = Uijk, Uik = Uik
am(uﬂj) - uﬂj];,l’ ......
We also have
Wiky = Uiz + UsBis, g1y = g7+ us R
We shall compute every term in P(G3):
2 1675 ij
(11.2)  P(| vu |7) > 497 g" (vinsu; + uitjey + wizujs + uisuzy) — Co
165 i o ) _ oy
> 49" g isu 55 + U izsuz + uin 555 1 — Co
>mal = Cg Y | ugs || uj | —C
1
> m1F — 06@2 — CG.

Since Proposition 23 shows that the metric w’ is uniformly equivalent
to wg, we see that such an mj; > 0 exists. In the following we use mg
and mgs as my. Next we estimate aP(Au). From (10.3) we know
(11.3)

aP(Au) > g7g"Pg Vg g -+ (2F) N AF — (2FY) 7Y | OF |2 —Cs.
We estimate
(11.4)  g7g%g' Vg5 g1 -
> 16027/ Pg Tu gsit 55— Co 3| (e + o) | ugss |
> my@ — G503,
From (10.26), we also have
(11.5) AF > ~Cs > | uyg || uj | —Col — Cg > —~C603 — Gl — Cs.
Inserting (11.4), (11.5) and (10.28) into (11.3), we get
(11.6)  PlaAu) > me® — Cg02 — CgL' — Cg > ma® — CeT' — Cg,
where we have used mo in the generic sense. We also calculate:
(11.7)  P(D) > 2977 g {(u )55 57 + w0 ()57}
+ 29797 " (wi1)s (w 51)y + ()5 (w s} — Gl
= 2¢7 g% gki{u,ikau,ﬁg + U ikyou T+ Wik Fis5
+ Qg'ﬁgﬁgkl_(u,iryk + us R ) (u 557 + ung.B) — CsI
> maE + mz® — Cg®3T3 — Cgl
> maZ= + m3z0 — 61)\6_1<I> — 06)\661_1F.
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Combining (11.2) and (11.7), we find

(118 P(vulT)
> mil2 — Cg02T — Cgl
+ | vu 2 (ms= + m3® — Ce®@2Tz — CgT)
1 1 1 1 1 1
—Cs(T'2 +1)(O2I'2 + =212 4+ I'2)
> m1F2 — 61)\5_1(13 — 06)\561_11_‘ — 065 — 066 — Cﬁ.
Combining (11.6) and (11.7), we get

(11.9)  P((m+aAu)T)
> (mg® — CgT' — C6)T' — C402 (02 + E2 + 1)I'2
+ (m+ a A u)(msE 4+ m3® — Cgd2T'z — CgT)

> maOl — CeT? — €1\ 1@ — Coye] 'T — C6Z — C6O.

Applying (11.6), we get

(11.10) P(As+aAu)O)
> me®? — CTO — C60 + (A3 + a A u)P(0)
+ 2ag"7{05(Au) D50 + 05 (LAu)ds0}.

So we should deal with the term 2a,g"7{95(Au)950 + 05 (Au)950}. Let
(3 achieve the maximum at the point g4. Then at the point g4, we have,

1

%0 =N Tala

{©05(a A u) + X\05((m + a A u)l)
+ A505(] 7u 2 T) + A\e05T'}
and

(11.11)

209”7 {85(Lu) 050 + 05(Lu)950}
—Cj 1 3 1 3

> m@h X {@2 + 2020 + As512

+ (A4 s+ A)(©7 + 23 +T2)T'7}

- —Ce{0” + (M + X5 +26)(OT + © +T +5) + AT7}

Cs.
- A3t+alAu 6




418 J-X. FU & S.-T. YAU

Inserting (11.11) into (11.10), and then combing (11.7)—(11.10), we ob-
tain

(11.12)
P(G3) > A3+ aAu)P(O) + {ms — Cs(\s + a Au) '} ©2

+ {Mmy — Cs — Cs(As +a A u) (A + A5 + Ag) } OF
+ {)\57711 - Cﬁ)\5()\3 +al u)_l - 06/\4} r?
+ {)\Gmg —Cs(Aa+A5) — Cs(Ag+ A5+ X6) (A3 +a A u)fl} =
—361® - C70 — C7T" — Cr,
where C7 also depends on \; and €; at point 4.

At last we should estimate P(©). We follow paper [24] to obtain:
(11.13)

P(©) =2¢"70505(9"" 9" g™ u 30 5st)
:2915:/[ 2g/iag/bpg/qu/sjg/kf + 2g/iﬁg/qag/bfg/sjg/kf
+ 2g/iﬁ g/qF gzsa g/bj g/kf +9 g/iﬁ g/q'F g/sj g/ka g/bf
+ gn‘a g/bf glsﬁ g/qj g/kt_ + g/z‘fF g/sa g/bﬁ g/qj glkt_
1iv _1sp Iqa 1bj 1kt 1E _I1sp 1qj tka bt
+ " g g g g™ + g g g g g™ ]
X 8ggga8§g%qu7ijkufsg (first class)
. 29/5'7 [2 g/ipg/qu/sj g/kz? + g/if g/sﬁg/q} g/ki]
X [059pq ik Wt + O5Gqpt stz k] (second class)

. 29/6'7 [2 g/z’;a g/qF g/sj g/kf + g/if g/sﬁ g/qj g/kf]

X (050t trsts + syttt rt] (third class)
_ 29/6& [2 g/z‘ﬁ glq'r_‘ g/sj glkf + g/z‘F g/sp g/qj g/kf]

X Ggﬁgg%un;kaSg (forth class)

92 185 15t 155 Ikt o o ~ o fifth cl
+297'97g7g" X [u,zjk'yzﬁu,rst + u,zgku,rstév] ( C aSS)
+ QQMQWQ/S;QM X [u,ijk"yufst_d + u,ijkéufsfﬁ] (sixth class)
— (40,

when we use normal coordinates, so that at this point we have dzu 5, =
u 51,5 and 9, 0gu 5, = u,i}k,@a+u7i§kR§/§a‘ Comparing with (A.8) in [24],
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we should deal with the first five classes in (11.13). The first class is:
(11.14)

2907 /106" 7 4/ ™M 5 g1 D5 G ik s
= 27 /1% g% ¢'T" g1 ™M (devupas ) (datpgy U 5k s
+4Re{g" g g PG g g M (" + fe)s - (Aotpgs )t gyt rp) }
+ 29/ g P P g5 R (e 4 fe (e + feT ) qu 5t )
> 29079/ g"P g/ 620 G (Ao s ) (40 g U 5t it
—e2/12(\3 + a Au)'O? — Cpey ' (N3 +a A w)O.
The second class is:
(11.15)
— 20/ g"P g g R Dy gl s st + O Gt st i
= —4Re{g"Tg"Pg'" /T g™ 05 ((e" + fe ") gpq + A0Ung U sjrstirsr}
> —29'5&9”‘27 g/qu/sj glkt_{(4(1“,15@)“,@';1@5“,7?3{ + (4au,qﬁ5)ufsﬁu,ijk}
—e1/303+ahu)Id — Cs(\3 + a Au)el'O.
The third class is:
(11.16)
— 267" g g g™ D5 gt 1t s + O3 Gt 31,0t )
> 27 g"P /T 653 g (Lo gy V5t s+ (AU g U 54U s}
—e1/303+aAu)I — Cs(A3+ a Au)etO.
Next we deal with the fourth class. By (10.2),
(11.17) — 29" g P g/ 53 M D505 g 51t
> —2¢/%0g™ P g %3 g gL gl ik s — C6©
— 2P TG (P — F2F Fp b gt
Then from (11.4), (11.5) and (10.30), we can see
(11.18)

— 29/ P g G M O505gh i
> —2g'P g7 553 "M 158 T (devugyy) (At g U 50U T
— 0507 — C40I'2 — CsT'O — Cs0
> —2g'P g7 g/53 'R 158 M (davu ) (40U g VU330 s
— CsOT — mp/24(M3 + a Au) 102 — Co(\3 + o A u)© — Cgl.
Now we deal with the fifth term. By direct calculation, we have
W ijkas = Uijkys T Upis Ry + wz‘ﬁkR%(s
— 130505 (97 Ok gis) — 1505 (9" Ongis)-
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So the fifth class can be expressed

(11.19) 979" 9" G st st + U sy }
5 e 17
> gV i g5 g t{Uijk"yéuvfsf + U G5y ) — C6O.
Differentiating (10.2), we can get

(11.20)  dagTugss
= 409" gV g usyi; + (979 g =955k
+ Qlépgq;ygf]ﬁk((eu + fe ") gs9)i5 — g7 (" + fe=")g5%)i5k
+ F'F5, — F2(FyFyj + FiFy + F5Fy) + 2F P FFFy.
Inserting (11.20) into (11.19), we get

(11.21) gléﬁgm‘fg/sjg/kf{u’ijk%ujsg + uﬁku,fsfafy}
> g7 9 PG Gyt e + Gyppttrorst i} — CoO
+ (40) 7' "G g (g P T g s i Kt
+ (glépglqz/g;,sqggfwr)fuijk}
+ (204)_1Re{glﬁglsjglkf(F_1Fijk + QF_SFiFij)U,fsE}
- (2a)’1Re{g’Wg’539/k{F*2(E-ij + Fil5, + FjF)u rgr )

We observe

(11.22)
5 153 I 16T I
g/wg/syg/ tg/ pg’m{gé,ﬁku&*yijufst_ + g(’jpguwfsu,ﬁk}
> g’ﬁg’sﬂg’ktg"sﬁg’q:y{(45U,qﬁk)u,§»‘yijufsf + (4au7ﬁqg)u,75f5u’ijk}

_CeU303 — (0,
and

(11.23)
(40) g g T g (g PG gl = ghs Vit + (909D Ghys e )eie }
> Q/ﬁQISjglk{gl(sﬁg/ﬂ{[U,ﬁqjk(‘lau,dﬁi) + (4ot 55 )u syik |t 7
+ [(u pgst(dau s5,) + (4w sgs)u 5508l 55}
— g g TG g P g T 4 g ga0g T}
A (4o par) (4o pg5)u s3itt mst + (4w gpp) (4o 53, )0, gzt 51 }

— 0503 — CgU307 — Csd307 — C0 — Cs.
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We also have estimate
(11.24)  + (20) "Re{g""g"I " (F ' Fyjy, + 2F > F,F; Fy)u i}
— (20) 'Re{g""g g™ F2(F;;Fy + F,Fy + FjFy)u st}
> (707 — Ce¥207 — CgI'20 — CeT'207 — (60 — C.
Inserting (11.22)-(11.24) into (11.21), we get
(11.25)

gy 9 p 5 s + UG st}
> gwg/sjg/k{glﬁﬁg/qﬁ{(404U,q73k)u,5a7iju,fsf + (404U,13qt‘)uﬁ5fsu,ijk}
+ g/ﬁglsjglkfgléﬁgm{[U,ﬁqjk;(‘lau,&ﬁi) + (4au,pq3)u,éﬁik]u,fst’
+ [u pgst (4o g5,) + (4au,pq5)u7(5,—wg]u’i5k}
— gTg T g g0 g P g T 4 g0 gle0g 0T}
A (dowpar) (dow g )u 530w s + (4ot gpp) (4w 50 ) u pgst i1, }
—e1/203+ahu)TH® + ) — Coe; *(N3 +a A u)O
—ma/16(A3 +a Au)"10? — Cs(A3+ a Au)O — CgOI — CgI'%.
Inserting (11.14)-(11.16), (11.18), and (11.25) into (11.13), diagonaliz-
ing, and simplifying, then comparing to (A.8) and (A.9) in [24], we
obtain

361 2
) D ) S I' - CgT
(11.26) P(©) > ol Ce¢© Cs
ma/4+ € Ceel 2
— 0 —-C7(6+1).
()\3+04Au )\3—1—04Au—561> "(©+1)
Inserting (11.26) into (11.12), at last we obtain
(11.27)
mo Cs AM+alAu 9
> I _
P(G3)_{m2 4 & AN +alu CGElAg—i—QAu—E)el}@
Cﬁ()\4 + A5 + /\6)
— Cg — — A er
+ {)\4m2 Cs Nt ol Co(A3 +a A wu)
- — — A T
+ {)\5m1 N talu Ce g — Cs(A3 + « u)}

+ {Aﬁmg — 06()\4 + )\5) —
- C70 - C ' = C5.

Co(A+ A5+ A6) | —
A3 +aAu -

Note the generic constant Cg does not depend on ¢; and A;, so we can
fix it, because we can take the biggest one. Fix €1 and €2 such that

€2 + 2Cge1 < 2. Take A3 big enough such that Mfﬁ < 72 and
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Astalu 9 then

A3+aAu—>5e1
(11.28)
meo Cs A3t+alAu 2 m2 o
—— €6 ——— —C 0 > —0°.
2 4 € A3 +aAu 6€1>\3+aAu—561} 4
Let
M= — M oy =456
;= or 1= .
o talu T

We choose 5\4, 5\5 and 5\6 such that
~ C
Ay > —£ +1
ma
~ Ce ~ C
Xs > 22X 4+ =2 41
miq mi
and
5\4 + 5\5
ms

5\6>06 + 1.

Then if we take A3 big enough such that
mi(As +a Au) — 06(5\4 + X5 + 5\6) —Ce>my, for i=1,2,3,

we can estimate
(11.29)
Cs
A3 +alAu

> {mg()\g +a u) — 06(5\4 + :\5 + 5\6) — (16}@F > myOl;

Aamg — Cg — (A4+)\5+)\6)—C’6(A3+aAu)}@F

CgA
(11.30) {)\5m1 — % — Cg\ —Cg(Ag—i—OéAu)}F?
> {ml()\g +a A ’LL) — 065\5}F2 > m1F2
and
Cs -
(1131) m3A6 - m()\4 + A5 + )\6) - Cﬁ(A4 + )\5) =

> {ms(As +aAu)— 06(5\4 + 5\5 + 5\6)}5 > ma=.
Inserting (11.28), (11.29)-(11.31) into (9.28), we see that
0> P(Gg) > %@2 + moOI' + m1F2 + m3= — C70 — C7T" — (5.

The above inequality gives an estimate of the the quantity supg © and
supg I'. This in turn gives the estimates of u;5;, and wu;; for all 4, j, k.
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Prop051t10n 24. Let wg be a given Calabi- Yau metric on a K3 sur-

face with fS 5t = 1. Lett € T and u € C5(S) is a solution of the

det u;z

equation A(e* — tafe ™) + 8a detg” + tu = 0 under the elliptic con-

dition W' = (e* + tafe ") wg + 2ay/—100u > 0 and the normalization

1
<fs _4“> "= A <1 (see (9.55) and (9.56)). Then there is an estimate
of the derwatives ugj, in terms of o, f, p, ws and A.

12. Estimates for the general case
In the general case, the equation is

w2
V—=190€e" Awg —tadd(e " “tr(0BAIB*-g~1)) —addu A 83u+tu2—s 0.

Let
—/=1tr(OBAOB* - g7 "),
then p is a well-defined real (1,1)-form on S. We replace tap by p and

tu by p. Then we can rewrite the equation as

2
V—180e" A wg — vV—19d(e % p) — addu A dOu + M2—5 0.
The elliptic condition is

W = etwg + e Yp + 200/ —100u > 0.

If we let p = @pijdzi A dZz;, then gl’.j = e"g;; + e “p;; + 4au;;. Using

the definition of P and the equation, we compute

w/2
P(e—ku)i
P

> — lk/ e k90U A (e'wg + e %p + 20/ —100u)
S

= k/ e~ h=u A g + 2k/ e~ =1u | |2
S S

+ V- k/ UG U A p — 2¢/= k/ ~HDugu A du A p

S

+ 2\/—1k/ e~ FHDugy A op — 2\/—1k‘/ e~ FHDuGy A dp
S
—2V/—1k / ~k+Du9dp + 2k / Y.

S
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On the other hand, we can also compute

/S P(e‘k“) =v-1 / e M A

:—k/e()"Au—i—kz/e(kl)“\vu ’2
S S

— V= k/ B Y A p 4+ V—1K? / ~(HDugu A du A p.

S
Combing above two inequalities, we get

k/ge(kl)“ | vu 2 +Jj1k/se(k+1)“8u ANOu A p

> Q/Se(kl)“ Au+ Q/Se(kl)“ | vu |? +2ﬁLe(k+1)“86u Ap
- 2\/—71/5 e~ D9y A du A p+ 2\/—71/5 e~ (ktDugy A 5,0
— QHL e FTD%Hy A p — QH/qe_(k+1)“85p +2 /S e ke

Integrating by part and then simplifying it, when k& > 2, we get

(12.1) k/ ~k=Du | Gy |2 /= k/ ~(EEDuGy A Gu A p
S
<2v-1(1— )/ ~k+Duphp + Qk/ ek,
1+k S
Using the notation in section 3, we have
=0f; O0f;
p= \/—lg”—{ . @dzk A dz
82[ 8zk
and

V—=10uNOu A p
0Z2 0Z2 0ZzZ2 0Zo 2 '

So
V- k:/ E+EDU Gy A Gu A p > 0.

Then (12.1) implies the inequality (8.8) in Section 6:

1

k/e—(k—l)u | U ‘2 < 2\/7(1_ 1k)/ —(k-l—l)uagp—i-Q/e_kuu
g + S

<C0/ —(k+1)u +C/

We follow the discussion in Section 6 to get the estimate infwu >
—In(CyA). If A is small enough, we can get infu big enough. Then
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we can check all other estimates that can be derived using the same
method because the term e" can always control terms such as e™* |
tr(0B A OB* - g) |. Thus we get:

Proposition 25. Propositions 21, 22, and 23 are also true for the
equation of general case:
(12.2)

2
V—100e" Awg —tadd(e “tr(OBAIB* - g 1)) — addu A ddu +t,u% =0
if we replace f by —/—1tr(0B A OB* - g~1).

Proposition 26. Proposition 24 is also true for the equation (12.2).

13. Further remark—generalization

Let X be an (n+1)-dimensional complex manifold with Hermitian
metric w and a nowhere vanishing holomorphic (n + 1,0)-form Q. As
we stated in the introduction, the string theorists consider the following
Strominger’s system:

(13.1) Fg Aw" = 0; FI?I’O:FE,’Q:O;
/
(13.2) V—100w = %(trR AR —trFy A Fiy);
(13.3) d*w =v—=1(0 — 9) In |||,
The third equation is equivalent to
(13.4) a()| @ [l &) =0.

Let n > 2. Motivated by the constructions in section 2 and 4, we
propose to study the following system

(13.5) FypAw'=0; F;'=Fy =0
Y Oé/ n—2
(13.6) {\/—18&0—Z(trR/\R—trFH/\FH)}/\w =0;
n—1
(13.7) d( KNG w") —0.

Then we can generalize our construction to complex manifolds with
dim > 3. Let K be a Calabi-Yau n-fold with a Ricci-flat metric wg
and a nowhere vanishing holomorphic (n,0)-form Q. Let wi,ws be a
primitive harmonic (1,1)-forms such that §1,%2 € H"“'(K,Z). Using
these two forms, we can construct an (n + 1)—dimensional complex
manifold X:
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1. 7: X — K is a T?-fibration over K. If we write locally w; = dag
and wo = das for real 1-forms a7 and as, then there is a coordinate
that x and y of fiber T2 such that dz 4+ /—1dy is a holomorphic
1-form on T2-fibers and dz + o and dy + as are globally defined
1-forms on X.

2. Let
0 = (dr + a1) + vV—1(dy + a2)
and let
Q=QgN0.
Then 2 defines a nowhere vanishing holomorphic (n + 1, 0)-form
on X.

3. Let u € C?(K) function on K and

/T

-1
(13.8) wy = e'wi + TG NG.
Then (2, w,) satisfies equation (13.7).

Proof. As in Section 4, we have

fapz,= 1 _of
wETal e

and
Wi = "W + v/~ Tne™ VUit A A D,
Then
n—1
d(|| Q[ w™)
= V=Inw A (w1 + V=1w2) AG+ 0 A (w1 — V—1ws)) = 0,

as wi,ws are primitive (1,1)-forms on K. So (2,w,) satisfies equation
(13.7). q.e.d.

As wq,wy are harmonic, we can find (1, 0)-forms §& = > | &1;dz; and
& = > &4dz;, locally where &1; and §2; are smooth complex functions
on some open set of K, such that wy = 9¢; and wy = 0&. Let

¢i:§1i+£2i7 for j:1727"'7n7
and let
B = (¢17¢27"'7¢n)-

Let R, be the curvature of the Hermitian connection of metric w, of
the holomorphic tangent bundle 7" X and Rg be the curvature of metric
wg. Then in section 3, we have

trRy, AN Ry, = trRg N Ry + 285(6_“53 NOB* - g_l) + nddu A Oou,

where g is the Calabi-Yau metric associated to Kéahler form wg. Let E
be the stable vector bundle over (K,wg) with degree zero. According
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to the Uhlenbeck-Yau theorem, there is a unique Hermitian-Yang-Mills
metric H up to constants. Hence

("B, 7" H, X,w,)

satisfies equations (13.5) and (13.7). So we only need to consider equa-
tion (13.6), which can be decomposed to the following two equations

(n —2)! 2 2 \WK
0 = K(H w1 g + Il w2 HwK)F

/
+(Z/ 'EI“(FH/\FH—RK/\RK)/\w?{2
K

and
0 =v—-190u AWl —200(e “trdB AOB* - g~ ') N K™ 2

n
— nddu A ddu N K" 2 +MU:TI'(,

where p is a smooth function on K and |’ K ,u% = 0. In the next paper,
we will continue to consider this problem.
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