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STANDARD SURFACES AND NODAL CURVES IN

SYMPLECTIC 4-MANIFOLDS

Michael Usher

Abstract

Continuing the program of [DS] and [U1], we introduce re-
finements of the Donaldson-Smith standard surface count which
are designed to count nodal pseudoholomorphic curves and curves
with a prescribed decomposition into reducible components. In
cases where a corresponding analogue of the Gromov-Taubes in-
variant is easy to define, our invariants agree with those analogues.
We also prove a vanishing result for some of the invariants that
count nodal curves.

1. Introduction

Let (X, ω) be a closed symplectic 4-manifold. We assume that [ω] ∈
H2(X, Z); however, the main theorems in this paper concern Gromov
invariants, which are unchanged under deformations of the symplectic
form, so since any symplectic form is deformation equivalent to an in-
tegral form there is no real loss of generality here. According to [Do],
if k is large enough, taking a suitable pair of sections of a line bundle
L⊗k where L has Chern class [ω] and blowing X up at the common
vanishing locus of these sections to obtain the new manifold X ′ gives
rise to a symplectic Lefschetz fibration f : X ′ → CP 1 (the exceptional
curves of the blowup π : X ′ → X appear as sections of f , while at
other points x′ ∈ X ′, f(x′) ∈ C ∪ {∞} is the ratio of the two chosen
sections of L⊗k at π(x′) ∈ X). In other words, f is a fibration by
Riemann surfaces over the complement of a finite set of critical values
in S2, while near its critical points f is given in smooth local complex
coordinates by f(z, w) = zw. Results of [Sm1] show that the critical
points of f may be assumed to lie in separate fibers, and all fibers of f
may be assumed irreducible. Once we choose a metric on X ′, Donald-
son’s construction thus presents a suitable blowup of X as a smoothly
CP 1-parametrized family of Riemann surfaces, all but finitely of which
are smooth and all of which are irreducible with at worst one ordinary
double point. Where κX = c1(T

∗X) is the canonical class of X, note
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that the adjunction formula gives the arithmetic genus of the fibers as
g = 1 + (k2[ω]2 + kκX · ω)/2.

Beginning with the work of S. Donaldson and I. Smith in [DS], some
efforts have recently been made toward determining whether such a
Lefschetz fibration can shed light on any questions concerning pseudo-
holomorphic curves in X. More specifically, for any natural number r
Donaldson and Smith construct the relative Hilbert scheme, which is a
smooth symplectic manifold Xr(f) with a map F : Xr(f) → CP 1 whose
fiber over a regular value t of f is the symmetric product Srf−1(t). If
we choose an almost complex structure j on X ′ with respect to which
f is a pseudoholomorphic map, a j-holomorphic curve C in X ′ which
contains no fiber components will, by the positivity of intersections be-
tween j-holomorphic curves, meet each fiber in r := [C] · [fiber] points,
counted with multiplicities. In other words, C ∩ f−1(t) ∈ Srf−1(t), so
that, letting t vary, C gives rise to a section sC of Xr(f). Conversely, a
section s of Xr(f) gives rise to a subset Cs of X ′ (namely the union of
all the points appearing in the divisors s(t) as t varies), and from j one
may construct a (nongeneric and generally not even C1) almost com-
plex structure Jj with the property that C is a (possibly disconnected)
j-holomorphic curve in X ′ if and only if sC is a Jj-holomorphic section
of Xr(f).

Accordingly, it seems reasonable to study pseudoholomorphic curves
in X ′ by studying pseudoholomorphic sections of Xr (f). If α ∈
H2(X ′; Z), the standard surface count DSf (α) is defined in [Sm2] (and
earlier in [DS] for α = κX′) as the Gromov-Witten invariant which
counts J-holomorphic sections s whose corresponding sets Cs are Poin-
caré dual to the class α and pass through a generic set of d(α) = 1

2(α2−
κX′ · α) points of X ′, where J is a generic almost complex structure
on Xr(f). Smith shows in [Sm2] that there is at most one homotopy
class cα of sections s such that Cs is Poincaré dual to α, and moreover
that the complex dimension of the space of J-holomorphic sections in
this homotopy class is, for generic J , the aforementioned d(α), which
the reader may recognize as the same as the expected dimension of j-
holomorphic submanifolds of X Poincaré dual to α. Further, the moduli
space of J-holomorphic sections in the homotopy class cα is compact for
generic J if k is taken large enough. The moduli space in the definition of
DSf is therefore a finite set, and DSf simply counts the members of this
set with sign according to the usual (spectral-flow-based) prescription.

Donaldson and Smith have proven various results about DS, perhaps
the most notable of which is the main theorem of [Sm2], which asserts
that if α ∈ H2(X; Z), if b+(X) > b1(X) + 1, and if the degree k of the
Lefschetz fibration is high enough, then

(1.1) DSf (π∗α) = ±DSf (π∗(κX − α)).
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Their work has led to new, more symplectic proofs of various results in
4-dimensional symplectic topology which had previously been accessi-
ble only by Seiberg-Witten theory (as an example we mention the main
theorem of [DS], according to which X admits a symplectic surface
Poincaré dual to κX , again assuming b+(X) > b1(X) + 1). In [U1] it
was shown that the invariant DSf agrees with the Gromov invariant Gr
which was introduced by C. Taubes in [T2] and which counts possibly-
disconnected pseudoholomorphic submanifolds of X ′ Poincaré dual to a
given cohomology class. This in particular shows that DSf is indepen-
dent of the choice of Lefschetz fibration structure, and, in combination
with Smith’s duality theorem (1.1) and the fact that under a blowup π
one has Gr(π∗α) = Gr(α), yields a new proof of the relation

Gr(α) = ±Gr(κX − α)

if b+(X) > b1(X)+1, a result which had previously only been known as
a shadow of the charge conjugation symmetry in Seiberg-Witten theory.

The information contained in the Gromov invariants comprises only
a part of the data that might be extracted from pseudoholomorphic
curves in X. The present paper aims to show that many of these addi-
tional data can also be captured by Donaldson-Smith-type invariants.
For instance, Gr(α) counts all of the curves with any decomposition
into connected components whose homology classes add up (counted
with multiplicities) to α. It is natural to wish to keep track of the de-
compositions of our curves into reducible components; accordingly we
make the following:

Definition 1.1. Let α ∈ H2(X; Z). Let

α = β1 + · · · + βm + c1τ1 + · · · + cnτn

be a decomposition of α into distinct summands, where none of the βi

satisfies β2
i = κX · βi = 0, while the τi are distinct classes which are

primitive in the lattice H2(X; Z) and all satisfy τ2
i = κX · τi = 0. Then

Gr(α; β1, . . . , βm, c1τ1, · · · , cnτn)

is the invariant counting ordered (m+n)-tuples (C1, . . . , Cm+n) of trans-
versely intersecting smooth pseudoholomorphic curves in X, where

(i) for 1 ≤ i ≤ m, Ci is a connected curve Poincaré dual to βi which
passes through some prescribed generic set of d(βi) points;

(ii) for m+1 ≤ k ≤ m+n, Ck is a union of connected curves Poincaré
dual to classes lk,1τk, · · · , lk,pτk decorated with positive integer
multiplicities mk,q with the property that

∑

q

mk,qlk,q = ck.
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The weight of each component of each such curve is to be determined
according to the prescription given in the definition of the Gromov in-
variant in [T2] (in particular, the components Ck,q in class lk,qτk are
given the weight r(Ck,q, mk,q) specified in Section 3 of [T2]), and the
contribution of the entire curve is the product of the weights of its com-
ponents.

The objects counted by Gr(α; α1, ..., αn) will then be reducible curves
with smooth irreducible components and a total of

∑
αi·αj nodes arising

from intersections between these components. Gr(α) is the sum over all
decompositions of α into classes which are pairwise orthogonal under
the cup product of the

d(α)!∏
(d(αi)!)

Gr(α; α1, . . . , αn);

in turn, one has

Gr(α; α1, . . . , αn) =
n∏

i=1

Gr(αi; αi).

In Section 2, given a symplectic Lefschetz fibration f : X → S2

with sufficiently large fibers, by counting sections of a relative Hilbert

scheme we construct a corresponding invariant D̃Sf (α; α1, . . . , αn) pro-
vided that none of the αi can be written as mβ where m > 1 and β is
Poincaré dual to either a symplectic square-zero torus or a symplectic
(−1)-sphere. Further:

Theorem 1.2.
(
P

d(αi))!
Q

(d(αi)!)
Gr(α; α1, . . . , αn) = D̃Sf (α; α1, . . . , αn) pro-

vided that the degree of the fibration is large enough that 〈[ωX ], [Φ]〉 >
[ωX ] · α.

The sections s counted by D̃Sf (α; α1, . . . , αn) correspond tautologi-
cally to curves Cs = ∪Ci

s in X with each Ci
s Poincaré dual to αi. The

Ci
s will be symplectic, and Proposition 2.5 guarantees that they will

intersect each other positively, so there will exist an almost complex
structure making Cs holomorphic. However, if s1 and s2 are two differ-

ent sections in the moduli space enumerated by D̃Sf (α; α1, . . . , αn), it
is unclear whether there will exist a single almost complex structure on
X making both Cs1 and Cs2 holomorphic.

The almost complex structures on Xr(f) used in the definition of

D̃S are, quite crucially, required to preserve the tangent space to the
diagonal stratum consisting of divisors with one or more points re-
peated. One might hope to define analogous invariants which agree
with Gr(α; α1, . . . , αn) using arbitrary almost complex structures on
Xr(f). If one could do this, though, the arguments reviewed in Section 4
would rather quickly enable one to conclude that Gr(α; α1, . . . , αn) = 0
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whenever α has larger pairing with the symplectic form than does the
canonical class and αi · αj = 0 for i 6= j. However, this is not the case:
the manifold considered in [MT] admits a symplectic form such that,
for certain primitive, orthogonal, square-zero classes α, β, γ, and δ each
with positive symplectic area, the canonical class is 2(α + β + γ) but
the invariant Gr(2(α + β + γ) + δ; α, β, γ, α + β + γ + δ) is nonzero.

While the Gromov–Taubes invariant restricts attention to curves
whose components are all covers of embedded curves which do not in-
tersect each other, it is natural to hope for information about curves
Poincaré dual to α having some number n of transverse self-intersections.
One might like to define an analogue Grn(α) of the Gromov–Taubes in-
variant counting such curves, but as we review in Section 3, owing to
issues relating to multiple covers it is somewhat unclear what the def-
inition of such an invariant should be in general. If one imposes some
rather stringent conditions on α (α should be “n-semisimple” in the
sense of Definition 3.1), there is however a natural such choice.

Note that for arbitrary α and n, following [RT] one may define an
invariant RTn(α) which might naively be viewed as a count of connected

pseudoholomorphic curves Poincaré dual to α with n self-intersections
by enumerating solutions u : Σg → X of the equation (∂̄j u) = ν(x, u(x))
for generic j and “inhomogeneous term” ν, where the genus g of the
source curve is given in accordance with the adjunction formula by 2g−
2 = α2 + κX · α − 2n. (Note that the nontrivial dependence of ν on
x prevents multiple cover problems from arising.) In the case n = 0,
the main theorem of [IP1] provides a universal formula equating Gr(α)
with a certain combination of the Ruan–Tian invariants RT0. The proof
of that theorem goes through easily to show that in the case when α
is n-semisimple, there exists a similar formula equating Grn(α) with a
combination of Ruan–Tian invariants. We mention also that, again as
an artifact of the multiple cover problem, the Ruan–Tian invariants are
obliged to take values in Q rather than Z. Gr(α), on the other hand, is
an integer-valued invariant.

By combining the approaches of [DS] and [L1], in the presence of a
Lefschetz fibration f : X → S2 we construct in Section 3 an integer-
valued invariant FDSn

f (α−2
∑

ei) which we conjecture to be an appro-

priate candidate for a “nodal version” Grn(α) of the Gromov invariant
for general classes α (after perhaps dividing by n! to account for a sym-
metry in the construction). Pleasingly, the technical difficulties that
often arise in defining invariants like Grn(α) do not affect FDS: since
FDS counts sections of a (singular) fibration, which of course neces-
sarily represent a primitive homology class in the total space, we need
not worry about multiple covers; further, the fact that any bubbles that
form in the limit of a sequence of holomorphic sections must be con-
tained in the fibers of the fibration turns out (via an easy elaboration
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of a dimension computation from [DS]) to generically rule out bubbling
as well. In principle, though, FDSn

f might depend on the choice of
Lefschetz fibration f .

Note that if π : X ′ → X is a blowup with exceptional divisor Poincaré
dual to ǫ, whenever Grn(β) is defined we will have (Grn)X′(β + ǫ) =
(Grn)X (β) (here and elsewhere we use the same notation for
β ∈ H2(X; Z) and π∗β ∈ H2(X ′; Z)), as the curves contributing to
(Grn)X(β) generically miss the point being blown up, and so the unions
of their proper transforms with the exceptional divisor will be precisely
the curves contributing to (Grn)X′(β+ǫ). With this said, we formulate:

Conjecture 1.3. Let (X, ω) be a symplectic 4-manifold and α ∈
H2(X; Z), and f : X ′ → S2 a Lefschetz fibration obtained from a suffi-
ciently high-degree Lefschetz pencil on X, with the exceptional divisors
of the blowup X ′ → X Poincaré dual to the classes ǫ1, . . . , ǫN . Then
the family Donaldson–Smith invariants

FDSn
f

(
α +

N∑

i=1

ǫi − 2
n∑

k=1

ek

)

are independent of the choice of f , and have a general expression in
terms of the Ruan–Tian invariants of X.

Note that this conjectural general expression would then produce
an integer by taking appropriate combinations of the (a priori only
rational) Ruan–Tian invariants, similarly to the formula of [IP1].

In light of the behavior of Grn under blowups, Theorem 3.8 amounts
to the statement that:

Theorem 1.4. If α is strongly n-semisimple, then Conjecture 1.3
holds for α; more specifically, we have

FDSn
f

(
α +

N∑

i=1

ǫi − 2
n∑

k=1

ek

)
= n!Grn(α).

We also prove that FDS vanishes under certain circumstances. This
result depends heavily on the constructions used by Smith in [Sm2]
to prove his duality theorem, and so we review these constructions in
Section 4. Section 5 is then devoted to a proof of the following theorem.

Theorem 1.5. If b+(X) > b1(X)+4n+1, then for all α ∈ H2(X; Z)
such that r = 〈α, [Φ]〉 satisfies r > max{g(Φ) + 3n + d(α), (4g(Φ) −
11)/3}, either FDSn

f (α− 2
∑

ei) = 0 or there exists an almost complex

structure j on X compatible with the fibration f : X → S2 which si-

multaneously admits holomorphic curves C and D Poincaré dual to the

classes α and κX − α. In particular, FDSn
f (α − 2

∑
ei) = 0 if α has

larger pairing with the symplectic form than does κX .
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Note that in the Lefschetz fibrations obtained from degree-k Lefschetz
pencils on some fixed symplectic manifold (X, ω), the number N of
exceptional sections is k2[ω]2 while the number 2g(Φ)− 2 is asymptotic
to k2[ω]2, so the invariants

FDSn
f

(
α +

N∑

i=1

ǫi − 2
∑

k

ek

)

considered in Conjecture 1.3 all eventually satisfy the restriction on r
in Theorem 1.5.

The almost complex structure in the second alternative in Theorem
1.5 cannot be taken to be regular (in the sense that the moduli spaces

Mj
X(β) of j-holomorphic curves Poincaré dual to β are of the expected

dimension); the most we can say appears to be that it can be taken to
be a member of a regular 4n-real-dimensional family of almost complex
structures, i.e., a family of almost complex structures {jb} parametrized
by elements b of an open set in R4n such that the spaces {(b, C)|C ∈

Mjb

X(β)} are of the expected real dimension 2d(β)+4n near each (b, C)
such that C has no multiply-covered components. Also, if X is in fact
Kähler and admits a compatible integrable complex structure j0 with
respect to which the fibration f is holomorphic, then we can take the j
in Theorem 1.5 equal to j0.

In fact, if we could take j to be regular, then we could rule out
the second alternative in Theorem 1.5 entirely (when n > 0) using the
following argument: the invariant vanishes trivially when d(α) < n,
so we can assume d(α) = −1

2α · (κ − α) > 0. But then our curves
Poincaré dual to α and κ−α have negative intersection number, which
is only possible if they share one or more components of negative square.
For generic j, a virtual dimension computation shows that the only
irreducible j-holomorphic curves of negative square are (−1)-spheres.
Moreover whatever (−1)-spheres appear in X must be disjoint, since if
they were not, blowing one of two intersecting (−1)-spheres down would
cause the image of the other to be a symplectic sphere of nonnegative
self-intersection, which (by a result of [McD]) would force X to have
b+ = 1, which we assumed it did not. Ignoring all the (−1)-spheres
in C and D and taking the union of what is left over would then give
a j-holomorphic curve Poincaré dual to a class κX −

∑
aiei where the

ei are classes of (−1)-spheres with ei · ek = 0 for i 6= k and where at
least one ai ≥ 2. But one easily finds d(κX −

∑
aiei) < 0, so this too is

impossible for generic j. For nongeneric j, this argument breaks down
because of the possibility that C and D might share components of
negative square and negative expected dimension, and there is a wider
diversity of possible homology classes of such curves.

The final section of the paper contains proofs of two technical results
that are used in the proofs of the main theorems. First, we show that
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the operation of blowing up a point can be performed in the almost
complex category, a fact which does not seem to appear in the literature
and whose proof is perhaps more subtle than one might anticipate. The
paper then closes with a proof of the following result, which is necessary
for the compactness argument that we use to justify the definition of
our invariant FDS:

Theorem 1.6. Let F : Hr → D2 denote the r-fold relative Hilbert

scheme of the map (z, w) 7→ zw, φ0 the partial resolution map F−1(0) →
Symr{zw = 0}, and ∆ ⊂ Hr the diagonal stratum. At any point p ∈
∆ ∩ F−1(0) with φ0(p) = {(0, 0), . . . , (0, 0)}, where Tp∆ is the tangent

cone to ∆ at p, we have Tp∆ ⊂ TpF
−1(0).

We end the introduction with some remarks on the possible relation
of FDS to (family) Seiberg–Witten theory. In [Sa] it was shown that
where X is the product of R and a fibered three-manifold, so that X
fibers over a cylinder, if one examines the Seiberg–Witten equations on
X using a family of metrics for which the size of the fibers shrinks to zero,
then one obtains in the adiabatic limit the equations for a holomorphic
family of solutions to the symplectic vortex equations on the fibers. In
turn, there is a natural isomorphism between the space of solutions to
the vortex equations on a Riemann surface and the symmetric product
of the surface. In other words, in this simple context the adiabatic limit
of the Seiberg–Witten equations is the equation for a holomorphic family
of elements of the symmetric products of the fibers of the fibration X →
R × S1. As was noted in [DS], since for a Lefschetz fibration f : X →
S2 DSf precisely counts pseudoholomorphic families of elements of the
symmetric products of the fibers of f , one might take inspiration from
Salamon’s example and hope to obtain the equivalence between DSf

and the Seiberg–Witten invariant by considering the Seiberg–Witten
equations on X for a family of metrics with respect to which the size of
the fibers shrinks to zero.

Now our invariant FDSn
f is constructed by counting pseudoholo-

morphic families of elements of the symmetric products of the fibers
of a family of Lefschetz fibrations f b obtained by restricting a map
fn : Xn+1 → S2 × Xn to the preimage Xb of S2 × {b} as b ranges over
the complement X ′

n of a set of codimension 4 in Xn. In the above vein,
one might hope to relate the family Seiberg–Witten invariants FSW
for the family of 4-manifolds Xn+1 → Xn (which enumerate Seiberg–
Witten monopoles in the various Xb as b ranges over Xn; see, e.g.,
[LL]) to FDSn

f via an adiabatic limit argument. This would in partic-
ular yield a proof of the independence of FDSn

f from f in Conjecture
1.3, and indeed may well be the most promising way to establish this
independence in the absence of a suitable invariant Grn (or of a “family
Gromov–Taubes invariant” FGr) with which FDSn

f might be directly
equated.
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As was shown in [L2], when X is an algebraic surface and b+(X) = 1
the family Seiberg–Witten invariants agree with certain curve counts in
algebraic geometry. For larger values of b+, though, the family Seiberg–
Witten invariants that are hoped to correspond to nodal curve counts
are expected to vanish due to the fact that symplectic manifolds have
Seiberg–Witten simple type; note that Theorem 1.5 suggests that FDSn

f

also tends to vanish for large b+. By contrast, there are plenty of non-
trivial nodal curve counts in algebraic surfaces with b+ > 1 (see [L1] for
a review of some of these); these counts correspond to Liu’s “algebraic
Seiberg–Witten invariants” ASW and differ from FSW when b+ > 1.

Acknowledgements. Section 2 of this paper appeared in my thesis
[U2]; I would like to thank my advisor Gang Tian for suggesting that
I attempt to study nodal curves using the Donaldson–Smith approach.
Thanks also to Cliff Taubes for helping me identify an error an an earlier
version of this paper, to Dusa McDuff for making me aware of the need
for Section 6.1, and to Ivan Smith for helpful remarks. This work was
partially supported by the National Science Foundation.

2. Refining the standard surface count

Throughout this section, Xr(f) will denote the relative Hilbert scheme
constructed from some high-degree but fixed Lefschetz fibration f : X →
S2 obtained by Donaldson’s construction applied to the fixed symplec-
tic 4-manifold (X, ω). The fiber of f over t ∈ S2 will occasionally be
denoted by Σt, and the homology class of the fiber by [Φ].

As has been mentioned earlier, DSf (α) is a count of holomorphic
sections of the relative Hilbert scheme Xr(f) in a certain homotopy
class cα characterized by the property that if s is a section in the class
cα then the closed set Cs ⊂ X “swept out” by s (that is, the union over
all t of the divisors s(t) ∈ Σt) is Poincaré dual to α (note that points of
Cs in this interpretation may have multiplicity greater than 1). That cα

is the unique homotopy class with this property is seen in Lemma 4.1 of
[Sm2]; in particular, for instance, we note that sections which descend
to connected standard surfaces Poincaré dual to α are not distinguished
at the level of homotopy from those which descend to disjoint unions of
several standard surfaces which combine to represent PD(α).

Of course, in studying standard surfaces it is natural to wish to know
their connected component decompositions, so we will presently attempt
to shed light on this. Suppose that we have a decomposition

α = α1 + · · · + αn

with

〈α, [Φ]〉 = r, 〈αi, [Φ]〉 = ri.
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Over each t ∈ S2 we have an obvious “divisor addition map”

+:

n∏

i=1

SriΣt → SrΣt

(D1, . . . , Dn) 7→ D1 + · · · + Dn;

allowing t to vary we obtain from this a map on sections:

+:
n∏

i=1

Γ(Xri
(f)) → Γ(Xr(f))

(s1, . . . , sn) 7→

n∑

i=1

si.

As should be clear, one has

+(cα1 × · · · × cαn) ⊂ cα

if α =
∑

αi, since CP

αi
is the union of the standard surfaces Csi

and
hence is Poincaré dual to α if each Csi

is Poincaré dual to αi. Further,
we readily observe:

Lemma 2.1. The image +(cα1×· · ·×cαn) ⊂ cα is closed with respect

to the C0 norm.

Proof. Suppose we have a sequence (sm
1 , . . . , sm

n )∞m=1 in cα1 ×· · ·×cαn

such that
∑

sm
i → s ∈ cα. Now each SriΣt is compact, so at each t,

each of the sequences sm
i (t) must have subsequences converging to some

s0
i (t). But then necessarily each

∑
s0
i (t) = s(t), and then we can see

by, for any l, fixing the subsequence used for all i 6= l and varying that
used for i = l that in fact every subsequence of sm

l (t) must converge to
s0
l (t). Letting t vary then gives sections s0

i such that every sm
i → s0

i and∑
s0
i = s; the continuity of s is readily seen to imply that of the s0

i .
q.e.d.

At this point it is useful to record an elementary fact about the lin-
earization of the divisor addition map.

Proposition 2.2. Let Σ be a Riemann surface and r =
∑

ri. The

linearization +∗ of the addition map

+:

n∏

i=1

SriΣ → SrΣ

at (D1, . . . , Dn) is an isomorphism if and only if Di∩Dj = ∅ for i 6= j.
If two or more of the Di have a point in common, then the image of +∗

at (D1, . . . , Dn) is contained in TP

Di
∆, where ∆ ⊂ SrΣ is the diagonal

stratum consisting of divisors with a repeated point.
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Proof. By factoring + as a composition

Sr1Σ × Sr2Σ × · · · × SrnΣ → Sr1+r2Σ × · · · × SrnΣ → · · · → SrΣ

in the obvious way we reduce to the case n = 2. Now in general for a
divisor D =

∑
aipi ∈ SdΣ where the pi are distinct, a chart for SdΣ

is given by
∏

SaiUi, where the Ui are holomorphic coordinate charts
around pi and the SaiUi use as coordinates the elementary symmetric
polynomials σ1, . . . , σai

in the coordinates of Uai

i . As such, if D1 and D2

are disjoint, a chart around D1 + D2 ∈ Sr1+r2Σ is simply the Cartesian
product of charts around D1 ∈ Sr1Σ and D2 ∈ Sr2Σ, and the map +
takes the latter diffeomorphically (indeed, biholomorphically) onto the
former, so that (+∗)(D1,D2) is an isomorphism.

On the other hand, note that

+: SaC × SbC → Sa+bC

is given in terms of the local elementary symmetric polynomial coordi-
nates around the origin by

(σ1, . . . , σa, τ1, . . . , τb) 7→ (σ1 + τ1, σ2 + σ1τ1 + τ2, . . . , σaτb),

and so has linearization

(+∗)(σ1,...,τb)(η1, . . . , ηa, ζ1, . . . , ζb)

= (η1 + ζ1, η2 + σ1ζ1 + τ1η1 + ζ2, . . . , σaζb + τbηa).

We thus see that Im(+∗)(0,...,0) only has dimension max{a, b} and is
contained in the image of the linearization of the smooth model

C × Sa+b−2C → Sa+bC

(z, D) 7→ 2z + D

for the diagonal stratum at (0, 0+· · ·+0). Suppose now that D1 and D2

contain a common point p; write Di = aip+D′
i where Di ∈ Sri−aiΣ are

divisors which do not contain p. Then from the commutative diagram

Sa1Σ × Sr1−a1Σ × Sa2Σ × Sr2−a2Σ −−−−→ Sr1Σ × Sr2Σ
y

y+

Sa1+a2Σ × Sr1+r2−a1−a2Σ −−−−→ Sr1+r2Σ

and the fact that the linearization of the top arrow at (a1p, D′
1, a2p, D′

2)
is an isomorphism (by what we showed earlier, since the D′

i do not
contain p), while the linearization of the composition of the left and
bottom arrows at (a1p, D′

1, a2p, D′
2) has image contained in TD1+D2∆,

it follows that (+∗)(D1,D2) has image contained in TD1+D2∆ as well,
which suffices to prove the proposition. q.e.d.

Corollary 2.3. If si ∈ Γ(Xri
(f)) are differentiable sections such that

Csi
∩ Csj

6= ∅ for some i 6= j, then s =
∑

si ∈ Γ(Xr(f)) is tangent to

the diagonal stratum of Xr(f).
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Proof. Indeed, if Csi
∩ Csj

6= ∅, then there is x ∈ S2 such that the

divisors si(x) and sj(x) contain a point in common, and so for v ∈ TxS2

we have

s∗v = (+ ◦ (si, sj))∗v = +∗(s1∗v, s2∗v) ∈ Ts(t)∆

by Proposition 2.2. q.e.d.

Note that it is straightforward to find cases in which the si are only
continuous with some Csi

∩ Csj
nonempty and the sum s =

∑
si is

smooth but not tangent to the diagonal. For example, let r = 2, and in
local coordinates let s1 be a square root of the function z 7→ Re(z) and
s2 = −s1. Then in the standard coordinates on the symmetric product
we have s(z) = (0,−Re(z)), so that T (Ims) shares only one dimension
with T∆ at z = 0. If s is transverse to ∆, one can easily check that a
similar situation cannot arise.

We now bring pseudoholomorphicity in the picture. Throughout this
treatment, all almost complex structures on Xr(f) will be assumed to
agree with the standard structures on the symmetric product fibers,
to make the map F : Xr(f) → S2 pseudoholomorphic, and, on some
(not fixed) neighborhood of the critical fibers of F , to agree with the
holomorphic model for the relative Hilbert scheme over a disc around a
critical value for f provided in Section 3 of [Sm2]. Let J denote the
space of these almost complex structures. It follows by standard argu-
ments (see Proposition 3.4.1 of [MS1] for the general scheme of these
arguments and Section 4 of [DS] for their application in the present
context) that for generic J ∈ J the space MJ(cα) is a smooth manifold
of (real) dimension 2d(α) = α2 − κX · α (the dimension computation
comprises Lemma 4.3 of [Sm2]); this manifold is compact, for bubbling
is precluded by the arguments of Section 4 of [Sm2] assuming we have
taken a sufficiently high-degree Lefschetz fibration.

Inside MJ(cα) we have the set MJ(cα1 ×· · ·×cαn) consisting of holo-
morphic sections which lie in the image +(cα1 × · · · × cαn). By Lemma
2.1 and the compactness of MJ(cα), MJ(cα1 × · · · × cαn) is evidently
compact; however, the question of its dimension or even whether it is a
manifold appears to be a more subtle issue in general.

Let us pause to consider what we would like the dimension of MJ(cα1×
· · · × cαn) to be. The objects in MJ(cα1 × · · · × cαn) are expected
to correspond in some way to unions of holomorphic curves Poincaré
dual to αi. Accordingly, assume we have chosen the αi so that d(αi) =
1
2(α2

i −κX ·αi) ≥ 0 (for otherwise we would expect MJ(cα1×· · ·×cαn) to
be empty). Holomorphic curves in these classes will intersect positively
as long as they do not share any components of negative square; for a
generic almost complex structure the only such components that can
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arise are (−1)-spheres, so if we choose the αi to not share any (−1)-
sphere components (i.e., if the αi are chosen so that there is no class E
represented by a symplectic (−1)-sphere such that 〈αi, E〉 < 0 for more
than one αi), then it would also be sensible to assume that αi · αj ≥ 0
for i 6= j.

The above naive interpretation of MJ(cα1 × · · ·× cαn) would suggest
that its dimension ought to be

∑
d(αi). Note that

d(α) = d(
∑

αi) =
∑

d(αi) +
∑

i>j

αi · αj ,

so under the assumptions on the αi from the last paragraph we have that
the expected dimension of MJ(cα1 × · · · × cαn) is at most the actual
dimension of MJ(cα) (as we would hope, given that the former is a
subset of the latter), with equality if and only if αi · αj = 0 whenever
i 6= j.

As usual, we will find it convenient to cut down the dimensions of our
moduli spaces by imposing incidence conditions, so we shall fix a set Ω
of points z ∈ X and consider the space MJ,Ω(cα1×· · ·×cαn) of elements
s ∈ MJ(cα1 × · · · × cαn) such that Cs passes through each of the points
z (or, working more explicitly in Xr(f), such that s meets each divisor
z + Sr−1Σt, Σt being the fiber which contains z). MJ,Ω(cα) is defined
similarly, and standard arguments show that for generic choices of Ω
MJ,Ω(cα) will be a compact manifold of dimension

2(d(α) − #Ω).

We wish to count J-holomorphic sections s of Xr(f) such that the
reducible components of Cs are Poincaré dual to the αi. If we impose∑

d(αi) incidence conditions, then according to the above discussion
MJ,Ω(cα) will be a smooth manifold of dimension 2

∑
i>j αi · αj . A

section
∑

si ∈ +(cα1 × · · · cαn) whose summands are all differentiable
would then, by Corollary 2.3, have one tangency to the diagonal ∆ for
each of the intersections between the Csi

, of which the total expected
number is

∑
i>j αi · αj . This suggests that the sections we wish to

count should be found among those elements of MJ,Ω(cα) which have∑
i>j αi · αj tangencies to ∆, where Ω is a set of

∑
d(αi) points.

To count pseudoholomorphic curves tangent to a symplectic subvari-
ety it is necessary to restrict to almost complex structures which pre-
serve the tangent space to the subvariety (see [IP2] for the general the-
ory when the subvariety is a submanifold). Accordingly, we shall restrict
attention to the class of almost complex structures J on Xr(f) which
are compatible with the strata in the sense to be explained presently (for
more details, see Section 6 of [DS], in which the notion was introduced).
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Within ∆, there are various strata χπ indexed by partitions π : r =∑
aini with at least one ai > 1; these strata are the images of the maps

pχ : Xn1(f) ×S2 · · · ×S2 Xnk
(f) → Xr(f)

(D1, . . . , Dk) 7→
∑

aiDi;

in particular, ∆ = χr=2·1+1·(r−2). An almost complex structure J on
Xr(f) is said to be compatible with the strata if the maps pχ are (J ′, J)-
holomorphic for suitable almost complex structures J ′ on their domains.

Denoting by Yχ the domain of pχ, Lemma 7.4 of [DS] and the dis-
cussion preceding it show:

Lemma 2.4 ([DS]). For almost complex structures J on Xr(f) which

are compatible with the strata, each J-holomorphic section s of Xr(f)
lies in some unique minimal stratum χ and meets all strata contained

in χ in isolated points. In this case, there is a J ′-holomorphic sec-

tion s′ of Yχ such that s = pχ ◦ s′. Furthermore, for generic J among

those compatible with the strata, the actual dimension of the space of

all such sections s is equal to the expected dimension of the space of

J ′-holomorphic sections s′ lying over s.

We note the following analogue for standard surfaces of the positivity
of intersections of pseudoholomorphic curves.

Proposition 2.5. Let s = m1s1 + · · · + mksk be a J-holomorphic

section of Xr(f), where the si ∈ cαi
⊂ Γ(Xri

(f)) are each not contained

in the diagonal stratum of Xri
(f), and where the almost complex struc-

ture J on Xr(f) is compatible with the strata. Assume that the si are

all differentiable. Then all isolated intersection points of Csi
and Csj

contribute positively to the intersection number αi · αj.

Proof. We shall prove the lemma for the case k = 2, the general case
being only notationally more complicated. The analysis is somewhat
easier if the points of Cs1 ∩ Cs2 ⊂ X at issue only lie over t ∈ S2 for
which s1(t) and s2(t) both miss the diagonal of Xr1(f) and Xr2(f),
respectively, so we first argue that we can reduce to this case. Let χ
be the minimal stratum (possibly all of Xr(f)) in which s = m1s1 +
m2s2 is contained, so that all intersections of s with lower strata are
isolated. Let p ∈ X be an isolated intersection point of Cs1 and Cs2

lying over 0 ∈ S2, and let δ > 0 be small enough that there are no
other intersections of s with any substrata of χ (and so in particular no
other points of Cs1 ∩Cs2) lying over D2δ(0) ⊂ S2. We may then perturb
s = m1s1 + m2s2 to s̃ = m1s̃1 + m2s̃2, still lying in χ, such that

(i) Over Dδ(0), s̃ is J-holomorphic and disjoint from all substrata
having real codimension larger than 2 in χ, and the divisors s̃1(0)
and s̃2(0) both still contain p;

(ii) Over the complement of D2δ(0), s̃ agrees with s; and
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(iii) Over D2δ(0) \ Dδ(0), s̃ need not be J-holomorphic but is con-
nected to s by a family of sections st contained in χ which miss
all substrata of χ

(it may be necessary to decrease δ to find such s̃, but after doing so
such s̃ will exist by virtue of the abundance of J-holomorphic sections
over the small disc Dδ(0) which are close to s|Dδ(0)). The contribution
of p to the intersection number α1 · α2 will then be equal to the total
contribution of all the intersections of Cs̃1 and Cs̃2 lying over Dδ(0),
and the fact that s̃ misses all substrata with codimension larger than 2
in χ is easily seen to imply that these intersections (of which there is at
least one, at p) are all at points where s̃1 and s̃2 miss the diagonals in
Xr1(f) and Xr2(f).

As such, it suffices to prove the lemma for intersection points at
which s1 and s2 both miss the diagonal. In this case, in a coordinate
neighborhood U around p, the Csi

can be written as graphs Csi
∩ U =

{w = gi(z)}, where w is the holomorphic coordinate on the fibers
of X, z is the pullback of the holomorphic coordinate on S2, and gi

is a differentiable complex-valued function which vanishes at z = 0.
Suppose first that m1 = m2 = 1. Then near s(0), we may use co-
ordinates (z, σ1, σ2, y3, . . . , yr) for Xr(f) obtained from the splitting
T0S

2 ⊕ T2pS
2Σ0 ⊕ Ts(t)−2pS

r−2Σ0, and the first two vertical coordi-
nates of s(z) = (s1 + s2)(z) with respect to this splitting are (g1(z) +
g2(z), g1(z)g2(z)). Now s is J-holomorphic and meets the J-holomorphic
diagonal stratum ∆ at (0, s(0)), and at this point ∆ is tangent to the hy-
perplane σ2 = 0, so it follows from Lemma 3.4 of [IP2] that the Taylor
expansion of g1(z)g2(z) has form a0z

d + O(d + 1). But then the Tay-
lor expansions of g1(z) and g2(z) begin, respectively, a1z

d1 + O(d1 + 1)
and a2z

d2 + O(d2 + 1), with d1 + d2 = d. Then since Csi
∩ U = {w =

gi(z)}, it follows immediately that the Csi
have intersection multiplicity

max{d1, d2} > 0 at p.
There remains the case where one or both of the mi is larger than 1.

In this case, where Yχ = Xr1(f) ×S2 Xr2(f) is the smooth model for χ,
because J is compatible with the strata, (s1, s2) is a J ′-holomorphic sec-
tion of Yχ for an almost complex structure J ′ such that pχ : Yχ → Xr(f)

is (J ′, J)-holomorphic. Now where ∆̃ = {(D1, D2) ∈ Yχ|D1 ∩ D2 6= ∅},

compatibility with the strata implies that ∆̃ will be J ′-holomorphic. In
a neighborhood V around (s1(z), s2(z)), we have, in appropriate coordi-

nates, ∆̃ ∩ V = {(z, w, w, D1, D2)|w ∈ Σz},while (s1(z), s2(z)) has first
three coordinates (z, g1(z), g2(z)). From this it follows by Lemma 3.4 of
[IP2] that

g1(z) − g2(z) = a0z
d + O(d + 1)

for some d, in which case Cs1 and Cs2 have intersection multiplicity
d > 0 at p. q.e.d.
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Definition 2.6. Let Ω be a set of
∑

d(αi) points and let J be an

almost complex structure compatible with the strata. MJ,Ω
0 (α1, . . . , αn)

shall denote the set of J-holomorphic sections s ∈ cα with Ω ⊂ Cs

such that there exist C1 sections si ∈ cαi
with s =

∑
si, while the

si themselves do not admit nontrivial decompositions as sums of C1

sections.

We would like to assert that for generic J and Ω, the space MJ,Ω
0 (α1,

. . . , αn) does not include any sections contained within the strata. This
is not true in full generality; rather we need the following assumption
in order to rule out the effects of multiple covers of square-zero tori and
(−1)-spheres in X.

Assumption 2.7. None of the αi can be written as αi = mβ where
m > 1 and either β2 = κX · β = 0 or β2 = κX · β = −1.

Under this assumption, we note that if s =
∑

si ∈ MJ,Ω
0 (α1, . . . , αn)

were contained in ∆, then since the αi and hence the si are distinct
we can write each si as si = mis̃i with at least one mi > 1. The

minimal stratum of s will then be χπ where π =
{

r =
∑

mi

(
ri

mi

)}
and

s′ = (s̃1, . . . , s̃n) will be a J ′-holomorphic section of Yχ with s = pχ ◦ s′,
in the homotopy class [cα1/m1

× · · · × cαn/mn
].

If any of the d(αi/mi) < 0, then Lemma 2.4 implies that there will be
no such sections s′ at all; otherwise (again by Lemma 2.4) the real di-
mension of the space of such sections (taking into account the incidence
conditions) will be

(2.1) 2
(∑

d(αi/mi) −
∑

d(αi)
)

.

But an easy manipulation of the general formula for d(β) and the ad-
junction formula (which applies here because the standard surface cor-
responding to a section of Xr(f) which meets ∆ positively will be sym-
plectic; c.f. Lemma 2.8 of [DS]) shows that if d(β) ≥ 0 and m ≥ 2 then
d(mβ) > d(β) unless either β2 = κX · β = 0 or β2 = κX · β = −1, and
these are ruled out in this context by (i) and (ii) above, respectively. So
Assumption 2.7 implies that the dimension in Equation 2.1 is negative,
so no such s′ will exist for generic J . This proves part of the following:

Proposition 2.8. Under Assumption 2.7, for generic pairs (J,Ω)

where J is compatible with the strata and #Ω =
∑

d(αi), M
J,Ω
0 (α1, . . . ,

αn) is a finite set consisting only of sections not contained in ∆.

Proof. That no member of MJ,Ω
0 (α1, . . . , αn) is contained in ∆ follows

from the above discussion. As for the dimension of our moduli space,

note that any s =
∑

si ∈ MJ,Ω
0 (α1, . . . , αn) has one tangency (counted

with multiplicity) to ∆ for each of the intersections of the Csi
, of which

there are
∑

αi · αj (counted with multiplicity; this multiplicity will
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always be positive by Proposition 2.5). By the results of Section 6 of

[IP2], the space MJ,Ω
δ,∆(cα) of J-holomorphic sections in the class cα

having δ tangencies to ∆ and whose descendant surfaces pass through
Ω will, for generic (J,Ω), be a manifold of dimension

2(d(α) −
∑

d(αi) − δ) = 2
(∑

αi · αj − δ
)

,

which is equal to zero in the case δ =
∑

αi · αj of present relevance to
us.

Let us now show that MJ,Ω
0 (α1, ..., αn) is compact. Now since +(cα1×

· · · × cαn) is C0-closed in cα, by Gromov compactness any sequence

s(m) =
∑n

i=1 s
(m)
i in MJ,Ω

0 (α1, . . . , αn) has (after passing to a subse-
quence) a J-holomorphic limit s =

∑
si where the si ∈ cαi

are at least
continuous. We claim that, at least for generic (J,Ω), we can guarantee
the si to be C1. In light of Proposition 2.2, the differentiability of the
si is obvious at all points where s misses the diagonal, since s is smooth
by elliptic regularity and the divisor addition map induces an isomor-
phism on the tangent spaces away from the diagonal. Now each s(m)

has
∑

αi ·αj tangencies to the diagonal, corresponding to points t ∈ S2

at which some pair of the divisors s
(m)
i (t) share a point in common.

The limit s will then likewise have n tangencies to the diagonal; the
dimension formulas in [IP2] ensure that for generic (J,Ω) no two of the
tangencies will coalesce into a higher order tangency to the smooth part
of ∆ in the limit, and all of the intersecions of Ims with the smooth part
of the diagonal other than these n tangencies will be transverse. Fur-
thermore, one may easily show (using for instance an argument similar
to the one used in Lemma 2.1 of [U1] to preclude generic 0-dimensional
moduli spaces of pseudoholomorphic curves in a Lefschetz fibration from
meeting the critical points) that since the singular locus of ∆ has codi-
mension 4 in Xr(f), if J has been chosen generically then s will not meet
∆sing, and so no s(t) will contain more than one repeated point (and
that point cannot appear with multiplicity larger than two). In light
of this, each tangency of s to ∆ will occur at a point s(t) where some
pair si(t) and sj(t) have some point p in common, and all other points
contained in any sk(t) are distinct from each other and from p. Thanks
to Proposition 2.2, this effectively reduces us to the case r = 2, with
s = s1 + s2 a sum of continuous sections with s1(0) = s2(0) = 0 which
is holomorphic with respect to an almost complex structure which pre-
serves the diagonal stratum ∆ in D2 × Sym2D2, such that s is tangent
to ∆. Then letting δ(t) = (s1+s2)

2(t)−4s1(z)s2(t) be the discriminant,
that s is tangent to the diagonal stratum implies, using Lemma 3.4 of
[IP2], that δ(t) = at2 + O(3) for some constant a; in particular δ(t)
has two C1 square roots ±r(t). Since s is smooth, so is its first coordi-
nate t 7→ s1(t) + s2(t); adding this smooth function to the C1 functions
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±r(t) and dividing by two then recovers the functions s1(t) and s2(t)
and verifies that they are C1 at t = 0.

We have thus shown that the si are all C1 at the points where s =∑
si is tangent to ∆. Where s is transverse to ∆, one sees easily that the

si are pairwise disjoint, with one si transverse to the diagonal in Xri
(f)

and all others missing their diagonals, so the differentiability of the si is
clear. This indeed verifies that the limit s =

∑
si is a sum of C1 sections

si, since our generic choice of J is such that the only intersections of
Ims with ∆ only are either transverse or of second order.

Now each of the C
s
(m)
i

is connected, so Csi
is connected as well. A

priori, it is possible that s might not lie in MJ,Ω
0 (α1, . . . , αn) because

some of the si might decompose further, say as si = m1ui1 + · · ·+mluil

where uij ∈ cβij
are C1. But since Csi

is connected, the Cuij
cannot all

be disjoint, and by Corollary 2.3 any intersection between two of them
would give rise to an additional tangency of s to ∆, over and above the
n tangencies arising from the intersections between distinct Csi

. Once
again, this is ruled out for generic J by the dimension formulas of [IP2].
This proves that (for generic J) the summands si in a sequence s =

∑
si

occurring as a limit point of MJ,Ω
0 (α1, . . . , αn) cannot decompose further

and hence themselves lie in MJ,Ω
0 (α1, . . . , αn), so that MJ,Ω

0 (α1, . . . , αn)
is compact.

Since we have already shown that MJ,Ω
0 (α1, . . . , αn) is zero-dimen-

sional, the proposition follows. q.e.d.

Proposition 2.9. For generic (J0, Ω0) and (J1, Ω1) as in Proposition

2.8 and generic paths (Jt, Ωt) connecting them, the space

PM0(α1, . . . , αn) = {(t, s)|s ∈ MJt,Ωt

0 (α1, . . . , αn)}

is a compact one-dimensional manifold.

Proof. This follows immediately from the above discussion, noting
that in the proof of Proposition 2.8 we saw that any possible boundary
components of MJ

0 (α1, . . . , αn) have real codimension 2 and so will not
appear in our one-dimensional parametrized moduli space. q.e.d.

Note that we can orient these moduli spaces by using the spectral flow

of the linearization of the ∂ operator at an element s ∈ MJ,Ω
0 (α1, . . . , αn)

acting on sections of s∗T vtXr(f) which preserve the incidence condi-
tions and the tangencies to ∆; PM0(α1, . . . , αn) will then be an ori-

ented cobordism between MJ0,Ω0
0 (α1, . . . , αn) and MJ1,Ω1

0 (α1, . . . , αn).
Accordingly, we may make the following definition.

Definition 2.10. Let α = α1 + · · · + αn be a decomposition of α ∈
H2(X, Z) which satisfies Assumption 2.7. Then

D̃Sf (α; α1, . . . , αn)
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is defined as the number of points, counted with sign according to orien-

tation, in the space MJ,Ω
0 (α1, . . . , αn) for generic (J,Ω) as in Proposition

2.8.

Theorem 2.11. If α = α1 + · · ·αn is a decomposition satisfying

Assumption 2.7 then

(
∑

d(αi))!∏
(d(αi)!)

Gr(α; α1, . . . , αn) = D̃Sf (α; α1, . . . , αn),

provided that the degree of the fibration is large enough that 〈[ωX ], [Φ]〉 >
[ωX ] · α.

Proof. Let j be an almost complex structure on X generic among
those compatible with the fibration f : X → S2, and Ω a generic set of∑

d(αi) points. The curves in X contributing to Gr(α; α1, . . . , αn) are
unions

C =
n⋃

i=1

Ci

of embedded j-holomorphic curves Ci which are Poincaré dual to αi

(note that Assumption 2.7 implies that none of these curves will be
multiple covers) with Ωi ⊂ Ci for some fixed generic sets Ωi of d(αi)
points. In Section 3 of [U1] it was shown that there is no loss of general-
ity in assuming that j is integrable near ∪iCrit(f |Ci), so let us assume
that this is the case. Where sC is the section of Xr(f) tautologically
corresponding to C, in the context of [U1] this local integrability con-
dition was enough to ensure that the almost complex structure Jj on
Xr(f) constructed from j was smooth on a neighborhood of sC . Here
that is not quite the case, for Jj might only be Hölder continuous at the
points of Im(sC) tautologically corresponding to the intersection points
of the various Ci.

However, just as in Section 5 of [U1], we can still define the contribu-

tion r′(C) to D̃Sf (α1, . . . , αn) by perturbing Jj to a generic almost com-
plex structure J which is compatible with the strata and Hölder-close to

Jj , and then counting with sign the elements of MJ,Ω
0 (α1, . . . , αn) which

lie near sC ; since the curves C which contribute to Gr(α1, . . . , αn) are

isolated, and since the members of M
Jj ,Ω
0 (α1, . . . , αn) are precisely the

sC corresponding to the curves C, it follows from Gromov compact-
ness that for sufficiently small perturbations J of Jj all elements of

MJ,Ω
0 (α1, . . . , αn) will be close to one and only one of the sC . Thus

D̃Sf (α1, . . . , αn) =
∑

π∈p(Ω)

∑

C∈Mj,Ω,π(α1,...,αn)

r′(C)

where p(Ω) is the set of partitions of Ω into subsets Ωi of cardinality
d(αi) and, writing π = (Ω1, . . . ,Ωn), Mj,Ω,π(α1, . . . , αn) is the space
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of curves C = ∪Ci contributing to Gr(α; α1, . . . , αn) with Ci passing
through Ωi. Meanwhile, for any π, we have

Gr(α; α1, . . . , αn) =
∑

C∈Mj,Ω,π(α1,...,αn)

r(C),

r(C) being the product of the spectral flows of the linearizations of ∂j

at the embeddings of the Ci where C = ∪Ci. The theorem will thus be
proven if we show that r′(C) = r(C), which we now set about doing.

So let C = ∪Ci ∈ Mj,Ω,π(α1, . . . , αn). Taking j generically, we may
assume that all intersections of the Ci are transverse and occur away
from crit(f |Ci) (this follows from the arguments of Lemma 2.1 of [U1]).
Let p ∈ Ci ∩ Ck. In a coordinate neighborhood U around p, where
w is a holomorphic coordinate on the fibers and z the pullback of the
coordinate on S2, we may write

Ci ∩ U = {w = g(z)} Ck ∩ U = {w = h(z)}.

If the almost complex structure j is given in U by

(2.2) T 0,1
j = 〈∂z̄ + b(z, w)∂w, ∂w̄〉

(note that we may choose the horizontal tangent space so that b(0, 0) =
0), that Ci and Ck are j-holomorphic amounts to the statement that

∂z̄g(z) = b(z, g(z)) ∂z̄h(z) = b(z, h(z));

in particular, we have gz̄(0) = hz̄(0) = 0. Since Ci ⋔ Ck, we have
(g − h)z(0) 6= 0, and by the inverse function theorem (g − h) : C → C

is invertible on some disc D2δ(0). Let gt and ht (t ∈ [0, 1]) be one-
parameter families of functions satisfying

(i) g0 = g, h0 = h;
(ii) On D2δ(0), gt − ht is invertible as a complex-valued smooth func-

tion, with inverse pt;
(iii) gt and ht agree with g and h, respectively, outside D2δ(0);
(iv) gt(0) = ht(0) = ∂z̄gt(0) = ∂z̄ht(0) = 0; and
(v) g1(z) and h1(z) are both holomorphic on Dδ(0).

Let

Ci
t = (Ci∩(X\U))∪{w = gt(z)} and Ck

t = (Ck∩(X\U))∪{w = ht(z)}.

Now set

bt(z, w) = (∂z̄ht)(z) + ∂z̄ (gt − ht) (pt(w − ht(z))) .

Then, since pt = (gt − ht)
−1,

bt(z, ht(z)) = ∂z̄ht(z) + ∂z̄(gt − ht)(0) = ∂z̄ht(z)

while

bt(z, gt(z)) = ∂z̄ht(z) + ∂z̄(gt − ht)(z) = ∂z̄gt(z).
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Let b′t agree with bt near {(z, w) ∈ Ci
t ∪ Ck

t |z ∈ D2δ(0)} and with

b sufficiently far from the origin in U . Then defining j′t by T 0,1
j′t

=

〈∂z̄+b′t∂w, ∂w̄〉, j′t agrees with j near ∂U and makes Ci
t∪Ck

t holomorphic.
Further, we see that b1(z, w) ≡ 0 for z ∈ Dδ(0), from which a Nijenhuis
tensor computation shows that j′1 is integrable on a neighborhood of the
unique point p of Ci

1 ∩ Ck
1 ∩ U .

Carrying out this construction near all intersection points of the Ci,
we obtain curves Ct = ∪Ci

t and almost complex structures j′t on X
such that j′1 is integrable near all intersection points of the Ci

1. Since j′1
agrees with j and Ci

1 with Ci away from small neighborhoods of these
intersection points, j′1 is also integrable on a neighborhood of crit(f |C1

i
)

for each i.
If p is a point of C1 near which j′1 is not already integrable, then in a

neighborhood U of p we have C1∩U = {w = g(z)}, and so the condition

for an almost complex structure j′ given by T 0,1
j′ = 〈∂z̄ + b∂w, ∂w̄〉 to

make C1 holomorphic near p is just that ∂z̄g(z) = b(z, g(z)), while the
condition for j′ to be integrable in the neighborhood is that ∂w̄b(z, w) =
0. As in Lemmas 4.1 and 4.4 of [U1], then, we may easily find a path
of almost complex structures j′t (1 ≤ t ≤ 2) such that each j′t makes C1

holomorphic and j′2 is integrable on a neighborhood of C1. So, changing
notation slightly, we have proven:

Lemma 2.12. There exists an isotopy (Ct, jt) of pairs consisting

of almost complex structures jt compatible with the fibration f : X →
S2 and jt-holomorphic curves Ct such that (C0, j0) = (C, j) and j1 is

integrable on a neighborhood of C1.

In the situation of the above lemma, Jj1 is not only smooth but
also integrable on a neighborhood of C1; Lemma 4.2 of [U1] shows
that if j1 is chosen generically among almost complex structures which
make both C1 and f pseudoholomorphic and are integrable near C1 the
linearization of ∂̄Jj1

at sC will be surjective, as will the linearizations of

∂̄j1 at the embeddings of each of the Ci
1. We now fix the isotopy Ct and

the almost complex structure j1 which is nondegenerate in the above
sense; Lemma 2.12 then gives a path jt from j = j0 to j1 such that
each Ct is jt-holomorphic. We may then define r′jt

(Ct) in the same way

as r′(C), by counting J-holomorphic sections close to sCt for some J
Hölder-close to Jjt . Meanwhile, if the linearization D∂̄jt is surjective at
the embeddings of the Ci

t , its spectral flow gives a number rjt(Ct), and
our goal is to show that rj0(C0) = r′j0(C0). To this end, we see from

Lemma 5.5, Corollary 5.6, and their proofs in [U1] that:

Lemma 2.13. For generic paths jt from j0 to j1 as above such that

Ct is jt-holomorphic, the following statements hold. D∂̄jt is surjective

at the embeddings of the Ci
t for all but finitely many values of t. For
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t near any value t0 for which D∂̄jt0
fails to be surjective, the set of

elements of Mjt,Ω(α1, . . . , αn) in a tubular neighborhood of Ct is given

by {Ct, C̃t} for a smooth family of curves C̃t with C̃t0 = Ct0. Further,

for small ǫ > 0, we have

r′jt0+ǫ
(Ct0+ǫ) = r′jt0−ǫ

(C̃t0−ǫ) = −r′jt0−ǫ
(Ct0−ǫ)

and

rjt0+ǫ(Ct0+ǫ) = rjt0−ǫ(C̃t0−ǫ) = −rjt0−ǫ(Ct0−ǫ).

Moreover, on intervals not containing any t0 for which jt0 has a non-

surjective linearization, r′jt
(Ct) and rjt(Ct) both remain constant.

Since (for generic paths jt), r′jt
(Ct) and rjt(Ct) stay constant except

for finitely many points at which they both change sign, to show that
r′j0(C0) = rj0(C0) it is enough to see that r′j1(C1) = rj1(C1). But
since j1 is integrable and nondegenerate near C1, as is Jj1 near sC1 , we
immediately see that r′j1(C1) = rj1(C1) = 1, and the theorem follows.
q.e.d.

Remark 2.14. The above proof suggests a simplification of the proof
that DS = Gr in [U1]. As mentioned above, in Section 3 of [U1]
it is shown that we can take the almost complex structure j to be
integrable on neighborhoods of the critical points of the various f |C for
C contributing to Gr(α). Given arbitrary generic fibration-compatible
j, however, as in the proof of Theorem 2.11, the arguments of Sections 4
and 5 of [U1] go through as long as we can find an isotopy (Ct, jt) of pairs
consisting of almost complex structures jt compatible with the fibration
f : X → S2 and jt-holomorphic curves Ct such that (C0, j0) = (C, j)
and j1 is integrable on a neighborhood of C1. This is indeed possible;
if near a critical point of f |C C has the form {z = wn + O(n + 1)}, we
can take Ct such that Ct agrees with C away from a neighborhood of
Crit(f |C) and C1 has the form {z = wn} on a smaller neighborhood of
the critical point, and then we can choose jt to make Ct holomorphic.
(The easiest approach to this seems to be to have Ct be constant for
t ≤ 1/2 and arrange the function b1/2(z, w) in the notation (2.2) to
depend only on w near the critical points; then for t > 1/2, the form of
Ct determines uniquely a z-independent function bt which causes Ct to
be jt-holomorphic, and we will have b1(z, w) = 0 near the critical point.
Details are left to the reader.)

3. The family standard surface count

While much is known about the structure of the Gromov–Taubes
invariants, which count embedded holomorphic curves in symplectic
4-manifolds, we know comparatively little about invariants counting
singular curves. We explain here an approach to nodal curves using
Donaldson and Smith’s constructions.
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We should mention first of all that whereas Taubes’ work gives us
a natural invariant Gr(α) counting all embedded curves (regardless
of their connected-component decomposition) Poincaré dual to some
class α, if we instead wish to assemble all of the possibly-reducible
curves Poincaré dual to α and having some number n > 0 of ordi-
nary double points into an invariant Grn(α), it is somewhat unclear
how we should proceed in many cases. Just as with the difficulties sur-
rounding the Gromov–Taubes invariant, this stems from the multiple-
cover problem: if for some class β ∈ H2(X, Z) and m > 1 we have
d(β) ≥ max{0, d(mβ) − n}, then for generic almost complex structures
j there will arise the possibility of a sequence of curves Poincaré dual to
mβ which have n double points converging to an m-fold cover of a curve
Poincaré dual to β. When n = 0, as was noted in the previous section
the formula for d(β) and the adjunction formula imply that this only
arises when β is Poincaré dual to a square-zero torus, and Taubes’ work
shows how to incorporate multiple covers into the definition of Gr in
the correct way. When n > 0, the equation d(β) ≥ d(mβ) − n becomes
easier to satisfy and it is less clear how multiple covers should be dealt
with, especially in the case of a strict inequality d(β) > d(mβ) − n,
when the multiple covers form a space of larger dimension than that of
the space we are interested in.

Of course, there will typically be at least some classes for which this
issue does not arise:

Definition 3.1. A class α ∈ H2(X, Z) is called strongly n-semisimple

if there exist no decompositions α = α1 + · · · + αl into nonnegatively-
intersecting classes αi such that each αi has d(αi) ≥ 0 and is Poincaré
dual to the image of a symplectic immersion having only positively
transverse double points, and α1 is equal to mβ (m > 1) where β
satisfies d(β) ≥ max{0, d(α1) − n + α1 · (α − α1)}. α is called weakly

n-semisimple if the only decompositions α = α1 + · · · + αn as above
which exist have α2

1 = κX · α1 = 0.

For instance, every class is weakly 0-semisimple, while the only classes
which are not weakly 1-semisimple are those classes α such that there
exists a class β ∈ H2(X; Z) such that β · (α− 2β) = 0 and β is Poincaré
dual either to a symplectic sphere of square 0 or a symplectic genus-two
curve of square 1, while α−2β is Poincaré dual to some embedded (and
possibly disconnected) symplectic submanifold. For strong semisimplic-
ity, one needs to add the assumption that α is not Poincaré dual to a
symplectic immersion having a component which is a square-zero torus
in a non-primitive homology class.

For weakly- or strongly-n-semisimple classes α, there is an obvious
analogue of the Gromov–Taubes invariant Grn(α), defined by counting
j-holomorphic curves C which are unions of curves Ci Poincaré dual
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to classes αi carrying multiplicities mi which are equal to 1 unless Ci

is a square-zero torus with
∑

miαi = α, such that C has n transverse
double points and passes through a generic set of d(α)− n points of X;
each such C contributes the product of the Taubes weights r(Ci, mi) to
the count Grn(α). Since the condition of n-semisimplicity is engineered
to rule out the only additional possible source of noncompactness of
the relevant moduli spaces, the proof that Gr(α) is independent of the
choice of almost complex structure used to define it goes through to
show the same result for Grn(α).

For that matter, if α is weakly n-semisimple and we have ni ≥ 0
and αi with

∑
αi = α and

∑
ni = n −

∑
i<j αi · αj , we can form a re-

finement Gr(n1,...,nk)(α; α1, . . . , αk) along the lines of Definition 1.1 that
counts (modulo the usual square-zero torus issues) curves with reducible
components which are Poincaré dual to the αi and have ni transverse
self-intersections. In this case, under Assumption 2.7 it is also straight-
forward to modify the constructions of the previous section to produce

an invariant D̃S(n1,...,nk)(α; α1, . . . , αk) which counts holomorphic sec-
tions s of Xr(f) in the homotopy class cα which decompose into a sum
of C1 sections si ∈ cαi

such that each si has ni tangencies to the diago-
nal stratum of Xri

(f) and does not itself decompose as a nontrivial sum
of C1 sections. Furthermore, the proof of Theorem 2.11 goes through
unchanged to show that

Gr(n1,...,nk)(α; α1, . . . , αk) = D̃S(n1,...,nk)(α; α1, . . . , αk).

Instead, though, we aim to produce an invariant similar to Grn(α)
which does not require α to be n-semisimple. For general α, the multiple

cover problem discussed above has its mirror on the side of D̃S in the
fact that the moduli spaces for the latter will tend to have undesirably
large components consisting of sections which are mapped entirely into

the diagonal stratum, so D̃S will not be much help toward this goal.
Instead, we take a hint from the approach used by A.K. Liu in [L1]
and construct family versions of the standard surface count. These
new invariants will use almost complex structures which generally do
not make the diagonal stratum pseudoholomorphic, and so we will not
encounter moduli spaces with unexpectedly large components consisting
of sections mapped into ∆.

Be given a symplectic Lefschetz fibration f : X → S2. Write f0 = f ,
X0 = {pt}, X1 = X, and let g0 : X1 → X0 be the map of X to a point.
As in [L1], for n ≥ 1 form X0

n+1 = Xn ×gn−1 Xn, and let Xn+1 be the

blowup of the relative diagonal in X0
n+1. Let gn : Xn+1 → Xn be the

projection onto the first factor. Each Xb := g−1
n (b) (b ∈ Xn) is then an

n-fold blowup of X, with the parameter b indicating which points have
been blown up. Composing the maps gn gives a map Xn+1 → X1 = X;
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let fn : Xn+1 → S2 be the composition of this map with the Lefschetz
fibration f . (Equivalently, on each n-fold blowup Xb = g−1

n (b), fn|Xb is
the composition of the blowdown map with the Lefschetz fibration f .)

Write f b = fn|Xb . f b : X#nCP 2 → S2 then has the same structure
as f , except that if k points on some fiber (in class [Φ]) are among
the blown up points, that (initially irreducible) fiber has been replaced
by a reducible curve with components in classes [Φ] − E1 − · · · − Ek,
E1, . . . , Ek, where the Ei are classes of exceptional spheres. Straightfor-
ward local coordinate calculations show that, if none of the blown-up
points are critical points of any of the fi (i < n), then the only intersec-
tion points between components are ordinary double points, and that
near the double points f b has form (z, w) 7→ zw. In particular, each
f b = fn|Xb is still a Lefschetz fibration provided that no critical points
of any of the intermediate fibrations are blown up in forming Xb.

Notation 3.2. Denote a point b ∈ Xn by (p1, . . . , pn), where each

pj+1 ∈ X(p1,...,pj). Let:

(i) X ′
n be the set of (p1, . . . , pn) ∈ Xn such that no pj+1 is a critical

point of f (p1,...,pj) : X(p1,...,pj) → S2.
(ii) X ′′

n be the set of (p1, . . . , pn) ∈ Xn such that no pj+1 lies in a

singular fiber of f (p1,...,pj) : X(p1,...,pj) → S2.

If b ∈ X ′
n, then, our above remarks show that f b : Xb → S2 is a

Lefschetz fibration; if moreover b ∈ X ′′
n, then no fiber of f b will contain

more than one critical point (and also none of the n blowups involved
in the creation of Xb will be at a point on an exceptional divisor of a
previous blowup).

Notation 3.3.

(i) For any b ∈ X ′
n, F b : Xb

r(f
b) → S2 shall denote the relative Hilbert

scheme constructed from f b as in the Appendix of [DS] and Sec-
tion 3 of [Sm2].

(ii) X n
r (f) = {(D, b) : b ∈ X ′

n, D ∈ Xb
r(f

b)}. In particular we have a
map Fn : X n

r (f) → S2 × X ′
n.

For b ∈ X ′′
n, Xb contains disjoint exceptional divisors E1, . . . , En, and

our intention is to define an invariant counting sections of the various
Xb

r(f
b) which descend to curves Poincaré dual to α − 2

∑
PD(Ei), as

b ranges over X ′′
n. We have to be somewhat careful in the definition of

this invariant, though, since our parameter space X ′′
n is noncompact.

Lemma 3.4. For b ∈ X ′′
n, Xb

r(f
b) is a smooth symplectic manifold,

as is the total space of X n
r (f) → S2 × X ′

n.

Proof. That the relative Hilbert scheme constructed from any Lef-
schetz fibration (such as f b when b ∈ X ′′

n) in which there is at most one
critical point per fiber is smooth is shown in Theorem 3.4 of [Sm2] (as
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noted in Remark 3.5 of [Sm2], Smith’s provision of a local coordinate de-
scription for the relative Hilbert scheme makes irrelevant his assumption
that all of the fibers of the Lefschetz fibration are irreducible). When
b ∈ X ′

n \X ′′
n, so that f b, while still a Lefschetz fibration, may have more

than one critical point per fiber, the individual Xb
r(f

b) will tend not to
be smooth near points on the Hilbert scheme of the singular fibers Σ0

which are sent by the map Hilb[r]Σ0 → SrΣ0 to divisors which contain
more than one of the nodes of Σ0. We will show presently, though, that
the freedom to vary b ∈ X ′

n results in the total space X n
r (f) still being

smooth at these points.

To see this, note that Donaldson and Smith show (c.f. the proof of
Proposition A.8 of [DS]) that when f only has one node per fiber, at a
singular point of a fiber of Xs(f) (corresponding to a divisor with points
near the node of a fiber) the behavior of F : Xs(f) → S2 is modeled by
(z1, . . . , zs+1) 7→ z1z2. When there are multiple nodes in a fiber, then
the relative Hilbert scheme will be modeled near a point corresponding
to a divisor containing si copies of the nodes pi (i = 1, . . . , l) by the

fiber product of the various maps (z
(i)
1 , . . . , z

(i)
si+1) 7→ z

(i)
1 z

(i)
2 . This fiber

product is the common vanishing locus of the various z
(i)
1 z

(i)
2 − z

(j)
1 z

(j)
2

(which is of course singular where z
(i)
1 = z

(i)
2 = 0 for all i).

More generally, though, if pi is a node lying near the fiber over zero,
Xs(f) → S2 is modeled near points corresponding to divisors with

points near pi by (z
(i)
1 , . . . , z

(i)
s ) 7→ z

(i)
1 z

(i)
2 +f(pi). In our present context

the fibration map is f b; say for notational simplicity that b = (p1, . . . , pn)
gives rise to an n-fold blowup with all exceptional divisors in the same
fiber (of course if some exceptional divisors are in different fibers we can
work fiber-by-fiber and reduce to this case). The space X n

r (f) is then,
at worst, modeled locally by
(3.1){(

~z(0), ~z(1), . . . , ~z(n), q1, . . . , qn

)
: z

(0)
1 z

(0)
2 = z

(i)
1 z

(i)
2 + f (p1,...,pi−1)(qi)

}
.

Here ~z(0) are the coordinates on the relative Hilbert scheme correspond-
ing to divisors which contain any nodes that may have existed in our
fiber before blowing up (and we are of course assuming throughout that
the original f was chosen so that there is at most one such). The qi are

elements of a coordinate chart centered on pi ∈ X(p1,...,pi−1). But (3.1)
defines a smooth manifold at any point with qi = pi as long as none
of the pi are critical points for f (p1,...,pi−1), and this latter condition is
precisely ensured by the fact that b ∈ X ′

n.

This shows that X n
r (f) is smooth; the existence of a symplectic struc-

ture on it then follows exactly as in the proof of the existence of a sym-
plectic structure on Xr(f) in [DS]: where X n

r (f) fails to be a fibration
we have a local Kähler model for it, and we can extend the resulting form
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to the entire manifold by the usual methods of Gompf and Thurston.
q.e.d.

We consider almost complex structures J on the Xb
r(f

b) which make
the fibration maps F b : Xb

r(f
b) → S2 pseudoholomorphic and have the

following special type: for each reducible fiber of Xb, letting E denote
the union of the spherical components of that fiber, we require that
there exist neighborhoods U ⊃ V of E with f b(U) = f b(V ) = W ⊂ S2

and almost complex structures Jq
1 and Jq

2 on the restricted relative
Hilbert schemes Xq(f

b|U ) and Xr−q(f
b|(fb)−1(W )−V ) such that the nat-

ural “addition map” Xb
q(f

b|U ) ×F b Xb
r−q(f

b|(fb)−1(W )−V ) → Xb
r(f

b) is

(Jq
1 ×F b Jq

2 , J)-holomorphic; moreover, we require that Jq
1 agree with

the complex structure induced (via the algebro-geometric description
for the relative Hilbert scheme given in Section 3 of [Sm2]) by an in-
tegrable complex structure on U ⊃ E with respect to which f b is holo-
morphic. Note that one way of forming such a J is by taking any al-
most complex structure on Xb

r(f
b) which agrees near the singular fibers

with the almost complex structure Jj tautologically corresponding to a

structure j on Xb which is integrable near the singular fibers of Xb. If
j is instead integrable only on the neighborhood U of the exceptional
spheres, we still obtain a Hölder almost complex structure satisfying
the requirement, which may then be Hölder-approximated by smooth
almost complex structures also satisfying the requirement by smooth-
ing the almost complex structures Jq

2 in a coherent way at points of the
Xr−q(f

b|f−1(W )−V ) corresponding to divisors having points missing U .
Let J denote the space of smooth, tame almost complex structures

on X n
r (f) which restrict to each Xb

r(f
b) = (Fn)−1(S2 × {b}) as a J of

the above form. For each b, the blowdown map πb : Xb → X naturally
induces a generically injective map Πb : Xb

r(f
b) → Xr(f) on relative

Hilbert schemes. For J ∈ J we obtain commutative diagrams

Xb
q(f

b|U ) ×F b Xb
r−q(f

b|(fb)−1(W )−V ) −−−−→ Xb
r(f

b)
y

yΠb

Xq(f |πb(U)) ×F Xr−q(f
b|f−1(W )−πb(V )) −−−−→ Xr(f)

in which Πb pushes J forward to a smooth almost complex structure Jb

on Xr(f). The Jb vary smoothly in b, and indeed extend by continuity
to a smoothly Xn-parametrized family of almost complex structures on
Xr(f) (rather than just an X ′

n-parametrized family). Since our sections
of the F b : Xb

r(f
b) → S2 pass through all of the fibers of F b, restricting

our almost complex structures to behave in this way near the special
fibers of F b will not prevent moduli spaces of J-holomorphic sections of
the Xb

r(f
b) from being of the expected dimension for generic J ∈ J .
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For α ∈ H2(X; Z), b ∈ X ′′
n, and ei (i = 1, . . . , n), the Poincaré duals

to the exceptional divisors of the blowups which form Xb, note that
the expected complex dimension of the space of curves Poincaré dual to
α − 2

∑
ei is d(α − 2

∑
ei) = d(α) − 3n, so since the real dimension of

X ′′
n is 4n we would expect the space of such curves appearing in any Xb

as b ranges over X ′′
n to have complex dimension d(α) − n.

Lemma 3.5. Let α ∈ H2(X; Z), and choose a generic set Ω of d(α)−
n points in X. For generic J ∈ J , and also for generic paths Jt in J
connecting two such generic J , the spaces

Mn
J,Ω

(
α − 2

∑
ei

)

=
{

(s, b) : b ∈ X ′′
n, s ∈ cα−2

P

ei
⊂ Γ(Xb

r(f
b)), ∂Js = 0, Ω ⊂ Cs

}

and

PMn
(Jt),Ω

(
α − 2

∑
ei

)

=
{

(s, b, t) : b ∈ X ′′
n, s ∈ cα−2

P

ei
⊂ Γ(Xb

r(f
b)), ∂Jts = 0, Ω ⊂ Cs

}

are compact manifolds of real dimensions zero and one, respectively,

provided that r = 〈α, [Φ]〉 ≥ g + 3n where g is the genus of the generic

fiber of f : X → S2.

Proof. That the dimensions will generically be as expected is a stan-
dard result (for the general theory of “parametrized Gromov–Witten
invariants” of the sort that we are in the process of defining see [Ru],
though the compactness result proved presently makes much of Ruan’s
machinery unnecessary for our purposes), so we only concern ourselves
with compactness.

Let (sm, bm) be a sequence of J-holomorphic sections (or Jtm-holo-
morphic sections with Jtm → J) from either of the sets at issue. A

priori, there are two possible sources of noncompactness: the bm might
have a limit in Xn\X ′′

n, or the bm might converge to b ∈ X ′′
n with the sm

converging to a bubble tree. As usual for section-counting invariants, we
can eliminate the second possibility: because J |Xb

r(f) makes Xb
r(f) → S2

holomorphic, any bubbles must be contained in the fibers, and so the
section component of the resulting bubble tree would descend to a set
Poincaré dual to α − 2

∑
ei − PD(i∗B), where B is some class in one

of the fibers (f b)−1(t) of the fibration f b : Xb → S2. If (f b)−1(t) is
irreducible, B will necessarily be a positive multiple of the fundamental
class of the fiber, and just as in Section 4 of [Sm2] we will have d(α −
2

∑
ei − PD(i∗B)) ≤ d(α − 2

∑
ei) − (r − g + 1), which rules such

bubble trees out for generic one-parameter families of J . If (f b)−1(t) is
reducible, with components in classes [Φ] − E and E, then B will have
form m([Φ] − E) + pE where m, p ≥ 0 and at least one is positive, and
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a routine computation then yields that

d
(
α − 2

∑
ei − PD(i∗B)

)
− d

(
α − 2

∑
ei

)

= −m(r − g + 1) −
5

2
(p − m) −

1

2
(p − m)2,

which, since we have assumed that r ≥ g + 3, will always be negative
when m, p ≥ 0 and are not both zero. Thus for generic J or Jt, none of
the possible bubble trees appear.

There remains the issue that the bm might converge to some b /∈ X ′′
n.

We rule this out in two steps: first, we prove:

Sublemma 3.6. If b ∈ Xn \ X ′
n, then bm cannot converge to b.

Proof of the sublemma. Let πbm
: Xbm

→ X be the blowdown map, and
Πbm

: Xbm

r (f bm
) → Xr(f) the map that it induces on relative Hilbert

schemes. By the definition of our space J of almost complex structures,
the Πbm

◦ sm are Jbm-holomorphic sections of Xr(f) in the class cα, and
so converge modulo bubbling to a Jb-holomorphic section s̄ of Xr(f). In
fact, we can rule out bubbling, since we can assume that the family Jb

is regular as a 4n-real-dimensional family of almost complex structures
on Xr(f), and so as above no bubbles can form in the limit thanks to
the fact that all fibers of f are irreducible and

2n + d(α − mPD[Φ]) = d(α) + 2n − m(r − g + 1)

≤ d(α) − n − (r − g + 1 − 3n) < d(α) − n

by the hypothesis of the lemma.
Since b /∈ X ′

n, where b = (p1, . . . , pn) there will be some minimal l

such that pl+1 is a critical point of f (p1,...,pl) : X(p1,...,pl) → S2. Suppose
first that pl+1 lies on just one irreducible component of its fiber (so that

it is a double point of that component). Write tm = f (pm
1 ,...,pm

l )(pm
l+1)

and T = f (p1,...,pl)(pl+1). Now since Csm ⊂ Xb meets the exceptional
divisor formed by blowing up pm

l+1 transversely exactly twice, we deduce
that Π ◦ sm ∈ Γ(Xr(f)) acquires a tangency to the diagonal at a divisor
containing two copies of πbm

(pm
l+1); more specifically, assuming that s̄(T )

corresponds to a divisor containing pl+1 with multiplicity q, for large
m in a neighborhood U around T, tm ∈ S2 we have a decomposition
Π ◦ sm|U = +(sm

1 , sm
2 ) into disjoint summands sm

1 ∈ Γ(Xq(f)|U ) and
sm
2 ∈ Γ(Xr−q(f)|U ), with sm

1 tangent to the diagonal at a point of form
{pm

l+1, p
m
l+1, x3, . . . , xq}. Since the divisors sm

1 (t) and sm
2 (t) are disjoint

for t ∈ U , the smoothness of the Π ◦ sm implies the smoothness of
sm
1 and sm

2 over U . Similarly, where V is a neighborhood of pl+1 with
f(V ) ⊂ U s̄ splits near T into disjoint sections s̄1 of Hq

∼= Xq(f |V ) and
s̄2 of Xr−q(f |f−1(f(V ))−V ); here Hq is the q-fold relative Hilbert scheme
of the map (z, w) 7→ zw. Moreover, we have sm

1 → s̄1. But then since
pm

l+1 → pl+1, s̄1 must then be tangent to the diagonal in Hq at a point
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corresponding to {(0, 0), . . . , (0, 0)} ∈ Symq{zw = 0}. This, however,
is impossible, since s̄1 is a section of Hq, so that Im(ds̄1)T cannot be
tangent to the fiber, whereas according to Theorem 6.5 in Section 6.2
the tangent cone to ∆ ⊂ Hq is contained in the tangent space to the
fiber at s̄1(T ).

The other possibility is that pl+1 is an intersection point between two
irreducible components of its fiber, in which case one of those compo-
nents is the exceptional sphere E formed by a previous blowup (say at

pa). Where again tm = f (pm
1 ,...,pm

l )(pm
l+1), in local coordinate systems Um

around tm (which may be shrinking but are scale-invariant) we have

Π ◦ sm = {cmz, dmz} + sm
2 (z)

where sm
2 is a local section of Xr−2(f) which does not meet z 7→

{cmz, dmz}. Now the fact that pl+1
m → pl+1, which is an intersection

point between the fiber containing pl+1 ∈ X(p1,...,pl) and the exceptional
sphere of one of the blowups, implies that, in X (where the blowup has
not yet taken place), the two branches cmz and dmz of Π ◦ sm near
πbm

(pl+1) both tend toward the vertical, so that cm, dm → ∞. But then
this implies that |d(Π ◦ sm)tm | → ∞, which is impossible by elliptic
regularity since Π ◦ sm → s̄. q.e.d.

Finally we show that, generically, if bm → b ∈ X ′
n then in fact b ∈ X ′′

n.
Indeed, since b ∈ X ′

n, so that Xb
r(f

b) ⊂ X n
r (f), Gromov compactness

on the symplectic manifold X n
r (f) implies that after passing to a subse-

quence the sections sm will converge to some smooth section s̄ of Xb
r(f

b).
Just as above, the fact that s̄ is a smooth section implies that it misses
the critical locus of F b : Xb

r(f
b) → S2; in particular, if b ∈ X ′

n \ X ′′
n,

Im(s̄) is contained in the smooth part of the relative Hilbert scheme
Xb

r(f
b). But then a neighborhood of Im(s̄) in Xb

r(f
b) will be diffeomor-

phic to a neighborhood of Im(sm) in Xbm

r (f bm) for large m, and so the
index of the Cauchy-Riemann operator acting on perturbations of the
former will be the same as the index of the Cauchy-Riemann operator
acting on perturbations of the latter, namely d(α)−3n. Hence since the
real dimension of X ′

n \ X ′′
n is 4n − 2, the expected complex dimension

of the space of possible limits s̄ with b ∈ X ′
n \X ′′

n is d(α)− n− 1, so for
generic J , and also for generic one-real-parameter families Jt, on X n

r (f),
no such limits s̄ with Cs̄ satisfying our d(α) − n incidence conditions
will exist. q.e.d.

Given this compactness result, the standard cobordism argument per-
mits us to make the following definition.

Definition 3.7. Let α be as in Lemma 3.5. FDSn
f (α − 2

∑
ei) is

then defined as the number of elements, counted with sign according to
the spectral flow, in the moduli space Mn

J,Ω(α − 2
∑

ei) for generic J
and Ω as in Lemma 3.5.
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Theorem 3.8. Suppose that α is as in Lemma 3.5 and is strongly

n-semisimple. Then

n!Grn(α) = FDSn
f

(
α − 2

∑
ei

)
,

provided that 〈ωX , [Φ]〉 > ωX · α ≥ g(Φ) + 3n.

Proof. As in the proof of Theorem 2.11, we may evaluate Grn(α) us-
ing an almost complex structure j which makes the Lefschetz fibration
f pseudoholomorphic and which has the property that, for any of the
curves C =

⋃
i C

i being counted by Grn(α), j is integrable on a neigh-
borhood of

⋃
i Crit(f |Ci); each intersection point between the Ci occurs

away from
⋃

i Crit(f |Ci); and C misses the critical locus of the fibration

f . For each b ∈ Xn, let jb be pullback of j via the blowup πb : Xb → X
(see Section 6.1 for the proof that jb exists and is Lipschitz), so that
Xb → X is (jb, j)-holomorphic. Then, for any of the n! elements b of
X ′

n corresponding to the n! different orders in which the nodes of C

may be blown up, the proper transform C̃ of C will be a curve in Xb

(with b ∈ X ′
n as a result of the fact that C misses the critical points

of f) Poincaré dual to α − 2
∑

ei. In fact, we claim that for a generic

initial choice of j these proper transforms C̃ are guaranteed to be the
only jb-holomorphic curves Poincaré dual to α−2

∑
ei in any Xb which

have no components contained in the fibers of f b : Xb → S2.
Indeed, suppose that C̃ = ∪iC̃i is a jb-holomorphic curve in one

of the Xb Poincaré dual to α − 2
∑

ei, with the (possibly-multiply-

covered) components C̃i Poincaré dual to βi −
∑

cikek. We need to

show that, where πb : Xb → X is the blowup, πb(C̃) has n nodes, located

at the points pi, . . . , pn which were blown up to form Xb (as πb(C̃) is
obviously a j-holomorphic curve Poincaré dual to α). Now for each k,∑

i cik = −2, while by positivity of intersections in Xb, we have each
cik ≤ 0. If k is such that there are distinct q and s with cqk = csk = −1,

then the curves π(C̃q) and π(C̃s) intersect transversely at the point pk,
contributing the desired node. On the other hand, if k is such that the
only nonzero cik is some cqk = −2, then πb(Cq) might a priori be either
a singly-covered curve Poincaré dual to βq which has a self-intersection
at pk, or a double cover of a curve in class βq/2 which passes through
pk. However, the n-semisimplicity condition rules the second possibility
out for generic choices of j, since we will have either d(βq/2) < 0 or
d(βq/2) < d(βq) − n ≤ d(α) − n, and so no such curves satisfying our
incidence conditions will exist.

We conclude, then, that the only jb-holomorphic curves C̃ in any
Xb Poincaré dual to α− 2

∑
ei are proper transforms of j-holomorphic

curves which contribute to Grn(α). With this established, the proof
of the theorem becomes almost just an application of our usual meth-
ods. Since the restriction of jb to the exceptional spheres is standard,
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we can choose smooth almost complex structures j′b which are inte-

grable near the exceptional spheres and are C0-close to the jb. By
Gromov compactness for C0 convergence of almost complex structures
[IS] and the fact that d(α − 2

∑
ei) = −n, we deduce as usual that

for generic choices of these perturbed j′b each C̃ will have finitely many

j′bi
-holomorphic curves C̃1, . . . , C̃N near it (for various bi near b). On

the relative Hilbert schemes we have almost complex structures Jj′
b
. If

C̃i is one of the curves above with the intersections of its components
resolved by the blowup Xbi → X, we define r′′(C̃i) as the signed count

of Jb′ holomorphic sections of Xb′
r (f b′) near sC̃i

for b′ near bi and Jb′ a
generic family of smooth almost complex structures Hölder-close to the
Jjbi

.
For C a curve contributing to the Gromov invariant with nodes re-

solved by Xb → X and proper transform C̃, we define the contribution
r′(C) of C to FDS as

∑n
i=1 r′′(C̃i) where the C̃i are obtained as above.

When j is integrable near C, each jb′ will be integrable near C̃ and
near the exceptional spheres of Xb′ for b′ near b, so that the first per-
turbation of the jb′ to j′b′ is not necessary and the only C̃i is C̃ itself.
Moreover, each Jjb′

will be integrable near sC̃ for b′ near b, and so
(under suitable nondegeneracy assumptions) both contributions will be
1. Further, exactly as in the proof of Theorem 2.11, the contributions
transform under variations in j in the same way by virtue of the fact
that FDS is independent of the almost complex structure used to define
it. The agreement of the invariants then follows. q.e.d.

If α is only weakly n-semisimple, then if C ∈ PD(α) is the disjoint
union of a double cover of a square-zero torus with a curve having n−1
nodes, then the proper transform of C under blowup at the nodes of C
and at any point on the torus gives a curve in some Xb Poincaré dual to
α−2

∑
ei, even though C does not contribute to Grn(α). On perturbing

the family (Jjb
) on X n

r (f) to a generic family (Jb), we might find that
the sections corresponding to these curves contribute to FDSn

f (α −

2
∑

ei). It seems reasonable, though, to believe that these additional
contributions could be expressed in terms of the various other Gromov
invariants of X, consistently with Conjecture 1.3.

4. A review of Smith’s constructions

Our vanishing theorem for FDS will follow by adapting the construc-
tions found in Section 6 of [Sm2] to the family context. Let us review
these.

In addition to the relative Hilbert scheme, Donaldson and Smith
constructed from the Lefschetz fibration f : X → S2 a relative Picard
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scheme Pr(f) whose fiber over a regular value t ∈ S2 is naturally iden-
tified with the Picard variety PicrΣt of degree-r line bundles on Σt.
Over each Σt, we have an Abel–Jacobi map SrΣt → PicrΣt mapping a
divisor D to its associated line bundle O(D); letting t vary over S2, we
then get a map

AJ : Xr(f) → Pr(f)

(that all of these constructions extend smoothly over the critical values
of f : X → S2 is seen in the Appendix of [DS]). Meanwhile, by com-
posing the Abel–Jacobi map for effective divisors of degree 2g − 2 − r
with the Serre duality map L 7→ κΣt ⊗ L∨, we obtain a map

i : X2g−2−r(f) → Pr(f)(4.1)

D 7→ O(κ − D).

Moreover, using a result from Brill-Noether theory due to Eisenbud and
Harris [EH], Smith obtains that (cf. Theorem 6.1 and Proposition 6.2
of [Sm2]):

Lemma 4.1 ([Sm2]). For a generic choice of fiberwise complex struc-

tures on X, if 3r > 4g − 11 where g is the genus of the fibers of

f : X → S2, then i : X2g−2−r(f) → Pr(f) is an embedding. Further,

AJ : Xr(f) → Pr(f) restricts to AJ−1(i(X2g−2−r(f))) as a Pr−g+1-

bundle, and is a Pr−g-bundle over the complement of i(X2g−2−r(f)).

The reason for this is that in general AJ−1(L) = PH0(L), which by
Riemann-Roch is a projective space of dimension r − g + h1(L). The
result of [EH] ensures that for r > (4g − 11)/3 and for generic fam-
ilies of complex structures on the Σt, none of the fibers of f admit
any line bundles L with degree r and h1(L) > 1; then Im(i) ⊂ Pr(f)
consists of those bundles for which h1(L) = h0(κ ⊗ L∨) = 1. To
see the bundle structure, rather than just set-theoretically identifying
the fibers, note that on any Σt, when we identify the tangent space
to PicrΣt with H0(κΣt), the orthogonal complement of the image of
the linearization (AJ∗)D at D ∈ SrΣt consists of those elements of
H0(κΣt) which vanish along D (this follows immediately from the fact
that, after choosing a basepoint p0 ∈ Σt and a basis {φ1, . . . , φg} for
H0(κΣt) in order to identify Picr(Σt) with Cg/H1(Σt, Z), AJ is given

by AJ(
∑

pi) =
(∑∫ pi

p0
φ1, . . . ,

∑∫ pi

p0
φg

)
). If AJ(D) /∈ Im(i), so that

H0(κ−D) = 0, this shows that (AJ∗)D is surjective, so that AJ is indeed
a submersion away from AJ−1(Im i). Meanwhile, if L = i(D′) ∈ Im(i),
the above description shows that the only directions in the orthogo-
nal complement of any Im(AJ∗)D with AJ(D) = L are those 1-forms
which vanish at D, but since AJ(D) = i(D′) such 1-forms also vanish
at D′ and so are also orthogonal to Im(i∗)D′ . So if AJ(D) = i(D′),
Im(AJ∗)D contains Ti(D′)(Im i), implying that AJ does in fact restrict

to AJ−1(Im i) as a submersion and hence as a Pr−g+1 bundle.
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Smith’s duality theorem, and also the vanishing result in this pa-
per, depend on the construction of almost complex structures which
are especially well-behaved with respect to the Abel-Jacobi map. From
now on, we will fix complex structures on the fibers of X satisfying
the conditions of Lemma 4.1; these induce complex structures on the
fibers of the Xr(f) and Pr(f), but on all of our spaces (including X) we
still have the freedom to vary the “horizontal-to-vertical” parts of the
almost complex structures. Almost complex structures agreeing with
these fixed structures on the fibers will be called “compatible.”

The following is established in the discussion leading to Definition 6.4
of [Sm2].

Lemma 4.2 ([Sm2]). In the situation of Lemma 4.1, for any compat-

ible almost complex structure J1 on X2g−2−r(f) and any compatible J2

on Pr(f) such that J2|T (Im i) = i∗J1, there exist compatible almost com-

plex structures J on Xr(f) with respect to which AJ : Xr(f) → Pr(f)
is (J, J2)-holomorphic.

We outline the construction of J : Since AJ : AJ−1 (Im i) →
X2g−2−r(f) is a Pr−g+1-bundle, given the natural complex structure on
Pr−g+1 and the structure J1, the structures on AJ−1(Im i) making this
fibration pseudoholomorphic correspond precisely to connections on the
bundle; since this bundle is the projectivization of the vector bundle
with fiber H0(κ − D) over D, a suitable connection on the latter gives
rise to a connection on our projective-space bundle and thence to an
almost complex structure J on AJ−1(Im i) making the restriction of
AJ pseudoholomorphic.

To extend J to all of Xr(f), we first use the fact that, as in Lemma
3.4 of [DS],

AJ∗ :
(
NAJ−1(Im i)Xr(f)

)
|AJ−1(i(D)) → (NIm iPr(f))i(D)

is modeled by the map

{(θ, [x]) ∈ V ∗ × P(V )|θ(x) = 0} → V ∗

(θ, [x]) 7→ θ,

where V = H0(κΣt − D), so that the construction of Lemma 5.4 of
[DS] lets us extend J to the closure of some open neighborhood U of
AJ−1(Im i). But then since AJ is a Pr−g-bundle over the complement
of AJ−1(Im i), the problem of extending J suitably to all of Xr(f)
amounts to the problem of extending the connection induced by J from
∂U to the entire bundle, which is possible because, again, our bundle
is the projectivization of a vector bundle and connections on vector
bundles can always be extended from closed subsets.

Our vanishing results are consequences of the following:
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Lemma 4.3 ([Sm2, p. 965]). Assume that b+(X) > b1(X) + 1. For

any fixed compatible smooth almost complex structure J1 on X2g−2−r(f)
and for generic smooth compatible almost complex structures J2 such

that J2|Im i = i∗J1, all J1-holomorphic sections of Pr(f) are contained

in i(X2g−2−r(f)).

This follows from the fact that, as Smith has shown, the index of
the ∂̄-operator on sections of Pr(f) is 1 + b1 − b+, which under our
assumption is negative, and so since J2 may be modified as we please
away from Im i, standard arguments show that for generic J2 as in the
statement of the lemma all sections will be contained in Im i.

5. Proof of Theorem 1.5

Lemma 5.1. If b+(X) > b1(X)+4n+1, then FDSn
f (α−2

∑
ei) = 0

for all α ∈ H2(X; Z) such that r = 〈α, [Φ]〉 satisfies r > max{g(Φ) +
3n, 2g(Φ) − 2}.

Proof. Let (J ′
b)b∈Xn be a smooth family of almost complex structures

on the relative Picard scheme Pr(f) such that

(i) For each b, the map G : Pr(f) → S2 is pseudoholomorphic with
respect to J ′

b, and for all critical values t of f J agrees near G−1(t)
with the standard complex structure on the relative Picard scheme
induced by an integrable complex structure near f−1(t);

(ii) For each b = (p1, . . . , pn), where ti = f ◦ π(p1,...,pi−1)(pi), J ′
b also

agrees near each G−1(ti) with the standard complex structure in-
duced by an integrable complex structure near f−1(ti).

Thanks to the assumption that b+(X) > b1(X) + 4n + 1 and the
fact that the index of the ∂̄-operator on sections of Pr(f) is 1 + b1 −
b+, for a generic such family (J ′

b)b∈Xn there will be no J ′
b holomorphic

sections of Pr(f) for any b. Now, as in Section 4, since r > 2g −
2, so that AJ : Xr(f) → Pr(f) is a projective-space bundle, we can
construct a family Jb of almost complex structures on Xr(f) such that
AJ : Xr(f) → Pr(f) is (Jb, J

′
b)-holomorphic for each b. By construction,

for each b Jb agrees with the standard complex structure on the relative
Hilbert scheme F : Xr(f) → S2 near each singular fiber and also near
each F−1(ti) where the ti are as above. Since Xb is formed from X by
performing blowups at points in f−1(ti), for b ∈ X ′

n Jb lifts to an almost

complex structure J̃b on Xb
r(f

b) such that the map Πb : Xb
r(f

b) → Xr(f)

induced by blowup is (J̃b, Jb)-holomorphic.

Let Jm be almost complex structures on the X n
r (f) from the Baire set

in the definition of FDS which converge to an almost complex structure
that agrees on each Xb

r(f
b) with J̃b. If the invariant were nonzero, we

would obtain Jm-holomorphic sections sm of some Xbm
r (f bm) (bm ∈ X ′

n);
after passing to a subsequence we assume bm → b̄ ∈ Xn (since Xn,
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though not X ′
n, is compact). By the definition of our class of almost

complex structures (see the text before Lemma 3.5) there are compatible
almost complex structures Jm

bm
on Xr(f) such that Πbm : Xbm

r (f bm) →
Xr(f) is (Jm, Jm

bm
)-holomorphic; further, we will have Jm

bm
→ Jb̄. So the

Πbm ◦ sm are Jm
bm

-holomorphic sections of Xr(f), whence after passing
to a subsequence they converge modulo bubbling to a Jb̄-holomorphic
section s̄. (As usual, even if bubbling occurs, the bubble tree will contain
a component which is a Jb̄-holomorphic section by virtue of the fact that
all bubbles will be contained in the fibers.) But then AJ ◦ s would be a
J ′

b̄
-holomorphic section, contradicting the fact that no J ′

b-holomorphic
sections exist for any b ∈ Xn. q.e.d.

The intermediate case where max{g(Φ)+3n+d(α), (4g(Φ)−11)/3} <
r ≤ 2g(Φ) − 2 takes slightly more work. In this case, as in Section 4
we use the fact that combining the Abel-Jacobi map with Serre duality
gives a map

i : X2g−2−r(f) → Pr(f);

as before since 3r > 4g−11 generic choices of the complex structures on
the fibers of f result in this map being an embedding. Similarly to the
proof of Lemma 5.1, consider families of almost complex structures J ′′

b

(b ∈ Xn) on X2g−2−r(f) which make X2g−2−r(f) → S2 holomorphic and
are standard near the singular fibers and near the fibers containing the
points which are blown up to form Xb. Form almost complex structures
J ′

b on Pr(f) restricting to i(X2g−2−r(f)) as i∗J
′′
b and which are standard

near the singular fibers and near the fibers containing the points which
are blown up to form Xb. The fact that b+ > b1 + 1 + 4n implies that
if the family J ′

b is chosen generically among almost complex structures
with this property, then any J ′

b holomorphic sections of Pr(f) for any b
must be contained in i(X2g−2−r(f)).

We then form almost complex structures Jb on Xr(f) such that
AJ : Xr(f) → Pr(f) is (Jb, J

′
b)-holomorphic. As in the proof of Lemma

5.1, a nonvanishing invariant FDSn
f (α − 2

∑
ei) would give rise to a

sequence of sections of Xr(f) in the homotopy class cα which converge
modulo bubbling to a Jb̄-holomorphic section s̄ of Xr(f). Since all fibers
of f are irreducible, any bubbles that arise will descend to a multiple
covering of one of the fibers of f , and so for some m ≥ 0 we will have
s̄ ∈ cα−mPD[Φ] where as usual [Φ] is the class of the fiber.

AJ ◦ s̄ will then be a J ′
b̄
-holomorphic section of Pr(f), and so must

be contained in i(X2g−2−r(f)). By the construction of i, then, i−1 ◦
AJ ◦ s̄ is a J ′′

b̄
-holomorphic section of X2g−2−r(f) in the homotopy class

cκX−α+mPD[Φ].
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Now one computes using the adjunction formula for the fiber Φ that

d(κXb − α + mPD[Φ]) = d(κX − α) + d(mΦ) + m〈κX − α, [φ]〉

= d(α) −
m

2
〈κX , [Φ]〉 + m〈κX − α, [Φ]〉

= d(α) − m(r − g(Φ) + 1).

Thus by choosing the 4n-real-dimensional family J ′′
b generically we

ensure that m = 0 thanks to the assumption that r > d(α) + g(Φ) + 3n
in the statement of the theorem.

Now take a family of almost complex structures jb on X which are
standard near the singular fibers of the fibrations f and also near the
fibers containing the points blown up to form Xb; these induce tautolog-
ical almost complex structures Jjb

on X2g−2−r(f). Let J ′′m
b be families

of smooth almost complex structures on X2g−2−r(f) which are generic
in the sense of the previous paragraph and which converge in Hölder
norm to the Jjb

. For each m there is some bm such that J ′′m
bm

admits a
holomorphic section in the class cκX−α, so Gromov compactness guar-
antees the existence of a Jjb0

-holomorphic section of some X2g−2−r(f)
in cκX−α for some b0; this section then tautologcally corresponds to a
jb0-holomorphic curve C Poincaré dual to κX − α; setting j = jb0 , this
is the curve that we desire.

To get the j-holomorphic curve Poincaré dual to α, we simply con-
sider the almost complex structures jb on the members Xb of the family
blowup induced in the almost complex category by j. Let jm

b be a se-
quence of almost complex structures C0-approximating the jb which are
integrable near the exceptional spheres, and apply Gromov compactness
to a sequence of almost complex structures on X n

r (f) whose restrictions
to Xb

r(f
b) Hölder-approximate the family Jjm

b
; in this way our nonvan-

ishing invariant guarantees the existence of a Jjm
bm

-holomorphic section

of some Xbm
r (f bm) in the class cα−2

P

ei
and so of a jm

bm
-holomorphic

curve Poincaré dual to α − 2
∑

ei. Appealing to Gromov compactness
for these curves then gives a jb-holomorphic curve, and this latter is
sent by the blowdown map to the j-holomorphic curve which we desire.
Theorem 1.5 is thus proven.

If X admits an integrable complex structure j making the fibration
holomorphic, then for our original family of almost complex structures
jb we can take the constant family j, justifying a statement made near
the end of the introduction. For arbitrary j, though, this argument
does not work, because it was crucial in the construction of the curve
Poincaré dual to κX − α that each of the jb was standard near fibers
containing the points blown up in forming Xb.
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6. Two technical points

6.1. Blowing up a point in an almost complex manifold. In the
proof of Theorem 3.8 we have used the fact that, if π : X ′ → X is the
blowup of a 4-manifold at a point and J is an almost complex structure
on X, then there is a Lipschitz almost complex structure J ′ on X ′ such
that π is (J ′, J)-holomorphic. Since we have not found a proof of this
fact in the literature, we present one here. As the dimension of X does
not affect the argument, we prove the result for almost complex mani-
folds of arbitrary complex dimension n. The blowup, of course, has the
effect of replacing the point p being blown up with an exceptional divi-
sor E ∼= CPn−1; we note that, as will be seen in the proof, J ′|TE agrees
with the standard complex structure on CPn−1. If (X, ω) is symplectic,
recall from, e.g., Chapter 7 of [MS2] that X ′ can be endowed with sym-
plectic forms ωǫ for small ǫ > 0, with the parameter ǫ reflecting the size
of the exceptional divisor E in the symplectic manifold (X ′, ωǫ). One
can easily check that if the almost complex structure J on X is ω-tame,
then J ′ will be ωǫ-tame for small enough ǫ.

Our method only proves Lipschitz regularity for J ′; it is unclear
whether J ′ is differentiable in directions normal to E. In principle,
one would also like to be able to blow up almost complex submanifolds
V ⊂ (X, J) of arbitrary dimension in the almost complex category. Our
method does not readily extend to show that the pullback of J under
the blowup extends even continuously over the exceptional divisor of
the blowup when dimV > 0. Nonetheless, the case of blowing up a
point suffices for our application.

We begin with the following lemma, which will later be used to con-
struct coordinate charts on the blowup.

Lemma 6.1. Let J be an almost complex structure on Cn agreeing at

the origin with the standard complex structure J0. Given κ0 ∈ CPn−1

there exists a constant ρ0 with the following property. Let ρ < ρ0 and

let Uρ be the ball of radius ρ around κ0 in CPn−1 and Dρ the disc of

radius ρ in C. There is a smooth map

Θ: Dρ × Uρ → Cn

such that each Θ|Dρ×{κ} (κ ∈ Uρ ⊂ CPn−1) is an embedding whose

image is a J-holomorphic disc which is tangent at the origin to the line

lκ ⊂ Cn determined by κ.

Proof. The proof quite closely parallels some of the arguments in
Section 5 of [T1]; we outline it for completeness. By a complex linear
change of coordinates we may assume that κ0 = [1 : 0 : · · · : 0]. Where
c = (c1, . . . , cn−1) ∈ (Dρ)

n−1 and κ = [1 : κ1 : · · · : κn−1] is close to
[1 : 0 : · · · : 0], we search for a J-holomorphic disc

qc,κ(z) = (z, c1 + κ1z + u1(c, κ, z), . . . , cn−1 + κn−1z + un−1(c, κ, z))



STANDARD SURFACES AND NODAL CURVES 275

defined for z ∈ Dρ. As in [T1], this is equivalent to a system of equations

∂ui

∂z̄
= Qi (c, κ, u1(c, κ, z), . . . , un−1(c, κ, z))

such that for certain constants γk we have

(6.1) ‖Qi‖Ck ≤ γk‖J − J0‖Ck(Dn
2ρ).

Note that by decreasing ρ and rescaling the coordinates we can make
the right hand side of (6.1) as small as we like.

Now introduce a cutoff function χρ : C → [0, 1] which equals 1 for
|z| < ρ and 0 for |z| > 3ρ/2, and search for a solution to

∂ui

∂z̄
= χρQi (i = 1, . . . , n − 1)

by, on the class of (n− 1)-tuples of C2,1/2 functions ui restricting to the
circle of radius 4ρ around zero in the span of {eikθ|k < 0}, searching for
a tuple (u1, . . . , un−1) obeying

(6.2)

(
ui(z) =

1

π

∫
χρQi(c, κ, ui(c, z))

z − w
d2w

)

i=1,...,n−1

.

Applying the contractive mapping theorem on this class of functions
(viewed as a Banach space using the (n−1)-fold direct sum of the norm
used on p. 886 of [T1]), thanks to the smallness of the Qi we can find
a unique small solution of (6.2). Furthermore, as in Lemma 5.5 of [T1]
the solution varies smoothly in each of z, c, and κ, and satisfies bounds∣∣∣∣

∂u

∂ci

∣∣∣∣ < Cρ,

∣∣∣∣
∂u

∂κi

∣∣∣∣ < Cρ2,

‖u‖C0 < C(ρ2 + ρ(|c| + |κ|)),

‖u‖C1 < C(ρ + (|c| + |κ|)).

Letting σ denote the map which assigns to (c, κ) the pair consisting of
qc,κ(0) and the tangent space to Im qc,κ at qc,κ(0), the implicit function
theorem then allows us to solve the equation σ(c, κ̃) = ((0, . . . , 0), κ) for
c and κ̃ in terms of κ. The desired map Θ is then

Θ: Dρ × Uρ → Cn

(z, κ) 7→ qc(κ),κ̃(κ)(z).

q.e.d.

For any even-dimensional manifold X with p ∈ X, we form the
blowup X ′ of X at p as a topological manifold by removing a ball
B2n around p, embedding B2n in Cn in standard fashion, and replacing
B2n in X by B′ = {(l, e) ∈ CPn−1 × Cn|e ∈ l ∩ B2n}. The blowdown
map π : X ′ → X is of course just the identity outside B′ and the map
(l, e) → e inside B′. The exceptional divisor is E = {(l, e) ∈ B′|e =
0} ⊂ X ′.
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If κ0 = [1 : 0 : · · · : 0] in Lemma 6.1 and we write κ near κ0 as
[1 : κ1 · · · : κn−1], the map Θ has the form

(z, κ) 7→ (z, κ1z + ũ1(κ, z), . . . , κn−1z + ũn−1(κ, z))

where the ũi are smooth functions satisfying |ũi(κ, z)| < C|z|2 for an
appropriate constant C. (In the notation of the proof of Lemma 6.1,
ũi(κ, z) = ui(c(κ), κ̃(κ), z) + (κ̃i(κ) − κi)z.)

We hence obtain a local homeomorphism Θ̃ = Θ̃κ0 : D2 × D2 → C̃n

such that, where π : C̃n → Cn is the blowdown, π ◦ Θ̃ = Θ. We use
the Θ̃κ0 as κ0 varies over CPn−1 as an atlas for C̃n near the exceptional
divisor E (away from E we of course just use charts pulled back by π
from charts on Cn not containing the origin). From the definition of

the Θ̃κ0 and the fact that tangencies of J-holomorphic curves in Cn are
C1-diffeomorphic to tangencies between J0-holomorphic curves [Si], one
can see that the transition functions have the form

Θ̃−1
κ0

◦ Θ̃κ′

0
(z, κ1, . . . , κn−1) =

(
z, κ1 + z−1(f1(κ)z2 + O(|z|3)), . . . , κn−1 + z−1(fn−1(κ)z2 + O(|z|3))

)
,

and in particular are C1. We have thus provided an atlas for C̃n as a
C1 manifold.

This atlas depends on the almost complex structure J , and it is worth
noting that the charts corresponding to different J might not be C1-
related. For example, for a particular J Θ[1:0:···:0] could conceivably have
the form

Θ[1:0:···:0](z, κ1, . . . , κn) = (z, κ1z + z̄2, κ2z, . . . , κn−1z).

In this case, in terms of the standard smooth coordinates on C̃n (equiv-
alently, those induced by the above construction using the standard
complex structure J0 ),

Θ̃[1:0:···:0](z, κ1, . . . , κn−1) = (z, κ1 + z̄2/z, κ2, . . . , κn−1),

which is Lipschitz but not C1 along the exceptional divisor {z = 0}. Of
course, these resulting manifolds are still abstractly C1-diffeomorphic;
this is somewhat reminiscent of the fact that distinct complex structures
on a Riemann surface Σ induce smooth charts on the symmetric prod-
ucts SdΣ which are related by transition maps that are only Lipschitz,
as noted for instance in Remark 4.4 of [Sa].

Proposition 6.2. Let π : C̃n → Cn denote the blowup of Cn at the

origin, and let J be an almost complex structure on Cn agreeing with

the standard almost complex structure J0 at the origin. Then there is

a unique Lipschitz continuous almost complex structure J̃ on C̃n such

that π is a (J̃ , J) holomorphic map.
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Proof. Let E ∼= CPn−1 denote the exceptional divisor of the blowup
π. Of course, π restricts to a diffeomorphism C̃n \ E → Cn \ (0, . . . , 0),

so our J̃ must agree away from E with π∗J = π−1
∗ ◦ J ◦π∗ away from E

and uniqueness even of a continuous almost complex structure J̃ is clear
from the fact that C̃n\E is dense in C̃n. We show now that π∗J extends
over E in Lipschitz fashion by exhibiting a Lipschitz continuous basis
of vector fields for its antiholomorphic tangent space T 0,1 ⊂ T C̃n ⊗ C

near any given point x ∈ E.
Lemma 6.1 and the remarks thereafter provide us with one element

of this basis: the maps Θκ0 map each Dρ×{κ} diffeomorphically to a J-
holomorphic disc ∆κ in Cn in a way that varies smoothly in κ. We then
obtain a (complexified) vector field α̃κ along each Dρ×{κ} defined by the
property that ακ = (Θκ0)∗α̃ generates the J-antiholomorphic tangent
space to ∆κ. Choosing the ακ to depend smoothly on κ causes the α̃κ

to do so as well, and so to give a vector field α on a neighborhood of
our basepoint x which is transverse to E and which is antiholomorphic
for the pulled back almost complex structure π∗J where the latter is
defined.

After a complex linear change of coordinates on Cn we may assume
that x = ([1 : 0 : · · · : 0], (0, . . . , 0)) and π(x) = (0, . . . , 0). In terms
of the coordinate chart given by Θ[1:0···:0], the blowdown map π has the
form

(s, t1, . . . , tn−1) 7→ (s, st1 + u1(s, t1, . . . , tn−1), . . . ,

stn−1 + un−1(s, t1, . . . , tn−1)),

where |ui(s, t1, . . . , tn−1)| < C|s|2. Away from the exceptional sphere
s = 0, this is a diffeomorphism whose complexified linearization with
respect to the coordinates (s, s̄, t1, t̄1, . . . , tn−1t̄n−1) has inverse of the
form

((π∗)
−1)π(s,t1,...,tn−1)

=




1 0 · · · · 0
0 1 0 · · · 0

−t1/s 0 1/s 0 · · 0
0 −t̄1/s̄ 0 1/s̄ 0 · · · 0
...

...
...

. . .
. . .

. . .
...

−tn−1/s 0 · · · · 0 1/s 0
0 −t̄n−1/s 0 · · · · 0 1/s̄




+ B(s, t1, . . . , tn),

where B is smooth away from s = 0 and bounded (but not necessarily
continuous) as s → 0.

Write the coordinates on Cn as (w, z1, . . . , zn−1). Since J agrees with
J0 at the origin, for i = 1, . . . , n− 1 there are J-antiholomorphic vector
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fields

βi = ∂z̄i
+

∑

j

aij(z1, . . . , zn)∂zj
+

∑

j 6=i

bij(z0, . . . , zn)∂z̄j

+ ci(z0, . . . , zn)∂w,

where aij(0, . . . , 0) = bij(0, . . . , 0) = ci(0, . . . , 0) = 0. Away from E we
then have

(π−1
∗ βi)(u,v1,...,vn−1) =

1

ū
∂v̄i

+
∑

j

aij(π(u, v1, . . . , vn−1))

(
1

u
∂vj

)

+
∑

j 6=i

bij(π(u, v1, . . . , vn−1))

(
1

ū
∂v̄j

)

+ ci(π(u, v1, . . . , vn−1))


∂u −

∑

j

vj

u
∂vj


 + γ̃i

where γ̃i = Bβi has bounded coeffecients. So

β̃i := ūπ−1
∗ βi

= ∂v̄i
+

∑ ū

u
(aij(u, uv1, . . . , uvn−1) − vjcij(u, uv1, . . . , uvn−1)) ∂vj

+
∑

j 6=i

bij(u, uv1, . . . , uvn−1)∂v̄j
+ ūci(u, uv1, . . . , uvn−1)∂w + ūγ̃i

is an antiholomorphic tangent vector for π∗J away from E = {u =
0}. Further, we note that since aij , bij , and ci are differentiable and
vanish at the origin while γ̃i is L∞, so that |aij(u, uv1, . . . , uvn−1)|,
|bij(u, uv1, . . . , uvn−1)|, |ci(u, uv1, ..., uvn−1)|, and ‖ūγi‖ are all bounded

by a constant times |u|, β̃i extends over E in Lipschitz fashion, agreeing
with ∂v̄i

at E.

Hence, defining J̃ near x by

T 0,1

J̃
= 〈α̃, β̃1, . . . , β̃n−1〉,

we see that J̃ is Lipschitz and agrees with π∗J where the latter is de-
fined. So since J̃ preserves TE and since at each point of E there
is a J̃-holomorphic disc transverse to E mapped holomorphically to a
J-holomorphic disc by π, we conclude that π : C̃n → Cn is (J ′, J)-
holomorphic. q.e.d.

Corollary 6.3. Let (X, J) be an almost complex manifold with p ∈
X, and let X ′ denote the blowup of X at p. Then there is a unique

almost complex structure J ′ on X ′ which is Lipschitz continuous such

that π : X ′ → X is (J ′, J)-holomorphic. Furthermore, J ′ restricts to E
as the standard complex structure on CPn−1.
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Proof. Since π is a diffeomorphism away from E = π−1(p) (which
thus determines J ′ on X ′ \ E as the smooth almost complex structure
π∗J), this follows from the proposition and its proof by choosing a chart
around p which sends (p, J |TpX) to (0, J0|T0Cn) in Cn (as may easily be
done by modifying any chart around p by an appropriate real linear
map). q.e.d.

6.2. The diagonal in the relative Hilbert scheme. Let F : Hr →
D2 denote the r-fold relative Hilbert scheme of the map f : (z, w) 7→ zw;
the spaces Hr × Cs−r form the local models for the relative Hilbert
scheme Xs(g) of a Lefschetz fibration g near points of Xs(g) which
correspond to divisors containing r copies of a critical point of g. In this
subsection we prove the fact, used in the proof of the compactness result
underlying the construction of FDS, that at a point in the diagonal ∆
of the relative Hilbert scheme Hr corresponding to the divisor in the
nodal fiber f−1(0) consisting of r copies of (0, 0), the tangent cone to
the diagonal is contained in the tangent cone to the fiber F−1(0) ⊂ Hr.
(Note that since the natural map F−1(t) → Srf−1(t) is an isomorphism
if and only if t is a regular value of f , there are many points in F−1(0)
corresponding to {(0, 0), . . . , (0, 0)}, as will be seen later on when we
review the definition of Hr.) Our proof of this fact uses the description of
the relative Hilbert scheme in terms of linear algebra provided in Section
3 of [Sm2] based on work of Nakajima [N], and boils down to a rather
arcane fact about the discriminants of the characteristic polynomials
of certain matrices. It would certainly not surprise us if there exists a
more elegant way of proving this result via algebraic geometry, but the
argument we give presently is the only one we have at the moment. As
will be seen later on, the relevant characteristic polynomials have the
form considered in the following lemma.

Lemma 6.4. There is a universal, nonzero polynomial P (ck+1, . . . ,
ck+l+1) with P (0, . . . , 0) = 0 such that, given a degree r = k + l + 1
polynomial

(6.3) f(x) = xr +
k∑

a=1

ǫ(ca + O(ǫ))xr−a +
l+1∑

b=1

ǫb(ck+b + O(ǫ))xl+1−b,

the discriminant δ(f) of f has the form

(6.4) δ(f) = P (ck+1, . . . , ck+l+1) ǫr+l2−1 +O(ǫr+l2).

Proof. For i = 0, . . . , r = k+ l+1, let ai be the coefficient of xr−i in f
(so in particular a0 = 1). Recall that δ(f) = (−1)r(r−1)/2a−1

0 Res(f, f ′)
(“Res” denoting the resultant; see, e.g., Section V.10 of [La]), so it
suffices to prove the expansion (6.4) for Res(f, f ′). Res(f, f ′) is given



280 M. USHER

as the determinant
(6.5)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 · · · · · · ar

a0 a1 a2 · · · · · · ar

· · · · · ·
a0 a1 a2 · · · · ar

ra0 (r − 1)a1 (r − 2)a2 · · · ar−1

· · · · ·
· · · · ·

ra0 (r − 1)a1 (r − 2)a2 · · · ar−1

ra0 (r − 1)a1 (r − 2)a2 · · · ar−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Each term in the expansion of this determinant will be a constant

times
∏r

j=0 a
ij
j for some natural numbers ij satisfying

∑
ij = 2r − 1

(since this is a (2r − 1) × (2r − 1) matrix) and

∑
jij = r(r − 1)

(since if the roots of f are α1, . . . , αr, the discriminant
∏

a<b(αa − αb)
2

has degree r(r−1) in the αb, while the coefficient aj has degree j in the
αb). Let

e(i0, . . . , ir) = max{e ∈ N|ai0
0 · · · air

r = O(ǫe)}.

To prove the lemma we need to show that:

(i) For each
∏

a
ij
j appearing in the expansion of the resultant (6.5),

e(i0, . . . , ir) ≥ r+l2−1, with equality implying that i1 = · · · = ik =
0 (the latter condition being needed to show that our polynomial
P depends only on ck+1, . . . , cr and vanishes when all of these cj

are 0); and
(ii) There are particular values of the cj for which Res (f, f ′) 6=

O(ǫr+l2).

Point (ii) above is easy: in the statement of the lemma, let

cj =

{
1 i = k + 1, n

0 otherwise,

so that

f(x) = xr + (ǫ +O(ǫ2))xl + (ǫl+1 +O(ǫl+2)).

We then see that the unique lowest-order term in the expansion of the
determinant 6.5 is obtained by choosing a0 = 1 from the first k + 1
columns, (r − k − 1)ak+1 = l ǫ +O(ǫ2) from the next r columns, and
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an = ǫl+1 +O(ǫl+2) from the last l − 1 columns, so that

Res(f, f ′) = ±(l ǫ)r(ǫl+1)l−1 + higher order terms

= ±ln ǫr+l2−1 +O(ǫr+l2).

We now set about the proof of point (i). Assume that
∏

a
ij
j is a

term appearing in the expansion of the determinant (6.5). Let q be the

quotient and p be the remainder when
∑l

m=0 mir−m is divided by l,

and set s =
∑l

m=0 ir−m − q (note that the above sums only go up to
l = r − k − 1). We then have

r∑

j=r−l

jij =
l∑

j=0

(r − l + j)ir−l+j = (r − l)q + rs − p.

Now since
∑r

j=0 ij =
∑k

j=0 ij+q+s = 2r−1 and since 2r−1 = r+k+l,
we see

s = 2r − 1 − q −
k∑

j=0

(ij − 1) − (k + 1)

= r + l − 1 − q −
k∑

j=0

(ij − 1).

Hence

r2 − r =
r∑

j=0

jij =
k∑

j=0

jij + q(r − l) + rs − p

=

k∑

j=0

jij + q(r − l) − p + r(r + l − 1 − q −

k∑

j=0

(ij − 1))

= r2 − r + l(r − q) − p +
k∑

j=0

(jij − r(ij − 1)),

i.e.,

(6.6) l(r − q) = p +
k∑

j=0

(r(ij − 1) − jij).

Meanwhile

e(i0, . . . , ir)(6.7)

=
k∑

j=1

ij +
l∑

j=0

(1 + j)ir−l+j



282 M. USHER

=
k∑

j=1

ij + q + s(l + 1) − p

=
k∑

j=1

ij + q +


r + l − 1 − q −

k∑

j=0

(ij − 1)


 (l + 1) − p

= l(r − q) + r + l2 − 1 − (l + 1)
k∑

j=0

(ij − 1) +
k∑

j=1

ij − p

= r + l2 − 1 +
k∑

j=0

(r(ij − 1) − jij) − (l + 1)
k∑

j=0

(ij − 1) +
k∑

j=1

ij

= r + l2 − 1 + k

k∑

j=0

(ij − 1) +

k∑

j=1

(1 − j)ij ,

where in the penultimate equality we have used (6.6) and in the last we
have used the fact that r − (l + 1) = k.

In our term
∏

a
ij
j in the expansion of the determinant (6.5), each of

those aj which are chosen from the first (k +1) columns necessarily has
j ≤ k. For each j write ij = wj + zj = wj + xj + yj where wj denotes
the number of aj ’s chosen from the first (k +1) columns and xj denotes
the number of aj ’s chosen from columns k +2 through 2k +1; evidently

wj = 0 for j > k while
∑k

j=0 wj = k + 1, i.e.,

(6.8)
k∑

j=0

(wj − 1) = 0.

Rearrange our term
∏

j=0 a
ij
j as

ap1 · · · ap2r−1 ,

where the entry apn is culled from the nth column in the matrix in (6.5);
label the row from which apn is taken as mn. Denoting

m̄ =

{
m m ≤ r − 1

m + 1 − r m ≥ r
,

we see from the form of the resultant matrix that

m̄n = n − pn.

Consider the quantity
2k+1∑

n=1

m̄n.
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Obviously, the way to minimize this quantity is by using rows 1, 2, . . . , k,
r, r+1, . . . , r+k (or, just as well, rows 1, . . . , k+1, r, . . . , r+k−1) when
we pick the ap1 , . . . , ap2k+1

; such a choice then yields {m̄n|n ≤ 2k+1} =
{1, 1, . . . , k, k, k + 1} and

2k+1∑

n=1

m̄n =
k(k + 1)

2
+

(k + 1)(k + 2)

2
= (k + 1)2.

If x0 6= 0, we have some n ∈ [k + 2, 2k + 1] with pn = 0 and so m̄n =
n > k + 1; in this vein, one may easily check that

2k+1∑

n=1

m̄n ≥ (k + 1)2 +
x0(x0 + 1)

2
;

in particular

2k+1∑

n=1

m̄n ≥ (k + 1)2 + x0,

with equality requiring that either x0 = 0 and {m̄n|n ≤ 2k + 1} =
{1, 1, . . . , k, k, k+1} or x0 = 1 and {m̄n|n ≤ 2k+1} = {1, 1, . . . , k, k, k+
2}.

Thus,

(k + 1)2 + x0 ≤
2k+1∑

n=1

m̄n =
2k+1∑

n=1

(n − pn)(6.9)

= (k + 1)(2k + 1) −
k+1∑

n=1

pn −
2k+1∑

n=k+2

pn

= (k + 1)2 −
k∑

j=1

jwj +
2k+1∑

n=k+2

(k + 1 − pn)

≤ (k + 1)2 −

k∑

j=1

jwj +

2k+1∑

n=k+2,pn≤k

(k + 1 − pn)

= (k + 1)2 −
k∑

j=1

jwj +
k∑

j=0

(k + 1 − j)xj .

So
(6.10)

kz0 +
k∑

j=1

(k+1−j)zj ≥ kx0 +
k∑

j=1

(k+1−j)xj ≥
k∑

j=1

jwj ≥
k∑

j=1

(j−1)wj ,
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i.e., k
∑k

j=0 zj+
∑k

j=1(1−j)(wj+zj) ≥ 0, so that since
∑k

j=0(wj−1) = 0
and ij = wj + zj , we at last conclude that

(6.11) k
k∑

j=0

(ij − 1) +
k∑

j=1

(1 − j)ij ≥ 0.

In light of Equation 6.7, this shows that e(i0, . . . , ir) ≥ r + l2 − 1 with
equality if and only if equality holds in (6.11); equality in (6.11) requires
among other things that

(i) either x0 = 0 and {m̄n|n ≤ 2k + 1} = {1, 1, . . . , k, k, k + 1} or
x1 = 1 and {m̄n|n ≤ 2k + 1} = {1, 1, . . . , k, k, k + 2}; and

(ii) due to (6.10), zj = xj for j ≤ k (so that for j ≤ k all of the aj

in our term
∏r

j=0 a
ij
j come from the first 2k + 1 columns of the

resultant matrix).

For n = 1, 2, 3, 4 let Mn denote the (2k + 1) × (2k + 1) matrix con-
structed from the resultant matrix (6.5) by taking columns 1 through
2k + 1 and rows 1, . . . , k, r, . . . , r + k (for n = 1), rows 1, . . . , k +
1, r, . . . , r+k−1 (for n = 2), rows 1, . . . , k, r, r+k−1, . . . , r+k +1 (for
n = 3), or rows 1, . . . , k, k+2, r, . . . , r+k−1 (for n = 4). Let M ′

n be the
(2r−2k−2)×(2r−2k−2) constructed from the other rows and columns.

Assume that our term
∏r

j=0 a
ij
j in the resultant gives rise to the lowest

possible value of e(i0, . . . , ij). (i) above then ensures that
∏r

j=0 a
ij
j is

constructed by multiplying a term in the determinant of one of the Mn

by a term in the determinant of the corresponding M ′
n. In searching for

the optimal such monomial, we may then vary the contributions from
Mn and M ′

n separately. But on examining the form of the Mn, one sees
immediately that the term in det(Mn) giving rise to the strictly lowest
possible power of ǫ is obtained by a product of k +1 a0’s (from columns
1 through k + 1 for n = 1, 2 and columns 1, . . . , k, k + 2 for n = 3, 4)
and k ak+1’s (and in particular contains no aj for 1 ≤ j ≤ k). By
(ii), any optimal monomial from M ′

n can’t contain any aj with j ≤ k.

Thus any
∏r

j=1 a
ij
j with (i1, . . . , ik) 6= (0, . . . , 0) must have e(i1, . . . , ir)

strictly greater than the lowest possible value (which has been shown
above to be n + l2 − 1). This proves the lemma. q.e.d.

We now recall the linear algebra definition of the relative Hilbert
scheme from [Sm2]. Let

(6.12) H̃r = {(A, B, t, v) ∈ Mr(C)2 × D2 × Cr|AB = BA = tId, (∗)},

where the stability condition (*) states that the matrices A and B share
no proper invariant subspaces containing the vector v. The relative
Hilbert scheme of the map (z, w) 7→ zw is then

Hr = H̃r/GLr(C),



STANDARD SURFACES AND NODAL CURVES 285

where GLr(C) acts by

g · (A, B, t, v) = (gAg−1, gBg−1, t, gv).

The projection map F : Hr → D2 is just [A, B, t, v] 7→ t. To briefly
motivate this, remark that a point of the r-fold relative Hilbert scheme
of f is naturally viewed from an algebro-geometric standpoint as an ideal
I ≤ C[z, w] with the property that V = C[z, w]/I is an r-dimensional
vector space and, for some t, I is supported on f−1(t) (i.e., 〈zw−t〉 < I).
To go from such an ideal to an element of Hr, let v ∈ V be the image of
1 ∈ C[z, w] under the projection, and let A and B be the operators on
V defined by multiplication by the polynomials z and w respectively.
For more details see [N] and [Sm2].

Given [A, B, t, v] ∈ Hr, the fact that A and B commute implies that
they can be simultaneously conjugated to be upper triangular; assuming
that this has been done, the natural map φt : F−1(t) → Symrf−1(t)
takes [A, B, t, v] to {(A11, B11), . . . , (Arr, Brr)}. For t 6= 0, according
to (6.12), A is invertible and B = tA−1, so φt is an isomorphism; φ0,
meanwhile, is a nontrivial partial resolution. On the diagonal ∆ ⊂ Hr,
A and B will both have repeated eigenvalues, occurring in corresponding
Jordan blocks.

The main result of this section is:

Theorem 6.5. Let F : Hr → D2 denote the r-fold relative Hilbert

scheme of the map (z, w) 7→ zw, φ0 the partial resolution map F−1(0) →
Symr{zw = 0}, and ∆ ⊂ Hr the diagonal stratum. At any point p ∈
∆ ∩ F−1(0) with φ0(p) = {(0, 0), . . . , (0, 0)}, where Tp∆ is the tangent

cone to ∆ at p, we have Tp∆ ⊂ TpF
−1(0).

Proof. According to the above description, the points p under concern
are of the form [A, B, 0, v] with A and B both nilpotent matrices such
that AB = BA = 0. Further, letting k be such that Akv 6= 0 but
Ak+1v = 0, the stability condition (∗) in (6.12) ensures that, where
r = k + l + 1,

{Akv, . . . , Av, Blv, . . . , Bv, v}

is a basis for Cr. All operators on V ∼= Cr appearing in the rest of the
proof will be written as matrices in terms of this basis.

Since AB = 0 we can write

Bl+1v = aAkv +
l∑

i=1

bl−iB
iv.
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With respect to our above basis, we have

A =




0 1 0 · · 0 0
. . .

. . . · · ·
...

0 1 · · · 0
0 0 · · 0 1

0 · · · 0 0 · · · 0
...

...
0 · · · 0 0 · · · 0




,

B =




0 · · 0 a 0 · · 0
· · · 0 · ·

· · ·
... ·

. . . ·
· · 0 0 · · 0
0 · · 0 b1 1 0 · · · 0

· · ·
... 0 1 · · · 0

· · bl−1 ·
. . .

. . .
...

· · · bl · · 1
0 · · 0 0 0 · · 0




,

and v = er = (0, . . . , 0, 1) (in both of the above matrices, the upper left
block is of size k × k). Let

(C, D, µ, w) ∈ T(A,B,0,er)H̃r.

Letting π : H̃r → Hr be the projection, we have µ = F∗(π∗)(A,B,0,er)(C,

D, µ, w), so our goal is to show that if (C, D, µ, w) is tangent to π−1∆

then µ = 0. Linearizing the defining equations for H̃r gives

CB + AD = BC + DA = µId,

which implies, among other things,

For i > k,

{
aCi1 +

∑
bmCi,k+m = µδi,j ,

Ci,j−1 = µδi,j if j ≥ k + 2.

For j = 1 or k + 1 ≤ j ≤ r − 1,





aCk+1,j = µδ1,j ,

bi−kCk+1,j + Ci+1,j = µδi,j

if k + 1 ≤ i ≤ r − 1.

If a = 0, we have µ = µδ1,1 = aCk+1,1 = 0 and we are done.
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If a 6= 0, we find from the above equations that

C =




∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

µ/a ∗ ∗ ∗ 0 0 · 0 ∗
−b1µ/a ∗ ∗ ∗ µ 0 · · · 0 ∗
−b2µ/a ∗ ∗ ∗ 0 µ · 0 ∗

... ∗ ∗ ∗ · ·
. . . · ∗

−blµ/a ∗ ∗ ∗ 0 · · µ ∗




,

where again the upper left block is size k × k and all asterisks denote
undetermined entries.

We consider now the characteristic polynomials of the matrices A+ǫ C
for small ǫ. The matrix A + ǫ C − λId is
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−λ + ǫ C11 1 + ǫ C12 ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ −λ + ǫ C22

. . . ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

. . . 1 + ǫ Ck−1,k ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ −λ + ǫ Ckk ∗ ∗ ∗ ∗ 1 + ǫ Crk

ǫ µ/a ∗ ∗ ∗ −λ 0 · 0 ∗

− ǫ b1µ/a ∗ ∗ ∗ ǫ µ −λ
. . . 0 ∗

− ǫ b2µ/a ∗ ∗ ∗ 0 ǫ µ · 0 ∗

... ∗ ∗ ∗

... ·

. . . −λ ∗

− ǫ blµ/a ∗ ∗ ∗ 0 · · ǫ µ −λ + ǫ Crr

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where an asterisk in the (i, j)th entry signifies ǫ Cij . When we expand
the determinant of this matrix, among the terms that we obtain are

(−λ)r and ± (− ǫ bmµ/a) · 1k−1(−λ)m−1(ǫ µ)l−m+1

= ±
µl−m+2bm

a
ǫl−m+2 λm−1;

note that these latter have combined degree exactly l + 1 in ǫ and λ.
Any other term in the expansion of the determinant will have degree
at least 1 in ǫ and at least l + 2 in ǫ and λ combined, the reason being
that each of the entries denoted with an asterisk above lies in either the
same row or the same column as an entry of form 1 + ǫ Cij , so a term
in the determinant containing one of the asterisked entries can contain
at most k − 1 of the k (1 + ǫ Cij)’s and hence must contain at least
r − (k − 1) = l + 2 other terms, each of which is of combined order at
least 1 in ǫ and λ. In other words, for constants c1, . . . , ck+l+1 where

ck+m = ±
bl+1−mµm

a
for 1 ≤ m ≤ l and ck+l+1 =

µl+1

a
,
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the characteristic polynomial of A + ǫ C has form

pA+ǫ C(x) = (−x)r + ǫ
k∑

a=1

(ca + O(ǫ))(−x)r−a

+
l+1∑

b=1

ǫb(ck+b + O(ǫ))(−x)l+1−b,

which, since r = k + l +1, is precisely the sort of polynomial considered
in Lemma 6.4. By replacing ǫ with ν ǫ in the statement of that lemma,
we see that the polynomial P (ar−l, . . . , ar) provided by its conclusion
scales as

P (νar−l, ν
2ar−l+1, . . . , ν

l+1ar) = νr+l2−1P (ar−l, . . . , ar),

so that

P (ck+1, . . . , cr) = P

(
±

blµ

a
,±

bl−1µ
2

a
, . . . ,±

b1µ
l

a
,
µl+1

a

)

= µr+l2−1P (±bl/a,±bl−1/a, . . . ,±b1/a, 1/a).

So since P is not the zero polynomial, at least for a generic initial choice
of our base point [A, B, 0, er] (equivalently, for generic a, b1, . . . , bl), we

conclude that if (C, D, µ, w) ∈ T(A,B,0,er)H̃r, we have

(6.13) δ(pA+ǫ C) = µr+l2−1M ǫn+l2−1 +O(ǫn+l2),

where M is a nonzero constant depending only on A. Let

∆̃1 = {(A′, B′, t, v′) ∈ H̃r|A
′ has a repeated eigenvalue}

= {(A′, B′, t, v′) ∈ H̃r|δ(pA) = 0}.

Equation 6.13 then shows that, for (C, D, µ, w) ∈ T(A,B,0,er)H̃r,

(C, D, µ, w) ∈ T(A,B,0,er)∆̃1 ⇔ µ = 0

(T(A,B,0,er)∆̃1 denoting the tangent cone at (A, B, 0, er) if ∆̃1 is singular

there). Where again π : H̃r → Hr is the projection, we have T∆ ⊂

π∗T ∆̃1, so if α ∈ T[A,B,0,er]∆, writing α = π∗(C, D, µ, w), we have
that F∗α = µ = 0. This conclusion initially only applies at those
[A, B, 0, er]∈∆ which are generic in the sense that P (±bl/a,±bl−1/a, ...,
±b1/a, 1/a) 6= 0, but then since the conclusion is a closed condition it
in fact applies to all [A, B, 0, er] lying on the diagonal ∆. q.e.d.
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