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COMPACT KÄHLER MANIFOLDS WITH
NONPOSITIVE BISECTIONAL CURVATURE

HUNG-HSI WU & FANGYANG ZHENG

Abstract
In this article, we prove that for any compact Kähler manifold Mn with real
analytic metric and nonpositive bisectional curvature, there exists a finite
cover M ′ of M such that M ′ is a holomorphic and metric fiber bundle over
a compact Kähler manifold N with nonpositive bisectional curvature and
c1(N) < 0, and the fiber is a flat complex torus. This partially confirms a
conjecture of Yau.

1. Introduction and statement of results

A major component of the attempt to generalize the classical uni-
formization theorem for Riemann surfaces to higher dimensions is to
understand complex manifolds which admit complete Kähler metrics
whose bisectional curvature keeps a sign. In this context, bisectional
curvature is the appropriate curvature to use because it is tied to the
complex structure and, unlike holomorphic (sectional) curvature which
is the other curvature defined in terms of the complex structure, it
contains enough information to make deeper questions meaningful. By
comparison, assumptions on the sectional curvature are often too strong.
(Nevertheless, we note that many open questions related to sectional
curvature remain unanswered. A simple example is whether a compact
Kähler manifold with nonpositive sectional curvature, which is of gen-
eral type, must be Kobayashi hyperbolic. So far this has been confirmed
only for dimension 2 ([47]) by using a result of Lu and Yau [28]).)

If we restrict ourselves to compact manifolds, those with nonnegative
bisectional curvature are well understood after the works of Frankel
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[19], Howard-Smyth-Wu [21], [37], Mori [33], Siu-Yau [35], and Mok
[29]. The final result says that, given a compact Kähler manifold Mn

with nonnegative bisectional curvature, there exists a finite covering
manifold M ′ of M such that the Albanese map π : M ′ → T q of M ′

is a surjective holomorphic fiber bundle, whose fiber has c1 > 0 and
is in fact biholomorphic to a product of irreducible compact Hermitian
symmetric spaces.

On the other hand, the current state of knowledge in the nonpositive
case is much less satisfactory. Perhaps the following example will serve
to illustrate this point. In Yau’s famous problem set [44], Question 35
asks whether a simply-connected, complete Kähler manifold with nega-
tive bisectional curvature must be Stein. A weaker question is whether
a compact Kähler manifold with negative bisectional curvature must
have infinite fundamental group. Bun Wong observed that these ques-
tions can be reduced to the 2-dimensional case, and he also constructed
examples of simply-connected algebraic surfaces with ample cotangent
bundle ([36]). Contrast this with the same question using sectional
rather than bisectional curvature: the well-known Cartan-Hadamard
Theorem states that any complete Riemannian manifold with nonpos-
itive sectional curvature is a K(π, 1) space, and this theorem has been
responsible for the vast recent development in the theory of nonposi-
tively curved Riemannian manifolds, beginning with the classical works
of Bishop-O’Neill [5], Yau [42], Lawson-Yau [27], Eberlein-O’Neill [15]
in the late 60’s and the 70’s, leading to the explosion in the 80’s and
90’s. The paper [14] gives an excellent discussion and references on the
subject.

As in the Riemannian case, it is often very important to understand
the difference between the negatively curved case and the nonpositively
curved (but not quasi-negatively curved) case. The former tends to be
“hyperbolic” in some suitable sense, while the latter usually possesses
certain rigidity properties.

For compact Kähler manifolds with nonpositive bisectional curva-
ture, the first structure question one can ask is the following conjecture
of Yau which we learned from his seminar at Harvard:

Conjecture (Yau). Let Mn be a compact Kähler manifold with
nonpositive bisectional curvature. Then there exists a finite cover M ′

of M such that M ′ is a holomorphic and metric fiber bundle over a
compact Kähler manifold N with nonpositive bisectional curvature and
c1(N) < 0, and the fiber is a (flat) complex torus.
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Recall that the fiber bundle is called a metric bundle, if for any
p ∈ N , there is some neighborhood p ∈ U ⊆ N such that the bundle
over U is isometric to the product of the fiber with U .

This conjecture can be considered as the dual of the splitting theo-
rem in [21] in the nonnegative bisectional curvature case. It also has a
generalization to the numerically effective case (see §4), which is dual
to the reduction theorem of Demailly-Peternell-Schneider [8].

The main purpose of this article is to confirm the above conjecture
of Yau under the additional assumption that the metric of Mn is real
analytic:

Theorem E. Let Mn be a compact Kähler manifold with real an-
alytic metric and nonpositive bisectional curvature. Then there exists a
finite cover M ′ of M such that M ′ is a holomorphic and metric fiber
bundle over a compact Kähler manifold N with nonpositive bisectional
curvature and c1(N) < 0, and the fiber is a flat complex torus.

As noted in [10], the finite cover M ′ here can be chosen so that it
(and any further cover of it) is diffeomorphic to the product of the fiber
and the base. However, there are M such that any finite cover of M is
not biholomorphic or isometric to the product. The first such examples
were constructed by Lawson and Yau [27].

As an immediate consequence of Theorem E, we have the following:

Corollary F. Let Mn be as in Theorem E above. Then its Kodaira
dimension is equal to its Ricci rank, i.e., the maximum of the rank of
its Ricci tensor at each point.

Previously, this was known when Mn is assumed to have nonpositive
sectional curvature ([49]).

We believe that Yau’s conjecture is true in its full generality. The
presence of the real analyticity assumption in Theorem E is, in our
minds, merely the reflection of a technical failure that we could not
overcome at this point in time.

A key step in the proof of Theorem E is to show that the totally
geodesic foliation L defined by the kernel of the Riemannian curvature
tensor is actually a holomorphic foliation (Theorem A in §2). This result
should be of independent interest, as the foliation technique in complex
geometry often requires this holomorphicity (cf. [30]).

Theorem A enables one to propagate the so-called conullity opera-
tors and the Ricci tensor along a leaf of L, and estimate their growth
rates. Under the assumption that the curvature is bounded (e.g., when
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the manifold is compact to begin with), those conullity operators must
all vanish, with the result that, at least locally, L is left invariant by
the holonomy group. In the real analytic case, this would mean that
the universal covering space M̃ of the manifold M in Theorem E has
a Euclidean de Rham factor of dimension (n − r), where r is the Ricci
rank of M .

Another key step in the proof of Theorem E is to show that the leaves
of L in M̃ actually close up, e.g., their images in M are compact. This
is parallel to the situation in the Eberlein theory on Euclidean de Rham
factors for nonpositively curved Riemannian manifolds ([10]–[13]). Here
one must show that the projection of the deck transformation group onto
the non-Euclidean de Rham factors is discrete (cf. Claim 1 in §4). To
this end, we make use of the partial stability of the tangent bundle of M
(which boils down to the maximum principle). Although the techniques
in accomplishing this key step (Claim 1) are totally different from the
Riemannian case, the geometric flavor is remarkably similar. In fact,
the Eberlein theory has been the guiding spirit in our quest here.

Some of the results of this article were announced in [40] and [49].

2. Holomorphicity of the Ricci kernel foliation

We first fix the notation and terminology. The basic reference is
[50].

Let (Mn, g) be a Kähler manifold with nonpositive bisectional cur-
vature. Denote by ρ the Ricci (1, 1)-form. It is negative semi-definite
everywhere on M . Denote by r the maximum of the (complex) rank of
ρ, and by U ⊆M the open subset where ρ has rank r. We say that M
has degenerate Ricci if r < n. That is, if the Ricci tensor is nowhere
negative definite. In this case, denote by L the distribution in U given
by the kernel of ρ.

By linear algebra, the nonpositivity of the bisectional curvature im-
plies thatX ∈ L if and only if R(X, ∗, ∗, ∗) ≡ 0, where R is the curvature
tensor (see [40]). So L is the kernel of the curvature tensor. Thus it is
a foliation, whose leaves are totally geodesic, flat complex submanifolds
of U . By a theorem of Ferus [16], each leaf of L is complete if M is
complete.

We shall refer to r as the Ricci rank and L the Ricci kernel foliation
of Mn.

In general, the complex foliation L may not be holomorphic, i.e.,
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even though the leaves of L are complex submanifolds, they may not
vary holomorphically from leaf to leaf. More precisely, the leaves of L
being complex submanifolds means that locally, there are n − r C∞

vector fields V1, . . . , Vn−r of type (1, 0) so that they are linearly inde-
pendent and span the fibers of L at each point. Then by definition, L is
holomorphic if the {Vi} can be chosen to be holomorphic vector fields.
When Mn is complete, Theorem A following says that L is always a
holomorphic foliation. In case the leaves of L are one dimensional, The-
orem A is implied by (the completeness of the leaves and) a result due
to Burns (Theorem 3.1 and Corollary 3.2 in [4]), where he studied the
more general Monge-Ampere foliations. When M has nonpositive sec-
tional curvature, Theorem A was proved in [48] (in this case, L is left
invariant by the holonomy group). The proof there also implies the case
where the leaves of L are (n−1) dimensional.

Theorem A. If (Mn, g) is a complete Kähler manifold with non-
positive bisectional curvature, then its Ricci kernel foliation L is a holo-
morphic foliation.

Proof. Since the proof is somewhat long, we divide it into two parts.
In the first part, we use the completeness of the leaves of L and equations
arising from the geometry of the situation to obtain Condition (�) below
which must be satisfied by conullity operators of the form CaT+bJT , and
to find a basis relative to which CaT+bJT assumes a particularly simple
form. It will turn out that L is holomorphic iff the sub-matrix B in the
matrix of CaT+bJT below is zero (see (1)). In the second half of the proof,
we use certain differential equations along a leaf of L to show that, if
B is not zero, then Condition (�) would be violated. The contradiction
then completes the proof. q.e.d.

We begin by setting things up the same way as in the proof of
Theorem 3 in [48], with minor modifications to suit our situation here.
Let us denote by L⊥ the distribution (of type (1, 0) tangent vectors) in
U representing the orthogonal complement of L. Also denote by F and
F⊥ the underlying real distribution of L or L⊥. F is of real rank 2r.

Recall that the conullity operator of a totally geodesic foliation F in
a Riemannian manifold is defined by (cf. [2], [7])

CT (X) = −(∇X T̃ )⊥

where T and X are tangent vectors in F and F⊥, respectively, and T̃
is a local vector field in F extending T . Here Y ⊥ stands for the F⊥-
component of Y . These operators are well-defined tensors, and satisfy
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the Riccati type equations

∇TCS = CS ◦ CT − C∇T S − {R(T, ·)S}⊥

for any two vector fields T and S in F . In our case, the curvature term
vanishes, and if we choose S to be parallel in each leaf of F , then the
above equation becomes

∇TCS = CS ◦ CT .

In particular, along any geodesic γ(t) contained in a leaf F of F , one
has the Riccati equation:

∇TCT = (CT )2

where T = γ′(t). Since each F is complete by Ferus’ theorem [16], the
Riccati equation has the following consequence: at each point of U , CT

for any T ∈ F cannot have nonzero real eigenvalues (cf. [40]; this is an
observation implicit in [2] and explicitly pointed out by [7]).

For T ∈ F , extend CT linearly over C to the complexification

F⊥ ⊗ C = L⊥ ⊕ L⊥.

Choose a local frame {ei, ei}r
i=1 such that each ei ∈ L⊥. Write CT (ei) =∑

j Aijej +Bijej , then the matrix of CT relative to the basis {e, e} is

CT =
[
A B

B A

]
, and CJT = JCT =

√−1
[
A −B
B −A

]

where J is the almost complex structure of M . For any real numbers a
and b, write λ = a+

√−1b, we have

CaT+bJT =
[
λA λB

λB λA

]
.(1)

Therefore, by the same reasoning using the Riccati equation, we have
the following:

Condition (�). For any λ ∈ C, the above (2r×2r) matrix CaT+bJT

in A, B has no nonzero real eigenvalue at any point of U .

This condition will be the focus of our discussion below.
Note that A and B represents the holomorphic and anti-holomorphic

part of the conullity operator CT . By a simple argument (see [40]), L
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being holomorphic is equivalent to B = 0 for any T ∈ Fx at any x ∈ U .
Our goal is therefore to show that B = 0.

(As a side remark, when r = 1, it is easy to see that Condition (�)
already implies that A = B = 0, so L is holomorphic (and the fibers of
L are locally invariant subspaces of the holonomy group) in this case. In
particular, if Mn is a complete complex submanifold of CN with Ricci
rank (which equals the Gauss rank) 1, then it must be a cylinder, this is
known as the Abe’s cylinder theorem ([1]), which is the complex version
of the classical Hartman-Nirenberg cylinder theorem ([20]).)

Fix any x ∈ U and T ∈ Fx. In order to show that B = 0 at the
point x, first we will find a a basis {ei}r

i=1 of V = L⊥
x relative to which

the matrices A and B look particularly simple. To this end, we need to
make use of the interaction between A, B and the curvature tensor.

Let us take a local tangent frame {ei, eα} of Mn of type (1, 0) near
x, such that each ei ∈ L⊥, each eα ∈ L, and T = en + en. We will fix
the range of indices as follows.

1 ≤ i, j, · · · ≤ r ; r+1 ≤ α, β, · · · ≤ n.

Denote by θ, Θ the matrices of the connection and the curvature under
the frame e. We have

dϕ = ϕ ∧ θ, dθ = Θ + θ ∧ θ
where ϕ = (ϕ1, . . . , ϕn) is the row vector of the coframe dual to e. We
have

θαi = −
∑

k

(Aα
kiϕk +Bα

ki
ϕk)

where Aα, Bα are the matrices which appear in the matrix of CT α for
Tα = eα + eα as before. Here and below we are only interested in the
case α = n, so the superscript α will be omitted in the following.

Write Ωab =
∑n

c=1 Θacg(ec, eb). Then

Ωab =
n∑

c,d=1

Rabcd ϕc ∧ ϕd

where Rabcd = R(ea, eb, ec, ed) are the components of the curvature ten-
sor with respect to the frame e. We have Ωα∗ = Ω∗α = 0 so the second
Bianchi identity implies that

r∑
j=1

θαj ∧ Ωjk = 0
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for any α and k. That is,∑
i,j

Aα
ijϕi ∧ Ωjk = 0,

∑
i,j

Bα
ij
ϕi ∧ Ωjk = 0.

Specialize to α = n, the above identities are equivalent to∑
j

(AijRjkpl −ApjRjkil) = 0(2)

∑
j

(BijRjkpl −BljRjkpi) = 0(3)

for any i, p, k, l. Let H = {Hab} denote the matrix of the Ricci tensor
with respect to the basis {e, e}. Using the symmetries of the curvature
tensor, we get:

(BH)ik =
∑

j

BijHjk =
∑
i,l

BijRjkll =
∑
j,l

BijRjllk

=
∑
j,l

BkjRjlli (by (3))

=
∑
j,l

BkjRjill =
∑

j

BkjHji = (tHtB)ik.

Hence,

BH = t(BH).

Since H is negative definite on V = L⊥
x , there will be basis of V under

which H = −I. With respect to this basis, the matrix B becomes a
complex symmetric matrix. It is well-known that for any given complex
symmetric matrix B, there exists a unitary matrix Q such that tQBQ
is diagonal, and with nonnegative diagonal entries (cf. [6], p. 28). Writ-
ing P for tQ, we have proved that PBP−1 is a diagonal matrix with
nonnegative diagonal entries.

Define a new basis {εi} in V using P above, so that εi =
∑

j Pijej .
Then with respect to {εi}, the matrix of CaT+bJT in (1) is now

CaT+bJT =
[
λAε λBε

λBε λAε

]
(4)

where

Aε = PAP−1, Bε = PBP−1.
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So the matrix of CaT+bJT with respect to {εi} will have the property
that the two off-diagonal blocks are diagonal matrices with nonnega-
tive diagonal entries. From now on, we may assume for the sake of
notational simplicity that {εi} is just {ei} so that with respect to {ei},
B = diag{b1, . . . , br}, where b1 ≥ · · · ≥ br ≥ 0. Denote by

V = V1 ⊕ · · · ⊕ Vs

the decomposition of V into eigen-spaces corresponding to distinct eigen-
values b1 > b2 > · · · > bs.

For any 1 ≤ a < b ≤ s, and any ei ∈ Va, el ∈ Vb, we claim that
Ail = 0. To see this, we use Equation (3) and the fact that Bij = biδij
for all i, j to get

biRilpk = blRlipk.

For any vector Z =
∑

k Zkek in V , if we multiply the preceding equation
by ZpZk and sum over p and k, we obtain

biR(ei, el, Z, Z) = blR(el, ei, Z, Z).

Noting that R(el, ei, Z, Z) is the complex conjugate of R(ei, el, Z, Z),
and that bi and bl are distinct real numbers, taking the absolute value
of both sides gives R(ei, el, Z, Z) = 0 for any Z ∈ V and for any i �= l.
If now p and k are any two integers among 1, . . . , r, then

R(ei, el, ep + zek, ep + zek) = 0

for any complex number z. Expanding by linearity and taking derivative
with respect to z then give

Rilpk = 0 for all p, k, and i �= l.

Applying this to Equation (2) still with i �= l, we have
∑

j AijRjlpk = 0
for all p, k. Setting p = k and summing over p lead to

∑
j AijHjl = 0,

where Hjl are the components of the Ricci tensor as above. Again, H
being negative definite on V , we finally get Ail = 0 for i �= l.

We have proved that A is block diagonal with respect to {e}. There-
fore in order to check Condition (�), we may simply check it on a sub-
space Va (1 ≤ a ≤ s), in which B = hI for some h ≥ 0. This concludes
our discussion of the first half of the proof.

In the second half, we will show that if the constant h in B = hI is
positive, then Condition (�) would be violated. Therefore B must be 0,
and Theorem A is proved.
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With the chosen point x as above, let γ(t), t ∈ R be the geodesic
with γ(0) = x and γ′(0) = T . We now parallel translate the frame
{ei, eα} of V parallelly along γ to {ei(t), eα(t)} at γ(t). The parallel
translate of T is of course just γ′(t), which will continue to be denoted
simply by T since there is no danger of confusion. Now along γ, we
have the analogue of (1) for the conullity operator CaT+bJT (t) at each
γ(t) with respect to the parallel frame {e(t)}:

CaT+bJT (t) =
[
λA(t) λB(t)
λB(t) λA(t)

]

where λ = a +
√−1b and a, b are real. Then for each t, we can find,

as before, a matrix Pij(t) and a new frame {εi(t)}, so that εi(t) =∑
j Pij(t)ej(t) and Aε(t) and Bε(t), the analogues of the matrices in (4),

are block diagonal, with the diagonal blocks ofBε(t) being (nonnegative)
scalar multiples of the identity matrix. Clearly, our previous argument
can be done in a smooth way so that Pij(t) is a smooth matrix function
of t and consequently {εi(t)} is a smooth frame along γ.

Since e(t) is parallel along γ, the Riccati equation satisfied by
CaT+bJT (t) has the consequence that

A′(t) = A(t)2 +B(t)B(t), B′(t) = B(t)A(t) +A(t)B(t)

where the derivatives are with respect to t. In the (rather extensive)
computations to follow, we will omit any reference to t in the interest
of notational economy. Then because Aε = PAP−1 and Bε = PBP−1

(see the equations below (4)), the above equations become

(Aε)′ = (Aε)2 +BεBε + SAε −AεS

(Bε)′ = BεAε +AεBε + SBε −BεS,

where S = P ′P−1. Now assume that B �= 0. Denote by A1, B1 and
S1 the first diagonal block of Aε, Bε and S. We have B1 = hI and
h(0) > 0 (we note explicitly that h now denotes a function of t). The
first diagonal block of the above equations says that

A′
1 = A2

1 + h2I + S1A1 −A1S1

h′I = h(A1 +A1) + h(S1 − S1).

By looking at the real and imaginary parts, the second equation says
that

h′I = h(A1 +A1), h(S1 − S1) = 0.
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The first equation and the uniqueness theorem for first order ODE imply
that h must be nowhere zero (because h(0) > 0). Thus h(t) > 0 for all
t ∈ R. By the second equation, S1 is real.

Define the function
f =

1
2

log h.

Then the equation h′I = h(A1 +A1) implies that we can decompose A1

into real and imaginary parts as A1 = f ′I + ihD for a real matrix D.
Substituting this expression of A1 into A′

1 = A2
1 + h2I + S1A1 − A1S1

and equating the real and imaginary parts of both sides, we have

D2 =
(

1 +
f ′2 − f ′′

h2

)
I

D′ = Q1D −DQ1.

Taking the derivative of D2, and making use of the formula for D′, we
get (

1 +
f ′2 − f ′′

h2

)′
= 0.

Thus
f ′2 − f ′′

h2
= c

for some constant c. We claim that c ≥ 0.
To prove this claim, rewrite the equation as f ′2 − f ′′ = ce4f , or

y′′ = cy−3, where y = e−f = 1/
√
h > 0.

Either c = 0 or c �= 0. Suppose first that c = 0. In that case, y′′ = 0
and y(t) = c1t + c2. Since y > 0 on the real line, we must have c1 = 0
and c2 > 0. Thus c = 0 implies that f and h are constant and D2 = I.
Suppose c �= 0. Then multiplying both sides of y′′ = cy−3 by y′ and
integrating, we obtain

(y′)2 =
−c
y2

+ c1,

so that
yy′ = ±

√
−c+ c1y2

Since c �= 0, y is not a constant, thus c1 �= 0. By solving the above
equation, we get

y2 =
1
c1

[c+ (c2 ± c1t)2]
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for some constant c2. In order to have y > 0 for all t, it is necessary to
have c1 > 0 and c > 0. Therefore we have proved the claim that c ≥ 0.

To summarize up to this point, we have proved that

A1 = f ′I + ihD and D2 = (1 + c)I(5)

for some constant c ≥ 0. To obtain a contradiction, we next claim
that for each t, there exists a complex number λ(t) such that 1 is an
eigenvalue of the matrix[

λ(t)A1(t) λ(t)h(t)I
λ(t)h(t)I λ(t)A1(t)

]
.

This of course will contradict Condition (�).
Now fix a t and, with this understood, we will suppress any reference

to t in the following argument. The preceding claim is seen by a direct
computation to be equivalent to the assertion that 0 is an eigenvalue of

(I − λA1)(I − λA1) − |λ|2h2I.

Substituting the values of A1 and D in (5) into this expression, we
get ψI + 2�(λ)hD, where � denotes the imaginary part of a complex
number and

ψ = 1 + (ch2 + f ′2)|λ|2 − 2Re(λ)f ′.

Since D2 = (1 + c)I by (5), D will have an eigenvalue ε
√

1 + c, with
ε = 1 or −1. Thus ψI+2�(λ)hD has 0 as an eigenvalue iff there exists
λ ∈ C such that

ψ + 2�(λ)hε
√

1 + c = 0.

We now show that such is the case.
Write λ = su− iεu, where s, u are real, then the preceding equation

in ψ becomes a quadratic equation in u,

αu2 − 2βu+ 1 = 0,(6)

with

α = (1 + s2)(ch2 + f ′2) > 0, β = sf ′ + h
√

1 + c.

First, suppose c = 0. We know that f ′ = 0 and therefore α = 0, so
Equation (6) becomes −2hu + 1 = 0, which has the obvious solution
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u = 1/(2h). Now let us assume that c > 0. If we let s = f ′√1+c
ch , then

β > 0, and

β2 − α = (sf ′ + h
√

1 + c)2 − (1 + s2)(ch2 + f ′2)

= h2 − f ′2 + 2sf ′h
√

1 + c− s2ch2

= h2 +
f ′2

c
> 0.

So the quadratic Equation (6) in u will have real solutions. This con-
cludes the proof of Theorem A. q.e.d.

3. Local splitting when curvature is bounded

In this section, we will show that if Mn in Theorem A also has
bounded curvature, then the nearby leaves of L are all parallel to each
other, in a sense to be made precise.

Recall that a function f on a complete Riemannian manifold M is
said to have sub-k growth, if

lim
i→∞

|f(xi)|
dk(xi, x0)

= 0

for any sequence {xi} in M with the distance d(xi, x0) going to infinity.
Here x0 is a fixed point. If k = 2, then it is more common to say that
f has sub-quadratic growth.

We say that the leaves of L vary parallelly if, within each connected
component Ua of U (the open set where the Ricci form has maximum
rank r), parallel translation from one point ofM to another maps L onto
itself. We would at times express this fact more informally by saying
that the leaves of L in Ua are parallel to each other. From the definition
of the conullity operator, this is the same as saying that, within Ua, all
the conullity operators of L vanish. In terms of the holonomy group of
Ua, this is also equivalent to the fact that each fiber Lp is an invariant
subspace of the (restricted) holonomy group of Ua. By the de Rham
decomposition theorem, each point of Ua would have a neighborhood
which splits holomorphically and isometrically as L×Y r where L is flat
and Y has dimension r if the leaves of L vary parallelly (cf. the proof
of the de Rham decomposition theorem for Kähler manifolds on p. 172
of [25]). The theorem we are after is then the following:
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Theorem B. Let Mn be a complete Kähler manifold with nonpos-
itive bisectional curvature, with Ricci rank r < n, such that its scalar
curvature s has sub-quadratic growth. Then the leaves of the Ricci kernel
foliation L vary parallelly.

Proof. Let l ≥ 0 be the smallest integer such that C l+1
T = 0 for all

conullity operator CT . The idea of the proof is to show that the scalar
curvature s will grow roughly like d2l. In particular, if l ≥ 1, then s
grows at least like d2 and is therefore not sub-quadratic, contradiction.
Therefore l = 0 and all conullity operators vanish. The leaves of L are
thus parallel to each other within each component of U .

Fix a point x ∈ U and a real tangent direction T at x such that T ∈ L
and C l

T �= 0. Write v = 1
2(T − √−1JT ), and denote by f : C → Lx

(where by abuse of notation we are now using Lx to denote the leaf
of L passing through x) the holomorphic isometric immersion so that
f(0) = x and f ′(0) = v. Let {ei}r

i=1 be a basis of L⊥
x . Since the bundle

f∗L⊥ is flat, we can extend v and {ei} parallelly along C, and have
∇vei = ∇vei = 0. We will use t to denote the standard holomorphic
coordinate of C. Because Rv∗∗∗ = 0, the second Bianchi identity implies
that

∇vRXY ZW = R(CvX)Y ZW +RX(CvY )ZW

if X, Y , Z, W are parallel along f(C). So the Ricci tensor H satisfies

∇tHij =
r∑

k=1

AikHkj , ∇tHij =
r∑

k=1

HikAjk

(where we continue to observe the convention on the range of indices:
1 ≤ i, j, . . . ,≤ r) and ∇tA = A2, ∇tA = 0. Here Cv(ei) = Aijej .
Clearly,

A = (I − tA0)−1A0, H = (I − tA0)−1H0(I − tA∗
0)

−1

are solutions (A∗
0 denotes the conjugate transpose of A0). Note that

along any geodesic starting from 0, the uniqueness of the solution H
given above is guaranteed by that of the first order system of ODEs.
Thus on C, we have

H =
l∑

i,j=0

tit
j
Ai

0H0(A∗
0)

j .
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Since the matrix Al
0H0(Al

0)
∗ is nonpositive, and Al

0 �= 0, H0 < 0, we
know that the trace of Al

0H0(Al
0)

∗ is negative. So the scalar curvature
s, which is the trace of H, has leading term c|t|2l with c < 0. Since
|t| dominates (a constant multiple of) the distance function d (from x)
in M , this means that s grows like d2l. As previously mentioned, if
l ≥ 1, this would contradict the assumption of sub-quadratic growth on
s. q.e.d.

Corollary C. If Mn is a compact Kähler manifold with nonpositive
bisectional curvature which has Ricci rank r < n, then the open set U
in which the Ricci tensor has maximum rank r in the universal cover
M̃ of M is, locally, holomorphically isometric to La × Ya, where La

is a complete flat Kähler manifold, and Ya is a Kähler manifold with
nonpositive bisectional curvature and negative Ricci curvature.

In particular, if the metric of M is real analytic, then M̃ = Cn−r×Y r

with Y a simply-connected, complete Kähler manifold with nonpositive
bisectional curvature and quasi-negative Ricci curvature.

Recall that the term quasi-negative for a tensor means that the ten-
sor is nonpositive everywhere and negative definite somewhere. The last
assertion about an M with a real analytic metric follows from Nijenhuis’
theorem about real analytic Riemannian manifolds ([24], Theorem 10.8
on p. 101). Indeed, the leaves of L within each component of U being
parallel to each other, the local holonomy groups of M leave L invariant.
But the real analyticity of the metric implies that the holonomy group
of M itself coincides with the local holonomy groups, by Nijenhuis’ the-
orem, so L is globally invariant under the holonomy group. By the de
Rham decomposition theorem, the assertion follows.

As a special case, if Mn ⊆ Cn+p is a complex submanifold, equipped
with the restriction of a complex Euclidean metric, then Mn has non-
positive bisectional curvature, and its Ricci rank r is equal to its Gauss
rank, i.e., the dimension of the image of the Gauss map, which sends
a point x ∈ M to the tangent space TxM , considered as a point in the
Grassmannian GrC(n, n+p). So as a special case of Theorem B, we have
the following:

Corollary D. Let Mn ⊆ Cn+p be a complex submanifold equipped
with the restriction of an Euclidean metric. If Mn is complete, with
Gauss rank r < n, and the scalar curvature of M has sub-quadratic
growth, then Mn is a cylinder: Mn = Cn−r×N r, where N r ⊆ Cn−r+p

(with Gauss rank r).
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Of course the immersed case goes as well. For Euclidean submanifold
Mn ⊆ Cn+p with Gauss rank r < n, the Ricci kernel foliation L is
just the Gauss foliation, i.e., the kernel of the differential of the Gauss
map. So L is automatically a holomorphic foliation (even without the
completeness assumption). So the proof of Corollary D actually does
not need Theorem A, and is thus much easier.

Corollary D may be considered to be a cylinder theorem. Other
types of cylinder theorems and related topics are discussed in [17], [38]
and [39].

4. A splitting theorem for compact manifolds

Our goal of this section is to prove the following theorem, which
partially confirms a conjecture of Yau (see §1) and is the main result of
this article.

Theorem E. Let Mn be a compact Kähler manifold with real an-
alytic metric and nonpositive bisectional curvature. Denote by r its
Ricci rank. Then there exists a finite covering M ′ of M , such that
q : M ′ → N r is a holomorphic fiber bundle over a compact Kähler man-
ifold N r with nonpositive bisectional curvature and c1(N) < 0, while the
fiber of q is a complex (n−r) torus T .

Furthermore, M ′ is diffeomorphic to T×N , and q is a metric bundle,
i.e., ∀ x ∈ N , there exists a small neighborhood x ∈ V ⊆ N such that
q−1(V ) is isometric to T×V .

Proof. When r = n, the canonical line bundle KM of M is nef and
big. If KM is not ample, then the result of Kawamata [22] would imply
that M contains a rational curve. But this is impossible since M has
nonpositive bisectional curvature. Therefore, KM must be ample, that
is, c1(M) < 0.

In the following, let us assume that r < n. By Corollary C, we know
that the universal covering space M̃ of M is holomorphically isometric
to Cn−r×Y r, where Y r is a simply-connected, complete Kähler mani-
fold with nonpositive bisectional curvature, and the Ricci tensor of Y r

is negative definite somewhere. Denote by Γ the deck transformation
group, and by I1, I2 the group of holomorphic isometries of Cn−r and
Y r, respectively.

Since any f ∈ Γ has to preserve the product structure, it is in the
form f = (f1, f2), where fi ∈ Ii, i = 1, 2. Denote by pi : Γ → Ii the
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projection map, and by Γi = pi(Γ) the image groups for i = 1, 2. The
main point in the proof of Theorem E is to show that:

Claim 1. The group Γ2 is discrete.

After Claim 1 is established, the rest of the argument will follow
the proof of the main theorem in [10]. For completeness and for the
convenience of the reader, we give an outline of this argument as well,
but the credit here is due to Eberlein. Let us assume Claim 1 and finish
the proof first. Following Eberlein [10], we claim that:

Claim 2. There exists a finite index subgroup Γ′ ⊆ Γ such that Γ′
2

acts freely on Y , and Γ′
1 contains translations only. Here Γ′

i = pi(Γ′),
i = 1, 2.

To see this, notice that by Claim 1, we have a compact complex
analytic space Z = Y/Γ2 and a surjective holomorphic map M → Z

induced by the projection map M̃ → Y . Denote by K×{1} ⊆ Γ the
kernel of p2 : Γ → Γ2, then K ⊆ Γ1 is a discrete group of isometry on
Cn−r, with compact quotient because the fibers of M → Z are compact.

Let K0 ⊆ K be the intersection K ∩A with the translation group A
of Cn−r, then K0

∼= Z2n−2r, and T = Cn−r/K0 is a complex torus. Since
both K and A are normalized by Γ1, so is K0. That is, for any f1 ∈ Γ1

with f1(x) = Bx + a, the unitary matrix B must preserve the lattice
K0. So all these B form a finite group Ψ.

If we replace Γ by the kernel of the composition Γ → Γ1 → Ψ, which
has finite index in Γ, then we may assume that Γ1 contains translations
only. For the sake of simplicity, we will continue to denote this subgroup
by Γ. But keep in mind that it may be a finite index subgroup in the
original Γ.

Consider the homomorphism ρ : Γ2 → T , defined by ρ(f2) = [f1].
Here we identified the translation group A with Cn−r itself. Then the
image ρ(Γ2) is a finitely generated abelian group. Its torsion part is
therefore a finite group. Write Γ′ for the kernel of the map from Γ to
the torsion part of ρ(Γ2), then Γ′ has finite index in Γ, and clearly Γ′

1

still contains translations only, and ρ(Γ′
2) is torsion free. It is easy to see

that the latter means that Γ′
2 acts freely on Y . So Claim 2 is proved.

By Claim 2, we have a finite covering M ′ = M̃/Γ′ of M , and a
holomorphic surjection q : M ′ → N induced by the projection of M̃
to Y . Here N = Y/Γ′

2 is a compact Kähler manifold. q makes M ′ a
holomorphic fiber bundle over N with the fiber being a complex torus
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T . M is also isometrically a (flat torus) fiber bundle over N .
The proofs of Lemma 2 and Lemma 4 of [10] can be carried over

without any modification, so M ′ is diffeomorphic to T×N . To do this,
one first lifts ρ to a homomorphism ρ̃ : Γ′

2 → A, which is possible because
the image of ρ is torsion free, then by the fact that A is contractible, one
can use a triangulation of N to construct a smooth map F : Y → Cn−r

such that F (f2(y)) = F (y)+ ρ̃(f2) for any f2 ∈ Γ′
2 and any y ∈ Y . So

the diffeomorphism

([x], y) �→ ([x]+F (y), y)

of T×Y descends to a diffeomorphism between T×N and M ′. We refer
the readers to Eberlein’s paper [10] and the references therein for the
details of the post-Claim 1 arguments.

Now let us focus on Claim 1. We will use an idea of Nadel [34], in
which he proved that the automorphism group of the universal covering
space of a projective manifold with c1 < 0 must be semi-simple. Here
our M does not have c1 < 0, but the splitting result in Corollary C will
enable the stability argument to go through.

Following Eberlein ([12], p. 215), let us consider the group G which
is the closure of Γ·A in the isometry group of M̃ . Here as before, A is the
translation group of Cn−r. Since A is a normal abelian subgroup of the
Lie group G, the identity component G0 of G is solvable by Zassenhaus’
Lemma ([3], p. 149). So p2(G0) is a solvable group where, as usual, p2

is the projection into the group of holomorphic isometries of Y .
If p2(G0) = {1}, then it is not hard to see that Γ2 must be discrete

(see for instance p. 25 of [10]). So let us assume that p2(G0) �= {1} and
will derive a contradiction. Let A∗ be the last nonidentity subgroup in
the derived series for p2(G0). Then A∗ is abelian, and is normalized by
Γ2 since p2(G0) is so.

Denote by V the Lie algebra of A∗ ⊆ Aut(M̃). Then V is a nontriv-
ial, Γ-invariant, finite dimensional complex vector space. Take a basis
v1, . . . , vk of V , and view them as holomorphic vector fields on M̃ . Then
by Theorem 3.1 of [34], they cannot be linearly dependent over the field
of meromorphic functions on M̃ . That is, at a generic point p ∈ M̃ ,
v1(p), . . . , vk(p) are linearly independent over C.

Note that we can restrict our considerations to {x}×Y for a generic
x, and use the fact that Y has negative Ricci curvature near p. Each vi

is tangent to the Y directions, so Theorem 3.1 of [34] applies.
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Since A∗ is normalized by Γ2 thus Γ, V will be Γ-invariant, that is,
we have a representation

ρ : Γ → GL(V ).

Let E be the flat holomorphic vector bundle over M given by the rep-
resentation ρ, that is, E is the quotient of M̃×V by Γ acting as

f(p, v) = (f(p), ρ(f)(v))

for any f ∈ Γ. Denote by T2 ⊆ TM the subbundle of the holomorphic
tangent bundle of M corresponding to the Y factor. The map

(p, v) �→ vp

descends to a holomorphic map ϕ : E → T2. At a generic point p ∈M ,
the vectors v1(p), . . . , vk(p) are linearly independent, so ϕ is injective at
p.

Consider the determinant line bundle ΛkE onM . It has c1(ΛkE) = 0
in the de Rham cohomology group since it comes from a representation
of π1(M). That is, if h is any Hermitian metric on it, its curvature
form Θh, which is a pure imaginary closed (1, 1) form on M , would be
d-exact. Since M is compact Kähler, by the ∂∂-lemma, we know that

Θh = ∂∂f

for some smooth real function f . So the Hermitian metric h0 = efh on
the line bundle would have zero curvature: Θh0 ≡ 0.

Take the k-th wedge product of ϕ, we get a holomorphic sheaf map
Λkϕ : ΛkE → ΛkT2. This means that the bundle F := (ΛkE)−1 ⊗ ΛkT2

has a nontrivial global holomorphic section σ ∈ H0(M,F ).
Let us equip ΛkE with the metric h0, and equip ΛkT2 with the

induced metric from the original Kähler metric on M . This way F
becomes a Hermitian vector bundle. It is easy to see that it has non-
positive curvature in the sense that Θww is a nonpositive (1, 1) form for
any section w of F . Furthermore, at a generic point p ∈M , there exists
a vector w ∈ Fp and tangent direction z ∈ TpM such that Θww(z, z) < 0.
The last part is caused by the negativity of the Ricci tensor in the T2

directions at a generic point p ∈M .
So if we apply Hopf’s maximum principle and the standard Bochner

identity to the Laplacian of the function |σ|2 on M , the curvature con-
dition would imply that σ is parallel, and is actually identically zero.
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This of course will be a contradiction. Here we used the fact that, the
curvature of F is given by

ΘF
σσ = Θe1e1 + · · · + Θekek

where Θ is the curvature form of T2 ⊆ TM , σ = τ ⊗ e, with τ a local
section of (ΛkE)−1 and e = e1 ∧ · · · ∧ ek is a local section of ΛkT2.

This type of simple-minded application of the Bochner technique was
first made in [26]. It can also be found on p. 52 of [23] (cf. Theorem 1.9
and 1.10). This completes the proof of Claim 1, and thus of Theorem E.

q.e.d.

Remark. First of all, note that in Theorem E, any finite cover of
M ′ is also a holomorphic and metric fiber bundle with flat torus fiber
over a compact Kähler manifold with c1 < 0.

Secondly, by a theorem of Sid Frankel [18], any projective manifold
N with c1(N) < 0 admits a finite cover in the form N1×N2, where N1

is a locally Hermitian symmetric space, and the automorphism group
of the universal cover of N2 is discrete. (Of course N1 or N2 does not
have to appear). So one can state a combination of this with Theorem
E, which we will omit here.

The third point is that the M ′ in Theorem E (or any other finite
cover of M) may not be biholomorphically a product (of T with N),
even though it is diffeomorphic to the product space. This will happen
when the image of ρ is infinite. The first such construction (where N
is a compact Riemann surface of genus g ≥ 2) is given by Lawson and
Yau in [27].

Finally, for the product M of two compact complex manifolds, the
space of all Kähler metrics on M with nonpositive bisectional curva-
ture is characterized by the product of the corresponding spaces for the
factors, extended by the shift of global holomorphic 1-forms (cf. [46]
for more details). When M is a holomorphic fiber bundle or fibration,
similar characterizations occur (cf. the paper by Paul Yang [41]).

It is difficult to imagine that the real analyticity assumption in The-
orem E is anything but a technical one, although we do not know how to
remove it at this point and time. In other words, we believe that Yau’s
conjecture stated in §1 should hold true in its full generality. In fact,
in light of Demailly’s notion of nefness for holomorphic vector bundles
over a compact Kähler manifold, and the reduction theorem of Demailly,
Peternell and Schneider [8], we propose the following conjecture which
is a slight generalization of Yau’s:
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Generalized Yau’s Conjecture. Let Mn be a compact Kähler
manifold with nef cotangent bundle in the sense of Demailly. Denote
by κ its Kodaira dimension. Then there exists a finite covering M ′ of
M , such that M ′ is a holomorphic fibration without singular fibers over
a projective manifold Nκ of dimension κ, each fiber is a complex torus,
and c1(N) < 0.

Let us assume that this conjecture is true. IfMn is a compact Kähler
manifold with nonpositive bisectional curvature and Kodaira dimension
κ, then M has nef cotangent bundle. The truth of the conjecture now
implies that there exists a holomorphic fibration f : M ′ → Nκ where
M ′ is a finite cover of M , c1(N) < 0, and each fiber of f is a nonsingu-
lar complex torus. Since M ′ also has nonpositive bisectional curvature
(with the pull back metric from M), any complex torus embedded in
M ′ must be flat and totally geodesic. By Yang’s result [41], f is a met-
ric bundle, that is, for any p ∈ N , there exists a small neighborhood
p ∈ U ⊆ N such that f−1(U) is isometric to a product T × V where T
is a fiber of f . We can define a metric on U by identifying it with V . It
is not hard to see that this will patch up nicely to give a Kähler metric
on N which has nonpositive bisectional curvature. Since c1(N) < 0, the
Ricci tensor of N has to be negative definite somewhere, thus the Ricci
rank of M ′ (hence of M) is equal to κ.

Thus, an affirmative answer to the above conjecture implies Yau’s
conjecture. This justifies its name.

So far, very little is known about the Generalized Yau’s Conjecture
except in the low dimensional cases (e.g., when n is 2 or 3), where the
classification theory could kick in to help. In [45], Zhang had some
interesting results on related topics. He also formulated the following
conjecture: for a projective manifold with nef cotangent bundle, the
canonical line bundle K is ample if and only if χ(K) > 0. In [45], he
was able to confirm this for n ≤ 4.
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