
Ashdin Publishing
Journal of Physical Mathematics
Vol. 2 (2010), Article ID P100803, 22 pages
doi:10.4303/jpm/P100803

On deformed quantum mechanical schemes and

?-value equations based on the space-space

noncommutative Heisenberg-Weyl group
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Abstract

We investigate the Weyl-Wigner-Gröenewold-Moyal, the Stratonovich, and the
Berezin group quantization schemes for the space-space noncommutative Heisenberg-
Weyl group. We show that the ?-product for the deformed algebra of Weyl functions for
the first scheme is different than that for the other two, even though their respective
quantum mechanics’ are equivalent as far as expectation values are concerned, provided
that some additional criteria are imposed on the implementation of this process. We
also show that it is the ?-product associated with the Stratonovich and the Berezin
formalisms that correctly gives the Weyl symbol of a product of operators in terms of
the deformed product of their corresponding Weyl symbols. To conclude, we derive the
stronger ?-valued equations for the 3 quantization schemes considered and discuss the
criteria that are also needed for them to exist.
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1 Introduction

It is well known [15, 16, 27, 34, 35, 36] that for nonrelativistic standard quantum mechan-
ics, the expectation value of an operator on Hilbert space can be formally represented as a
statistical-like average of the corresponding Weyl phase-space function with the statistical
density given by the Wigner function associated with the density matrix of the quantum
state. Moreover, when applying this scheme to a product of two arbitrary operator functions
of the quantum position and momentum operators, their corresponding Weyl phase-space
function was given by the exponential of the Poisson bidifferential acting on the Weyl equiv-
alent of each of the two operators. This correspondence between the product of quantum
operators and the twisted product of their classical phase-space equivalents can be viewed
as a deformation of the point product in the algebra A of C∞ phase-space functions with
the Gröenewold-Moyal multidifferential operator:

?~ := exp
[
i~
2

Λ
]

:= exp
[
i~
2

(←−
∇q ·

−→
∇p −

←−
∇p ·

−→
∇q

)]
,

inducing this deformation. This concept of a twisted product was given a more general mathe-
matical framework by Bayen et al. in [5], whose proposed deformation quantization paradigm
and noncommutative symbol calculus led to an autonomous reformulation of quantum theory
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directly in terms of phase-space functions, composed via the twisted or ?-product, instead
of operators and Hilbert space states.

While applications of the original Weyl-Wigner-Gröenewold-Moyal (WWGM) formalism
were restricted to the description of systems in flat phase space, the systems under con-
sideration in the more general deformation quantization scheme possess an intrinsic group
of symmetries with the phase-space being an homogenous manifold on which the group of
transformations acts transitively [2, 4, 12, 17, 18, 22, 23, 24, 25, 26]. This implies then the
possibility of extending the phase space approach to the “quantization” of curved spaces.
However, for the various known versions of deformation theory, there are a large variety of
?-products which in turn imply, in general, different quantum mechanical theories for the
same problem.

In order to deal with such nonuniqueness and arrive at a ?-product that would ensure
the physical equivalence of deformation quantization with the ordinary quantum mechan-
ics, the need for supplementary conditions has been suggested, so that the linear bijective
mapping between operators on Hilbert space and classical functions on phase space can be
implemented by a kernel operator which satisfies a number of physically sensible postulates
thus hopefully providing a scheme to single out the most adequate symbol calculus from the
many that have and could be proposed.

Moreover, such nonuniqueness becomes manifest even for quantum deformation schemes
with known equivalent ?-products in flat space-time standard quantum mechanics, when
space-space and/or space-time noncommutativity is incorporated into the formalism. This
noncommutative quantum mechanics and the behavior of classical fields, defined as functions
of noncommutative spatial variables, have been the object of a great deal of attention in the
last years. Physicists became attracted to the more mathematical aspects of deformation
quantization with the hope that such theories would provide the tools needed to remove the
singularities in physical field theories without the need of renormalization. Although these
expectations have not materialized up to now, noncommutative field theory and its quantum
mechanical minisuperspace have led to many new and interesting results. In particular, in
the context of string theory, there has been a lot of interest in studying solitonic solutions
of noncommutative field theory [3, 13, 14, 19, 30]. Also motivated by that work, but in a
somewhat different direction, coherent structures in the form of noncommutative solitons and
vortices were studied by the authors in a recent collaboration [21]. It was shown there that
the noncommutativity of the spatial variables, when averaged with vortex or plateau-type
coherent states, induced an effective lattice structure of Landau cells whose distribution and
size depended on the coherent states considered. This shows that the effect of the noncom-
mutativity on coherent structures, with an amplitude comparable to the scale parameter θ
of noncommutativity of the ?-product, is to induce a behavior of classical structures in a
physical lattice whose dynamics can be described in terms of a Peierls-Nabarro potential.
It would not be unreasonable to expect that such dynamical creation of lattice structures
as an effect of the noncommutativity on coherent states, which mathematically would be
reflected in the replacement of differential field equations by equations of differences, could
be related to another important quantization scheme known as loop quantum gravity. This
final objective forms part of an ongoing program initiated in [21], and it is within that much
wider context that the present work is intended.

Thus, in order to arrive at an identification of the ?-product appropriate for the above
mentioned program, we will here specifically start by extending the WWGM procedure in
order to analyze a space-space noncommutative Heisenberg-Weyl algebra (again, noncom-
mutativity being understood here as a nonvanishing commutator between the operators of
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spatial coordinates or momenta) in order to obtain the generalization of the well-known ex-
pressions of the Heisenberg-Weyl algebra of usual quantum mechanics. Afterwards, we will
apply to this same Lie algebra two quantization formalisms which are purportedly more
general and that were developed to provide a quantization scheme even for curved spaces.
The first one started with the work of Stratonovich [31] and was further developed elsewhere
[8, 11, 33]. The second corresponds to the Berezin geometric quantization program of co-
variant and contravariant symbols for Kähler manifolds [6]. Finally, we derive the additional
specific requirements that need to be imposed on these different schemes, in order to ob-
tain ?-valued equations which constitute a stronger quantization requirement, as they relate
eigenvalues of the physical states appearing in the density matrix to the Weyl equivalents of
the operator observables.

2 The WWGM phase-space quantum mechanics based on the
space-space noncommutative Heisenberg-Weyl Lie algebra

By a space-space (and/or momentum-momentum) noncommutative Heisenberg-Weyl alge-
bra, we understand [29] the algebra of position and momentum operators satisfying the
commutation relations:[

R̂i, R̂j
]

= iθij Î ,
[
P̂i, P̂j

]
= i~θ̄ij Î ,

[
R̂i, P̂j

]
= i~δij Î , (2.1)

where R̂i, P̂i, i = 1, . . . , d are the components of the position and momentum quantum
operators, respectively, with component eigenvalues on Rd, the identity Î is the central
element of the algebra, and θij and θ̄ij are evidently antisymmetric matrices, which in the
most general case can be functions of the generators of the above algebra. For our present
purposes and algebraic simplicity, in what follows, we will set θ̄ij = 0 and d = 2 and consider
only the zeroth order constant term of the Taylor expansion of θ12 ≡ θ.

From an intrinsically noncommutative operator point of view, the development of a formu-
lation for the quantum mechanics based on the above Heisenberg-Weyl algebra of operators
requires first a specification of a representation for the generators of the algebra, second
a specification of the Hamiltonian which governs the time evolution of the system, and last
a specification of the Hilbert space on which these operators and the other observables of the
theory act. As for the choice of the Hilbert space, a reasonable assumption is that it can be
taken to be the same as that for the corresponding system in the usual quantum mechanics,
but for a realization of the space-space noncommutative Heisenberg-Weyl algebra, because
of the noncommutativity (2.1), we cannot use configuration space as a basis. We can use,
however, for a basis either of the eigenkets |p1, p2〉, |q1, p2〉, |q2, p1〉, of the commuting pairs
of observables (P̂1, P̂2), (R̂1, P̂2), or (R̂2, P̂1), respectively, or any combination of the (R,P )
such that they form a complete set of commuting observables.

Specifically, we choose as the realization of our Heisenberg-Weyl algebra the one based
on |q1, p2〉. The construction follows standard procedures (cf., e.g., [20]) and it is detailed in
[29]. We then have that R̂2 in this basis is realized by

R̂2 = −iθ∂q1 + i~∂p2 , (2.2)

P̂1 = −i~∂q1 . (2.3)

The representations for the remainder of the generators R̂1 and P̂2 of the algebra are obviously
just multiplicative. Note that the change of basis |q1, p2〉 → |q2, p1〉 follows directly from the
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transition function 〈q1, p2|q2, p1〉, which is derived [1] by noting that〈
q1, p2|R̂2|q2, p1

〉
= q2

〈
q1, p2

∣∣q2, p1

〉
= i
(
~∂p2 − θ∂q1

)〈
q1, p2|q2, p1

〉
,〈

q1, p2|P̂1|q2, p1

〉
= p1

〈
q1, p2|q2, p1

〉
= −i~∂q1

〈
q1, p2|q2, p1

〉
.

Combining these two expressions yields(
~q2 − θp1

)〈
q1, p2|q2, p1

〉
= i~∂p2

〈
q1, p2|q2, p1

〉
,

which can be readily solved to give, after normalization, the following:

〈
q1, p2|q2, p1

〉
=

1
2π~

exp
[
− i

~

(
q2p2 −

θ

~
p1p2 − q1p1

)]
. (2.4)

Since the displacement operators {(2π~)−1 exp[ i~(y · R̂ + x · P̂)]}, where x = (x1, x2),
y = (y1, y2), form a complete orthonormal set in the space-space noncommutative Heisenberg
algebra any Schrödinger operator (which may depend explicitly on time), A(P̂, R̂, t) can be
written as follows:

A
(
P̂, R̂, t

)
=
∫∫

dx dyα(x,y, t) exp
[
i

~

(
x · P̂ + y · R̂

)]
, (2.5)

where the c-function α(x,y, t) is determined by

α(x,y, t) = (2π~)−2 Tr
{
A
(
P̂, R̂, t

)
exp

[
− i

~
(
x · P̂ + y · R̂

)]}
. (2.6)

The Weyl function corresponding to the quantum operator A(P̂, R̂, t) is then given by

WA

(
p,q, t

)
=
∫∫

dx dyα(x,y, t) exp
[
i

~
(x · p + y · q)

]
=
∫∫

dx1dy2e
i
~ (x1p1+y2q2)

×
〈
q1 −

x1

2
− θy2

2~
, p2 +

y2

2
|Â|q1 +

x1

2
+
θy2

2~
, p2 −

y2

2

〉
.

(2.7)

To derive the expectation value of a product of two Schrödinger operators, one writes the
expectation value of the product in terms of the von Neumann density matrix ρ as follows:〈

Â1Â2

〉
= Tr

[
ρÂ1Â2

]
, (2.8)

and evaluates the trace in the above chosen basis. Thus by using completeness of the basis
|q1, p2〉 and substituting (2.5) for the operators Â1 and Â2, equation (2.8) then becomes

〈
Â1Â2

〉
=
∫
dx dy du dv dq1 dp2 dq

′
1 dp

′
2 dq

′′
1 dp

′′
2

〈
q1, p2|ρ|q′1, p′2

〉
α1(x,y, t)α2(u,v, t)

×
〈
q′1, p

′
2|e

i
~ (x·P̂+y·R̂)|q′′1 , p′′2

〉〈
q′′1 , p

′′
2|e

i
~ (u·P̂+v·R̂)|q1, p2

〉
.
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Moreover, resorting to the Baker-Campbell-Hausdorff theorem, making use of (2.4), and
performing the integrals over q′1, p′2, q′′1 and p′′2, we obtain

〈
Â1Â2

〉
=
∫
dx dy du dv dq1 dp2

〈
q1, p2|ρ|q1 − x1 − u1

− v2θ

~
− y2θ

~
, p2+y2+v2

〉
α1(x,y, t)α2(u,v, t)

× exp
[
i

~

(
y1q1 − y1u1 + v1q1 + x2p2 + x2v2 + u2p2

− y1x1

2
+
y2x2

2
− v1u1

2
+
u2v2

2

)]
× exp

[
i

~

(
− θ

~
y1v2 −

θ

2~
y1y2 −

θ

2~
v1v2

)]
.

(2.9)

Making now the change of variables q1 = ξ, p2 = η and substituting α1(x,y, t) and α2(u,v, t)
in terms of their corresponding Weyl functions, equation (2.9) becomes

〈
Â1Â2

〉
=
(

1
2π~

)8 ∫
dp dq dp′ dq′ dx dy du dv dξ dη

×
〈
ξ, η|ρ|ξ − x1 − u1 −

v2θ

~
− y2θ

~
, η + y2 + v2

〉
×WA1(p,q, t)WA2(p′,q′, t) exp

[
i

~
y1

(
ξ − u1 −

θ

~
v2 −

x1

2
− θ

2~
y2 − q1

)]
× exp

[
i

~
v1

(
ξ − u1

2
− θ

2~
v2 − q′1

)]
e
i
~v2(x2+

u2
2
−q′2)e

i
~y2(

x2
2
−q2)

× e−
i
~x1p1e−

i
~u1p′1e−

i
~x2(p2−η)e−

i
~u2(p′2−η).

Next, we integrate over y1, x2, v1, u2, u1, v2, ξ, and η to get

〈Â1Â2〉 =
4

(2π~)4

∫
dp dq dp′ dq′ dx1 dy2

×
〈

2q′1 − q1 −
x1

2
− θy2

2~
, 2p′2 − p2 +

y2

2
|ρ|q1 −

x1

2
− θy2

2~
, p2 +

y2

2

〉
×WA1(p,q, t)WA2(p′,q′, t)e−

i
~y2q2e−

i
~x1p1

× e−
i
~ q
′
2(2p2−2p′2−y2)e−

i
~p
′
1(2q′1−2q1− 2θ

~ p2+ 2θ
~ p

′
2−x1).

Observe now that this expression can also be written as follows:〈
Â1Â2

〉
=

4
(2π~)4

∫
dp dq dp′ dq′ dx1 dy2

×
[
e
θy2

~ ∂x1

〈
2q′1 − q1 −

x1

2
, 2p′2 − p2 +

y2

2
|ρ|q1 −

x1

2
, p2 +

y2

2

〉]
×WA1(p,q, t)WA2(p′,q′, t)e−

i
~y2q2e−

i
~x1p1

× e−
i
~ q
′
2(2p2−2p′2−y2)e−

i
~p
′
1(2q′1−2q1− 2θ

~ p2+ 2θ
~ p

′
2−x1),
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and after integrating by parts, we obtain〈
Â1Â2

〉
=

4
(2π~)4

∫
dp dq dp′ dq′ dx1 dy2

×
〈

2q′1 − q1 −
x1

2
, 2p′2 − p2 +

y2

2
|ρ|q1 −

x1

2
, p2 +

y2

2

〉
×WA1(p,q, t)WA2(p′,q′, t)e−

i
~y2q2e−

i
~ q
′
2(2p2−2p′2−y2)e−

i
~p
′
1(2q′1−2q1)

× e
i
~x1(p′1−p1)e−

i
~2 θy2(p′1−p1)e

2i
~2 θp

′
1(p2−p′2).

(2.10)

To reconstruct the star product that should arise from this formulation, we use the following
identities:

e
− θ~p

′
1∂q′2e

i
~ q
′
2y2 = e

i
~ q
′
2y2e−

iθ
~2 y2p

′
1 , e−

θ
~p1∂q2e−

i
~ q2y2 = e−

i
~ q2y2e

iθ
~2 y2p1 ,

e
− θ~p

′
1∂q′2e−

2i
~ q

′
2(p2−p′2) = e−

2i
~ (p2−p′2)(q′2−

θ
~p
′
1),

so that (2.10) becomes

〈Â1Â2〉 =
4

(2π~)4

∫
dp dq dp′ dq′ dx1 dy2

×
〈

2q′1 − q1 −
x1

2
, 2p′2 − p2 +

y2

2
|ρ|q1 −

x1

2
, p2 +

y2

2

〉
×WA1(p,q, t)WA2(p′,q′, t)e−

i
~p
′
1(2q′1−2q1)e

i
~x1(p′1−p1)

× e−
θ
~p
′
1∂q′2
(
e
i
~ q
′
2y2e−

2i
~ q

′
2(p2−p′2)

)(
e−

θ
~p1∂q2e−

i
~ q2y2

)
.

After integrating by parts, the above equation reads〈
Â1Â2

〉
=

4
(2π~)4

∫
dpdqdp′dq′dx1dy2

×
〈

2q′1 − q1 −
x1

2
, 2p′2 − p2 +

y2

2
|ρ|q1 −

x1

2
, p2 +

y2

2

〉
×WA1

(
p, q1, q2 +

θ

~
p1, T

)
WA2

(
p′, q′1, q

′
2 +

θ

~
p′1, T

)
e−

i
~p
′
1(2q′1−2q1)

× e
i
~x1(p′1−p1)e

i
~y2(q′2−q2)e−

2i
~ q

′
2(p2−p′2).

Now make the following change of variables:

x1 = 2q1 − 2z1, y2 = 2z2 − 2p2, q′1 = q1 + µ1,

q′2 = q2 + µ2, p′1 = p1 + ν1, p′2 = p2 + ν2

to obtain〈
Â1Â2

〉
=

16
(2π~)4

∫
dp dq dµ1 dµ2 dν1 dν2 dz1 dz2

×
〈
z1 + 2µ1, z2 + 2ν2|ρ|z1, z2

〉
e−

2i
~ µ1p1e

2i
~ ν2q2

× e−
2i
~ ν1(µ1−q1+z1)e−

2i
~ µ2(p2−ν2−z2)WA1

(
p, q1, q2 +

θ

~
p1, t

)
× eν1∂p1eν2∂p2eµ1∂q1eµ2∂q2WA2

(
p, q1, q2 +

θ

~
p1, t

)
.

(2.11)
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But

e
2i
~ q1ν1eν1

−→
∂ p1WA2 = e

2i
~ q1ν1e−

i~
2

←−
∂ q1
−→
∂ p1WA2 ,

e
2i
~ q2ν2eν2

−→
∂ p2WA2 = e

2i
~ q2ν2e−

i~
2

←−
∂ q2
−→
∂ p2WA2 ,

e−
2i
~ p1µ1eµ1

−→
∂ q1WA2 = e−

2i
~ p1µ1e

i~
2

←−
∂ p1
−→
∂ q1WA2 ,

e−
2i
~ p2µ2eµ2

−→
∂ q2WA2 = e−

2i
~ p2µ2e

i~
2

←−
∂ p2
−→
∂ q2WA2 ,

which, when substituted into (2.11) and integrated by parts, results in〈
Â1Â2

〉
=

16
(2π~)4

∫
dp dq dµ1 dµ2 dν1 dν2 dz1 dz2

×
〈
z1 + 2µ1, z2 + 2ν2|ρ|z1, z2

〉
e−

2i
~ µ1p1e

2i
~ ν2q2

× e−
2i
~ ν1(µ1−q1+z1)e−

2i
~ µ2(p2−ν2−z2)

×
[
WA1

(
p, q1, q2 +

θ

~
p1, t

)
?~ WA2

(
p, q1, q2 +

θ

~
p1, t

)]
.

(2.12)

Last, integrating over ν1, µ2, µ1, and ν2 and performing the final change of variables z1 =
q1 + s1

2 , z2 = p2 + s2
2 , equation (2.12) takes the following form:

〈
Â1Â2

〉
=

1
(2π~)2

∫
dp dq ds1 ds2

〈
q1 −

s1

2
, p2 −

s2

2
|ρ|q1 +

s1

2
, p2 +

s2

2

〉
e
i
~ s1p1

× e−
i
~ s2q2

[
WA1

(
p, q1, q2 +

θ

~
p1, t

)
?~ WA2

(
p, q1, q2 +

θ

~
p1, t

)]
.

(2.13)

Recalling the definition of the Wigner function:

ρw(p,q) :=
1

(2π~)2

∫
ds1 ds2

〈
q1−

s1

2
, p2−

s2

2
|ρ|q1+

s1

2
, p2+

s2

2

〉
e
i
~ s1p1e−

i
~ s2q2 , (2.14)

equation (2.13) may be expressed in the following compact form:〈
Â1Â2

〉
=
∫
dp dq ρw(p,q)

[
WA1

(
p, q1, q2+

θ

~
p1, t

)
?~ WA2

(
p, q1, q2+

θ

~
p1, t

)]
, (2.15)

where

?~ := exp

[ ∑
i=1,2

i~
2

(←−
∂ qi
−→
∂ pi −

←−
∂ pi
−→
∂ qi

)]
. (2.16)

Consequently, in the phase-space formulation of quantum mechanics based on the algebra
(2.1), the algebra of Weyl functions is deformed by a ?-product defined by

WA1 ? WA2 := m ◦
[
e
∑
i=1,2

i~
2

(∂qi⊗ ∂p′i
−∂q′

i
⊗ ∂pi ) ◦ e

θ
~p1∂q2

⊗ e
θ
~p
′
1∂q′2WA1(p,q)⊗WA2(p′,q′)

]
q,p=q′,p′

.
(2.17)

In addition, by a similar calculation to the one above, we can show that the Weyl symbol:

Wρ(p,q) = (2π~)−2

∫
dx dy Tr

[
ρe−

i
~ (x·P+y·R)

]
e
i
~ (x·p+y·q) (2.18)
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associated with the density matrix ρ is related to the Wigner function by

Wρ(p,q) = e−
θ
~p1∂q2ρw(p,q). (2.19)

Hence for the space-space noncommutative Heisenberg-Weyl algebra, the Weyl symbol of
the density matrix and the Wigner function as defined in (2.14) are not the same, contrary
from what is the case for the usual quantum mechanics Heisenberg algebra:

Wρ(p,q) θ→0−−−−→ ρw(p,q).

Note now that if we substitute (2.19) into (2.15) and integrate by parts, we get

〈
Â1Â2

〉
=
∫
dp dqWρ(p,q)e−

θ
~p1
−→
∂ q2

[
WA1

(
p, q1, q2+

θ

~
p1, t
)
?~ WA2

(
p, q1, q2+

θ

~
p1, t
)]

=
∫
dp dqWρ(p,q)e−

θ
~p1
−→
∂ q2

×
[
WA1

(
p1 −

i~
2
−→
∂ q1 , p2 −

i~
2
−→
∂ q2 , q1, q2 +

i~
2
−→
∂ p2 +

θ

~

(
p1 −

i~
2
−→
∂ q1

)
, t

)
×WA2

(
p, q1 −

i~
2
←−
∂ p1 , q2 +

θ

~
p1, t

)]
=
∫
dp dqWρ(p,q)

[
WA1(p,q, t) ?θ ◦ ?~ WA2(p,q, t)

]
,

(2.20)

where

?θ ◦ ?~ := e
iθ
2

(
←−
∂ q1
−→
∂ q2−

←−
∂ q2
−→
∂ q1 ) ◦ exp

[ ∑
i=1,2

i~
2

(←−
∂ qi
−→
∂ pi −

←−
∂ pi
−→
∂ qi

)]
. (2.21)

Clearly, the expectation values obtained from (2.13) and (2.20) are the same. However, since
for the space-space noncommutative Heisenberg-Weyl algebra the Wigner function associated
with the density matrix ρ̂ and its corresponding Weyl symbol are not the same, the twistings
in (2.18) and (2.20) of the product of Weyl symbols of two arbitrary operators do not agree in
general. Their explicit forms are obviously basis dependent as well as dependent on whether
averaging is done relative to the Wigner function or the Weyl symbol of the density matrix.

Furthermore, given the two different ?-products (2.17) and (2.21) of a pair of Weyl-
symbols, it is pertinent to inquire which of them corresponds to the Weyl-symbol of a product
of two operators. To answer this question univocally, we need to make use of (2.4), (2.6),
and (2.7). After a rather lengthy but fairly direct calculation, one can show that

WA1A2 = WA1 ?θ ◦ ?~ WA2 . (2.22)

So, for the quantum mechanics based on the space-space noncommutative Heisenberg-Weyl
Lie group, we need to make iterative use of (2.22) for the calculation of Weyl-symbols corre-
sponding to quantum operators. In particular, note that the Weyl-symbol corresponding to
an operator Â1 = Â1(P̂) which is a function only of the momenta operators is given by the
c-function WA1(p) having the same functional form as the quantum operator, as it is the case
in the usual WWGM quantum mechanics. However, for q-functions of the position operators,
this is not always true for the space-space noncommutative Heisenberg-Weyl group, as can
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be easily seen, when consider, for example, the Weyl-symbol associated with the operator
R̂1R̂2, for which (2.22) yields WR1R2 = (q1 + i θ2∂q2)q2 = q1q2 + i θ2 .

From a statistical point of view, both the Wigner function (2.14) and the Weyl symbol
(2.18) for the density matrix admit a quasiprobabilistic interpretation, although the projected
density probabilities are not all the same. Indeed, projecting (2.14) onto the plane q1 − p2

(i.e., integrating over q2, p1) immediately yields∫
dp1 dq2ρw(p,q) =

〈
q1, p2|ρ̂|q1, p2

〉
,

while projecting onto the q2 − p1 plane by making use of (2.4) results in∫
dp2 dq1ρw(p,q) =

〈
q2 + (θ/~)p1, p1|ρ̂|q2 + (θ/~)p1, p1

〉
.

However, if we perform the same calculations for the corresponding Weyl symbol, we find∫
dp1 dq2Wρ(p,q) =

〈
q1, p2|ρ̂|q1, p2

〉
,

∫
dp2 dq1Wρ(p,q) =

〈
q2, p1|ρ̂|q2, p1

〉
.

Let us now see how the above results compare with the ones resulting from applying the
Stratonovich-Weyl correspondence and the Berezin geometric quantization to the space-space
noncommutative Heisenberg-Weyl Lie group.

3 The Stratonovich-Weyl correspondence for the space-space
noncommutative Heisenberg-Weyl Lie group

In order to make our discussion self-contained and fix notation, we begin by summarizing the
essential elements of the Stratonovich-Weyl correspondence. For a considerably more ample
presentation of this formalism, we refer the reader to the work in [8, 11, 31, 33].

Let X be an even dimensional homogenous space given by the quotient G/H, where G
is a simply connected Lie group (of finite dimension n) describing the dynamical symmetry
of a given quantum system, and H ⊂ G its isotropy subgroup. If X is given a Kählerian
structure, then it can be interpreted as the phase space of a classical dynamical system.
The mapping Ω → |Ω〉〈Ω|, where Ω = Ω(g) is a point in X and g ∈ G, is the geometric
quantization for this system [6].

The Stratonovich generalization of the standard Gröenewold-Moyal quantization to quan-
tum systems possessing and intrinsic group G of symmetries is based on the following pos-
tulates:

(i) linearity: there is a one-to-one map Â→WA(Ω);
(ii) reality: WA†(Ω) = [WA(Ω)]∗;
(iii) standardization:

∫
X dµ(Ω)WA(Ω) = Tr Â, where dµ(Ω) is the invariant space measure;

(iv) traciality:
∫
X dµ(Ω)WA1(Ω)WA2(Ω) = Tr(Â1Â2).

(v) covariance: Wg·A(Ω) = WA(g−1 ·Ω), where g ·A denotes the adjoint action of a unitary
irreducible representation π of G on Â.

A function WA(Ω) satisfying these five properties is known as the Stratonovich-Weyl (SW)
symbol associated with a quantum operator Â acting on Hilbert space. The linearity map is
implemented by means of the generalized Weyl rule:

WA(Ω) = Tr
[
Â∆(Ω)

]
, (3.1)
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where ∆(Ω) is the Stratonovich-Weyl Kernel which is an operator-valued function on X. By
virtue of the tracial property, we have that

Tr
[
Â∆(Ω)

]
=
∫
x
dµ
(
Ω′
)
WA(Ω′)W∆(Ω)(Ω

′) =
∫
X
dµ
(
Ω′
)

Tr
[
Â∆(Ω′)

]
W∆(Ω)(Ω

′), (3.2)

where W∆(Ω)(Ω′) is the Weyl-equivalent of the Stratonovich Kernel. From (3.2), we infer that

∆(Ω) =
∫
X
dµ
(
Ω′
)
∆(Ω′)W∆(Ω)(Ω

′), (3.3)

so that the function

K(Ω,Ω′) := W∆(Ω)(Ω
′) = Tr

[
∆(Ω)∆(Ω′)

]
(3.4)

behaves as a Dirac delta function on the manifold X. Consequently, making use of this
property, the Weyl rule (3.1) may be inverted to give the following:

Â =
∫
X
dµ(Ω)WA(Ω)∆(Ω). (3.5)

Furthermore, from (3.1), (3.3), and (3.4), the SW-postulates (ii)–(v) translate to the following
conditions on the SW-kernel operator:

(iib) ∆(Ω) = [∆(Ω)]†, ∀Ω ∈ X;
(iiib)

∫
X dµ(Ω)∆(Ω) = I;

(ivb)
∫
X dµ(Ω′) Tr[∆(Ω)∆(Ω′)]∆(Ω′) = ∆(Ω);

(vb) ∆(g · Ω) = π(g)∆(Ω)π(g)−1.

In terms of the formalism of coherent states [9, 10, 28], we have that, whenever the Peter-
Weyl theorem applies [11, 33], the SW kernel ∆(Ω), satisfying the above conditions, can be
given explicitly as [8]

∆(Ω) =
∑
ν

Y ∗ν (Ω)Dν =
∑
ν

Yν(Ω)D†ν . (3.6)

Here,

Dν :=
∫
X
dµ(Ω)Yν(Ω)|Ω〉〈Ω| (3.7)

denotes a set of operators acting on the Hilbert space H. The harmonic functions Yν(Ω),
which form a complete orthonormal basis in L2(X,µ), are eigenfunctions of the Laplace-
Beltrami operator (δd+ dδ) associated with the space X, while the index ν is, in general, a
composite label. We would like to stress here, as it should have already become evident from
our previous considerations, that since we are always going from the quantum mechanics
of operators and Hilbert space to classical phase space averages, our Weyl correspondences
are surjective and therefore unique maps (to a given quantum operator there corresponds a
unique Weyl function, which corresponds to the case s = 0 for the families of operators and
functions considered in [8]).

Note now that when substituting (3.6) and (3.7) in (3.1), we get

WA(Ω) =
∑
ν

Y ∗ν (Ω)Aν =
∑
ν

Yν(Ω)Ãν ,
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where

Aν = Tr(ÂDν), Ãν = Tr
(
ÂD†ν

)
.

The generalized twisted product of two SW-symbols follows directly from (3.5) and the above
and is given by

WA(Ω) ?S WB(Ω) := WAB(Ω) := Tr
[
ÂB̂ ∆(Ω)

]
=
∫
X
dµ(Ω′)

∫
X
dµ(Ω′′)WA(Ω′)WB(Ω′′)L(Ω,Ω′,Ω′′),

(3.8)

where the tri-kernel L(Ω,Ω′,Ω′′) is defined by

L(Ω,Ω′,Ω′′) := Tr
[
∆(Ω)∆(Ω′)∆(Ω′′)

]
. (3.9)

We are now ready to apply these results of the general formalism to the space-space
noncommutative Heisenberg-Weyl alggroup H5, defined by the nilpotent Lie algebra (2.1),
for the particular case (d = 2, θ̄ij = 0) considered in the previous section. In terms of bosonic
creation and destruction operators and holomorphic coordinates, appropriate for calculating
the SW kernel, and symbols in terms of coherent states, the Lie algebra of the generators of
H5 is given by[

âi, â
†
j

]
= δij , i = 1, 2,

[
âi, âj

]
=
[
â†i , â

†
j

]
= 0, i = 1, 2, (3.10)

where

â1 =
(√

2~
)−1
(
R̂1 +

θ

2~
P̂2 + iP̂1

)
, â†1 =

(√
2~
)−1
(
R̂1 +

θ

2~
P̂2 − iP̂1

)
,

â2 =
(√

2~
)−1
(
R̂2 −

θ

2~
P̂1 + iP̂2

)
, â†2 =

(√
2~
)−1
(
R̂2 −

θ

2~
P̂1 − iP̂2

)
.

(3.11)

The group elements are therefore of the following form:

g(s, α, β) = e(isI+αâ†1−ᾱâ1+βâ†2−β̄â2),

where α, β ∈ C, and ᾱ, β̄ denotes complex conjugation. Clearly, here X = H5/U(1) = C2,
and the invariant measure is

dµ(Ω) = π−2d2αd2β.

The Glauber coherent states are

|Ω〉 := |α, β〉 = D(α, β)|0〉

with D(α, β) denoting the displacement operator:

D(α, β) := e(αâ†1−ᾱâ1+βâ†2−β̄â2). (3.12)

Since the harmonic functions in this case are the exponentials:

Yν(Ω) := Y(ξ,η)(α, β) = exp
(
ξᾱ− ξ̄α+ ηβ̄ − η̄β

)
, (3.13)
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so that

∆(α, β) =
1
π2

∫
C
d2ξ

∫
C
d2ηD(ξ, η) exp

(
ξ̄α− ξᾱ+ η̄β − ηβ̄

)
; (3.14)

the expectation value of a quantum operator Â is given by

〈Â〉 = Tr
[
ρ̂Â
]

=
1
π2

∫
C
d2α

∫
C
d2βWρ(α, β)WA(α, β), (3.15)

where

Wρ(α, β) = Tr
[
∆(α, β)ρ̂

]
(3.16)

is the SW-symbol corresponding to the density matrix operator ρ̂.
We can now make use of (3.8) and (3.9) together with (3.12) and (3.14) to get an explicit

expression for the twisted product of two SW-symbols based on the quotient space C2 =
H5/U(1). Thus, noting that since the â1, â†1 commute with the â2, â†2, we can write the
displacement operator as D(α, β) = D(α)D(β), and the tri-kernel as L(α, α′, α′′;β, β′, β′′) =
L(α, α′, α′′)L(β, β′, β′′). Moreover, using also repeatedly the coherent states properties:

D(ξ)|β〉 = ei Im(ξβ̄)|ξ + β〉, (3.17)

〈α|α′〉 = e−
1
2

(|α|2+|α′|2−2ᾱα′), (3.18)

we find

L(α, α′, α′′) = 4 exp
[
4i
(
α′2α1 − α′1α2 + α′1α

′′
2 − α′2α′′1 + α′′1α2 − α′′2α1

)]
,

and an analogous expression for L(β, β′, β′′).
Consequently,

WA(α, β) ?S WB(α, β)

=
16
π4

∫
C
d2α′′

∫
C
d2α′e4iα′1(α′′2−α2)e4iα′2(α1−α′′1 )e4i(α′′1α2−α′′2α1)

×
∫

C
d2β′′

∫
C
d2β′e4iβ′1(β′′2−β2)e4iβ′2(β1−β′′1 )e4i(β′′1 β2−β′′2 β1)WA(α′, β′)WB(α′′, β′′).

(3.19)

Making next the change of variables α′′1 = α1 + η1, α′′2 = α2 + η2, β′′1 = β1 + ξ1, β′′2 = β2 + ξ2,
we can write

WA(α, β) ?S WB(α, β)

=
16
π4

∫
C
. . .

∫
C
dη1dη2dξ1dξ2dα

′
1dα

′
2dβ

′
1dβ

′
2e

4i(α′1−α1)η2

× e−4i(α′2−α2)η1e4i(β′1−β1)ξ2e−4i(β′2−β2)ξ1WA(α1, α2, β1, β2)

× e(η1~∂α1+η2~∂α2+ξ1~∂β1+ξ2~∂β2 )WB(α1, α2, β1, β2).

(3.20)

We can change the last exponential in the above equation into a bidifferential by noting
that

e4i(α′1−α1)η2eη2
~∂α2WB

(
α1, α2, β1, β2

)
= e4i(α′1−α1)η2e

− i
4

←−
∂ α′1

−→
∂ α2WB

(
α1, α2, β1, β2

)
,
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and similarly for the other terms. Hence, substituting the results in (3.19), integrating by
parts, and integrating over the remaining variables in the integrand, we finally arrive at

WA(α, β) ?S WB(α, β)

:= WA(α, β)e
i
4

(
←−
∂ α1

−→
∂ α2−

←−
∂ α2

−→
∂ α1+

←−
∂ β1
−→
∂ β2−

←−
∂ β2
−→
∂ β1 )WB(α, β).

(3.21)

Now, substituting this result into (3.15), we obtain the expectation value of a product of
quantum operators derived according to the Stratonovich-Weyl correspondence in the context
of the space-space noncommutative Heisenberg-Weyl group. Moreover, since the alternate
calculation in the previous section was done based on the Lie algebra of the same group
and since the Stratonovich phase-space formulation was purported to be a generalization of
the later to physical systems with Lie group symmetries which, evidently include the one
common to the two approaches, a coincidence of results would then appear natural. In order
to verify this conjecture we first need to convert the holomorphic variables in (3.15), (3.16),
and (3.21) into phase-space variables. That is, we need to make the substitutions:

α1 −→
1√
2~

(
q1 +

θ

2~
p2

)
, α2 −→

1√
2~
p1,

β1 −→
1√
2~

(
q2 −

θ

2~
p1

)
, β2 −→

1√
2~
p2.

(3.22)

Hence,

∂α1 =
√

2~∂q1 , ∂α2 =
√

2~
( θ

2~
∂q2 + ∂p1

)
,

∂β1 =
√

2~∂q2 , ∂β2 =
√

2~
(
− θ

2~
∂q1 + ∂p2

)
,

(3.23)

from where the Stratonovich twist bidifferential expressed in terms of phase-space variables
takes the following form:

?S = ?θ ◦ ?~. (3.24)

Furthermore, making use of (3.12), (3.13), (3.16), and (3.14), we have

Wρ(α, β) = Tr
[
∆(α, β)ρ̂

]
=

1
π2

∫
C
d2ξ

∫
C
d2ηTr

[
e(ξâ†1−ξ̄â1+ηâ†2−η̄â2)ρ̂

]
exp

(
ξ̄α− ξᾱ+ η̄β − ηβ̄

)
.

Evaluating now the trace in the above expression relative to the mixed phase-space basis
{|q1, p2〉} and after a fairly lengthy but straightforward calculation, we arrive at

Wρ(α, β) = 4
∫∫

dq′1dp
′
2e

2iα2(2α1−
√

2
~ q
′
1−

θ

~
√

2~
p′2)
e
−2iβ1(2β2−

√
2
~p
′
2)

×
〈
q′1, p

′
2|ρ̂|2

√
2~α1 − q′1 −

2θ√
2~
β2,−p′2 + 2

√
2~β2

〉
.

Finally, making the change of variables:

q′1 =
√

2~α1 −
λ1

2
− θ√

2~
β2, p′2 = β2 −

λ2

2
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yields

Wρ(α, β) =
∫∫

dλ1dλ2e
2iα2√

2~
(λ1+ θ

2~λ2)
e
− 2iβ1λ2√

2~

×
〈√

2~α1 −
λ1

2
− θ√

2~
β2, β2 −

λ2

2
|ρ̂|
√

2~α1 +
λ1

2
− θ√

2~
β2, β2 +

λ2

2

〉
.

In terms of phase-space variables, this result reads

Wρ

(
α
(
p1, q2

)
, β
(
q1, p2

))
= e−

θ
~p1∂q2

∫∫
dλ1dλ2e

i
~ (p1λ1−q2λ2)

〈
q1 −

λ1

2
, p2 −

λ2

2
|ρ̂|q1 +

λ1

2
, p2 +

λ2

2

〉
.

(3.25)

If we now compare (3.21), (3.24), and (3.25) with (2.20), (2.21), (2.14), and (2.19) of
the previous section, we see that for the space-space noncommutative Weyl-Heisenberg Lie
group the quantum mechanics resulting from both formalisms are equivalent provided that
in the calculation of the expectation values, we derive the phase-space averages by combining
the appropriate ?-product for the evaluation of Weyl-symbols with the appropriate Wigner
function or Weyl-symbol associated with the density matrix for the problem, according to
the above referred formulas.

4 The Berezin quantization procedure by means of involution
operators and its application to the space-space noncommu-
tative Heisenberg-Weyl algebra

This quantization scheme arises from the basic property that for homogenous symmetric
spaces, there is an involutive automorphism of G acting on them. Such is the case for
X = H5/U(1), where the involution automorphisms are reflections around each point. Re-
calling equations (2.5), (2.6) in Section 2, we see that the Weyl function is the Fourier
transform of the α function in (2.5), while the Fourier transform of the unitary displacement
operators {(2π~)−1 exp[ i~(y · R̂ + x · P̂)]} is indeed reflections. It is thus natural to write
[6, 22, 23, 24, 25, 26]

Â =
∫
X
dµ(x)wA(x)Û(x) (4.1)

as a generalization of (2.5). Here, Û(x) is the unitary operator corresponding to the group
element that performs reflections around the point x ∈ X.

As noted by the authors in [22, 23, 24, 25, 26], the use of the reflection operator provides
a way to circumvent the situation when a Fourier transform on X cannot be consistently
defined. The function wA(x) appearing in (4.1) corresponds to the Weyl contravariant symbol
which is, in general, different from the Weyl covariant symbol defined as:

w̃A(x) := Tr
[
ÂÛ(x)

]
.

Berezin also showed that there exists a bijective map relating wA, w̃A to the usual contravari-
ant and covariant symbols PA, QA, respectively, whose expressions are given by

Â =
∫
X
dµ(x)PA(x)|x〉〈x|, QA(x) = 〈x|Â|x〉,

where {|x〉} corresponds to an overcomplete basis of normalized states tagged by points in X.
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Thus in order to implement this quantization formalism, we must first determine what will
be in our case the reflection operator Û(x). To this end, we will make use of the Hilbert space
spanned by the coherent states of the last section, which in fact constitute an overcomplete
basis. Each coherent state |α, β〉 = |α〉 ⊗ |β〉 is tagged by a point (α, β) ∈ C2 = X.

We may now construct the reflection operator Û(α, β) by acting transitively on the re-
flection operator around the origin Û(0, 0) with the unitary operator associated to g ∈ G.
From the properties of the algebra (3.10), it is clear that Û(α, β) = Û(α)⊗ Û(β), where each
Û(α) acts on a copy of C. Then for simplicity, we will reduce the calculation to one copy
of C and obtain the final result just by taking the direct product of the two copies. Thus,
following Berezin, consider a complex line bundle L over C with fiber metric e−K(v,v̄), where
K(v, v̄) = vv̄ is the Kähler potential. The Hilbert space H consists of holomorphic sections
of L with inner product:

〈f |g〉 =
1
π

∫
C
d2v f̄(v)g(v)e−vv̄,

where the holomorphic section f(v) denotes the evaluation:

f(v) = 〈v|f〉.

The coherent state |α〉, expressed in the Fock-Bargmann representation F, is given by

|α〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉.

Hence,

〈v|α〉 = e−
1
2
|α|2

∞∑
n=0

αnv̄n

n!
= e−

1
2
|α|2+αv̄. (4.2)

Making use of the identity resolution:

I =
1
π

∫
C
d2v e−|v|

2 |v〉〈v|, (4.3)

we can write the left hand of (4.2) as follows:

α(v) =
1
π

∫
C
d2v′〈v|v′〉e−|v′|2α(v′).

It is easy to show that this last expression becomes an identity if we set 〈v|v′〉 := B(v′, v̄) =
ev
′v̄ and make use of (4.2) on both sides of the equation. Moreover, it also follows that

B(v′, v̄) satisfies the following properties:

1
π

∫
C
d2v′ e−|v

′|2B(v′, v̄)f(v′)=f(v),
1
π

∫
C
d2v′ e−|v

′|2B(v, v̄′)B(v′, ū)=B(v, ū). (4.4)

Thus B(v′, v̄) is the Bergman reproducing kernel [7], and in the F representation space, the
quantity πδ(v, v′) := B(v′, v̄)e−|v

′|2 acts as a Dirac delta function under integration.
Let us now define the operator Û(0) by

Û(0) :=
1
π

∫
C
d2v e−|v|

2 | − v〉〈v|.
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To show that this is the reflection operator around the origin, we take the action of Û(0)
over any arbitrary state |v′〉 and use the above definition of the delta function action:

Û(0)|v′〉 =
1
π

∫
C
d2ve−|v|

2 | − v〉〈v|v′〉 =
1
π

∫
C
d2v e−|v|

2
B(v′, v̄)| − v〉 = | − v′〉.

With the above results, we are now in a position to calculate the more general operator
Û(ζ). This is done by noticing that by taking the unitary transformation D̂(ζ)Û(0)D̂†(ζ),
where D̂(ζ) is the unitary displacement operator representation of the H3 group acting on
coherent states according to (3.17). Since Û(0) is an involution, D̂(ζ) induces displacements
and (D̂(ζ)Û(0)D̂†(ζ))2 = I, the operator Û(ζ) must correspond to a reflection around ζ ∈
C. To show this, we first use (3.12) to obtain the explicit form of the operator Û(ζ) :=
D̂(ζ)Û(0)D̂†(ζ):

Û(ζ) =
1
π

∫
C
d2ve−|v|

2
D̂(ζ)| − v〉〈v|D̂†(ζ).

Making now use of (4.2) in order to express the arbitrary ket |v〉 in terms of the normalized
coherent state basis:

|v〉 =
1
π

∫
C
d2α e(− 1

2
|α|2+ᾱv)|α〉,

and applying (3.17) on the coherent state |α〉 yields

D̂(ζ)|v〉 =
1
π

∫
C
d2α e(− 1

2
|α|2+ᾱv+i Im(ζᾱ))|α+ ζ〉. (4.5)

Furthermore, making use of (4.5) and the properties of the Bergman kernel in (4.4), we
obtain after some fairly straightforward calculations the expression:

Û(ζ) =
1
π

∫
C
d2α e(ζᾱ−ζ̄α)|α+ ζ〉〈ζ − α|.

Finally, making the change of variables ζ − α = ρ yields

Û(ζ) =
1
π

∫
C
d2ρ eζ̄ρ−ρ̄ζ |2ζ − ρ〉〈ρ|. (4.6)

We next use this expression to repeat a similar calculation to the one we did above in order
to obtain Û(0). Thus, taking the action of the operator Û(ζ) on an arbitrary state |v〉 and
expanding the coherent state |2ζ − ρ〉 in (4.6) in terms of |v〉, by making use of (4.2) and
(4.3), we get

Û(ζ)|v〉 =
1
π2
e−2|ζ|2

∫
C
d2v′ e−|v

′|2e2v̄′ζ |v′〉
∫

C
d2ρ e−|ρ|

2
evρ̄e(2ζ̄−v̄′)ρ,

which when resorting repeatedly to equation (4.4) gives

Û(ζ)|v〉 = e2(ζ̄v−|ζ|2)|2ζ − v〉. (4.7)

The function inside the ket in the above equation can be rewritten as 2(ζ − v) + v to make
evident the fact that this is the reflection of the point v around ζ. To complete the proof,
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we check that Û(ζ) is indeed an involution. This follows directly by once more acting with
Û(ζ) on (4.7). Accordingly, we obtain

Û(ζ)
2|v〉 = Û(ζ)

[
e2(ζ̄v−|ζ|2)|2ζ − v〉

]
= e2(ζ̄v−|ζ|2)e2ζ̄(2ζ−v)e−2|ζ|2 |2ζ − (2ζ − v)〉 = |v〉.

As we mentioned at the beginning of this section, the Weyl contravariant and covariant
symbols are not the same in general. We will show, however, that for the symmetric homoge-
nous space treated here this is not the case. Indeed, making the change Û(ζ)→ 2Û(ζ) ≡ V̂ (ζ)
in (4.1), the latter reduces to (3.5) and consequently wA = WA = w̃A in which case both
symbols are equal. This follows from equation (4.6) and observing that by using our previous
results, we can write the identity as follows:

eζ̄ρ−ρ̄ζ |2ζ − ρ〉 =
1

2π

∫
C
d2λ eλ̄ζ−ζ̄λe

1
2

(ρ̄λ−λ̄ρ)|λ+ ρ〉.

Moreover, the coherent state e
1
2

(ρ̄λ−λ̄ρ)|λ+ ρ〉 is nothing else but D̂(λ)|ρ〉, so we can replace
this into (4.6), and the operator V̂ (ζ) = 2Û(ζ) takes now the following form:

V̂ (ζ) =
1
π2

∫
C

∫
C
d2λd2ρ eλ̄ζ−ζ̄λD̂(λ)|ρ〉〈ρ|. (4.8)

Finally, observe that in this last expression the quantity 1
π

∫
C d

2ρ |ρ〉〈ρ| is just the identity
operator in terms of normalized coherent states. It is then obvious that (4.8) reduces simply to

V̂ (ζ) =
1
π

∫
C
d2λ eλ̄ζ−ζ̄λD̂(λ), (4.9)

which allows us to conclude that V̂ (α)⊗ V̂ (β) ≡ ∆(α, β) as seen from (3.14). This argument
demonstrates that for the Heisenberg-Weyl algebra (2.1), the SW formalism as well as that
of Berezin provide the same quantization scheme.

It is interesting to observe that because both the SW and the Berezin formalisms are
based on complex valued holomorphic states and non-Hermitian operators, defined in turn
by means of creation and destruction operators, the noncommutativity of the observables
in the algebra (2.1) is hidden in the definition of those creation and destruction operators.
So, as long as we remain in the complex domain, their quantum mechanics for the ordinary
and the Heisenberg-Weyl algebras (2.1) appear as indistinguishable (see, e.g., (3.19)). It
should also be clear from our presentation so far that there are a variety of Bopp maps that
can be chosen to construct creation and destruction operators from phase-space operator
observables. In our construction (see (3.11)), we have chosen a map that keeps the algebra
of â and â† unchanged, as this choice allows us to use all the machinery of standard WWGM
up to the point where we re-express the final results in terms of real dynamical phase-space
variables.

Moreover, it is known that for the WWGM quantum mechanics, there is a ?-value equation
which is a result stronger than the one providing the phase-space expectation values for
operators and products of operators on Hilbert space. Indeed, it is fairly straightforward to
show that (see, e.g., [32]) the star-value equation:

WH(p,q) ?~ ρw = Eρw

is a necessary and sufficient condition for the weaker expectation value relation:∫∫
dpdqWH(p,q) ρw =

∫∫
dpdqWH(p,q) ?~ ρw
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to follow. Here, WH(p,q) is the Weyl-symbol associated with the Hamiltonian operator
Ĥ satisfying the eigenvalue equation Ĥ|Ψ〉 = E|ψ〉, |Ψ〉 is a pure energy state, and ρw is
the Wigner function corresponding to the pure state density matrix ρ̂ = |ψ〉〈ψ|. We will
investigate next if similar ?-valued equations exist for the quantum mechanical formulations
on the Weyl-Heisenberg group consider above, and whether their equivalence stands for such
stronger equations.

5 Star-value equations for phase-space quantum mechanics
based on the space-space noncommutative Heisenberg-Weyl
group

Given a Hamiltonian Ĥ(P̂, R̂) for a quantum mechanical system where P̂, R̂ satisfy the
algebra (2.1) (with i, j = 1, 2 and θ̄ = 0) and the pure state density matrix ρ̂ = |ψ〉〈ψ|,
we can consider star-value equations associated with the ?-products (2.17) or (2.21). Let us
begin by considering first the ?-product in (2.17) between the Weyl-symbol corresponding
to Ĥ and the Weyl-symbol corresponding to the density matrix ρ̂. We get (after resorting
to (2.19) in order to obtain the last equality):

WH ? Wρ = m ◦
[
e
∑
i=1,2

i~
2

(∂qi⊗∂p′i
−∂q′

i
⊗∂pi ) ◦ e

θ
~p1∂q2

⊗ e
θ
~p
′
1∂q′2WH(p,q)⊗Wρ(p′,q′)

]
q,p=q′,p′

=
(
e
θ
~p1∂q2WH

)
?~
(
e
θ
~p1∂q2Wρ

)
=
(
e
θ
~p1∂q2WH

)
?~ ρw.

Note that in general,

e
θ
~p1∂q2WH(p,q) = WH

(
p, q1, q2 +

θ

~
p1

)
,

which says the following: calculate first the Weyl-symbol corresponding to the Hamiltonian
operator by applying (2.17) repeatedly, followed by the displacement of the q2 argument by
the exponential on the left hand side of the above expression. Hence,

WH ? Wρ = WH

(
p, q1, q2 +

θ

~
p1

)
?~ ρw.

Substituting now the expression (2.14) for the Wigner function and (2.16) for the ?~-product,
we have

WH ? Wρ = (2π~)−2

∫∫
ds1ds2ψ

(
q1 −

s1

2
, p2 −

s2

2

)
ψ∗
(
q1 +

s1

2
, p2 +

s2

2

)
×
[
ŴH

(
q1, q2 +

i~
2
−→
∂ p2 +

θ

~

(
p1 −

i~
2
−→
∂ q1

)
; p1 −

i~
2
−→
∂ q1 , p2

)
× e

i
~ s1(p1+ i~

2

←−
∂ q1 )e−

i
~ s2(q2− i~2

←−
∂ p2 )

]
= (2π~)−2

∫∫
ds1ds2ψ

(
q1 −

s1

2
, p2 −

s2

2

)
ψ∗
(
q1 +

s1

2
, p2 +

s2

2

)
×
[
ŴH

(
q1 −

s1

2
, q2 +

i~
2
−→
∂ p2 +

θ

~
p1 −

iθ

2
−→
∂ q1 ; p1 −

i~
2
−→
∂ q1 , p2 −

s2

2

)
× e

i
~ s1p1e−

i
~ s2q2

]
.
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If we now note that we can make the following replacement of the q2 and p1 arguments in
WH inside the square brackets:

q2 −→ i~∂s2 , p1 −→ −i~∂s1 ,

and integrate by parts, we arrive at

WH ? Wρ = (2π~)−2

∫∫
ds1ds2e

i
~ s1p1e−

i
~ s2q2

×
[
ŴH

(
q1−

s1

2
,−i~∂s2 +

i~
2
−→
∂ p2 +iθ∂s1 −

iθ

2
−→
∂ q1 ; i~∂s1−

i~
2
−→
∂ q1 ; p2−

s2

2

)
× ψ

(
q1 −

s1

2
, p2 −

s2

2

)
ψ∗
(
q1 +

s1

2
, p2 +

s2

2

)]
.

Observe next that making the identifications:

Q̂1 := q1 −
s1

2
, Π̂1 := i~∂s1 −

i~
2
∂q1 ,

Π̂2 := p2 −
s2

2
, Q̂2 := −i~∂s2 +

i~
2
∂p2 +

θ

~
Π̂1,

(5.1)

we obtain a realization for the Heisenberg-Weyl algebra:[
Q̂1, Q̂2

]
= iθ,

[
Q̂i, Π̂j

]
= i~δij ,

[
Π̂1, Π̂2

]
= 0.

Observe also that the operator ŴH(Q̂1, Q̂2, Π̂1, Π̂2) annihilates any function of q1 + s1
2 and

p2 + s2
2 . Hence,

WH ? Wρ = (2π~)−2

∫∫
ds1ds2e

i
~ s1p1e−

i
~ s2q2ψ∗

(
q1 +

s1

2
, p2 +

s2

2

)
×
[
ŴH

(
Q̂1, Q̂2, Π̂1, Π̂2

)
ψ

(
q1 −

s1

2
, p2 −

s2

2

)]
.

(5.2)

Furthermore, consider the eigenvalue equation:

Ĥ
(
R̂1, R̂2; P̂1, P̂2

)
|ψ〉 = E|ψ〉. (5.3)

Since the operators P̂, R̂ satisfy the algebra (2.1) (with i, j = 1, 2 and θ̄ = 0), the projection
of (5.3) with the bra 〈R1, P2| yields (making use of (2.2))

Ĥ
(
R1,−iθ∂R1 + i~∂P2 ;−i~∂R1 , P2

)
〈R1, P2|ψ〉 = E〈R1, P2|ψ〉. (5.4)

Setting now

R1 ≡ Q̂1 = q1 −
s1

2
, P2 ≡ Π̂2 = p2 −

s2

2
,

and comparing the expression for R̂2 = −iθ∂R1 + i~∂P2 in (5.4) with Q̂2 in (5.1), we get

∂R1 =
1
2
∂q1 − ∂s1 , ∂P2 =

1
2
∂p2 − ∂s2 .

However, also comparing the R̂2 in (5.4) with (2.2) yields

∂q1 = ∂R1 , ∂p2 = ∂P2 ,



20 L. Román Juárez and M. Rosenbaum

from where it also clearly follows

∂s1 = −1
2
∂R1 , ∂s2 = −1

2
∂P2 .

Substituting the above into (5.4) and comparing with (5.1), we arrive at

Ĥ
(
Q̂1, Q̂2; Π̂1, Π̂2

)
〈Q1,Π2|ψ〉 = E〈Q1,Π2|ψ〉,

so, if we could make the identification Ĥ(Q̂1, Q̂2; Π̂1, Π̂2) = WH(Q̂1, Q̂2, Π̂1, Π̂2), we would
then have that (5.2) would immediately imply that

WH ? Wρ

= (2π~)−2E

∫∫
ds1ds2e

i
~ s1p1e−

i
~ s2q2ψ∗

(
q1+

s1

2
, p2+

s2

2

)
ψ
(
q1−

s1

2
, p2−

s2

2

)
=Eρw,

or

WH

(
p; q1, q2 +

θ

~
p1

)
?~ ρw(p,q) = Eρw. (5.5)

Note, however, that the feasibility of this identification requires that Ĥ(Q̂1, Q̂2; Π̂1, Π̂2) and
WH(Q̂1, Q̂2, Π̂1, Π̂2) should be of the same functional form for their operator arguments,
but, according to our discussion following equation (2.22), this will only be possible for
Hamiltonians having the Weyl symmetrized ordering of operators.

The corresponding expression of the ?-value equation for the product WH ?θ◦?~Wρ follows
immediately by recalling (see the argument given in the paragraph following equation (4.9))
that in holomorphic coordinates, the ?-value equation does not see the noncommutativity:

WH(α, β) ?S Wρ(α, β) = EWρ ≡WH(α, β) ?~ Wρ(α, β) = EWρ.

Thus, when going back to phase-space variables by making use of (3.22) and (3.25) yields

WH

(
1√
2~

(
q1 +

θ√
2~
p2

)
,

1√
2~

(
q2 −

θ√
2~
p1

)
,

1√
2~
p1,

1√
2~
p2

)
× ?θ ◦ ?~e

− θ~p1∂q2ρw
(
q1, q2, p1, p2

)
= Ee−

θ
~p1∂q2ρw

(
q1, q2, p1, p2

)
.

(5.6)

Evidently, the two ?-valued equations (5.5) and (5.6) are different, even that the weaker
expectation values resulting from them are the same. This difference may turn out to be
important for certain problems in deformation quantization such as the ones mentioned in
the introduction.
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