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Abstract. In this paper we study some problems related to a refinement of Iwasawa theory, especially ques-
tions about the Fitting ideals of several natural Iwasawa modules and of the dual of the class groups, as a sequel to
our previous papers [8], [3]. Among other things, we prove that the annihilator of Zp(1) times the Stickelberger
element is not in the Fitting ideal of the dualized Iwasawa module if the p-component of the bottom Galois group is
elementary p-abelian with p-rank ≥ 4. Our results can be applied to the case that the base field is Q.

1. Introduction

1-1. Suppose that k is a totally real number field, and at first suppose that L/k is a
finite abelian extension of totally real number fields. We fix an odd prime number p and
denote by k∞/k, L∞/L the cyclotomic Zp-extensions. We assume L ∩ k∞ = k. Suppose
that S is a finite set of primes of k, which contains all ramifying primes in L∞. Note that
S automatically contains Sp, the set of primes of k above p. Let XL,S be the S-ramified
Iwasawa module, namely the Galois group of LL∞,S/L∞ which is the maximal abelian pro-
p extension unramified outside S. Then the main conjecture which was proved by Wiles in
[14] Theorem 1.3 can be stated in terms of XL,S . Indeed the main conjecture (roughly) says
that for any character χ of Gal(L/k) the characteristic ideal of the χ-quotient of XL,S is
generated by the χ-component of the S-truncated p-adic L-function ΘL∞/k,S (for the precise
statement, see §4). Since the characteristic ideal of a power series ring is closely related to
the Fitting ideal, we are naturally led to the question whether (the annihilator of Zp times)
the S-truncated p-adic L-function ΘL∞/k,S is in the Fitting ideal of the ΛL-module XL,S

where ΛL = Zp[[Gal(L∞/k)]] (concerning general properties of Fitting ideals, see [10]).
Using our previous results, we can show that the answer is always No if the p-component of
Gal(L/k) is not cyclic. Actually, we can describe the Fitting ideal of XL,S , using ΘL∞/k,S

(see Theorem 4.1). Theorem 4.1 gives a more precise link between the S-ramified Iwasawa
module XL,S and the p-adic L-function ΘL∞/k,S than the usual main conjecture.
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When we take S to be minimal, namely the set of the ramifying primes of k in L∞, we
simply write ΘL∞/k for ΘL∞/k,S . Next we study the p-ramified Iwasawa module, namely
the Galois group of LL∞,Sp/L∞ which is the maximal abelian pro-p extension unramified
outside p. We write XL = Gal(LL∞,Sp/L∞), and study the Fitting ideal of the ΛL-module
XL, especially the problem whether (γ − 1)ΘL∞/k is in the Fitting ideal of XL or not, where
γ is a generator of Gal(L∞/L). Our main theorem in this direction is Theorem 5.1 in §5.

We are interested in this problem because it is equivalent to a problem on the minus class
group, which we will explain in the next subsection.

1-2. For a number field F , we denote by ClF the class group and AF = ClF ⊗ Zp.
Let μp be the group of p-th roots of unity in an algebraic closure, and put L′ = L(μp).
Suppose that L/k is a finite abelian p-extension, for simplicity, in this subsection. Hence L

is still totally real and L′ is a CM-field; we keep the assumption that k is totally real all the
time. Let ω : Gal(L′/k) −→ Z×

p be the Teichmüller character, which gives the action on

μp. We denote by L′∞/L′ the cyclotomic Zp-extension, and define AL′∞ to be the inductive

limit of AL′
n

where L′
n is the n-th layer of L′∞/L′. Consider the ω-component Aω

L′∞ . Then the

Kummer pairing gives a well-known isomorphism

(Aω
L′∞)∨(1) 	 XL

of Galois modules (see [13] Proposition 13.32), where (Aω
L′∞)∨ is the Pontrjagin dual and

(1) is the Tate twist. Put ΛL′ = Zp[[Gal(L′∞/k)]]. We consider the cogredient action of
the Galois group on the Pontrjagin dual (AL′∞)∨, and regard it as a ΛL′-module. Let γ be a

generator of Gal(L′∞/L′) and κ the cyclotomic character, and θL′∞/k the Stickelberger element
(the projective limit of θL′

n/k for n 
 0 ; for more details, see §6). Then (γ − κ(γ ))θL′∞/k is
in ΛL′ . Using a consequence of Theorem 5.1 and the above duality isomorphism, we prove
in §6 the following as a part of Theorem 6.1.

THEOREM. Suppose that Gal(L/k) 	 (Z/pZ)⊕s with s ≥ 4. Then we always have

(γ − κ(γ ))θL′∞ �∈ FittΛL′ ((AL′∞)∨) .

In previous work, see [3], it was shown: If L/k is unramified outside p and Gal(L/k) is not

cyclic, then we always get this negative result. In this paper, we prove the above theorem with
no assumption on the ramification in L′/k.

It was a surprise for us that the above Theorem can be applied to the case k = Q. In our
previous work, if L/k is unramified outside p and Gal(L/k) is not cyclic, then k cannot be
Q.

A key result in the proof of Theorems 6.1 and 5.1 is Theorem 3.1 which determines the
structure of (XL)Gal(L/k) for elementary p-abelian Gal(L/k). In particular, we prove that the
Zp-torsion part of (XL)Gal(L/k) is annihilated by p in this setting.

1-3. We study finite abelian extensions over Q in §§7 and 8. As a corollary of the above
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Theorem, we prove in Corollary 7.1 a similar negative result at finite level; especially for a
certain cyclotomic field L = Q(μm) we can show that

(AnnZ[Gal(L/Q)](μm)θL/Q) ⊗ Zp �⊂ FittZp [Gal(L/Q)](A∨
L)

(see Corollary 7.2 and Remark 7.3). Note that the main result of [9] implies

(AnnZ[Gal(L/Q)](μm)θL/Q) ⊗ Zp ⊂ FittZp [Gal(L/Q)](AL)

for any m and p. Such a negative result is surprising because people sometimes thought that
the Pontrjagin dual of the class group behaved better than the class group. We also note that
the above result shows that the Fitting ideal of the dual of the class group of a cyclotomic field
does not coincide with the Stickelberger ideal of Iwasawa-Sinnott in [11], in general.

Combining the main results in [1] and [9], we know that

FittZp[Gal(L/Q)]((A−
L)∨) = FittZp[Gal(L/Q)](A−

L)

for any finite abelian L/Q such that μp �⊂ L. But the above negative result shows that this
equality does not hold in general if μp ⊂ L. We discuss this problem in §8 in the case μp ⊂ L

and s = 2 (the latter simply meaning that the p-component of Gal(L/Q) is (Z/pZ)⊕2). We
give in Proposition 8.1 a very simple criterion for this equality to hold for a certain family of
abelian fields. We also study a numerical example in detail in Remark 8.4 for which

FittZp [Gal(L/Q)]((A−
L)∨) � FittZp [Gal(L/Q)](A−

L)

holds.
Concerning the Stickelberger ideal for cyclotomic fields, the book [6], which was based

on the lectures by K. Iwasawa and W. Sinnott at Princeton in 1976, has been a well-received
and widely read reference in Japan. As we see from the acknowledgement in that book, K.
Shinoda suggested its publication, read the manuscript thoroughly, and gave many helpful
comments. The authors believe that the importance and the arithmetical content of the Stick-
elberger ideal stem to a considerable extent from its beautiful relation to the Fitting ideal of
the class group (cf. [7], [1]). In this sense, the theory of Stickelberger ideals has seen some
new developments since the time this book was written. It is our great pleasure to dedicate
this paper to K. Shinoda.

2. A fundamental exact sequence

In this paper, we fix an odd prime p. For a number field F , we denote by F∞/F the
cyclotomic Zp-extension.

Suppose that L/K is a finite abelian extension and put G = Gal(L/K). Consider the
maximal abelian pro-p extension LL∞,Sp/L∞ which is unramified outside p, and put XL =
Gal(LL∞,Sp/L∞). We are interested in the Tate cohomology Ĥ i(G,XL). The goal of this
section is to prove the following proposition, which we call the fundamental exact sequence
for XL in this paper.
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PROPOSITION 2.1 (Fundamental exact sequence for XL). Let L/K be a finite
abelian p-extension of totally real number fields such that L∩K∞ = K and G = Gal(L/K).
Then we have an exact sequence

0 −→
2∧

G −→ Ĥ−1(G,XL) −→
⊕

v∈S ′
K∞

Iv −→ G −→ Ĥ 0(G,XL) −→ 0 ,

where S′
K∞ is the set of non p-adic primes of K∞ which are ramified in L∞/K∞, and Iv is

the inertia subgroup of v in G = Gal(L∞/K∞).

REMARK 2.2. Put K ′ = K(μp) and L′ = L(μp). We denote by L′
n the n-th layer

of L′∞/L′ and by Aω
L′

n
the Teichmüller part of the p-component of the ideal class group of

L′
n. Then, by the well-known duality (see [13] Proposition 13.32), XL is isomorphic to the

Pontrjagin dual of the direct limit lim→ Aω
L′

n
for which we write Aω

L′∞ . Namely we have

XL 	 (Aω
L′∞)∨(1)

where (1) is the Tate twist. If we use this isomorphism, Proposition 2.1 is a consequence of
Lemma 1.1 in [8]. But we give here a different proof (though we use the above isomorphism
to prove the following Proposition 2.3).

Before we prove Proposition 2.1, we need the following description of Ĥ−1(G,XL).

PROPOSITION 2.3. Let L′′∞/K∞ be the maximal subextension of L∞/K∞, which is
unramified outside p. We put G = Gal(L′′∞/K∞). Then there is an exact sequence

0 −→ Ĥ−1(G,XL) −→ (XL)G −→ XK −→ G −→ 0

where (XL)G is the module of G-coinvariants of XL, and (XL)G −→ XK is induced by the
restriction map.

PROOF. Let L′
n be as in Remark 2.2, and define K ′

n similarly. Then the cokernel of the
norm map ClL′

n
−→ ClK ′

n
between the class groups of L′

n and K ′
n is isomorphic to the Galois

group of the maximal unramified subextension of L′
n/K

′
n. In particular, it is a quotient of G,

and independent of n when n is sufficiently large. Therefore, the cokernel of the norm map
Aω

L′∞ −→ Aω
K ′∞ is finite. Using the above duality, we know that the kernel of the canonical

map XK −→ XL is finite. On the other hand, by Theorem 18 in Iwasawa [4] we know
that XK has no nontrivial finite Zp[[Gal(K∞/K)]]-submodule. This shows that XK −→
XL is injective. Therefore, Ĥ−1(G,XL) coincides with the kernel of (XL)G −→ XK . By
definition, the cokernel of this map is G. �

Now we prove the fundamental exact sequence (Proposition 2.1). Let Sp be the set
of p-adic primes of K , and S′ the set of non p-adic ramifying primes of K in L. We put
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S = Sp ∪ S′. Let OK∞,S be the ring of S-integers in K∞. We denote by Hi(OK∞,S, Qp/Zp)

the étale cohomology Hi
et (SpecOK∞,S, Qp/Zp), which is the same as the Galois cohomology

Hi(M/K∞, Qp/Zp) where M/K∞ is the maximal extension unramified outside S. We

define Hi(OK∞,Sp , Qp/Zp), Hi(OL∞,S, Qp/Zp), Hi(OL∞,Sp , Qp/Zp), similarly. Suppose

that v0 ∈ S′ and v is a prime of K∞ above v0. Since v0 is ramified in L, we must have
N(v0) ≡ 1 (mod p) where N(v0) is the norm of the prime v0. Therefore, the residue field
κ(v) of v contains all p-power roots of unity in an algebraic closure of κ(v). Let Iv(M/K∞)

be the inertia group of v in Gal(M/K∞). Since v is prime to p, Iv(M/K∞) is isomorphic
to Zp(1) where (1) means the Tate twist, and

H 0(κ(v),H 1(Iv(M/K∞), Qp/Zp)) = H 0(κ(v), Qp/Zp(−1))

= Qp/Zp(−1).

Since the weak Leopoldt conjecture is true, we know H 2(OK∞,Sp , Qp/Zp) = 0. Therefore,
the localization sequence of étale cohomology gives a short exact sequence

0 −→ H 1(OK∞,Sp , Qp/Zp) −→ H 1(OK∞,S, Qp/Zp)(1)

−→
⊕

v∈S ′
K∞

Qp/Zp(−1) −→ 0 .

Using the same exact sequence for L∞ and the spectral sequence, we have a commutative
diagram of exact sequences

0 0 0

↓ ↓ ↓
G∨ H 1(G, Qp/Zp)

⊕
v Z/evZ(−1)

↓ ↓ ↓
0 → H 1(OK∞,Sp

, Qp/Zp) → H 1(OK∞,S, Qp/Zp) → ⊕
v Qp/Zp(−1) → 0

↓ ↓ ↓
0 → H 1(OL∞,Sp

, Qp/Zp)G → H 1(OL∞,S , Qp/Zp)G
f→ (

⊕
w Qp/Zp(−1))G

↓ ↓ ↓
Ĥ−1(G, XL)∨ H 2(G, Qp/Zp) 0

↓ ↓
0 0 .

Here, H 1(OK∞,Sp , Qp/Zp), H 1(OL∞,Sp , Qp/Zp)G are the Pontrjagin duals of XK and
(XL)G, respectively, so Proposition 2.3 assures the exactness of the first vertical sequence.
The second vertical sequence is exact by the Serre-Hochschild spectral sequence. We note
that S contains all primes which ramify in L∞/K∞. We also note that H 1(G, Qp/Zp),

H 2(G, Qp/Zp) are the Pontrjagin duals of G and
∧2

G, respectively. In the third vertical
sequence, v runs over S′

K∞ and w runs over S′
L∞ which is the set of primes of L∞ above S′.
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We have (
⊕

w Qp/Zp(−1))G 	 ⊕
v Qp/Zp(−1) and the third vertical map is the multipli-

cation by ev for the v-component. This shows that the third map in the third vertical sequence
is surjective. This implies that f (which is the third horizontal map in the second horizontal
sequence) is surjective. Therefore by the snake lemma and dualization, we obtain an exact
sequence

0 −→
2∧

G −→ Ĥ−1(G,XL) −→
⊕

v∈S ′
K∞

Z/evZ(1) −→ G −→ G −→ 0 .

We note that the inertia group Iv of v in G is isomorphic to Z/evZ(1). Hence, in order to
prove Proposition 2.1, we have only to prove

(2) Ĥ 0(G,XL) 	 G .

We need the following lemma.

LEMMA 2.4. We have an isomorphism

XK
	−→ XG

L

where the right hand side is the G-invariant part of XL.

PROOF. By induction on #G, we may assume that #G = p, namely G 	 Z/pZ.
Let XK,S be the Galois group of LK∞,S/K∞ which is the maximal abelian pro-p extension
unramified outside S. Taking the dual of the exact sequence (1), we have an exact sequence

0 −→
⊕

v∈S ′
K∞

Iv(MS/K∞) −→ XK,S −→ XK −→ 0

where Iv(MS/K∞) 	 Zp(1) is the inertia group of v in XK,S . As we proved in the proof of
Proposition 2.3, XK −→ XL is injective. We defineXL,S similarly. Then the above injectivity
implies that the canonical map XK,S −→ XL,S is also injective. Taking the dual, we know

that the corestriction map H 1(OL∞,S, Qp/Zp)
Cor−→ H 1(OK∞,S, Qp/Zp) is surjective.

By the Serre-Hochschild spectral sequence, we have an isomorphism

H 1(G,H 1(OL∞,S, Qp/Zp)) 	 H 3(G, Qp/Zp) .

The latter group is isomorphic to H 1(G, Qp/Zp) because G is cyclic. Therefore, we have

H 1(G,H 1(OL∞,S, Qp/Zp)) 	 Z/pZ .

This shows that the kernel of

H 1(OL∞,S, Qp/Zp)G
Cor−→ H 1(OK∞,S, Qp/Zp)

Res−→ H 1(OL∞,S, Qp/Zp)
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is of order p where MG means the module of G-coinvariants of M . Since the kernel of the
restriction map H 1(OK∞,S, Qp/Zp) −→ H 1(OL∞,S, Qp/Zp) is H 1(G, Qp/Zp) which is
of order p, we know that the corestriction map gives an isomorphism

H 1(OL∞,S, Qp/Zp)G 	 H 1(OK∞,S, Qp/Zp) .

Consider the commutative diagram

H 1(OL∞,Sp , Qp/Zp)G −→ H 1(OL∞,S, Qp/Zp)G

↓ ↓
H 1(OK∞,Sp , Qp/Zp) −→ H 1(OK∞,S, Qp/Zp) .

We have just seen that the right vertical arrow is bijective. The lower horizontal arrow is
injective by definition. The upper horizontal arrow is also injective because of the surjectivity
of f in the previous commutative diagram and of the cyclicity of G. Therefore, we get the

injectivity of the left vertical arrow. Taking the dual, we know that XK −→ XG
L is surjective.

As we have mentioned, we proved the injectivity of XK −→ XL in the proof of Propo-

sition 2.3. Therefore, we get the bijectivity of XK −→ XG
L . �

We go back to the proof of (2). By Lemma 2.4, we have

Ĥ 0(G,XL) 	 Coker(XL −→ XK) .

Therefore, Proposition 2.3 implies (2). This completes the proof of (2) and Proposition 2.1.

REMARK 2.5. We note that we did not assume the vanishing of the μ-invariant of L

to prove the fundamental exact sequence in Proposition 2.1. The argument becomes much
simpler if one is willing to assume μ = 0.

3. The torsion submodule of (XL)G

In this section, we assume the same condition as in Proposition 2.1. Namely, L/K is a
finite abelian p-extension of totally real number fields such that L ∩ K∞ = K . Recall that
XK , XL are the Galois groups of the maximal abelian pro-p extensions unramified outside
p over K∞, L∞, respectively. We also use the notation G = Gal(L′′∞/K∞) in the previous
section where L′′∞/K∞ is the maximal subextension of L∞/K∞, which is unramified outside
p.

THEOREM 3.1. Let L/K be as above and G = Gal(L/K). We assume that G is
elementary abelian and G 	 (Z/pZ)⊕s for some s ∈ Z>0. We assume that the μ-invariant
of XK is zero, and denote the λ-invariant by λK . Let S′

K∞ be the set of primes of non p-adic

primes of K∞ that are ramified in L∞, n(L/K) = #S′
K∞ , and ε(L/K) = dimFp G. Then the

structure of the module (XL)G of Galois coinvariants as a Zp-module is as follows:
(XL)G 	 (Z/pZ)⊕t ⊕ Z⊕λK

p ,
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where

t = s(s − 3)

2
+ n(L/K) + ε(L/K) .

In particular, the Zp-torsion subgroup of (XL)G is annihilated by p.

PROOF. Since we assumed the vanishing of the μ-invariant of XK , it is a free Zp-

module by Theorem 18 in [4], and XK 	 Z⊕λK
p as Zp-modules. By Proposition 2.3,

(XL)G is a finitely generated Zp-module with rank λK , and the Zp-torsion part of (XL)G

is Ĥ−1(G,XL). Thus our aim is to determine Ĥ−1(G,XL). By the fundamental exact se-

quence (Proposition 2.1) and the isomorphism (2), we know that the order of Ĥ−1(G,XL) is
pt where

t = s(s − 1)

2
+ n(L/K) + ε(L/K) − s = s(s − 3)

2
+ n(L/K) + ε(L/K) .

Therefore, it suffices to prove that Ĥ−1(G,XL) is killed by p, or that it needs t elements as
its minimal generators as a Zp-module.

Step 1 (the case s = 1). Suppose that G = Z/pZ. In this case, since the order of G is

p, we have pĤ−1(G,XL) = 0, which implies the conclusion of Theorem 3.1.

Step 2 (the case s = 2). Suppose that G = Z/pZ ⊕ Z/pZ. At first, we assume that

L∞/K∞ is unramified outside p, namely n(L/K) = 0. Then the fundamental exact sequence

implies Ĥ−1(G,XL) = Z/pZ. Therefore, we get the theorem in this case. So we may assume
n(L/K) > 0. This implies ε(L/K) = 0, or 1.
(i) We first assume that ε(L/K) = 1. We take an intermediate field M with [L : M] = p

and L∞/M∞ is unramified outside p. Put G1 = Gal(L/M) and write G = G1 ⊕ G2. We
identify Gal(M/K) with G2.

By the fundamental exact sequence, we have Ĥ−1(G1,XL) = 0. This shows that
(XL)G1 is a submodule of XM with index p by Proposition 2.3. In particular, (XL)G1 is
a free Zp-module, so we can write

(XL)G1 	 Zp[G2]⊕a ⊕ Z⊕b
p ⊕ (Zp[G2]/(NG2))

⊕c

as Zp[G2]-modules for some integers a, b, c where NG2 = Σσ∈G2σ . Taking the G2-
coinvariant, we have

(XL)G = ((XL)G1)G2 	 Z⊕(a+b)
p ⊕ (Z/pZ)⊕c .

Therefore, pĤ−1(G,XL) = 0. This implies the conclusion as we explained.

By the way, we can determine a, b, c. We have proved that Ĥ−1(G,XL) =
(Z/pZ)⊕n(L/K), which implies c = n(L/K). By the fundamental exact sequence for M/K ,

we get Ĥ−1(G2,XM) = (Z/pZ)⊕n(M/K)−1 = (Z/pZ)⊕n(L/K)−1 and Ĥ 0(G2,XM) = 0,
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which imply

XM = Zp[G2]⊕λK ⊕ (Zp[G2]/(NG2))
⊕(n(L/K)−1).

(This procedure is the same as the proof of Kida’s formula in Iwasawa [5].) Comparing the
Zp-ranks of XM and (XL)G1 together with a + b = λK , we get b = 1 and a = λK − 1.

(ii) We next assume that ε(L/K) = 0. We take an intermediate field M such that
[M : K] = p, S′(M∞/K∞) �= ∅, and S′(L∞/M∞) �= ∅ where S′(M∞/K∞) is the set of non
p-adic ramifying primes of K∞ in M∞, and S′(L∞/M∞) is the set of non p-adic ramifying
primes of M∞ in L∞. Put n(M/K) = #S′(M∞/K∞) and n(L/M) = #S′(L∞/M∞). If v is
in S′(M∞/K∞), v is not a p-adic prime and the inertia group in G is cyclic. So the prime of
M∞ above v is not in S′(L∞/M∞). If w is in S′(L∞/M∞) and v is the prime of K∞ below
w, then v is not in S′(M∞/K∞) and it splits completely in M∞. Thus we have

n(L/K) = n(M/K) + 1

p
n(L/M) .

We again write G = G1⊕G2 with G1 = Gal(L/M). By the fundamental exact sequence
for L/M , we have an exact sequence

0 −→ Ĥ−1(G1,XL) −→ Fp[G2]⊕n(L/M)/p −→ G1 −→ 0 .

Therefore, we have an isomorphism

Ĥ−1(G1,XL) 	 Fp[G2]⊕(n(L/M)/p)−1 ⊕ Fp[G2]/(NG2)

as G2-modules. As we saw in the case (i), we have an isomorphism

XM = Zp[G2]⊕λK ⊕ (Zp[G2]/(NG2))
⊕(n(M/K)−1)

as G2-modules by the fundamental exact sequence for M/K . From the exact sequence

0 −→ Ĥ−1(G1,XL) −→ (XL)G1 −→ XM −→ 0 ,

we have an exact sequence

0 −→ Fp[G2]⊕(n(L/M)/p)−1 ⊕ Fp[G2]/(NG2) −→ ((XL)G1) ⊗ Fp

−→ Fp[G2]⊕λK ⊕ (Fp[G2]/(NG2))
⊕(n(M/K)−1) −→ 0 .

We take a generator σ of G2 and put S = σ − 1. We identify Fp[G2] with Fp[[S]]/(Sp).
The above exact sequence is a sequence of Fp[[S]]/(Sp)-modules. We put R = Fp[[π]]
in the following Lemma 3.2, where π is an indeterminate. Then Fp[G2] ∼= R/(πp) and

Fp[G2]/(NG2)
∼= R/(πp−1). From the lemma we obtain that the minimal number of gener-

ators of the Fp[G2]-module ((XL)G1) ⊗ Fp is exactly

n(M/K) + (n(L/M)/p) + λK − 1 = n(L/K) + λK − 1 .
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Now we take G2-coinvariants of ((XL)G1)⊗Fp , which of course gives ((XL)G)⊗Fp . On the
other hand, taking G2-coinvariants simply means factoring out by π . Therefore, we obtain

((XL)G) ⊗ Fp = ((XL)G1 ⊗ Fp)G2

	 (Z/pZ)⊕n(L/K)+λK−1 .

This shows that the minimal number of generators of the torsion part of (XL)G (which is

Ĥ−1(G,XL)) as a Zp-module is exactly n(L/K)− 1 by Nakayama’s lemma. This completes
the proof in this case.

LEMMA 3.2. Let R be a discrete valuation ring and π a uniformizing element. Sup-
pose that M is an R/(πn)-module with n ≥ 3, and that there is an exact sequence

0 −→ (R/(πn))⊕a ⊕ R/(πn−1) −→ M −→ (R/(πn))⊕b ⊕ (R/(πn−1))⊕c −→ 0

for some nonnegative integers a, b, c. Then the minimal number of generators of M over R is
a + b + c + 1. In more detail, we have

M 	 (R/(πn))⊕(a+b+δ) ⊕ (R/(πn−1))⊕(c+1−2δ) ⊕ (R/(πn−2))⊕δ

with δ = 0 or 1.

We only sketch the idea of the proof of this lemma. First one uses that R/(πn) is pro-
jective and injective as a module over itself. This allows to reduce the situation to a = b = 0.

The essential case is c = 1. One shows that an extension of R/(πn−1) by itself which is

annihilated by πn is either split or isomorphic to R/(πn) ⊕ R/(πn−2). Since n − 2 is still
positive, the claim follows. Let us remark that (as the reader may have noticed) this lemma
can be stated and proved more generally, but we will not go into it since it is not needed here.

Step 3 (general case). Now we assume G = (Z/pZ)⊕s with s > 2. Let H be a sub-

group of G, and M(H) the intermediate field of L/K corresponding to H . The restric-
tion map XL −→ XM(H) on the Galois groups induces the canonical homomorphism

Ĥ−1(G,XL) −→ Ĥ−1(G/H,XM(H)) on the cohomology groups by the commutative di-
agram

0 −→ Ĥ−1(G,XL) −→ (XL)G −→ XK

↓ can ↓ Res ↓ id

0 −→ Ĥ−1(G/H,XM(H)) −→ (XM(H))G/H −→ XK

where the horizontal exact sequences are the sequences obtained from Proposition 2.3, the
right vertical arrow is the identity map, the middle vertical arrow is the restriction map, and
the left vertical arrow is induced by the middle vertical arrow. We call the left vertical arrow
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can. The fundamental exact sequences for L/K and M(H)/K give a commutative diagram

0 −→ ∧2
G −→ Ĥ−1(G,XL) −→ ⊕

v Iv(L/K)

↓ ↓ can ↓ Res

0 −→ ∧2
G/H −→ Ĥ−1(G/H,XM(H)) −→ ⊕

v Iv(M(H)/K)

where Iv(L/K), Iv(M(H)/K) are the inertia subgroups of v in G, G/H , respectively, the
left vertical arrow is induced by the natural map G −→ G/H , and the right vertical is defined
by the restriction maps.

Let H be the set of subgroups of G with index p2. Considering all H ∈ H, we get a
commutative diagram of exact sequences:

0 → ∧2 G −→ Ĥ−1(G,XL) −→ ⊕
v Iv(L/K)

↓ α ↓ β ↓ γ

0 →
⊕

H∈H

∧2 G/H −→
⊕

H∈H
Ĥ−1(G/H,XM(H)) −→

⊕

H∈H

⊕
v Iv(M(H)/K) .

Since G is elementary abelian, α is injective. It is also easy to see that γ is injective.

Therefore, β is also injective. Since G/H 	 (Z/pZ)⊕2, we have shown in Step 2 that the

range of β is annihilated by p. This shows that Ĥ−1(G,XL) is annihilated by p. Therefore, by

the fundamental exact sequence and the isomorphism (2), we have Ĥ−1(G,XL) 	 (Z/pZ)⊕t

with t as in Theorem 3.1. This completes the proof of Theorem 3.1. �

4. S-ramified Iwasawa modules and the main conjecture

In this section, we assume that L/k is a finite abelian extension of totally real number
fields such that L ∩ k∞ = k.

We first introduce the p-adic L-function of Deligne-Ribet. We put ΛL =
Zp[[Gal(L∞/k)]]. We fix a generator γ of Gal(L∞/L) 	 Zp and put T = γ − 1. Then
we have ΛL = Zp[Gal(L/k)][[T ]].

Suppose that S is a finite set of primes of k which contains all ramifying primes in
L∞. For simplicity, we assume that L(μp)+ = L. We denote the cyclotomic character by

κ : Gal(L(μp)∞/k) −→ Z×
p . For a character χ of Gal(L/k) and n ∈ Z>0 we regard χκn

as a p-adic character of Gal(L(μp)∞/k). The group homomorphism χκn extends to a ring

homomorphism ΛL(μp) −→ Qp. Furthermore, we can extend it to the total quotient ring of

ΛL(μp) and denote it also by χκn. Then the p-adic L-function of Deligne-Ribet is the unique
element

ΘL∞/k,S ∈ 1

T
ΛL(μp)
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satisfying

χκn(ΘL∞/k,S) = LS(1 − n, χ)

for all positive integers n ∈ Z>0 and all characters χ of Gal(L/k) where LS(s, χ) is defined
by LS(s, χ) = ∏

v∈S(1 − χ(v)N(v)−s )L(s, χ). Since χ is even, LS(1 − n, χ) = 0 for odd
positive n, so the complex conjugation acts on ΘL∞/k,S trivially. Thus we know

ΘL∞/k,S ∈ 1

T
ΛL .

Next we study the algebraic object. Let XL,S be the Galois group of LL∞,S/L∞, the
maximal abelian pro-p extension which are unramified outside S. Therefore, XL,S is the

Pontrjagin dual of the étale cohomology H 1(OL∞,S, Qp/Zp) (see the proof of Proposition
2.1). Let χ be a character of Gal(L/k), and Oχ = Zp[Image(χ)] on which Gal(L/k) acts via
χ . For a Zp[Gal(L/k)]-module M , we define the χ-quotient by Mχ = M ⊗Zp [Gal(L/k)] Oχ .

Then (XL,S)χ is a finitely generated torsion (ΛL)χ = Oχ [[T ]]-module. Let χ̃ : ΛL −→
(ΛL)χ be the ring homomorphism induced by χ . The main conjecture which was proved by
Wiles in [14] Theorem 1.3 (at least assuming the vanishing of the μ-invariant) is

char(ΛL)χ ((XL,S)χ ) =
{

(χ̃(ΘL∞/k,S)) if χ �= 1
(T χ̃(ΘL∞/k,S)) if χ = 1

as ideals of (ΛL)χ where the left hand side is the characteristic ideal. If M is a finitely gen-
erated torsion (ΛL)χ -module with no nontrivial finite submodule, we know char(ΛL)χ (M) =
Fitt(ΛL)χ (M) where the latter is the (initial) Fitting ideal of M (cf. [10]). Thus the ques-
tion arises naturally whether T ΘL∞/k,S is in FittΛL(XL,S) or not. The answer is No if
Gal(L/k) ⊗ Zp is not cyclic. But using ΘL∞/k,S , we can describe the Fitting ideal in the
following theorem.

THEOREM 4.1. We assume the vanishing of the μ-invariant of XL. Suppose that the
p-Sylow subgroup of Gal(L/k) is generated by exactly s elements. Then we have

FittΛL(XL,S) = T 1−sAGal(L/k)ΘL∞/k,S

where AGal(L/k) is the ideal of ΛL defined in our previous paper [3] as the Fitting ideal
of a certain second syzygy module, which is determined only by the p-Sylow subgroup of
Gal(L/k).

PROOF. This can be proved by the same method as Theorem 3.3 in [3]. In that paper
we assumed that S = Sp, so that XL,S agrees with XL. But this is the only difference; all the
arguments carry over unchanged to general S ⊃ Sp.

We cannot reproduce the proof of the quoted theorem here, but let us at least say some-
thing on the ideal T 1−sAGal(L/k). The precise definition is to be found in §1 of loc. cit. Let
Δ be the non-p-part of Gal(L/k) and G be the p-part, in particular, Gal(L/k) 	 Δ×G. The
ideal AGal(L/k) is a purely algebraic invariant that depends only on G. For every character
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ξ of Δ except for the trivial character, the ξ -component of T 1−sAGal(L/k) is the unit ideal.

We regard the trivial character component (T 1−sAGal(L/k))
1 = T 1−s(AGal(L/k))

1 as an ideal

of Λ[G]. The ideal (AGal(L/k))
1 is defined by (AGal(L/k))

1 = FittΛ[G](Ω2) with a certain

explicit second syzygy Ω2 of the module Z over G with trivial Gal(k∞/k)-action. �

We explain the ideal (AGal(L/k))
1 a little more. Let IΛ[G] = Ker(Λ[G] =

Zp[[Gal(k∞/k) × G]] −→ Zp) be the augmentation ideal of Gal(k∞/k) × G. Write
G = Z/pn1 × ... × Z/pns with n1 ≤ ... ≤ ns . Define JΛ[G] to be the ideal generated

by IΛ[G] and pn1 . Then (T 1−sAGal(L/k))
1 is contained, with finite index, in the ideal IΛ[G] of

Λ[G]. We also have

(T 1−sAGal(L/k))
1 ⊂ IΛ[G]J s(s−1)/2

Λ[G]
(see Propositions 1.6 and 1.5 in [3]); one can check this in the following way. Let IG be the
augmentation ideal of Zp[G] and JG the ideal of Zp[G] generated by IG and pn1 . Then nd

in [3] §1 satisfies nd ⊂ J d
G, which implies md ⊂ J d

G by Proposition 1.5 in [3] where md

is the ideal of Zp[G] appearing in Proposition 1.6 in [3]. We also note mt+1 ⊂ IGJ t
G for

t = s(s − 1)/2, since any monomial appearing in a (t + 1)-minor of M̃s can only have t

factors of type ν and therefore must have at least one factor of type τ . Thus Proposition 1.6
in [3] implies the above inclusion.

5. The Fitting ideal of the p-ramified Iwasawa module over a totally real number
field

In this section, L/k is as in the previous section, but we do not assume L = L(μp)+. We
put ΛL = Zp[[Gal(L∞/k)]]. As in §2 let XL be the Galois group of the maximal abelian pro-
p extension LL∞,Sp /L∞, which is unramified outside p. We call XL the p-ramified Iwasawa
module of L∞; it is a module over ΛL.

For L(μp)+, consider ΘL(μp)+∞/k,S defined in the previous section. When we take S to

be minimal, namely the set of ramifying primes of k in L(μp)+∞, we simply write ΘL(μp)+∞/k

for ΘL(μp)+∞/k,S . We note that [L(μp)+ : L] is prime to p, which implies that ΛL can be

regarded as a direct summand of ΛL(μp)+ . We denote by ΘL∞/k ∈ ΛL the ΛL-component of

ΘL(μp)+∞/k. We are interested in whether T ΘL∞/k is in the Fitting ideal FittΛL(XL) or not.

THEOREM 5.1. Suppose that L/k is a finite abelian extension of totally real number
fields such that L ∩ k∞ = k. We assume that L/k contains an intermediate field K such that
K ⊂ k(μp)+ and Gal(L/K) is elementary p-abelian. We write Gal(L/K) = (Z/pZ)⊕s for
some s ≥ 0. We also assume the vanishing of the μ-invariant of XL and one of the following
conditions.

(i) s = 2 and L∞/K∞ is unramified outside p.
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(ii) s = 3 and L∞/K∞ contains an intermediate field L′′∞ which is unramified outside
p and [L′′∞ : K∞] = p.

(iii) s ≥ 4.

Then we have

T ΘL∞/k = (γ − 1)ΘL∞/k �∈ FittΛL(XL) .

REMARK 5.2. When k = Q, then (i) and (ii) never occur. This is because if L/Q is a
finite abelian p-extension which is unramified outside p, then L is contained in Q∞. But, of
course, (iii) does occur.

PROOF OF THEOREM 5.1. We may assume that K = k. In fact, put Δ = Gal(K/k),
and regard it as a subgroup of Gal(L/k). Let L(Δ) be the intermediate field of L/k such that
Gal(L/L(Δ)) = Δ, so L(Δ)/k is a p-extension. Then, since #Δ is prime to p, ΛL(Δ) is
a direct summand of ΛL. The ΛL(Δ)-component of ΘL∞/k is ΘL(Δ)∞/k because the set of
primes of k ramifying in L∞ coincides with the set of primes of k ramifying in L(Δ)∞. Since

H 1(OL(Δ)∞,Sp , Qp/Zp) −→ H 1(OL∞,Sp , Qp/Zp)Δ is bijective, the ΛL(Δ)-component of
XL is XL(Δ). Therefore the conclusion of Theorem 5.1 for the extension L(Δ)/k implies the
conclusion of Theorem 5.1 for L/k.

We suppose K = k from now on. We put Λ = Λk = Zp[[Gal(k∞/k)]] 	 Zp[[T ]]. We
first consider the restriction homomorphism cL∞/k∞ : ΛL −→ Λ. Let S′ be the set of non
p-adic ramifying primes of k in L∞. Since only p-adic primes are ramified in k∞/k, we have

cL∞/k∞(T ΘL∞/k) =
( ∏

v∈S ′
(1 − N(v)−1ϕv)

)
T Θk∞/k ∈ Λ

where ϕv is the Frobenius of v in Gal(k∞/k). By the main conjecture proved by Wiles [14]
(see §4), T Θk∞/k generates the characteristic ideal of Xk . Therefore, its image modulo p

∈ Λ/p = Fp[[T ]] satisfies

ordT (T Θk∞/k mod p) = λk ,

where λk is the λ-invariant of Xk and ordT is the normalized additive valuation of Fp[[T ]],
because we are assuming the vanishing of the μ-invariant.

Since v is ramified in L, we know N(v) ≡ 1 (mod p). Therefore, we have

ordT

( ∏

v∈S ′
(1 − N(v)−1ϕv) mod p

)
= ordT

( ∏

v∈S ′
(1 − ϕv) mod p

)

=
∑

v∈S ′
ordT ((1 − ϕv) mod p)

= #S′
k∞
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where S′
k∞ is the set of primes of k∞ above S′. Thus the image of T ΘL∞/k in Λk ⊗ Fp

satisfies

(3) ordT (cL∞/k∞(T ΘL∞/k) mod p) = λk + #S′
k∞ .

Next applying Theorem 3.1 to L/k, we have ((XL)Gal(L/k)) ⊗ Fp 	 (Z/pZ)⊕t with

(4) t = s(s − 3)

2
+ #S′

k∞ + ε + λk ,

where ε = dimFp Gal(L′′∞/k∞) with L′′ as in (ii). If (i) is satisfied, then ε = 2 and s(s −
3)/2 + ε = 1 > 0. If (ii) is satisfied, then ε ≥ 1, and s(s − 3)/2 + ε ≥ 1 > 0. If (iii) is
satisfied, then s(s − 3)/2 + ε ≥ s(s − 3)/2 > 0. In any case, by the equations (3), (4), we
have

t > ordT (cL∞/k∞(T ΘL∞/k) mod p) .

After these preparations, suppose now that T ΘL∞/k is in FittΛL(XL). This would imply

cL∞/k∞(T ΘL∞/k) mod p ∈ FittFp[[T ]]((XL)Gal(L/k) ⊗ Fp) = (T t ) .

This contradicts the above inequality. Therefore, we have T ΘL∞/k �∈ FittΛL(XL). �

6. The Fitting ideal of the dualized Iwasawa module

By the duality we mentioned in Remark 2.2, Theorem 5.1 implies the result on the minus
class group that we explained in the Introduction. We now give the details of this implication.

For the ideal class group of a number field F , the p-component of the class group
is denoted by AF , namely AF = ClF ⊗ Zp . For a CM-field L and the cyclotomic Zp-
extension L∞/L and the n-th layer Ln, we define AL∞ = lim→ ALn , which is a discrete

ΛL = Zp[[Gal(L∞/k)]]-module. We consider the Pontrjagin dual (AL∞)∨ with the cogredi-
ent action of Gal(L∞/k). So it is a compact ΛL-module.

For a finite abelian extension L/k where k is totally real and L is a CM-field, the Stick-
elberger element θL/k ∈ Q[Gal(L/k)] is the unique element which satisfies

χ(θL/k) = LSL(0, χ−1)

for all characters χ of Gal(L/k) where we extended χ to the ring homomorphism χ :
Q[Gal(L/k)] −→ Q(Image(χ)) and SL is the set of ramifying primes of k in L. Let L,
Ln be as in the previous paragraph. Then θLn/k becomes a projective system for n 
 0. Let
γ be the generator we fixed and κ the cyclotomic character. We know (γ − κ(γ ))θLn/k ∈
Zp[Gal(Ln/k)] and denote the projective limit by (γ − κ(γ ))θL∞/k ∈ ΛL.

THEOREM 6.1. Assume exactly the same conditions as in Theorem 5.1, including the
list of conditions (i), (ii), (iii), with the exception that now K = k(μp) instead of K ⊂ k(μp)+,
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and “L is CM” instead of “L is totally real”. Then we have

(γ − κ(γ ))θL∞/k �∈ FittΛL((AL∞)∨) .

REMARK 6.2. (1) When L/K is unramified outside p (and in particular when we
assume (i)), the above result was already obtained in our previous papers [8], [3].

(2) It is somewhat surprising that this corollary also applies in the case k = Q and
suitable abelian fields L. Indeed, the paper [7] determines the Fitting ideal of the non-dualised
class group over L∞, and it contains the left hand side of the non-inclusion displayed in the
theorem. In particular, in many cases the Fitting ideals of the class group of an abelian number
field and of its dual cannot be equal. We will see such cases in §§7,8.

PROOF OF THEOREM 6.1. Suppose that κ : Gal(L∞/k) −→ Z×
p is the cyclotomic

character. Let τ , ι be the automorphisms of the total quotient ring of ΛL induced by σ �→
κ(σ )σ , σ �→ σ−1, respectively, for any σ ∈ Gal(L∞/k). Then we know

ιτ (ΘL∞/k) = θL∞/k

and ιτ (T ) = κ(γ )γ −1−1. Let A−
L∞ be the minus part of AL∞ (the part on which the complex

conjugation acts as −1). The Kummer pairing gives a natural isomorphism

(A−
L∞)∨(1) 	 XL+

(see [13] Proposition 13.32). Therefore, Theorem 5.1 implies

(κ(γ )γ −1 − 1)θL∞/k �∈ FittΛL((A−
L∞)∨) ,

which completes the proof. �

REMARK 6.3. Put Δ = Gal(K/k) and let ω : Δ −→ Z×
p be the Teichmüller charac-

ter. Since the order of Δ is prime to p, Zp[Δ] is decomposed into character components, so

any Zp[Δ]-module M is decomposed into character components, M = ⊕
ξ Mξ where ξ runs

over Qp-conjugacy classes of characters of Δ. By the same method as the proof of Theorem
6.1, we see that

((γ − κ(γ ))θL∞/k)
ω �∈ FittΛω

L
((Aω

L∞)∨)

where the left hand side is the ω-component of the element (γ − κ(γ ))θL∞/k. In fact, taking
the ω-component of the isomorphism of the Kummer pairing in the proof of Theorem 6.1, we
have

(Aω
L∞)∨(1) 	 XL(Δ)

where L(Δ) is the intermediate field of L/k such that Gal(L/L(Δ)) = Δ. Since
T ΘL(Δ)∞/k �∈ FittΛL(Δ)

(XL(Δ)) by Theorem 5.1, we get the above statement on the ω-
component.
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7. Results at number field level

In this section, we study some consequences of Theorem 6.1 over number fields of finite
degree. For simplicity, we assume k = Q. We note that the vanishing of the μ-invariant is
proved by Ferrero and Washington. We repeat that the cases (i) and (ii) in Theorem 6.1 never
happen over k = Q, and so we may concentrate on the case (iii).

COROLLARY 7.1. Suppose that L/Q is a finite abelian extension such that μp ⊂ L,

μp2 �⊂ L, and Gal(L/Q(μp)) 	 (Z/pZ)⊕s for some s ≥ 4. Let S be the set of prime numbers

ramifying in L, and S′ = S \ {p}. We take n ∈ Z>0 such that

pn >
∑

�∈S ′
pordp(�−1)−1 .

Let Ln be the n-th layer of L∞/L (so Ln = L(μpn+1)), and Rn = Zp[Gal(Ln/Q)]. Then we

have

AnnRn(μpn+1)θLn/Q �⊂ FittRn((ALn)
∨) ,

where AnnRn(μpn+1) is the annihilator ideal of μpn+1 in Rn. More precisely,

(AnnRn(μpn+1)θLn/Q)ω �⊂ FittRω
n
((Aω

Ln
)∨)

holds.

PROOF. As in the previous sections, suppose that γ is a generator of Gal(L∞/L). We
regard γ as a generator of Gal(Ln/L). It is well-known that (γ − κ(γ ))θLn/Q ∈ Rn, and is,
of course, in AnnRn(μpn+1)θLn/Q. We will show that

((γ − κ(γ ))θLn/Q)ω �∈ FittRω
n
((Aω

Ln
)∨) .

Put K = Q(μp), Δ = Gal(K/Q), and G = Gal(L/K). As in Remark 6.3, we denote by
L(Δ) the intermediate field of L/Q such that Gal(L/L(Δ)) = Δ. Put G = Gal(L(Δ)/Q) =
Gal(L/Q(μp)) 	 (Z/pZ)⊕s . It is well-known that XQ = 0. Therefore, applying Theorem
3.1 for L(Δ)/Q, we have

(XL(Δ))G = Ĥ−1(G,XL(Δ)) 	 (Z/pZ)⊕t

where

t = s(s − 3)

2
+ #S′

Q∞ .

In particular, (XL(Δ))G is an Fp-vector space. More precisely, consider the fundamental exact
sequence

0 −→
2∧

G −→ Ĥ−1(G,XL(Δ)) −→
⊕

v∈S ′
Q∞

Fp −→ G −→ 0 .
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We regard γ as a generator of Gal(Q∞/Q), and put T = γ − 1 as before. Then γ acts

on G trivially, and
⊕

v∈S ′
Q∞ ,v|�Fp 	 Fp[[T ]]/(T pr

) where r = ordp(� − 1) − 1 (note that

ordp(�−1) ≥ 1). By our assumption, n > r holds. Therefore, T pn−1
annihilates

⊕
v∈S ′

Q∞
Fp.

Since T annihilates
∧2

G, we know that (p, T pn
) annihilates Ĥ−1(G,XL(Δ)).

By the isomorphism (Aω
L∞)∨ 	 XL(Δ)(−1), we have isomorphisms of Λ = ΛQ∞-

modules

((Aω
L∞)G)∨ 	 (XL(Δ))G(−1) = Ĥ−1(G,XL(Δ))(−1)

	 Ĥ−1(G,XL(Δ)) .

Here, we used pĤ−1(G,XL(Δ)) = 0 to get the second isomorphism. Put Γn = Gal(L∞/Ln),

which is generated by γ pn
. Since (p, T pn

) annihilates Ĥ−1(G,XL(Δ)), we have

((Aω
L∞)G×Γn)∨ 	 Ĥ−1(G,XL(Δ))Γn = Ĥ−1(G,XL(Δ)) .

Since the p-adic primes of L+
n are ramified in Ln, the natural map A−

Ln
−→ (A−

L∞)Γn is

bijective. Therefore, we get

((Aω
Ln

)∨)G 	 Ĥ−1(G,XL(Δ)) .

Now we can proceed in the same way as in the proof of Theorem 5.1. Suppose that
((γ − κ(γ ))θLn/Q)ω is in FittRω

n
((Aω

Ln
)∨). This would imply

T
#S ′

Q∞+1
θω
Kn

∈ FittFp[[T ]]/(T pn
)(Ĥ

−1(G,XL(Δ))) = (T t )

where t is as above and satisfies t > #S′
Q∞ because of our assumption s ≥ 4. This is a

contradiction because T θω
Kn

is a unit of Zp[Gal(Kn/Q)]ω and pn >
∑

�∈S ′ pordp(�−1)−1 =
#S′

Q∞ . �

COROLLARY 7.2. Suppose that p is an odd prime and

m = pn
s∏

i=1

�i

satisfying

(i) s ≥ 4,
(ii) �i ≡ 1 (mod p) for all i = 1, . . . , s,

(iii) pn−1 >
∑s

i=1p
ordp(�i−1)−1.

We put L = Q(μm). Then we have

(AnnZ[Gal(L/Q)](μm)θL/Q) ⊗ Zp �⊂ FittZp[Gal(L/Q)](A∨
L) .
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In particular, the classical Stickelberger ideal of L by Iwasawa and Sinnott which contains
AnnZ[Gal(L/Q)](μm)θL/Q does not coincide with FittZ[Gal(L/Q)](Cl∨L).

PROOF. Clearly, L has a unique subfield L′ such that the conductor of L′ is m/pn−1,
L′ contains Q(μp), and Gal(L′/Q(μp)) 	 (Z/pZ)⊕s . Put F = L′(μpn). By Corollary 7.1,
we have

(AnnZp[Gal(F/Q)](μpn)θF/Q)ω �⊂ FittZp[Gal(F/Q)]ω((Aω
F )∨) .

Since the conductor of F is m, the image of θL/Q in Q[Gal(F/Q)] is θF/Q. Since Gal(L/F)

is generated by the inertia subgroups of the ramified primes, the natural map A−
F −→ A−

L is
injective. Therefore,

cL/F (FittZp[Gal(L/Q)]ω((Aω
L)∨)) ⊂ FittZp[Gal(L/Q)]ω((Aω

F )∨) ,

where cL/F : Zp[Gal(L/Q)]ω −→ Zp[Gal(F/Q)]ω is the restriction map. This implies that

(AnnZp [Gal(L/Q)](μpn)θL/Q)ω �⊂ FittZp[Gal(L/Q)]ω((Aω
L)∨) ,

which implies the conclusion. �

REMARK 7.3. For example, m = 27 ·7 ·13 ·19 ·31 satisfies the conditions of Corollary
7.2 for p = 3.

8. The case s = 2

We have studied the Fitting ideal of the minus class group of an abelian field L whose
Galois group over Q has p-rank ≥ 4 (namely, s = dimFp Gal(L/Q) ⊗ Fp ≥ 4). In this
section, let us examine several examples in the case s = 2 for k = Q.

Consider the subset P = {� | � ≡ 1(mod p)} of the set of prime numbers. For � ∈ P ,
we denote by F(�) the subfield of Q(μ�) of degree p. For two primes �1,�2 ∈ P , we define
F(�1, �2) to be the composite field of F(�1) and F(�2), L(�1) = F(�1)(μp) and L(�1, �2) =
F(�1, �2)(μp).

PROPOSITION 8.1. Let �1, �2 be two primes in P , and assume �1 �≡ 1 (mod p2). Put
L = L(�1, �2), and G = Gal(L/Q(μp)) = Gal(F (�1, �2)/Q).

(1) We have Aω
L(�1)

= 0.

(2) For any �2 ∈ P , Aω
L is generated by one element as a Zp[G]-module.

(3) Suppose that �2 satisfies at least one of the following conditions:
(i) �2 �≡ 1 (mod p2);

(ii) �2 does not split completely in F(�1).

Then we have

FittZp [G]((Aω
L)∨) = FittZp[G](Aω

L).
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(4) Suppose that �2 satisfies neither (i) nor (ii) above. Then NG2 is in FittZp [G](Aω
L), but

not in FittZp [G]((Aω
L)∨) where G2 = Gal(L/L(�1)) and NG2 is the norm element of

G2 in Zp[G]. In particular, we have

FittZp [G]((Aω
L)∨) �= FittZp[G](Aω

L) .

PROOF. We first note that the natural maps Aω
L(�i)

−→ Aω
L, Aω

L(�i)
−→ Aω

L(�i)∞ ,

Aω
L −→ Aω

L∞ are all injective.

(1) Put G1 = Gal(F (�1)/Q). By our assumption �1 �≡ 1 (mod p2), there is only one
prime of F(�1)∞ above �1. It follows from the fundamental exact sequence for F(�1)/Q that

Ĥ−1(G1,XF(�1)) = 0. Since XQ = 0, this implies that XF(�1) = 0 by Proposition 2.3. Since
(Aω

L(�1)∞)∨(1) 	 XF(�1), we also have Aω
L(�1)

= 0.

(2) Let wi be a prime of L(�1, �2) above �i . We denote by κ(wi) the residue field of wi ,
and by D�i the decomposition group of wi in G. We need the following lemma.

LEMMA 8.2. We have an exact sequence

Ĥ 0(G,μp) −→ Ĥ 0(D�1, κ(w1)
×) ⊕ Ĥ 0(D�2 , κ(w2)

×) −→ Ĥ−1(G,Aω
L)

−→ H 1(G,μp)
f1−→ H 1(D�1, κ(w1)

×) ⊕ H 1(D�2, κ(w2)
×) −→ Ĥ 0(G,Aω

L)

−→ H 2(G,μp)
f2−→ H 2(D�1, κ(w1)

×) ⊕ H 2(D�2, κ(w2)
×) .

where G acts on μp trivially. The map f1 is bijective. The group Ĥ j (D�i , κ(wi)
×) is of order

p for any i, j ∈ {0, 1, 2}.
PROOF OF LEMMA 8.2. This exact sequence is obtained from the exact sequence in

the last line on page 411 in [8]. We know H 1(D�i , κ(wi)
×) = H 1(D�i , ULwi

) 	 Z/ewi Z =
Z/pZ where ULwi

is the unit group of the integer ring of Lwi , and ewi is the ramification

index of wi in L/Q(μp). It is well-known that the kernel of f1 is isomorphic to the kernel
of Aω

Q(μp) −→ Aω
L(�1,�2)

. But Aω
Q(μp) = 0, so the kernel of f1 is zero. Since both the source

and the range of f1 have order p2, the injectivity of f1 implies the bijectivity of f1. Finally,

Ĥ 0(D�i , κ(wi)
×) is isomorphic to the inertia group of �i in G by local class field theory, so

it has order p. This completes the proof of Lemma 8.2.

We go back to the proof of Proposition 8.1. In the exact sequence in Lemma 8.2, since

�1 �≡ 1 (mod p2), we have Ĥ 0(D�1 , κ(w1)
×) = F×

�1
⊗ Z/pZ 	 μp, and the natural map

Ĥ 0(G,μp) = μp −→ Ĥ 0(D�1, κ(w1)
×) = μp is bijective. Therefore, it follows from

Lemma 8.2 that Ĥ−1(G,Aω
L) is isomorphic to Z/pZ. Since Aω

Q(μp)
= 0, we know that Aω

L is

generated by one element as a G-module.
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(3) We prove that (Aω
L)∨ is generated by one element as a G-module under the assump-

tion in (3). Let us first assume that the condition (i) holds. By the fundamental exact sequence
for F(�1, �2)/Q,

0 −→
2∧

G −→ Ĥ−1(G,XF(�1,�2)) −→
⊕

v|�1�2

Z/pZ −→ G −→ 0

is exact. Since neither �1 nor �2 splits in Q∞ by our assumption (i), we know
⊕

v|�1�2
Z/pZ 	

(Z/pZ)⊕2, which implies Ĥ−1(G,XF(�1,�2)) 	 Z/pZ by the above exact sequence. Since
XQ = 0, XF(�1,�2) is generated by one element as a G-module by Nakayama’s lemma. There-
fore, using the duality isomorphism as in (1), we get the cyclicity of (Aω

L)∨.
Next, we assume the condition (ii). Put G2 = Gal(F (�1, �2)/F (�1)). By the fundamen-

tal exact sequence for F(�1, �2)/F (�1),

0 −→ Ĥ−1(G2,XF(�1,�2)) −→
⊕

v|�2

Z/pZ −→ G2 −→ 0

is exact where v runs over primes of F(�1)∞ above �2. By our assumption (ii),
⊕

v|�2
Z/pZ

is a quotient of Fp[[Gal(F (�1)∞/F (�1))]] = Fp[[Gal(Q∞/Q)]] and the third map in the
exact sequence is induced by the augmentation map Fp[[Gal(Q∞/Q)]] −→ Fp. It fol-

lows that Ĥ−1(G2,XF(�1,�2)) is cyclic as a ΛQ-module. Since XF(�1) = 0 by (1), we have

(XF(�1,�2))G2 = Ĥ−1(G2,XF(�1,�2)) by Proposition 2.3. Therefore, by Nakayama’s lemma,
XF(�1,�2) is generated by one element as a ΛF(�1,�2)-module. Thus, by the same method as
above, we get the cyclicity of (Aω

L)∨.

By (2) and the above, both Aω
L and (Aω

L)∨ are cyclic as Zp[G]-modules. Therefore, we
obtain

FittZp [G](Aω
L) = FittZp [G]((Aω

L)∨) = AnnZp[G](Aω
L) .

This completes the proof of (3).
(4) Since Aω

L(�1)
= 0 by (1), NG2 is in AnnZp [G](Aω

L). Therefore, it is also in

FittZp[G](Aω
L) because Aω

L is cyclic by (2).

Consider the homomorphism H 2(G,μp) −→ H 2(D�2, κ(w2)
×), which is obtained by

the composition of f2 in Lemma 8.2 and the second projection. Since �2 splits completely in
L(�1) and ramifies in L/L(�1), κ(w2) = F�2 . Put r2 = ordp(�2 − 1). By our assumption

�2 ≡ 1 (mod p2), we have r2 > 1. Then H 2(D�2, κ(w2)
×) = H 2(D�2, μpr2 ) and the above

map

H 2(G,μp) −→ H 2(D�2, κ(w2)
×) = H 2(D�2 , μpr2 )

is induced by the natural homomorphisms D�2 −→ G, μp −→ μpr2 . In particular, it factors

through H 2(D�2, μp). Recall that D�2 is cyclic of order p. Therefore, H 2(D�2, μp) −→
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H 2(D�2 , μpr2 ) is the zero map. It follows that the Fp-dimension of the image of f2 in Lemma
8.2 is equal to or smaller than 1. By Lemma 8.2, we have

dimFp ((Aω
L)G) ≥ dimFp H 2(G,μp) − 1 = 3 − 1 = 2 .

Suppose that α ∈ Zp[G] is in FittZp[G]((Aω
L)∨). Let c : Zp[G] −→ Zp be the augmenta-

tion map. We have c(α) ∈ FittZp (((Aω
L)G)∨), so p2 divides c(α) because dimFp ((Aω

L)G) ≥ 2.
Namely, we get

α ∈ FittZp[G]((Aω
L)∨) �⇒ p2|c(α) .

This shows that NG2 is not in FittZp[G]((Aω
L)∨) because c(NG2) = p. This completes the

proof of Proposition 8.1.
�

REMARK 8.3. Suppose that n is a product of primes in P . We define ηQ(μnp) by

ηQ(μnp) = θQ(μnp)/Q − νθQ(μp)/Q ,

where ν is the corestriction map. It is easy to see that ηQ(μnp) ∈ Zp[Gal(Q(μnp)/Q)]. For any
field F with conductor np, we define ηF by the image of ηQ(μnp). Let Θ(L) ⊂ Zp[Gal(L/Q)]
be the Stickelberger ideal in the sense of Sinnott [12] (or in the sense of the second author
[7]). We regard Θ(L) as an ideal of the minus part Zp[Gal(L/Q)]−. We can check that
Θ(L) of L = L(�1, �2) is generated by four elements, to wit, ηL, νηL(�i) with i = 1, 2, and
pνθQ(μp)/Q with suitable corestriction maps ν. By the main theorem in [9] (or Theorem 0.6
in [7]) we have

FittZp[Gal(L/Q)]−(A−
L) = Θ(L) .

We have seen in Proposition 8.1 that

FittZp[Gal(L/Q)]−((A∨
L)−) �= Θ(L)

if L satisfies the condition of Proposition 8.1 (4).

REMARK 8.4. We give numerical examples. Take p = 3 and �1 = 7. Then all �2 ∈ P

with �2 < 127 satisfy the condition of Proposition 8.1 (3) (more precisely, �2 = 13, 19, 31,
43, 61, 67, 73, 79, 97, 103, 109 satisfy the condition).

The first prime which does not satisfy the condition is �2 = 127. Let us examine this case
in detail. For L = L(7, 127), take a generator σ of Gal(F (7)/Q) and τ ∈ Gal(F (127)/Q)

such that σ(ζ7) = ζ 3
7 and τ (ζ127) = ζ 3

127. We write σ = 1 + S and τ = 1 + T , and

Zp[G] = Zp[S, T ]/((1 + S)3 − 1, (1 + T )3 − 1)

where G is as in Proposition 8.1. (Note: the above T has no relation with T in the previous
sections.) Let ηL be as in Remark 8.3. We regard ηL as an element of Zp[Gal(L/Q)]− =
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Zp[G]. One can compute

ηL = −2(126 + 126S + 42S2 + 123T + 123ST + 44S2T + 40T 2 + 39ST 2 + 15S2T 2) .

Let us not write out the others, but note that νηL(7) is 1+τ +τ 2 times a unit since AQ(μ7) = 0.
Then we can compute numerically the Stickelberger ideal Θ(L) of L. The result is

(5) Θ(L) = (3, S2T , T 2) ⊂ Zp[G] .

We know AL+ = 0, so we have AL = A−
L = Aω

L. Since AL is cyclic by Proposition 8.1 (2),
we have

AL 	 Zp[G]/Θ(L) = Zp[G]/(3, S2T , T 2)

= Fp[S, T ]/(S3, S2T , T 2) .(6)

In particular, as an abelian group, we have AL 	 (Z/pZ)⊕5. The structure of AL as an
abelian group can be also checked by direct computation. We thank Jiro Nomura very much
for his computing the structure as an abelian group of AL(�1,�2) for several �1, �2 by Pari-GP.

By the isomorphism (6), we can also compute generators and relations of A∨
L. We find

that A∨
L is generated by two elements and its Fitting ideal is

(7) FittZp[G](A∨
L) = (9, 3T , 3S, S2T , T 2) .

It follows from (6) and (7) that

FittZp[G](A∨
L) � FittZp [G](AL) = (3, S2T , T 2) .

By (7) we also see

ηL ∈ FittZp [G](A∨
L) ,

but

νηL(7) �∈ FittZp [G](A∨
L)

because νηL(7) is 1 + τ + τ 2 = 3 + 3T + T 2 up to a unit factor.
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