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Abstract. We consider second order linear elliptic equations −div(A(x)∇u)+ b(x) · ∇u = 0 with a singular
vector field b. We prove a refined subsolution estimate, which contains a precise dependence of the quantities of b,
for weak subsolutions and a weak Harnack inequality for weak supersolutions under certain assumptions on b.

1. Introduction and main results

We consider second order linear elliptic equations of divergence type:

−div(A(x)∇u)+ b(x) · ∇u

= −
n∑

i,j=1

∂j (aij (x)∂iu)+
n∑

i=1

bi(x)∂iu = 0 in Ω, (DE)

where Ω is a domain in R
n (n ≥ 3). Throughout this paper, we assume that A(x) =

(aij (x))1≤i,j≤n is measurable and satisfies the uniform ellipticity condition: there exist posi-
tive constants 0 < ν ≤ L < ∞ such that

|aij (x)| ≤ L,

n∑

i,j=1

aij (x)ξiξj ≥ ν|ξ |2 , ∀ξ ∈ R
n , ∀x ∈ Ω. (A)

We also assume that a vector field b(x) = (bi(x))1≤i≤n belongs to L2
loc(Ω). We say that u is

a weak subsolution (supersolution) to (DE) in Ω if u ∈ W 1,2
loc (Ω) satisfies

∫

Ω

(A∇u) · ∇φ + b · ∇uφ dx ≤ (≥) 0 (3)

for all φ ∈ C∞
c (Ω) and φ ≥ 0. Here, W 1,2

loc (Ω) is the standard Sobolev space. We say that u
is a weak solution to (DE) in Ω if u is a weak subsolution and a weak supersolution. If b ∈
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Lp(Ω) with p > n, then Hölder continuity and Harnack’s inequality of weak solutions are
well-known (see e.g., [17, 14, 8]). Stampacchia ([23]) proved the same properties when b ∈
Ln(Ω). Furthermore, he proved Liouville type theorem in the case where b ∈ Ln(Rn) under
the smallness condition on Ln(Rn) norm of b . When b ∈ Lp(Ω) with p < n, in general a
weak solution u loses its local boundedness (see Remark 3 and [5]). Recently, motivated by
applications for the equation of fluid mechanics, parabolic equations corresponding to (DE)
under the assumption divb = 0 has been studied extensively ([19, 15, 24, 21, 6, 22, 18, 5]).
Friedlander and Vicol ([6]) proved Hölder continuity of weak solutions under the conditions
divb = 0 and b ∈ L∞

t BMO
−1
x . Independently, Seregin et al. ([22]) proved parabolic Harnack

inequality in the same conditions. Nazarov and Uraltseva ([18]) proved parabolic Harnack
inequality when divb ≤ 0 and b belongs to a suitable space-time Morrey space. Furthermore,
they also improved the Harnack inequality due to Stampacchia for the case b ∈ Ln(Ω) by
using Safonov’s idea ([20]) for elliptic equation (DE) (see Corollary 1). Inspired by these
works, in this paper we assume the following conditions for the vector field b.

CONDITION (B) A vector field b ∈ L2
loc(Ω) can be represented as b = b(1) + b(2) +

b(3) + b(4) and each b(i) ∈ L2
loc(Ω) satisfies the following conditions:

1. b(1) belong to some Lorentz space Ln,q(Ω) with n ≤ q < ∞. (See Section 2 for
the definition of Lorentz spaces and basic properties.)

2. b(2) is small relative to the lower bound ν of (A) in the following sense: there
exists a constant B2 = B2(Ω) < ν such that

∫

Ω

|b(2)|2φ2 dx ≤ (B2)
2
∫

Ω

|∇φ|2 dx, ∀φ ∈ C∞
c (Ω). (4)

3. b(3) satisfies the form boundedness condition and divb(3) ≤ 0 in the distribution
sense: there exists a constant B3 = B3(Ω) < ∞ such that

∫

Ω

|b(3)|2φ2 dx ≤ (B3)
2
∫

Ω

|∇φ|2 dx, ∀φ ∈ C∞
c (Ω),

∫

Ω

b(3) · ∇φ dx ≥ 0 , ∀φ ∈ C∞
c (Ω) , φ ≥ 0 . (5)

4. b(4) =
(
b
(4)
i

)

1≤i≤n can be written in the form b
(4)
i = ∑n

j=1 ∂jVij in the dis-

tribution sense, where V = (Vij ) satisfies Vij = −Vji and Vij ∈ BMO(Ω)

(1 ≤ i, j ≤ n). (See Section 2 for the definition of BMO(Ω).) We define
‖V ‖BMO(Ω) = ∑

i,j ‖Vij‖BMO(Ω) .

REMARK 1. It is easy to see divb(4) = 0 in the distribution sense. We do not impose

the form boundedness of |b(4)|2.

Main results of this paper are as follows. We assume the conditions (A) and (B) on A(x)
and b(x) respectively in the following statements in Ω .
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THEOREM 1 (subsolution estimate). Let B2R(x0) ⊂ Ω . Suppose u is a weak subsolu-
tion of (DE) in BR(x0). Let 0 < ρ < R. Then for any p > 0 there is a constant C depending
only on n, L, q , and p such that

ess sup
Bρ(x0)

u+ ≤ C(n,L, q, p)
{
Kn+1

1 K
qn

2

} 1
p

(
1

(R − ρ)n

∫

BR(x0)

u
p
+ dx

) 1
p

,

where K1 = 1+B3+‖V ‖BMO(Ω)
ν−B2

andK2 = 1 + ‖b(1)‖Ln,q (Ω)
ν−B2

.

THEOREM 2 (weak Harnack inequality). Let B4R(x0) ⊂ Ω . Suppose u is a non-
negative weak supersolution of (DE) in B2R(x0). Then there are positive numbers p0 > 0
and C depending only on n, ν, L, ‖b1‖Ln,q (Ω), q , B2, B3 and ‖V ‖BMO(Ω) such that

(
1

Rn

∫

BR(x0)

up0 dx

) 1
p0 ≤ C ess inf

BR
2
(x0)

u.

More precisely, p0 and C can be expressed as p0 = C(n,ν,L,q)
K3

and C =
{C(n,L, q)Kn+1

1 K
qn

2 }C(n,ν,L,q)K3 where K3 = 1 + ‖b(1)‖Ln,q (Ω) + B3 + ‖V ‖BMO(Ω).
REMARK 2. Note that Ln(Ω) = Ln,n(Ω). Even for the case b = b(1) ∈ Ln(Ω), The-

orem 1 is new and gives a refined subsolution estimate which contains a precise dependence
on the quantity ‖b‖Ln(Ω). Although Stampacchia already proved a subsolution estimate for
the case b ∈ Ln(Ω) in [23], the precise dependence of the quantity ‖b‖Ln(Ω) was not given.
Actually, as it was pointed out in [14, p.200], Stampacchia’s constant depends on the con-
stant K such that ‖b‖Ln(BR(x0)∩{|b|>K}) ≤ C(n)ν, what C(n) is constant depending only n.
Therefore the constantK depends on BR(x0) ⊂ Ω , not on the quantity ‖b‖Ln(Ω).

REMARK 3. The smallness condition on B2 is sharp. Let b(x) = νγ x

|x|2 with γ ∈
R. When −∞ < γ < n−2

2 , b satisfies the condition (B) and hence a weak subsolution

(supersolution)W 1,2(B1) to −ν�u+ b · ∇u = 0 in B1 satisfies the subsolution estimate (the

weak Harnack inequality). Actually, b satisfies the condition (B) as b(2) = b, b(1) = b(3) =
b(4) = 0 for the case |γ | < n−2

2 by using Hardy’s inequality:

∫

Rn

φ2

|x|2 dx ≤ 4

(n− 2)2

∫

Rn

|∇φ|2 dx, ∀φ ∈ C∞
c (R

n)

and b(3) = b, b(1) = b(2) = b(4) = 0 for the case γ ≤ 0, since divb = νγ (n−2)
|x|2 ≤ 0. On the

other hand, when γ > n−2
2 , it is easy to see that

u(x) =
{
c|x|2−n+γ γ �= n− 2 ,

c log |x| γ = n− 2
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belongs to W 1,2(B1) and is a weak solution to −ν�u + b · ∇u = 0 in B1. Since u is not a
bounded function, the smallness condition on B2 is sharp.

REMARK 4. In [5], for a certain b ∈ Lp(Ω) with p < n and divb = 0 the existence
of a bounded weak solution u to −�u+b ·∇u = 0, which is not continuous has been pointed
out.

REMARK 5. If b(1) ∈ Lq(Ω) with q > n and b(2) = b(3) = b(4) = 0, a sharp form
weak of the Harnack inequality is known ([8]). i.e., positive number p0 in Theorem 2 can be

replaced to any 0 < p < n
n−2 . But, as b(2),b(3) �= 0, we cannot expect such a sharp form

of the weak Harnack inequality in general. Actually, for b = γ x

|x|2 with γ < 0 sufficiently

small, uk = min{|x|2−n+γ , k} (k > 1) is a nonnegative weak supersolution of the equation
−�u+b ·∇u = 0 inΩ = B2R . Then, in spite of ess inf B1 uk = 1, limk→∞ ‖uk‖Lp(B1) = ∞
for p = n

n−2−γ . Therefore, the weak Harnack inequality with p0 = p does not hold.

In this paper, we treat the conditions b(i) (i = 1, 2, 3, 4) in a unified way. The classes

b(2), b(3) and b(4) also have been considered in previous works ([15, 21, 6, 22]) for parabolic
equations in Ω = R

n. Restricting to the elliptic problem, their results yields essentially the

same subsolution estimate for weak subsolutions under the assumption b = b(2),b(3) or b(4)

without the precise dependence of the constant on the quantities B2, B3 and ‖V ‖BMO(Ω).
The method of the proof is slightly different in the following sense. In [15], [21] and [22],
since they were mainly concerned with weak solutions, first they established a solution for
the approximated equations with smooth vector field b and then took the limit to obtain the
estimate for weak solutions. In [22], they used the higher integrability of the gradient of
u to show the parabolic Harnack inequality for suitable weak solutions. Furthermore, in

[15], [21] for b = b(2),b(3) or b(4), they also proved Hölder continuity of weak solutions
by using the estimates for fundamental solutions to parabolic equations. In [6], they proved
Hölder continuity by using Caffarelli-Vasseur approach based on the oscillation lemma ([3]).
The strategy of this paper is to establish a refined subsolution estimate and a weak Harnack
inequality for weak subsolutions and weak supersolutions without using the approximating
procedure on the vector field b. Instead of such approximating procedure, we will take care
of substituting processes of various test functions in details. We also remark that in [18] and
[13] they showed a subsolution estimate for Lipshitz continuous weak solutions under slightly

weaker conditions than the one on b(3).
Combining Theorem 1 with Theorem 2, we obtain following Harnack’s inequality im-

mediately.

COROLLARY 1 (Harnack’s inequality). Let B4R(x0) ⊂ Ω . Suppose u is a non-
negative weak solution of (DE) in B2R(x0). Then there is a constant C depending only on
n, ν, L, ‖b1‖Ln,q (Ω), q , B2, B3 and ‖V ‖BMO(Ω) such that

ess sup
BR

2
(x0)

u ≤ C ess inf
BR

2
(x0)

u.
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Once we get Corollary 1, we can show the following consequences by using a standard
argument (see e.g., [8, 9, 18]). We omit the detail of the proofs.

COROLLARY 2 (Hölder estimate). Let B4R(x0) ⊂ Ω . Suppose u is a weak solution
of (DE) in B2R(x0). Then there are positive numbers β ∈ (0, 1) and C depending only on n,

ν, L, ‖b(1)‖Ln,q (Ω), q , B2, B3 and ‖V ‖BMO(Ω) such that

osc
Bρ(x0)

u ≤ C
( ρ
R

)β
osc
BR(x0)

u, 0 < ∀ρ < R.

COROLLARY 3 (Liouville). Let condition (A) be satisfied in R
n. Suppose that (B) be

satisfied in any domainΩ � R
n for some fixed q < ∞. We define

S(Ω) := 1 + ‖b(1)‖Lp,q (Ω) + B3(Ω)+ ‖V ‖BMO(Ω)
ν − B2(Ω)

. (6)

Also suppose that

lim inf
R→∞ sup

|x|=R
S(BδR(x)) < ∞ (7)

holds for some 0 < δ < 1. If u is a weak solution of (DE) in R
n and bounded from below (or

above), then u is a constant.

REMARK 6. We note several examples of b satisfying (7). If b ∈ Ln,q(Rn), B3(R
n) <

∞, V ∈ BMO(Rn)n×n and B2(R
n) < ν, then (7) satisfied for any 0 < δ < 1. If |b| ≤ C

1+|x|
for some C > 0, it is easy to see that

lim inf
R→∞ sup

|x|=R
‖b‖Ln,q (BδR(x)) < ∞

holds for any 0 < δ < 1.

REMARK 7. Corollaries 1, 2 and 3 are generalization of Theorems 2.5′ and Theorem
2.6′ in [18]. In [18], a generalization of their result to Lorentz spaces was suggested without
proof.

In addition, as an application of Theorem 1, we prove the following corollary.

COROLLARY 4 (Higher integrability). Suppose u is a weak solution of (DE) in Ω .

Then ∇u belongs to Lp1
loc(Ω) for some p1 > 2 .

The paper is organized as follows: First, by using the properties of the form
∫

b ·∇uv dx
(Lemma 7, 8), we prove the Caccioppoli type inequality when b(1) is small enough (Lemma

1). Also, we get the subsolution estimate when b(1) is sufficiently small (Lemma 9) using this.
Next, using the weak maximum principle and Lemma 2, we prove the subsolution estimate

without smallness of b(1) (Theorem 1). Finally, we show that the BMO estimate of logu for
a positive supersolution u (Lemma 2), using this and the subsolution estimate, we obtain the
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weak Harnack inequality (Theorem 2). In addition, we show Corollary 4 by applying the
subsolution estimate.

We will use the following notation. BR(x0) := { x ∈ R
n; |x − x0| < R } and BR =

BR(0). For B = BR(x0), we define 2B := B2R(x0). For x ∈ R
n and S ⊂ R

n, we define
dist(x, S) := inf{ |x − y|; y ∈ S }. For open sets Ω ′,Ω ⊂ R

n, we denote Ω ′ � Ω if Ω̄ ′
is compact and Ω̄ ′ ⊂ Ω . If A ⊂ R

n, |A| is the Lebesgue measure of A. f+ = max{f, 0}.
fA = |A|−1

∫
A
f dx. ηε(x) = 1

εn
η( x

ε
) is a standard mollifier.

2. Preliminaries

2.1. Function spaces and imbedding theorem. The Sobolev space W 1,2(Ω) con-
sists of all weakly differentiable functions such that

‖u‖2
W 1,2(Ω)

:= ‖u‖2
L2(Ω)

+ ‖∇u‖2
L2(Ω)

< ∞ .

The space W 1,2
0 (Ω) is the closure of C∞

c (Ω) in W 1,2(Ω). We say u belongs to W 1,2
loc (Ω) if

‖u‖W 1,2(Ω ′) < ∞ for every Ω ′ � Ω . Recall the following properties of W 1,2(Ω). See e.g.
[11, p.18, 20] for the proof.

LEMMA 1. Suppose that {uj }∞j=1 ⊂ W 1,2(Ω), u ∈ W 1,2(Ω) and uj → u in

W 1,2(Ω). Then (uj )+ → u+ in W 1,2(Ω). In addition, suppose that uj , u ≥ k > 0

in Ω for some positive constant k, f ∈ C1(0,∞) and f ′ is bounded in [k,∞). Then
∇(f ◦ uj ) → ∇(f ◦ u) = f ′(u)∇u in L2(Ω).

For 0 < p < ∞ and 0 < q ≤ ∞, we consider the quantity

‖f ‖Lp,q (Ω) =
⎧
⎨

⎩

(
p
∫∞

0 sq |{ x ∈ Ω; |f (x)| > s }| qp ds
s

) 1
q

q < ∞ ,

sups>0 s|{ x ∈ Ω; |f (x)| > s }| 1
p q = ∞ .

The Lorentz space Lp,q(Ω) consists of all measurable functions f satisfying ‖f ‖Lp,q (Ω) <
∞. Note that Lp,p(Ω) = Lp(Ω) and Lp,q(Ω) � Lp,r (Ω) � Lp,∞(Ω) for any q < r < ∞
([10, p.49]). We will use the following lemma to show Theorem 1.

LEMMA 2. Let f ∈ Lp,q(Ω) with p ≤ q < ∞. For any ε > 0 we define M =
[ε−q‖f ‖qLp,q (Ω)] + 1, where [t] is the integer part of t . If A1, . . . , AM are disjoint subsets of

Ω , then ‖f ‖Lp,q (Am) < ε for some m ∈ {1, . . . ,M}.
PROOF. We note that [t] + 1 > t for any t ≥ 0. Since p ≤ q , using the inequality
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∑
m a

α
m ≤ (

∑
m am)

α (am ≥ 0, α ≥ 1) as α = q
p

, we have

‖f ‖qLp,q (Ω) ≥ p

∫ ∞

0
sq

(
M∑

m=1

|{ x ∈ Am; |f (x)| > s }|
) q
p
ds

s

≥
M∑

m=1

p

∫ ∞

0
sq |{ x ∈ Am; |f (x)| > s }| qp ds

s
=

M∑

m=1

‖f ‖qLp,q (Am).

If ε ≤ ‖f ‖Lp,q (Am) for all m = 1, . . . ,M , then we haveM
1
q ≤ ε−1‖f ‖Lp,q (Ω). This inequal-

ity contradicts with the definition ofM . �

Next lemma is the Sobolev imbedding theorem in Lorentz spaces.

LEMMA 3. LetΩ ⊂ R
n (n > 2) and 2 ≤ q ≤ ∞. Then there exists a constant S(n, q)

depending only n and q such that

‖f ‖L2∗,q (Ω) ≤ S(n, q)‖∇f ‖L2(Ω), ∀f ∈ W 1,2
0 (Ω), (8)

where 2∗ := 2n
n−2 .

See e.g. [1] for the proof. Recently, the best constant S(n, q) of (8) was studied in [2].
When q = 2∗, (8) is the well-known Sobolev inequality. We denote CS(n) := S(n, 2∗). The

assumption on b(1), the duality of Lorentz spaces ([10, p.52]) and (8) yield
∫

Ω

|b(1)|2φ2 dx ≤
(
CB(n, q)‖b(1)‖Ln,q (Ω)

)2
∫

Ω

|∇φ|2 dx, ∀φ ∈ C∞
c (Ω), (9)

where CB(n, q) := S(n,
2q
q−2 ). In the following, we will use these notations.

For a domainΩ ⊂ R
n and f ∈ L1

loc(Ω), we define

‖f ‖BMO(Ω) := sup
2B⊂Ω

1

|B|
∫

B

|f (x)− fB | dx,

where the supremum is taken over all balls 2B ⊂ Ω . BMO(Ω) consists of all locally in-
tegrable functions f satisfying ‖f ‖BMO(Ω) < ∞. From the well-known John-Nirenberg

inequality |{ x ∈ B; |f (x)− fB | > s }| ≤ C1 exp( −C2s‖f ‖BMO(Ω) )|B| for any 2B ⊂ Ω (See e.g.,

[11, p.365]), every f ∈ BMO(Ω) has the exponential integrability:

∀2B ⊂ Ω,

∫

B

exp

(
C(n)|f (x)− fB |

‖f ‖BMO(Ω)
)
dx ≤ C(n)|B|. (10)

Especially,

∀2B ⊂ Ω,

(
1

|B|
∫

B

|f (x)− fB |p dx
) 1
p ≤ C(n, p)‖f ‖BMO(Ω), (11)

for any 1 ≤ p < ∞. These inequalities are also called as the John-Nirenberg inequality.
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2.2. Some technical facts. We will use the following two technical lemmas in the
proof of Theorem 1 and 2. We present these well-known statements for reader’s convenience
to make it clear the dependence of quantities of b in our estimates.

LEMMA 4 ([9, p.220] [14, p.66]). Let α > 0 and let {xi} be a sequence of positive
numbers, such that

xm+1 ≤ Cbmx1+α
m , (12)

with C > 0 and b > 1. If x0 ≤ C
−1
α b

−1
α2 , then limm→∞ xm = 0.

LEMMA 5 ([9, p.191] [12, p.76]). Let Z(t) be a bounded non-negative function in the
interval [ρ,R]. Assume that for ρ ≤ t < s ≤ R we have

Z(t) ≤ θZ(s)+ A

(s − t)α

with A ≥ 0, α > 0 and 0 ≤ θ < 1. Then there exists a constant C(α, θ) such that

Z(ρ) ≤ C(α, θ)A

(R − ρ)α
.

3. Proof of Main theorems

3.1. Basic estimates for
∫

b·∇uv dx. Since we do not assume the form boundedness

of |b(4)|2 as in b(2), b(3), we must take care of the expressions
∫
Ω b(4) · ∇uv dx for u ∈

W 1,2(BR) and v ∈ W 1,2
0 (BR). The following inequality can be found in Maz′ya and Verbitsky

([16]), but we give the proof for completeness.

LEMMA 6. If b = b(4) in the condition (B) withΩ = R
n. Then there exists a constant

C = C(n) such that
∣∣∣∣
∫

Rn

b(4) · ∇uv dx
∣∣∣∣ ≤ C‖V ‖BMO(Rn)‖∇u‖L2(Rn)‖∇v‖L2(Rn), ∀u, v ∈ C∞

c (R
n) (13)

holds.

PROOF. Since divb(4) = 0 and Vij = −Vji , we have
∫

Rn

b(4) · ∇uv dx = −
∫

Rn

b(4) · u∇v dx = 1

2

∫

Rn

b(4) · (∇uv − u∇v) dx

= −1

2

n∑

i,j=1

∫

Rn

Vij ∂j (∂iuv − u∂iv) dx

= −1

2

∫

Rn

n∑

i,j=1
i �=j

(
∂iu∂jv − ∂ju∂iv

)
︸ ︷︷ ︸

=:Wij

dx.
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For i �= j , we take �f(i,j) := (0, . . . ,

i︷ ︸︸ ︷
−∂ju, . . . ,

j︷︸︸︷
∂iu , . . . , 0)T . ThenWij = �f(i,j) · ∇v. Since

div �f(i,j) = 0 and ‖ �f(i,j)‖L2 ≤ ‖∇u‖L2 , from the div-curl lemma ([4]),

‖Wij ‖H1 ≤ C‖ �f(i,j)‖L2‖∇v‖L2 ≤ C‖∇u‖L2‖∇v‖L2 .

Here, H1 is the Hardy space. Therefore, by the H1 − BMO duality we have

∣∣∣∣
∫

Rn

b(4) · ∇uv dx
∣∣∣∣ = 1

2

∣∣∣∣∣∣

n∑

i,j=1

∫

Rn

VijWij dx

∣∣∣∣∣∣

≤ C‖V ‖BMO‖W‖H1 ≤ C‖V ‖BMO‖∇u‖L2‖∇v‖L2 ,

where ‖W‖H1 = ∑
i,j ‖Wij ‖H1 . �

Next lemma is an easy consequence of (13).

LEMMA 7. Let BR � Ω . Assume the condition (B) on b. Then there is a constant C
depending only on n, R, ‖b1‖Ln,q (Ω), q , B2, B3 and ‖V ‖BMO(Ω) such that

∣∣∣∣
∫

BR

b · ∇uv dx
∣∣∣∣ ≤ C‖∇u‖L2(BR)

‖∇v‖L2(BR)
,

for any u ∈ W 1,2(BR) and any v ∈ W 1,2
0 (BR) ∩ Cc(BR).

PROOF. By the form boundedness condition (9), (4) and (5) and the Cauchy-Schwarz
inequality, there is a constant C = C(n, ‖b1‖Ln,q (Ω), q,B2,B3) such that

∣∣∣∣
∫

BR

(
b(1) + b(2) + b(3)

)
· ∇uv dx

∣∣∣∣ ≤ C‖∇u‖L2(BR)
‖∇v‖L2(BR)

holds for u ∈ W 1,2(BR) and v ∈ W
1,2
0 (BR). It remains to show the inequality for

b(4). We note that there is a skew-symmetric matrix valued function Ṽ = (Ṽij )1≤i,j≤n ∈
BMO(Rn)n×n such that Ṽ ≡ V in BR and ‖Ṽ ‖BMO(Rn) ≤ C‖V ‖BMO(Ω). We define

b̃ = (̃bi) := (
∑
j ∂j Ṽij ) (see e.g. [16]). First, we also assume that u ∈ W 1,2

0 (B2R). Choose a

sequence {uε}ε>0 ⊂ C∞
c (B2R) such that uε → u in W 1,2(B2R) and take vε := ηε ∗ v. Then

by (13) we have
∣∣∣∣
∫

BR

b(4) · ∇uv dx
∣∣∣∣ ≤

∣∣∣∣
∫

BR

b̃ · ∇uεvε dx
∣∣∣∣

+
∣∣∣∣
∫

BR

b(4) · ∇(u− uε)vε dx

∣∣∣∣+
∣∣∣∣
∫

BR

b(4) · ∇u(v − vε) dx

∣∣∣∣
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≤ C‖Ṽ ‖BMO(Rn)‖∇uε‖L2(Rn)‖∇vε‖L2(Rn)

+ ‖b(4)‖L2(BR)
‖∇(u− uε)‖L2(BR)

‖vε‖L∞(BR)

+ ‖b(4)‖L2(BR)
‖∇u‖L2(BR)

‖v − vε‖L∞(BR).

The right-hand side converges toC‖Ṽ ‖BMO(Rn)‖∇u‖L2(Rn)‖∇v‖L2(Rn). The desired inequal-

ity is obtained. Next, we treat a general u ∈ W 1,2(BR). Let ũ ∈ W 1,2
0 (B2R) be an extension

of u− uBR . By Poincaré’s inequality, we have

‖ũ‖W 1,2(B2R)
≤ C(n,R)‖u−uBR‖W 1,2(BR)

≤ C(n,R)′‖∇(u−uBR)‖L2(BR)
= C′‖∇u‖L2(BR)

.

Using the previous inequality, we get the desired inequality. �

LEMMA 8. Let B2R ⊂ Ω . Assume the condition (B) on b. Suppose ψ ∈ C∞(BR)
and ζ ∈ C∞

c (BR) are non-negative. Then, for any εi > 0 (i = 2, 3, 4) following inequalities
hold. ∫

BR

∣∣∣b(1) · ∇ψ
∣∣∣ψζ 2 dx ≤2B1

∫

BR

|∇ψ|2ζ 2 dx + B1

3

∫

BR

ψ2|∇ζ |2 dx, (14)

∫

BR

∣∣∣b(2) · ∇ψ
∣∣∣ψζ 2 dx ≤(1 + ε2)B2

∫

BR

|∇ψ|2ζ 2 dx

+ (1 + ε2)B2

2{(1 + ε2)2 − 1}
∫

BR

ψ2|∇ζ |2 dx, (15)

−
∫

BR

b(3) · ∇ψψζ 2 dx ≤ε3

∫

BR

|∇ψ|2ζ 2 dx +
(
ε3 + B2

3

2ε3

)∫

BR

ψ2|∇ζ |2 dx, (16)

∣∣∣∣
∫

BR

b(4) · ∇ψψζ 2 dx

∣∣∣∣ ≤ε4

∫

BR

|∇ψ|2ζ 2 dx + 1

ε4

∫

BR

|V − VBR |2ψ2|∇ζ |2 dx, (17)

where B1 = CB(n, q)‖b(1)‖Ln,q (Ω).
PROOF. First, we recall Young’s inequality:

ab ≤ ε

2
a2 + 1

2ε
b2 , ∀a, b ≥ 0 , ∀ε > 0 . (18)

Using (18), we have for any ε > 0
∫

BR

∣∣∣b(1) · ∇ψ
∣∣∣ψζ 2 dx ≤ ε

2

∫

BR

|∇ψ|2ζ 2 dx + 1

2ε

∫

BR

|b(1)|2(ψζ )2 dx.

On the other hand, for any ε1 > 0, using (a + b)2 ≤ 1
s
a2 + 1

1−s b
2 (a, b ≥ 0, 0 < s < 1) with

s = (1 + ε1)
−2, we have

∫

BR

|∇(ψζ )|2 dx ≤ (1 + ε1)
2
∫

BR

|∇ψ|2ζ 2 dx + C(ε1)

∫

BR

ψ2|∇ζ |2 dx,
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where C(ε1) = (1+ε1)
2

(1+ε1)
2−1

. We combine the two inequalities as ε = (1+ε1)B1. Taking ε1 = 1

and using (9), we obtain (14). In the same manner, we get (15). Next, since divb(3) ≤ 0 in the
distribution sense, (18) yields

−
∫

BR

b(3) · ∇ψψζ 2 dx = −1

2

∫

BR

b(3) · ∇
(
ψ2ζ 2

)
dx +

∫

BR

b(3) · ψ2∇ζ ζ dx

≤ ε

2

∫

BR

|b(3)|2(ψζ )2 dx + 1

2ε

∫

BR

ψ2|∇ζ |2 dx,

for any ε > 0. Let ε3 be a positive constant. Taking ε = ε3B−2
3 , we get (16). In order to prove

(17), we use the notation Ṽ = V − VBR with VBR = |BR|−1
∫
BR
V dx. By the assumption on

b(4), we have

−
∫

BR

b(4) · ∇ψψζ 2 dx = −1

2

n∑

i=1

∫

BR

b
(4)
i ∂i(ψ

2)ζ 2 dx

= 1

2

n∑

i,j=1

∫

BR

Vij ∂j (∂i(ψ
2)ζ 2) dx = 1

2

n∑

i,j=1

∫

BR

Ṽij ∂j (∂i(ψ
2)ζ 2) dx

= 1

2

n∑

i,j=1

∫

BR

Ṽij ∂i(ψ
2)∂j (ζ

2) dx + 1

2

n∑

i,j=1

∫

BR

Ṽij ∂j ∂i(ψ
2)ζ 2 dx.

Here, we have used
∫
BR
∂j (∂i(ψ

2)ζ 2) dx = 0 from the divergence theorem. Since Ṽij =
−Ṽij , the second term of the right-hand side equals to zero. Therefore

−
∫

BR

b(4) · ∇ψψζ 2 dx = 2
∫

BR

(V − VBR)∇ψ · ψ∇ζ ζ dx.

Using (18) again, we arrive at the desired inequality. �

3.2. Proof of Theorem 1

PROPOSITION 1 (Caccioppoli type inequality). Let B2R ⊂ Ω . Assume the condition
(B) on b. We also assume that

‖b(1)‖Ln,q (Ω) ≤ ν − B2

8CB(n, q)
. (19)

Suppose u is a weak subsolution of (DE) in BR . Then for any non-negative ζ ∈ C∞
c (BR), we

have
∫

BR

|∇u+|2ζ 2 dx ≤C
(

L2

(ν − B2)2
+ B2

3

(ν − B2)2

)∫

BR

u2+|∇ζ |2 dx

+ C

(ν − B2)2

∫

BR

|V − VBR |2u2+|∇ζ |2 dx.
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PROOF. Choose a sequence {ut }t>0 ⊂ C∞(BR) such that ut → u inW 1,2(BR) as t →
0. Also, for each t > 0, we choose a sequence {ψt,s}s>0 ⊂ C∞(BR) such that ψt,s → (ut )+
in W 1,2(BR) as s → 0 and ψt,s ≥ 0 in BR . By Lemma 1, limt→0(lims→0ψt,s) = u+ in

W 1,2(BR). Taking φ = ψt,sζ
2 in (3), we have

∫

BR

(A∇u) · ∇ψt,sζ 2 dx ≤ −2
∫

BR

(A∇u) · ψt,s∇ζ ζ dx −
∫

BR

b · ∇uψt,sζ 2 dx

= −2
∫

BR

(A∇u) · ψt,s∇ζ ζ dx −
∫

BR

(b(1) + b(2) + b(3) + b(4)) · ∇ψt,sψt,sζ 2 dx

−
∫

BR

b · ∇(u− ψt,s)ψt,sζ
2 dx.

Using Lemma 8, for any εi > 0 (i = 2, 3, 4) we have
∫

BR

(A∇u) · ∇ψt,sζ 2 dx ≤ −2
∫

BR

(A∇u) · ψt,s∇ζ ζ dx

+ (2B1 + (1 + ε2)B2 + ε3 + ε4)

∫

BR

|∇ψt,s |2ζ 2 dx

+
(
B1

3
+ (1 + ε2)B2

2{(1 + ε2)2 − 1} + ε3 + B2
3

2ε3

)∫

BR

ψ2
t,s |∇ζ |2 dx

+ 1

ε4

∫

BR

|V − VBR |2ψ2
t,s |∇ζ |2 dx −

∫

BR

b · ∇(u− ψt,s)ψt,sζ
2 dx. (20)

Next, we prove

lim
t→0

(
lim
s→0

∫

BR

b · ∇(u− ψt,s)ψt,sζ
2 dx

)
= 0. (21)

We note that (ut )+ζ 2 ∈ W 1,2
0 (BR) ∩ Cc(BR) for any t > 0. By Lemma 7, we get

lim
s→0

∫

BR

b · ∇(u− ψt,s)ψt,sζ
2 dx =

∫

BR

b · ∇(u− (ut )+)(ut )+ζ 2 dx.

Since ∇(u− (ut )+) = ∇(u− ut ) in {(ut )+ > 0}, we have
∫

BR

b · ∇(u− (ut )+)(ut )+ζ 2 dx =
∫

BR

b · ∇(u− ut )(ut )+ζ 2 dx.

Using Lemma 7 again, we obtain (21). Take s → 0 and t → 0 in (20). Hölder’ inequality,
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the John-Nirenberg inequality (11) and (21) yield
∫

BR

(A∇u) · ∇u+ζ 2 dx ≤ −2
∫

BR

(A∇u) · u+∇ζ ζ dx

+ (2B1 + (1 + ε2)B2 + ε3 + ε4)

∫

BR

|∇u+|2ζ 2 dx

+
(
B1

3
+ (1 + ε2)B2

2{(1 + ε2)2 − 1} + ε3 + B2
3

2ε3

)∫

BR

u2+|∇ζ |2 dx

+ 1

ε4

∫

BR

|V − VBR |2u2+|∇ζ |2 dx.

Since ∇u = ∇u+ in {u+ > 0}, using Young’s inequality (18) and the uniform ellipticity, we
get

ν

∫

BR

|∇u+|2ζ 2 dx ≤ (ε0 + 2B1 + (1 + ε2)B2 + ε3 + ε4)

∫

BR

|∇u+|2ζ 2 dx

+
(
L2

ε0
+ B1

3
+ (1 + ε2)B2

2{(1 + ε2)2 − 1} + ε3 + B2
3

2ε3

)∫

BR

u2+|∇ζ |2 dx

+ 1

ε4

∫

BR

|V − VBR |2u2+|∇ζ |2 dx

for any ε0 > 0. Taking

ε2 = 1

2

(
ν

B2
− 1

)
, ε0 = ε3 = ε4 = 1

16
(ν − B2).

and using ν ≤ L, we arrive at the desired inequality. The proof is complete. �

LEMMA 9. Let B2R(x0) ⊂ Ω . Assume the condition (B) on b. Furthermore we as-
sume (19). Suppose u is a weak subsolution of (DE) in BR(x0). Let 1 < κ < χ := n

n−2 . Then

there is a constant C depends only on n, L and κ such that

ess sup
BR

2 (x0)

u2κ+ ≤ C(n,L, κ)K

2κχ
χ−κ

1
1

Rn

∫

BR(x0)

u2κ+ dx,

where K1 is the quantity appeared in Theorem 1.

PROOF. We use De Giorgi’s method (see e.g., [9, 12]). Without loss of generality, we
assume that x0 = 0. Moreover, we may suppose that the right-hand side is positive. From



88 TAKANOBU HARA

Proposition 1 and Sobolev’s inequality (8), for any 0 < r < R, we have
(∫

Br

(u+ζ )2χ dx
) 1
χ ≤ CS(n)

2
∫

Br

|∇(u+ζ )|2 dx

≤ CS(n)
2
(
(C1 + 1)

∫

Br

u2+|∇ζ |2 dx + C2

∫

Br

|V − VBr |2u2+|∇ζ |2 dx
)
,

for any non-negative ζ ∈ C∞
c (BR). Set Rm = { 1

2 + 1
2m+1 }R for m = 0, 1, 2, . . .. Then,

BR = BR0 ⊃ BR1 ⊃ · · · ⊃ BRm ⊃ BRm+1 ⊃ · · · ⊃ BR
2

. Choosing ζm ∈ C∞
c (BR) such that

ζm|BRm+1
≡ 1, supp ζm ⊂ BRm, |∇ζm| ≤ C2m

R
,

we substitute ζ = ζm as r = Rm. From the John-Nirenberg inequality (11) and Hölder’s
inequality, we get

(∫

BRm+1

u
2χ
+ dx

) 1
χ

≤ C∗‖∇ζm‖2
L∞|BRm |1− 1

κ

(∫

BRm

u2κ+ dx

) 1
κ

.

Here, C∗ = C(n,L, κ)K2
1 . Therefore, using Hölder’s inequality, we have

1

|BR|
∫

BRm+1

u2κ+ dx ≤
(

1

|BR|
∫

BRm+1

u
2χ
+ dx

) κ
χ

·
( |BRm+1 ∩ [u > 0]|

|BR |
)1− κ

χ

≤ (C∗22m)κ
1

|BR|
∫

BRm

u2κ+ dx ·
( |BRm+1 ∩ [u > 0]|

|BR|
)1− κ

χ

,

where [u > 0] = { x ∈ Ω; u(x) > 0 }. Let k > 0 be a positive constant to be chosen later.

Put km := (1 − 1
2m )k. We note that k0 = 0 and km → k as m → ∞. Replacing u with

u− km+1 and multiplying k−2κ to both sides, we have

1

k2κ |BR|
∫

BRm+1

(u− km+1)
2κ+ dx

≤ (C∗22m)κ
1

k2κ |BR|
∫

BRm

(u− km+1)
2κ+ dx ·

( |BRm+1 ∩ [u > km+1]|
|BR|

)1− κ
χ

.

From Chebyshev’s inequality:

|BRm+1 ∩ [u > km+1]|
|BR| ≤ (km+1 − km)

−2κ

|BR|
∫

BRm+1

(u− km)
2κ+ dx,
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we have
1

k2κ |BR|
∫

BRm+1

(u− km+1)
2κ+ dx

≤ Cκ∗ 22κ(1+(1− κ
χ
))m

(
1

k2κ |BR|
∫

BRm

(u− km)
2κ+ dx

)1+(1− κ
χ )

.

Put

C = Cκ∗ , b = 22κ(1+(1− κ
χ
))
, α = (1 − κ

χ
),

xm = k−2κ 1

|BR|
∫

BRm

(u− km)
2κ+ dx.

Then the above inequality is rewritten as (12). Furthermore, let

k2κ = C
1
α b

1
α2

1

|BR|
∫

BR

u2κ+ dx.

Since

x0 = k−2κ 1

|BR|
∫

BR

u2κ+ dx = C
−1
α b

−1
α2 ,

xm → 0 as m → ∞ by Lemma 4. On the other hand, if |{x ∈ BR
2
; u(x) ≥ k + ε}| > 0 for

some ε > 0, then

xm ≥ k−2κ 1

|BR|
∫

BR
2

(u− k)2κ+ dx ≥ k−2κ 1

|BR|ε
2κ |{x ∈ BR

2
; u(x) ≥ k + ε}|| > 0

for all m = 0, 1, . . .. This contradicts to xm → 0 as m → ∞. Therefore, we obtain

ess sup
BR

2

u+ ≤ k.

Since C
1
α b

1
α2 = C

κ(
χ
χ−κ )∗ · 22κ{1+(1− κ

χ
)}( χ

χ−κ )2 ≤ C(n,L, κ)K

2κχ
χ−κ

1 , we arrived at

ess sup
BR

2

u2κ+ ≤ C(n,L, κ)K
2κχ
χ−κ

1
1

|BR|
∫

BR

u2κ+ dx.

The proof is complete. �

PROOF OF THEOREM 1. Without loss of generality, we assume that x0 = 0. We use
Safonov’s idea [20].

Step 1. We will split BR \ BσR into several disjoint spherical shells Am with the same

thickness. We choose M = [( ν−B2
8CB(n,q)

)−q‖b1‖qLn,q (Ω)] + 1. For 1 ≤ m ≤ M , we defined
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as Rm := σR + (2m − 1) 1−σ
2M R. We also take Am := { x ∈ Ω; dist(x, ∂BRm) <

1−σ
2M R }.

Then, by Lemma 2, there exists some m∗ ∈ {1, . . . ,M} such that ‖b1‖Ln,q (Am∗ ) ≤ ν−B2
8CB(n,q)

.

Let B∗ := BRm∗ . We apply Lemma 9 with κ = n2+n
n2+n−2

. We note that 1 < κ < χ and
2κχ
χ−κ = n+ 1. Then, for any y ∈ ∂B∗, we have

ess sup
B 1−σ

4M R
(y)

u2κ+ ≤ C(n,L)Kn+1
1

1

( 1−σ
2M R)n

∫

B 1−σ
2M R

(y)

u2κ+ dx

≤ C(n,L)Kn+1
1 (2M)n

1

(1 − σ)nRn

∫

BR

u2κ+ dx. (22)

In particular, u is bounded from above on A∗ := { x ∈ Ω; dist(x, ∂B∗) < 1−σ
4M R }.

Step 2. Let us show the inequality

ess sup
A∗

u+ ≥ k̄ := ess sup
B∗

u. (23)

We use the method for proving the weak maximum principle (see e.g., [8, p.179]). Suppose
ess sup A∗ u+ < k̄. We choose ess supA∗ u+ ≤ k < k̄ and define

ψt,s =
{
ηs ∗ (ηt ∗ (u− k))+ if x ∈ B∗,
0 otherwise.

At this, ψt,s ∈ C∞
c (Ω) for sufficiently small s and t . Taking φ = ψt,s in (3) we have

∫

BR

(A∇u)∇ψt,s dx ≤ −
∫

BR

b · ∇uψt,s dx

= −
∫

BR

(b(1) + b(2)) · ∇ψt,sψt,s dx − 1

2

∫

BR

(b(3) + b(4)) · ∇ψ2
t,s dx

−
∫

BR

b · ∇(u− ψt,s)ψt,s dx.

Since div(b(3) + b(4)) ≤ 0 in the distribution sense, the second term of the right-hand side is
less than or equal to 0. In the same manner as the proof of Proposition 1, we obtain

lim
t→0

(
lim
s→0

∫

BR

b · ∇(u− ψt,s)ψt,s dx

)
= 0 .

Therefore, taking the limits s → 0 and t → 0, we have
∫

B∗
(A∇(u− k)+) · ∇(u− k)+ dx =

∫

B∗
(A∇u) · ∇(u− k)+ dx

≤ −
∫

B∗
(b(1) + b(2)) · ∇(u− k)+(u− k)+ dx.
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We split the domain of integration into two parts {|b(1)| > C∗} and {|b(1)| ≤ C∗} for some
C∗ > 0 to be chosen later. Condition (9) and (4), Hölder’s inequality and Sobolev’s inequality
yield

ν

(∫

B∗
|∇(u− k)+|2 dx

) 1
2

≤
(
CB(n, q)‖b(1)‖Ln,q ({|b(1)|>C∗}) + B2

)(∫

B∗
|∇(u− k)+|2 dx

) 1
2

+ C∗CS(n)
(∫

B∗
|∇(u− k)+|2 dx

) 1
2 |Γk| 1

n .

where Γk := {∇(u − k)+ �= 0} = { x ∈ B∗; ∇(u − k)+(x) �= 0 }. By the definition of the
Lorentz norm, we have limC∗→∞ ‖b1‖Ln,q ({|b1|>C∗}) = 0. Thus, by choosing C∗ large enough
we get

|Γk| ≥ C(n, ν,b1, q,B2)
−n > 0.

Here, the constantC does not depend on the selection of k < k̄. Since it’s well-known ∇u = 0

a.e. on {u = k̄}, we may assume that {u ≤ k or u = k̄} ⊂ {∇(u − k)+ = 0} for any k < k̄.
Therefore

|B∗| =
∣∣∣∣

(⋃

k<k̄

{u ≤ k}
)

∪ {u = k̄}
∣∣∣∣ ≤

∣∣∣∣
⋃

k<k̄

{∇(u− k)+ = 0}
∣∣∣∣

= |B∗ \
⋂

k<k̄

Γk| ≤ |B∗| − C−n < |B∗|.

This is impossible. (23) was obtained.
Step 3. Let us combine (22) and (23). Since BσR ⊂ B∗, we have

ess sup
BσR

u2κ+ ≤ ess sup
B∗

u2κ+ ≤ ess sup
A∗

u2κ+ ≤ C

(1 − σ)nRn

∫

BR

u2κ+ dx,

where C = C(n,L, q)Kn+1
1 K

qn

2 . If p ≥ 2κ , Hölder’s inequality yields desired estimate. Let
0 < p < 2κ , from the well-known argument (see, [9, p.223]), for any σR ≤ t < s ≤ R we
have

ess sup
Bt

u
p
+ ≤ 1

2
ess sup
Bs

u
p
+ + C(p)

C

(s − t)n

∫

BR

u
p
+ dx.

Using Lemma 5, we arrive at the desired estimate. �

3.3. Proof of Theorem 2

PROPOSITION 2. Let B4R ⊂ Ω . Assume the condition (B) on b. Suppose u is a weak
supersolution of (DE) in B2R and there exists a positive constant k > 0 such that u ≥ k on
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B2R . Then there are positive number p0 > 0 and constant C depending only on n, ν, L,
‖b1‖Ln,q (Ω), q , B2, B3, ‖V ‖BMO(Ω) such that

(
1

|BR|
∫

BR

up0 dx

)(
1

|BR |
∫

BR

u−p0 dx

)
≤ C(n).

More precisely, p0 = C(n, ν, L, q)K−1
3 , where K3 is the quantity appeared in Theorem 2.

PROOF. We take any ball B2r (y) ⊂ B2R . We choose ζ ∈ C∞
c (B2R) as the following:

ζ |Br (y) ≡ 1, supp ζ ⊂ B2r (y), |∇ζ | ≤ 2

r
.

Let ũ ∈ W 1,2(Rn) be a extension of u and take uε := ηε ∗ max{̃u, k}. We note that {uε}ε>0 ⊂
C∞(B2R), uε ≥ k in B2R and uε → u in W 1,2(B2R). Taking φ = u−1

ε ζ 2 in (3), we have

−
∫

B2R

(A∇u) · ∇(u−1
ε )ζ

2 dx

≤ 2
∫

B2R

(A∇u) · u−1
ε ∇ζ ζ dx +

∫

B2R

b · ∇uu−1
ε ζ 2 dx

= 2
∫

B2R

(A∇u) · u−1
ε ∇ζ ζ dx

+
∫

B2R

(
b(1) + b(2) + b(3) + b(4)

)
· ∇uεu−1

ε ζ 2 dx

+
∫

B2R

b · ∇(u− uε)u
−1
ε ζ 2 dx. (24)

For i = 1, 2, 3, using the Cauchy-Schwarz inequality, we have
∣∣∣∣
∫

B2R

b(i) · ∇uεu−1
ε ζ

2 dx

∣∣∣∣ ≤
(∫

B2R

|∇(loguε)|2ζ 2 dx

) 1
2
(∫

B2R

|b(i)|2ζ 2 dx

) 1
2

.

Furthermore, in a similar manner as in the proof of Lemma 8, we have
∫

B2R

b(4) · ∇uεu−1
ε ζ 2 dx =

∫

B2R

b(4) · ∇(loguε)ζ 2 dx

=
n∑

i=1

∫

B2R

b(4)i ∂i (loguε)ζ 2 dx = −
n∑

i,j=1

∫

B2R

Vij ∂j (∂i(loguε)ζ 2) dx

= −2
∫

B2R

(V − VB2r (y))∇(loguε) · ∇ζ ζ dx.
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It follows that∣∣∣∣
∫

B2R

b(4) · ∇uεu−1
ε ζ

2 dx

∣∣∣∣

≤ 2

(∫

B2R

|∇(loguε)|2ζ 2 dx

) 1
2
(∫

B2R

|V − VB2r (y)|2|∇ζ |2 dx
) 1

2

.

After combining these inequalities, we take the limit ε → 0. Since u−1
ε ≤ k−1, the last

term of (24) converges to 0 from Hölder’s inequality. Therefore Lemma 1 and the uniform
ellipticity yield

ν

(∫

B2r (y)

|∇(logu)|2ζ 2 dx

) 1
2

≤ C
(
L+ CB(n, q)‖b(1)‖Ln,q (Ω) + B2 + B3 + C(n)‖V ‖BMO(Ω)

)
r
n
2 −1.

Let v := logu. Using Poincaré’s inequality, Hölder’s inequality and B2 < ν ≤ L, we get

1

rn

∫

Br (y)

|v − vBr (y)| dx ≤ C(n, q)

ν

(
L+ ‖b(1)‖Ln,q (Ω) + B3 + ‖V ‖BMO(Ω)

)
.

Therefore, we obtain ‖v‖BMO(B2R) ≤ C(n, ν, L, q)K3. From the John-Nirenberg inequality
(10), we have

∫

BR

exp
(
p0|v − vBR |) dx ≤ C2(n)R

n,

where p0 = C(n, ν, L, q)K−1
3 . Therefore, it follows that

∫

BR

up0 dx ·
∫

BR

u−p0 dx =
∫

BR

exp(p0v) dx ·
∫

BR

exp(−p0v) dx

=
∫

BR

exp(p0(v − vBR )) dx ·
∫

BR

exp(−p0(v − vBR )) dx ≤ C2R2n.

The proof is complete. �

PROOF OF THEOREM 2. Without loss of generality, we assume x0 = 0. Let k > 0 and

take ū = u+ k. Choose a sequence {ūε}ε>0 ⊂ C∞(B2R) such that ūε → ū in W 1,2(B2R) as
ε → 0 and ūε ≥ k in B2R . We may assume that ūε → ū a.e. in B2R . For any ξ ∈ C∞

c (B2R)

with ξ ≥ 0, we take φ = ū
−p
ε ξ (p > 1) in (3). Then

−
∫

B2R

((A∇ū) · ∇ξ + b · ∇ūξ) ū−p
ε dx ≤

∫

B2R

(A∇ū) · ∇(ū−p
ε )ξ dx.

Let ε → 0. Since ū−p
ε ≤ k−p, we can apply Lebesgue’s dominated convergence theorem

on the left-hand side. On the other hand, by Lemma 1, ∇ū−p
ε → ∇ū−p = −pū−p−1∇ū in
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L2(B2R). Therefore, the uniform ellipticity implies

1

p − 1

∫

B2R

(A∇(ū−p+1)) · ∇ξ + b · ∇(ū−p+1)ξ dx

= −
∫

B2R

((A∇ū) · ∇ξ + b · ∇ūξ) ū−p dx

≤ −p
∫

B2R

(A∇ū) · ∇ūū−p−1ξ dx ≤ −pν
∫

B2R

|∇ū|2ū−p−1ξ dx ≤ 0.

Hence ū−p+1 is a weak subsolution of (DE) in B2R . Take p − 1 = p0
κ

, where p0 appeared

in Proposition 2 and κ = n2+n
n2+n−2

appeared in proof of Lemma 9. Applying Theorem 1 with

p = κ , we have

ess sup
BR

2

ū−1 ≤ C

1
p0∗
(

1

Rn

∫

BR

ū−p0 dx

) 1
p0
.

where C∗ = C(n,L, q)Kn+1
1 K

qn

2 . This and Proposition 2 yield

ess inf
BR

2

ū ≥ 1

C

1
p0∗

(
1

Rn

∫

BR

ū−p0 dx

)−1
p0

= 1

C

1
p0∗

(
1

Rn

∫

BR

ū−p0 dx · 1

Rn

∫

BR

ūp0 dx

)−1
p0
(

1

Rn

∫

BR

ūp0 dx

) 1
p0

≥ 1

(C∗C(n))
1
p0

(
1

Rn

∫

BR

ūp0 dx

) 1
p0
.

Letting k → 0, we can complete the proof of the theorem. �

3.4. Proof of Corollary 4

LEMMA 10. Let B2R(x0) ⊂ Ω . Assume the condition (B) on b. Suppose u is a weak
subsolution of (DE) in BR(x0). Then there are constants C1 and C2 depending only on n, ν,
L, ‖b(1)‖Ln,q (Ω), B2, B3, ‖V ‖BMO(Ω) such that

∫

BR
2
(x0)

|∇u+|2 dx ≤ C1

R2

∫

BR(x0)\BR
2
(x0)

u2+ dx

+ C2

R2

∫

BR(x0)\BR
2
(x0)

|V − VBR |2u2+ dx.

PROOF. Without loss of generality, we assume x0 = 0. We note that
∫

BR

|b(1) · ∇ψ|ψζ 2 dx ≤ ε1

2

∫

BR

|∇ψ|2ζ 2 dx + 1

2ε1

∫

BR

|b(1)|2ψ2ζ 2 dx



SECOND ORDER LINEAR ELLIPTIC EQUATIONS 95

for any ψ ∈ C∞(BR), ζ ∈ C∞
c (BR) and ε1 > 0 from Young’s inequality (18). Therefore, in

a similar manner as in the proof of Proposition 1, we obtain
∫

BR

|∇u+|2ζ 2 dx ≤ C

(
L2

(ν − B2)2
+ B2

3

(ν − B2)2

)∫

BR

u2+|∇ζ |2 dx

+ C

(ν − B2)2

∫

BR

|V − VBR |2u2+|∇ζ |2 dx + C

(ν − B2)2

∫

BR

|b(1)|2u2+ζ 2 dx.

The last term can be estimated by
∫

BR

|b(1)|2u2+ζ 2 dx ≤
(
CB(n, q)‖b(1)‖Ln,q (Ω)

)2 ‖∇ζ‖2
L∞|BR| ess sup

supp ζ
u2+.

On the other hand, in a similar manner as in the Step 2 of the proof of Theorem 1,
ess sup B 3R

4

u+ ≤ ess sup B 7R
8

\B 5R
8

u+ holds. Using Theorem 1, we get

ess sup
B 3R

4

u2+ ≤ ess sup
B 7R

8
\B 5R

8

u2+ ≤ C

Rn

∫

BR\BR
2

u2+ dx.

Thus, taking

ζ |BR
2

≡ 1, supp ζ ⊂ B 3R
4
, |∇ζ | ≤ C

R
,

and combining these inequalities, we arrive at the desired inequality. �

Recall the following lemma.

LEMMA 11 ([7, p.114, Theorem 6.33]). Let g ∈ L
q

loc(Ω), q > 1, be a nonnegative
function. Suppose that for some constant b > 1 and R0 > 0

(
1

|BR|
∫

BR(x0)

gq dx

) 1
q ≤ b

|B2R|
∫

B2R(x0)

g dx

holds for all x0 ∈ Ω , 0 < R < min{R0,
dist(x0,∂Ω)

2 }. Then g ∈ Lploc(Ω) for some p > q and
there is a constant c = c(n, q, p, b) such that

(
1

|BR|
∫

BR(x0)

gp dx

) 1
p ≤ c

(
1

|B2R|
∫

B2R(x0)

gq dx

) 1
q

.

PROOF OF COROLLARY 4. Let B2R(x0) ⊂ Ω and Br(y) ⊂ BR(x0). We use Lemma
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10 to u− uBr(y) and uBr (y) − u in Br(y). Then we have
∫

B r
2
(y)

|∇u|2 dx ≤ C

r2

∫

Br(y)

|u− uBr(x0)|2 dx

+ C

r2

∫

Br(y)

|V − VBr(y)|2|u− uBr(x0)|2 dx.

Let p := 2n
n+1 < 2. Note that p∗ = np

n−p = 2n2

n2−n > 2. By Hölder’s inequality and the

John-Nirenberg inequality (11) with p = 2p∗
p∗−2 ,

1

|Br(y)|
∫

Br(y)

|V − VBr(y)|2|u− uBr (x0)|2 dx

≤ C(n, p)‖V ‖2
BMO(Ω)

(
1

|Br(y)|
∫

Br(y)

|u− uBr(x0)|p
∗
dx

) 2
p∗
.

Thus, we have
(

1

|Br
2
(y)|

∫

B r
2
(y)

|∇u|2 dx
) 1

2

≤ C

r

(
1

|Br(y)|
∫

Br(y)

|u− uBr(x0)|p
∗
dx

) 1
p∗
.

Using Sobolev-Poincaré’s inequality:

(
1

|Br(y)|
∫

Br(y)

|u− uBr(x0)|p
∗
dx

) 1
p∗

≤ C(n)r

(
1

|Br(y)|
∫

Br (y)

|∇u|p dx
) 1
p

,

we obtain

(
1

|Br
2
(y)|

∫

B r
2
(y)

|∇u|2 dx
) 1

2

≤ C

(
1

|Br(y)|
∫

Br(y)

|∇u|p dx
) 1
p

.

Applying Lemma 11 with gq = |∇u|2, we have

(
1

|BR
2
(x0)|

∫

BR
2
(x0)

|∇u|p1 dx

) 1
p1 ≤ C

(
1

|BR(x0)|
∫

BR(x0)

|∇u|2 dx
) 1

2

,

for some p1 > 2. The proof is complete. �
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