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Abstract. In this paper we study the cobordism of algebraic knots associated with weighted homogeneous
polynomials, and in particular Brieskorn polynomials. Under some assumptions we prove that the associated alge-
braic knots are cobordant if and only if the Brieskorn polynomials have the same exponents.

1. Introduction

A Brieskorn polynomial is a polynomial of the form

P(z) = z
a1
1 + z

a2
2 + · · · + z

an+1
n+1

with z = (z1, z2, . . . , zn+1), n ≥ 1, where the integers aj ≥ 2, j = 1, 2, . . . , n + 1, are

called the exponents. The complex hypersurface in Cn+1 defined by P = 0 has an isolated
singularity at the origin, which is called a Brieskorn singularity.

In this paper, we will study Brieskorn singularities up to cobordism. We prove that two
Brieskorn singularities have cobordant algebraic knots if and only if they have the same set of
exponents, provided that no exponent is a multiple of another for each of the two Brieskorn
polynomials. Consequently, for such Brieskorn polynomials the multiplicity is an invariant of
the cobordism class of the associated algebraic knot.

To be more precise, let f : (Cn+1, 0) → (C, 0) be a holomorphic function germ with

an isolated critical point at the origin. We denote by D2n+2
ε the closed ball of radius ε > 0

centred at 0 in Cn+1, and by S2n+1
ε its boundary. According to Milnor [11], the oriented

homeomorphism class of the pair (D2n+2
ε , f −1(0) ∩ D2n+2

ε ) does not depend on the choice
of a sufficiently small ε > 0, and by definition it is the topological type of f . (For other
equivalent definitions, we refer the reader to [7, 16, 18].) The oriented diffeomorphism class
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FIGURE 1. A cobordism between K0 and K1

of the pair (S2n+1
ε ,Kf ), with Kf = f −1(0) ∩ S2n+1

ε , is the algebraic knot associated with f ,
where Kf is a closed oriented (2n − 1)-dimensional manifold. According to Milnor’s cone
structure theorem [11], the algebraic knot Kf determines the topological type of f . In fact, it
is known that the converse also holds.

DEFINITION 1.1. An m-dimensional knot (m-knot, for short) is a closed oriented m-
dimensional submanifold of the oriented (m + 2)-dimensional sphere Sm+2. Two m-knots

K0 and K1 in Sm+2 are said to be cobordant if there exists a properly embedded oriented

(m + 1)-dimensional submanifold X of Sm+2 × [0, 1] such that

(1) X is diffeomorphic to K0 × [0, 1], and
(2) ∂X = (K0 × {0}) ∪ (−K1 × {1}),

where −K1 × {1} denotes the manifold K1 × {1} with the reversed orientation. A manifold X

as above is called a cobordism between K0 and K1 (see Fig. 1).

In [1], for n ≥ 3, necessary and sufficient conditions for two algebraic (2n − 1)-knots
to be cobordant have been obtained in terms of Seifert forms (for the definition of the Seifert
form, see §2). However, the computation of the Seifert form of a given algebraic knot is
very difficult, and an explicit calculation is known only for a very limited class of algebraic
knots. (In fact, even for algebraic knots associated with weighted homogeneous polynomials,
Seifert forms have not been determined yet, as far as the authors know.) Furthermore, even if
we know the Seifert forms explicitly, it is still difficult to see if given two such forms satisfy
the algebraic conditions given in [1] or not. So, it is worthwhile to study the conditions for
two algebraic knots associated with weighted homogeneous polynomials to be cobordant. We
note that cobordism does not necessarily imply isotopy for algebraic knots in general. For
details, see the survey article [2].

It is known that cobordant algebraic knots have Witt equivalent Seifert forms (for details,
see §2). In this paper, we give a necessary and sufficient condition for two algebraic knots
associated with weighted homogeneous polynomials to have Witt equivalent Seifert forms
over the real numbers in terms of their weights. Using this result, we give some conditions
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for two algebraic knots associated with Brieskorn polynomials to be cobordant in terms of the
exponents. Under some assumptions, we show that two such knots are cobordant if and only
if the Brieskorn polynomials have the same set of exponents.

The paper is organized as follows. In §2, we state our results. We give a necessary and
sufficient condition for two nondegenerate weighted homogeneous polynomials to have Witt
equivalent Seifert forms over the real numbers, in terms of their weights. Then, we give more
explicit results for Brieskorn polynomials. In §3, we prove the results stated in §2. In §4, we
give more precise results in the case of two and three variables.

Throughout the paper we work in the smooth category. All the homology groups are
with integer coefficients unless otherwise specified.

The authors would like to thank the anonymous referee for helpful comments and sug-
gestions.

2. Results

Let f (z) be a polynomial in Cn+1 with an isolated critical point at the origin. We denote
by Ff the Milnor fiber associated with f , i.e., Ff is the closure of a fiber of the Milnor

fibration ϕf : S2n+1
ε \ Kf → S1 defined by ϕf (z) = f (z)/|f (z)|. According to Milnor [11],

Ff is a compact 2n-dimensional submanifold of S2n+1
ε which is homotopy equivalent to the

bouquet of a finite number of copies of the n-dimensional sphere.
The Seifert form

Lf : Hn(Ff ) × Hn(Ff ) → Z

associated with f is defined by

Lf (α, β) = lk(a+, b) ,

where a and b are n-cycles representing α and β in Hn(Ff ) respectively, a+ is the n-cycle

in S2n+1
ε obtained by pushing a into the positive normal direction of Ff , and lk denotes the

linking number of n-cycles in S2n+1
ε . It is known that the isomorphism class of the Seifert

form is a topological invariant of f . Furthermore, two algebraic knots Kf and Kg associated

with polynomials f and g in Cn+1, respectively, with isolated critical points at the origin are

isotopic in S2n+1
ε if and only if their Seifert forms Lf and Lg are isomorphic, provided that

n ≥ 3.
In fact, algebraic knots are simple fibered knots as follows. We say that an oriented m-

knot K is fibered if there exists a smooth fibration φ : Sm+2 \ K → S1 and a trivialization
τ : NK → K × D2 of a closed tubular neighborhood NK of K in Sm+2 such that φ|NK\K
coincides with π ◦ τ |NK\K , where π : K × (D2 \ {0}) → S1 is the composition of the

projection to the second factor and the obvious projection D2 \ {0} → S1. Note that then

the closure of each fiber of φ in Sm+2 is a compact (m + 1)-dimensional oriented manifold
whose boundary coincides with K . We shall often call the closure of each fiber simply a fiber.
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Moreover, for m = 2n − 1 ≥ 1 we say that a fibered (2n − 1)-knot K is simple if each fiber
of φ is (n − 1)-connected and K is (n − 2)-connected. For details we refer the reader to [2].
Note that two simple fibered (2n − 1)-knots are isotopic if and only if they have isomorphic
Seifert forms, provided n ≥ 3 (see [4, 6]).

DEFINITION 2.1. Two bilinear forms Li : Gi × Gi → Z, i = 0, 1, defined on free
abelian groups Gi of finite ranks are said to be Witt equivalent if there exists a direct summand
M of G0 ⊕ G1 such that (L0 ⊕ (−L1))(x, y) = 0 for all x, y ∈ M and twice the rank of M

is equal to the rank of G0 ⊕ G1. In this case, M is called a metabolizer.
Furthermore, we say that L0 and L1 are Witt equivalent over the real numbers if there

exists a vector subspace MR of (G0 ⊗ R) ⊕ (G1 ⊗ R) such that (LR
0 ⊕ (−LR

1 ))(x, y) = 0 for

all x, y ∈ MR and 2 dimR MR = dimR(G0 ⊗ R) + dimR(G1 ⊗ R), where LR
i : (Gi ⊗ R) ×

(Gi ⊗ R) → R is the real bilinear form associated with Li , i = 0, 1.

The following lemma is well known (for example, see [1]).

LEMMA 2.2. If two simple fibered (2n − 1)-knots are cobordant, then their Seifert
forms are Witt equivalent. In particular, they are Witt equivalent over the real numbers as
well.

Now, let f be a weighted homogeneous polynomial in Cn+1, i.e., there exist pos-
itive rational numbers (w1, w2, . . . , wn+1), called weights, such that for each monomial

cz
k1
1 z

k2
2 · · · zkn+1

n+1 , c 	= 0, of f , we have

n+1∑
j=1

kj

wj
= 1 .

We say that f is nondegenerate if it has an isolated critical point at the origin. Saito [20]
has shown that if f is nondegenerate, then by an analytic change of coordinate, f can be
transformed to a nondegenerate weighted homogeneous polynomial such that all the weights
are greater than or equal to 2. Furthermore, under the assumption that the weights are all
greater than or equal to 2, the weights are analytic invariants of the polynomial.

Let f be a nondegenerate weighted homogeneous polynomial in Cn+1 with weights
(w1, w2, . . . , wn+1) such that wj ≥ 2 for all j . Set

Pf (t) =
n+1∏
j=1

t − t1/wj

t1/wj − 1
.

Note that Pf (t) is a polynomial in t1/m over Z for some positive integer m. It is known

that two nondegenerate weighted homogeneous polynomials f and g in Cn+1 have the same
weights if and only if Pf (t) = Pg (t) (see [23]).

Our first result is the following.
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THEOREM 2.3. Let f and g be nondegenerate weighted homogeneous polynomials
in Cn+1. Then, their Seifert forms are Witt equivalent over the real numbers if and only if
Pf (t) ≡ Pg (t) mod t + 1.

REMARK 2.4. The above theorem should be compared with the result, obtained in
[19], which states that the Seifert forms associated with nondegenerate weighted homoge-
neous polynomials f and g are isomorphic over the real numbers if and only if Pf (t) ≡ Pg (t)

mod t2 − 1.

Let us now consider the case of Brieskorn polynomials. Note that a Brieskorn polynomial
is always a nondegenerate weighted homogeneous polynomial and its weights coincide with
its exponents.

PROPOSITION 2.5. Let

f (z) =
n+1∑
j=1

z
aj

j and g(z) =
n+1∑
j=1

z
bj

j

be Brieskorn polynomials. Then, their Seifert forms are Witt equivalent over the real numbers
if and only if

n+1∏
j=1

cot
π	

2aj

=
n+1∏
j=1

cot
π	

2bj

(2.1)

holds for all odd integer 	.

To each polynomial Q(t) = ∏k
j=1(t −αj ), with α1, α2, . . . , αk in C∗, the multiplicative

group of nonzero complex numbers, set

divisor Q(t) = 〈α1〉 + 〈α2〉 + · · · + 〈αk〉 ,

which is regarded as an element of the integral group ring ZC∗ and is called the divisor of Q.
For a positive integer a, set Λa = divisor (ta − 1). For the notation and some properties of
Λa , we refer the reader to [12].

Let f be a nondegenerate weighted homogeneous polynomial in Cn+1 with weights
(w1, w2, . . . , wn+1) such that wj ≥ 2 for all j . Let ∆f (t) be the characteristic polynomial of
the monodromy of f (see [11]). Then, by Milnor–Orlik [12], we have

divisor ∆f (t) =
n+1∏
j=1

(
1

vj

Λuj − 1

)
, (2.2)

where wj = uj /vj , and uj and vj are relatively prime positive integers, j = 1, 2, . . . , n + 1.
In the case of a Brieskorn polynomial, by virtue of the Brieskorn–Pham theorem (for example,
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see [11]), we have

divisor ∆f (t) =
n+1∏
j=1

(Λaj − 1) ,

which can also be deduced from the Milnor–Orlik theorem mentioned above.

PROPOSITION 2.6. (1) Let f and g be nondegenerate weighted homogeneous polyno-

mials in Cn+1 with weights

(u1/v1, u2/v2, . . . , un+1/vn+1) and (u′
1/v

′
1, u

′
2/v

′
2, . . . , u

′
n+1/v

′
n+1)

respectively, where uj and vj (resp. u′
j and v′

j ) are relatively prime positive integers, j =
1, 2, . . . , n + 1. If their Seifert forms are Witt equivalent over the real numbers, then we have

n+1∏
j=1

(
1

vj

Λuj − 1

)
≡

n+1∏
j=1

(
1

v′
j

Λu′
j
− 1

)
(mod 2) .

(2) Let f and g be Brieskorn polynomials as in Proposition 2.5. If their Seifert forms
are Witt equivalent over the real numbers, then we have

n+1∏
j=1

(Λaj − 1) ≡
n+1∏
j=1

(Λbj − 1) (mod 2) .

The following theorem partially answers [2, Problem 11.10] in the positive.

THEOREM 2.7. Suppose that for each of the Brieskorn polynomials

f (z) =
n+1∑
j=1

z
aj

j and g(z) =
n+1∑
j=1

z
bj

j

no exponent is a multiple of another one. Then, the knots Kf and Kg are cobordant if and
only if aj = bj , j = 1, 2, . . . , n + 1, up to order.

Concerning [2, Problem 11.9], we have the following. Recall that the multiplicity of a
Brieskorn polynomial coincides with the smallest exponent.

PROPOSITION 2.8. Suppose that for each of the Brieskorn polynomials

f (z) =
n+1∑
j=1

z
aj

j and g(z) =
n+1∑
j=1

z
bj

j

the exponents are pairwise distinct. If Kf and Kg are cobordant, then the multiplicities of f

and g coincide.
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3. Proofs

In this section, we prove the results stated in §2.

PROOF OF THEOREM 2.3. Let h : (Cn+1, 0) → (C, 0) be a polynomial with an iso-
lated critical point at the origin. It is known that the Seifert form associated with the polyno-
mial

h̃(z1, z2, . . . , zn+2) = h(z1, z2, . . . , zn+1) + z2
n+2

is naturally isomorphic to (−1)n+1Lh (for example, see [21] or [19, Lemma 2.1]). Further-

more, we have Ph̃(t) = t1/2Ph(t). Hence, by considering f (z) + z2
n+2 and g(z) + z2

n+2 if
necessary, we may assume that n is even.

Recall that

Hn(Fh; C) = ⊕λH
n(Fh; C)λ ,

where Fh is the Milnor fiber for h, λ runs over all the roots of the characteristic polyno-
mial ∆h(t), and Hn(Fh; C)λ is the eigenspace of the monodromy Hn(Fh; C) → Hn(Fh; C)

corresponding to the eigenvalue λ (h = f or g). It is easy to see that the intersection
form Sh = Lh + tLh of Fh on Hn(Fh; C) decomposes as the orthogonal direct sum of

(Sh)|Hn(Fh;C)λ . Let µ(h)+λ (resp. µ(h)−λ ) denote the number of positive (resp. negative) eigen-
values of (Sh)|Hn(Fh;C)λ . The integer

σλ(h) = µ(h)+λ − µ(h)−λ
is called the equivariant signature of h with respect to λ (for details, see [14, 22]). According
to Steenbrink [24], putting Ph(t) = ∑

cαtα , we have

σλ(h) =
∑

λ=exp(−2π
√−1α)

�α�: even

cα −
∑

λ=exp(−2π
√−1α)

�α�: odd

cα

for λ 	= 1, where �α� is the largest integer not exceeding α.
Now, suppose that the Seifert forms Lf and Lg are Witt equivalent over the real numbers.

Then, the equivariant signatures σλ(f ) and σλ(g) coincide for all λ (for example, see [3].
See also [9, 10] for the spherical knot case). Note that by [19, Lemma 2.3], the equivariant
signature for λ = 1 is always equal to zero.

Set Pf (t) = P 0
f (t) + P 1

f (t), where P 0
f (t) (resp. P 1

f (t)) is the sum of those terms cαtα

with �α� ≡ 0 (mod 2) (resp. �α� ≡ 1 (mod 2)). We define P 0
g (t) and P 1

g (t) similarly. Since

the equivariant signatures of f and g coincide, we have

tP 0
f (t) − P 1

f (t) ≡ tP 0
g (t) − P 1

g (t) mod t2 − 1

and

tP 1
f (t) − P 0

f (t) ≡ tP 1
g (t) − P 0

g (t) mod t2 − 1
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(for details, see [13, 19]). Adding up these two congruences, we have

(t − 1)Pf (t) ≡ (t − 1)Pg (t) mod t2 − 1, (3.1)

which implies that

Pf (t) ≡ Pg (t) mod t + 1. (3.2)

Conversely, suppose that (3.2) holds. Then, we have (3.1), which implies that the Seifert
forms Lf and Lg have the same equivariant signatures. Then, we see that they are Witt
equivalent over the real numbers by virtue of [19, §4]. This completes the proof. �

PROOF OF PROPOSITION 2.5. Note that Pf (t) and Pg (t) are polynomials in s = t1/m

for some m. Let us put Qf (s) = Pf (t) and Qg (s) = Pg (t). Then, it is easy to see that (3.2)
holds if and only if Qf (ξ) = Qg (ξ) for all ξ with ξm = −1. Note that ξ is of the form

exp(π
√−1	/m) with 	 odd and that

−1 − exp(π
√−1	/aj )

exp(π
√−1	/aj ) − 1

= √−1 cot
π	

2aj

.

Then, we immediately get Proposition 2.5. �

By considering those odd integers 	 which give zero in (2.1), we get the following.

PROPOSITION 3.1. Let f and g be the Brieskorn polynomials

f (z) =
n+1∑
j=1

z
aj

j and g(z) =
n+1∑
j=1

z
bj

j .

If their Seifert forms are Witt equivalent over the real numbers, then we have

{	 ∈ Z | 	 is odd and is a multiple of some aj }
= {	 ∈ Z | 	 is odd and is a multiple of some bj } .

In particular, if aj is odd for some j , then bk is odd for some k, and the minimal odd exponent
for f coincides with that for g .

REMARK 3.2. For nondegenerate weighted homogeneous polynomials, we also have
results similar to Propositions 2.5 or 3.1. However, the statement becomes complicated, so
we omit them here (compare this with [19, Proposition 2.6]).

Now, Proposition 2.6 is a consequence of the Milnor–Orlik and Brieskorn–Pham theo-
rems on the characteristic polynomials [11, 12] together with the Fox–Milnor type relation.
Here, a Fox–Milnor type relation for two polynomials f and g with Witt equivalent Seifert

forms means that there exists a polynomial γ (t) such that ∆f (t) ∆g (t) = ±tdeg(γ )γ (t) γ (t−1)

(for details, see [2], for example). Here we give another proof, using Theorem 2.3, as follows.
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PROOF OF PROPOSITION 2.6. Since Pf (t) ≡ Pg (t) mod t +1, there exists a polyno-

mial R(t) ∈ Z[t1/m] for some m such that

Pf (t) − Pg (t) = (t + 1)R(t) = (t − 1)R(t) + 2R(t) .

Therefore, for each λ ∈ S1, the multiplicities of λ in the characteristic polynomials ∆f (t) and
∆g (t) are congruent modulo 2 to each other (for details, see [13, 19], for example). Then, the
result follows in view of the Milnor–Orlik formula (2.2) for the characteristic polynomial. �

For the proof of Theorem 2.7, we need the following.

LEMMA 3.3. For integers 2 ≤ a1 < a2 < · · · < ap and 2 ≤ b1 < b2 < · · · < bq , we
have

p∑
j=1

Λaj ≡
q∑

j=1

Λbj (mod 2) (3.3)

if and only if p = q and aj = bj for all j .

PROOF. Suppose that ap < bq . Then the coefficient of 〈exp(2π
√−1/bq)〉 on the right

hand side of (3.3) is equal to 1, while the corresponding coefficient on the left hand side is
equal to 0. This is a contradiction. So, we must have ap = bq . Then we have

p−1∑
j=1

Λaj ≡
q−1∑
j=1

Λbj (mod 2) .

Therefore, by induction, we get the desired conclusion. �

PROOF OF THEOREM 2.7. Suppose that the algebraic knots Kf and Kg are cobordant.
We may assume a1 < a2 < · · · < an+1 and b1 < b2 < · · · < bn+1. By Proposition 2.6 (2),
we have

n+1∏
j=1

(Λaj − 1) − (−1)n+1 ≡
n+1∏
j=1

(Λbj − 1) − (−1)n+1 (mod 2) . (3.4)

Recall that for positive integers a and b, we have

ΛaΛb = (a, b)Λ[a,b] ,

where (a, b) is the greatest common divisor of a and b, and [a, b] denotes the least common
multiple of a and b.

By considering the term of the form Λd with the smallest d on both sides of (3.4), we
see that a1 = b1 by Lemma 3.3. By subtracting Λa1 from the both sides of (3.4), we see
a2 = b2, since a2 (or b2) is not a multiple of a1 (resp. b1). Then, by further subtracting
Λa2 + (a1, a2)Λ[a1,a2] from (3.4), we see a3 = b3, since a3 (or b3) is not a multiple of a1 or
a2 (resp. b1 or b2). Repeating this procedure, we see that aj = bj for all j .
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Conversely, if f and g have the same set of exponents, then Kf and Kg are isotopic and
hence cobordant. This completes the proof. �

PROOF OF PROPOSITION 2.8. In the proof of Theorem 2.7, we proved that the smallest
exponents of f and g are equal, provided that there is only one smallest exponent for each
of f and g . Since we assume that the exponents of f (or g) are pairwise distinct, the same
argument works. �

REMARK 3.4. Theorem 2.7 implies that two algebraic knots Kf and Kg associated
with certain Brieskorn polynomials are isotopic if and only if they are cobordant. Recall that
according to Yoshinaga–Suzuki [25], two algebraic knots associated with Brieskorn polyno-
mials in general are isotopic if and only if they have the same set of exponents. In fact, they
showed that the characteristic polynomials coincide if and only if the Brieskorn polynomials
have the same set of exponents.

REMARK 3.5. For the case where n = 2 and the knots are homology spheres, Theo-
rem 2.7 has been obtained in [17] by using the Fox–Milnor type relation.

EXAMPLE 3.6. For all integers p1, p2, . . . , pn−3 ≥ 2, n ≥ 3, the product of the
characteristic polynomials of the algebraic knots associated with

f (z) = z
p1
1 + z

p2
2 + · · · + z

pn−3
n−3 + z8

n−2 + z8
n−1 + z4

n + z4
n+1

and

g(z) = z
p1
1 + z

p2
2 + · · · + z

pn−3
n−3 + z6

n−2 + z6
n−1 + z6

n + z6
n+1

is a square. This means that the characteristic polynomials ∆f (t) and ∆g (t) of the algebraic
knots Kf and Kg , respectively, satisfy the Fox–Milnor type relation, although their exponents
are distinct. Thus the assumptions in Theorem 2.7 and Proposition 2.8 are necessary, as long
as the proof depends only on the Fox–Milnor type relation.

4. Further results

In this section, we give some more precise results for the case of two or three variables.

PROPOSITION 4.1. Let f (z) = z
a1
1 + z

a2
2 and g(z) = z

b1
1 + z

b2
2 be Brieskorn poly-

nomials of two variables. If the Seifert forms Lf and Lg are Witt equivalent over the real
numbers, then aj = bj , j = 1, 2, up to order.

PROOF. If a1 or a2 is odd, then by Proposition 3.1 we may assume that a1 = b1 is odd.
Then by Proposition 2.5, we have

cot
π

2a2
= cot

π

2b2
,

which implies that a2 = b2.
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Therefore, we may assume that all the exponents for f and g are even. Then by Propo-
sition 2.6 (2), we have

(Λa1 − 1)(Λa2 − 1) ≡ (Λb1 − 1)(Λb2 − 1) (mod 2) ,

which implies that

Λa1 + Λa2 ≡ Λb1 + Λb2 (mod 2) .

If a1 	= a2, then we see that b1 	= b2, and aj = bj , j = 1, 2, up to order by Lemma 3.3. If
a1 = a2, then we must have b1 = b2. In this case, by Proposition 2.5, we have

cot2
π

2a1
= cot2

π

2b1
,

which implies that a1 = b1. This completes the proof. �

PROPOSITION 4.2. Let f (z) = z
a1
1 +z

a2
2 +z

a3
3 and g(z) = z

b1
1 +z

b2
2 +z

b3
3 be Brieskorn

polynomials of three variables. If the Seifert forms Lf and Lg are Witt equivalent over the
real numbers, then aj = bj , j = 1, 2, 3, up to order.

PROOF. First suppose that a1, a2 and a3 are all even. Then by Proposition 3.1, b1, b2

and b3 are all even. In this case, by Proposition 2.6 (2), we have

Λa1 + Λa2 + Λa3 ≡ Λb1 + Λb2 + Λb3 (mod 2) .

Thus, we may assume that a1 = b1 by Lemma 3.3. Then by Proposition 2.5, we have

cot
π	

2a2
cot

π	

2a3
= cot

π	

2b2
cot

π	

2b3

for all odd integers 	. Then, by Proposition 4.1, we see that aj = bj , j = 1, 2, 3, up to order.
Now suppose that a1, a2 or a3 is odd. Then, by Proposition 3.1, we may assume that

a1 = b1 is odd and a2 ≤ a3 and b2 ≤ b3.
Then by Proposition 2.5, we have

cot
	π

2a2
cot

	π

2a3
= cot

	π

2b2
cot

	π

2b3
(4.1)

for all odd integers 	 that are not a multiple of a1 = b1. If a2 = b2, then putting 	 = 1, we get
a3 = b3. So, suppose that a2 < b2. Then by (4.1) with 	 = 1, we have a2 < b2 ≤ b3 < a3.

Let us consider the characteristic polynomials ∆f (t) and ∆g (t). We have

divisor ∆f (t) = (Λa1 − 1)(Λa2 − 1)(Λa3 − 1)

= (a1, a2)([a1, a2], a3)Λ[a1,a2,a3] − (a1, a2)Λ[a1,a2] − (a1, a3)Λ[a1,a3]
−(a2, a3)Λ[a2,a3] + Λa1 + Λa2 + Λa3 − 1

and
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divisor ∆g(t) = (b1, b2)([b1, b2], b3)Λ[b1,b2,b3] − (b1, b2)Λ[b1,b2] − (b1, b3)Λ[b1,b3]
−(b2, b3)Λ[b2,b3] + Λb1 + Λb2 + Λb3 − 1 .

Since [a1, a2, a3], [a1, a3], [a2, a3], a3, [b1, b2, b3], [b1, b2], [b1, b3], [b2, b3], b2 and b3 are
all strictly greater than a2, by Proposition 2.6 (2) together with a1 = b1, we must have
[a1, a2] = a2. Thus a2 is a multiple of a1. Then by Proposition 2.6 (2) again, we have

Λ[a1,a3] + Λa3 ≡ ([b1, b2], b3)Λ[b1,b2,b3] + Λ[b1,b2] + Λ[b1,b3]
+(b2, b3)Λ[b2,b3] + Λb2 + Λb3 (mod 2) ,

since a1 = b1 is odd.
If b2 < b3, then we must have [b1, b2] = b2, i.e., b2 is a multiple of b1. Then, we see

that [a1, a3] = a3 and [b1, b3] = b3. Therefore, a2, a3, b2 and b3 are all multiples of a1 = b1.
Since a1 is odd and a1 ≥ 3, there exists an odd integer 	 (= a2 + 1 or a2 + 2) which is not a
multiple of a1 such that a2 < 	 < b2. Then for this 	, the left hand side of (4.1) is negative,
while the right hand side is positive. This is a contradiction.

If b2 = b3, then we have

Λ[a1,a3] + Λa3 ≡ b2Λ[b1,b2] + b2Λb2 (mod 2) .

Thus, [a1, a3] = a3, and a3 is a multiple of a1. Then, using an odd integer 	 (= a2 + 1
or a2 + 2) which is not a multiple of a1 such that a2 < 	 < a3 in (4.1), we again get a
contradiction, since b2 = b3.

Therefore, we must have a2 = b2 and a3 = b3. This completes the proof. �

PROPOSITION 4.3. Let f and g be nondegenerate weighted homogeneous polynomi-
als of two variables with weights (w1, w2) and (w′

1, w
′
2), respectively, with wj ,w

′
j ≥ 2. If

their Seifert forms are Witt equivalent over the real numbers, then wj = w′
j , j = 1, 2, up to

order.

PROOF. Set wj = uj /vj and w′
j = u′

j /v
′
j , j = 1, 2, where uj and vj (resp. u′

j and

v′
j ) are relatively prime positive integers. Let m be a common multiple of u1, u2, u′

1 and u′
2.

Then, by the same argument as in the proof of [19, Lemma 3.1], we see that the polynomial

F(η) = −ηm/w1+m/w2+m/w′
1 − ηm/w1+m/w2+m/w′

2

+ηm/w1+m/w′
1+m/w′

2 + ηm/w2+m/w′
1+m/w′

2

+ηm/w1 + ηm/w2 − ηm/w′
1 − ηm/w′

2

in η is divisible by ηm + 1. Note that F(η) corresponds to F(z) in the notation of [19].
Since

cot
π

2w1
cot

π

2w2
= cot

π

2w′
1

cot
π

2w′
2

,



COBORDISM OF ALGEBRAIC KNOTS 441

we may assume that w1 ≥ w′
1 ≥ w′

2 ≥ w2. Furthermore, if w1 = w′
1, then we have w2 = w′

2.
Therefore, we may assume

w1 > w′
1 ≥ w′

2 > w2(≥ 2) .

Note that then the highest degree of F is equal to m/w2 + m/w′
1 + m/w′

2, while the lowest

one is equal to m/w1. Set V (η) = η−m/w1F(η), which is a polynomial in η of degree

m

w2
+ m

w′
1

+ m

w′
2

− m

w1
,

and which is divisible by ηm + 1. Note that V (η) corresponds to V (z) in the notation of [19].
If we have deg V < m, then by the same argument as in the proof of [19, Lemma 3.1],

we have the desired conclusion.
If deg V ≥ m, then we have the congruence

V (η) ≡ −ηm/w2+m/w′
1 − ηm/w2+m/w′

2 + ηm/w′
1+m/w′

2 (4.2)

−ηm/w2+m/w′
1+m/w′

2−m/w1−m + 1 + ηm/w2−m/w1

−ηm/w′
1−m/w1 − ηm/w′

2−m/w1 mod ηm + 1.

Note that all the terms appearing on the right hand side of (4.2) have nonnegative degrees
strictly less than m.

Let us consider the monomial −ηm/w2+m/w′
1+m/w′

2−m/w1−m on the right hand side of
(4.2), with negative sign. In order that V (η) be divisible by ηm + 1, a term with positive sign

must cancel with −ηm/w2+m/w′
1+m/w′

2−m/w1−m. Therefore, we have the following three cases.
Case 1. 1/w2 + 1/w′

1 + 1/w′
2 − 1/w1 − 1 = 1/w′

1 + 1/w′
2.

This does not occur, since w1 > w2 ≥ 2.
Case 2. 1/w2 + 1/w′

1 + 1/w′
2 − 1/w1 − 1 = 0.

In this case, we have

V (η) ≡ −ηm/w2+m/w′
1 − ηm/w2+m/w′

2 + ηm/w′
1+m/w′

2

+ηm/w2−m/w1 − ηm/w′
1−m/w1 − ηm/w′

2−m/w1 mod ηm + 1

= ηm/w′
1−m/w1(−ηm/w1+m/w2 − ηm/w1+m/w2+m/w′

2−m/w′
1

+ηm/w1+m/w′
2 + ηm/w2−m/w′

1 − 1 − ηm/w′
2−m/w′

1).

Note that the difference of the highest and the lowest degrees of the last polynomial is equal
to m/w1 + m/w2 + m/w′

2 − m/w′
1, which is strictly positive and is strictly smaller than m,

since 1/w2 + 1/w′
2 = 1/w1 − 1/w′

1 + 1. This means that V (η) cannot be divisible by ηm + 1.
This is a contradiction.

Case 3. 1/w2 + 1/w′
1 + 1/w′

2 − 1/w1 − 1 = 1/w2 − 1/w1.

In this case, we have 1/w′
1 + 1/w′

2 = 1, which implies that w′
1 = w′

2 = 2. This is a

contradiction, since w′
2 > w2 ≥ 2.
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Therefore, we must have w1 = w′
1 and w2 = w′

2. This completes the proof. �

By using exactly the same argument as in [19, Lemma 3.1], we have the following.

PROPOSITION 4.4. Let f and g be nondegenerate weighted homogeneous polynomi-

als in Cn+1 with weights (w1, w2, . . . , wn+1) and (w′
1, w

′
2, . . . , w

′
n+1), respectively, such that

wj ≥ 2 and w′
j ≥ 2 for all j . Suppose that the Seifert forms of f and g are Witt equivalent

over the real numbers. If

n+1∑
j=1

1

wj

+
n+1∑
j=1

1

w′
j

− 2 min

{
1

w1
, . . . ,

1

wn+1
,

1

w′
1
, . . . ,

1

w′
n+1

}
< 1 ,

then we have wj = w′
j , j = 1, 2, . . . , n + 1, up to order.

REMARK 4.5. By Proposition 4.3, we see that if the algebraic knots associated with
two weighted homogeneous polynomials of two variables are cobordant, then the polynomials
have the same set of weights. In fact, this fact itself is a consequence of already known results
as follows.

If two algebraic knots in S3 are cobordant, then they are in fact isotopic by virtue of the
results of Lê [8] and Zariski [27] (for details, see [2, §4]). Then, by Yoshinaga–Suzuki [26]
(see also [5, 15]), they have the same set of weights.
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