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Abstract. A probability distribution µ on Rd is selfdecomposable if its characteristic function µ̂(z), z ∈ Rd ,

satisfies that for any b > 1, there exists an infinitely divisible distribution ρb satisfying µ̂(z) = µ̂(b−1z)ρ̂b(z). This
concept has been generalized to the concept of α-selfdecomposability by many authors in the following way. Let

α ∈ R. An infinitely divisible distribution µ on Rd is α-selfdecomposable, if for any b > 1, there exists an infin-

itely divisible distribution ρb satisfying µ̂(z) = µ̂(b−1z)b
α
ρ̂b(z). By denoting the class of all α-selfdecomposable

distributions on Rd by L〈α〉(Rd), we define in this paper a sequence of nested subclasses of L〈α〉(Rd ), and investi-
gate several properties of them by two ways. One is by using limit theorems and the other is by using mappings of
infinitely divisible distributions.

1. Introduction

Let P(Rd) and I (Rd ) be the class of all probability distributions on Rd and the
class of all infinitely divisible distributions on Rd , respectively, and let Ilogm(Rd) = {µ ∈
I (Rd ) : ∫

Rd (log+ |x|)mµ(dx) < ∞} for m ∈ N and Ilog(Rd ) := Ilog1(Rd), where |x|
is the Euclidean norm of x ∈ Rd and log+ |x| = (log |x|) ∨ 0. The terminology of α-
selfdecomposability was introduced in Maejima and Ueda [13]. This is a generalization of
selfdecomposability. Here µ ∈ P(Rd ) is said to be selfdecomposable if for each b > 1 there

exists ρb ∈ P(Rd) satisfying µ̂(z) = µ̂(b−1z)ρ̂b(z), z ∈ Rd , where µ̂(z), z ∈ Rd , stands
for the characteristic function of µ ∈ P(Rd). These ρb automatically belong to I (Rd ). We
denote the totality of selfdecomposable distributions on Rd by L(Rd). It is well known that

L(Rd ) ⊂ I (Rd ). Our generalization of selfdecomposability is as follows.

DEFINITION 1.1 (Maejima and Ueda [13]). Let α ∈ R. We say that µ ∈ I (Rd ) is
α-selfdecomposable, if for any b > 1, there exists ρb ∈ I (Rd ) satisfying

µ̂(z) = µ̂(b−1z)b
α

ρ̂b(z) , z ∈ Rd .(1.1)

We denote the totality of α-selfdecomposable distributions on Rd by L〈α〉(Rd).
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Note that L〈0〉(Rd) = L(Rd). And L〈−1〉(Rd ) is the class of all s-selfdecomposable
distributions on Rd , which is sometimes written as U(Rd ) and was studied deeply by Jurek,
(see, e.g., Jurek [4, 5, 9] or Iksanov et al. [3]). Also, the classes L〈α〉(Rd ), α ∈ R, and similar
ones were already studied by several authors. Jurek [6, 7, 8], and Jurek and Schreiber [10]
studied the classes Uβ(Q), β ∈ R, of distributions on a real separable Banach space E, where

Q is a linear operator on E with certain properties. These classes are equal to L〈α〉(Rd ) if

β = −α, E = Rd and Q is the identity operator. As to these classes, they studied the
decomposability and stochastic integral characterizations, although some results are only for
the case that Q is the identity operator. However, since, for 0 < α < 2, L〈α〉(Rd ) contains
all α-stable distributions and any µ ∈ L〈α〉(Rd) belongs to the normal domain of attraction of
some α-stable distribution, we adopt the parametrization in Definition 1.1. For details on this
history, see Maejima and Ueda [13].

L(Rd ) is characterized by, for example, radial components of Lévy measures, a stochas-
tic integral representation, and the relation to Ornstein-Uhlenbeck type processes, (see, e.g.,
Rocha-Arteaga and Sato [16]). By Maejima and Ueda [13] and others, these characterizations
of L(Rd ) were generalized to L〈α〉(Rd ).

As to nested subclasses of L(Rd ), the following are known, (see, e.g.,
Rocha-Arteaga and Sato [16]). Define nested subclasses Lm(Rd),m ∈ Z+ of L(Rd ) in the
following way: µ ∈ Lm(Rd) if and only if for each b > 1, there exists ρb ∈ Lm−1(Rd )

such that µ̂(z) = µ̂(b−1z)ρ̂b(z), where L0(Rd) := L(Rd). Since, by definition, Lm(Rd ) ⊃
Lm+1(Rd), these are called nested subclasses. Besides, we introduce an operation Q(·) in the

following way: Let H ⊂ P(Rd). We say that µ ∈ P(Rd) belongs to Q(H) if there exist
sequences {Xn} of Rd -valued independent random variables, {an} ⊂ (0,∞), and {cn} ⊂ Rd

such that {L(Xn), n ∈ N} ⊂ H , {a−1
n Xj , 1 ≤ j ≤ n; n ∈ N} is infinitesimal, and

L
(

a−1
n

n∑
j=1

Xj + cn

)
→ µ as n → ∞ ,

where L(X) means the law of a random variable X. Then it is known that L0(Rd ) =
Q(P(Rd)) = Q(I (Rd )) and Lm(Rd ) = Q(Lm−1(Rd)) for m ∈ N so that Lm(Rd) =
Qm+1(P(Rd)) = Qm+1(I (Rd )) for m ∈ Z+, where Qm+1(·) denotes the m + 1 times itera-
tion of the Q(·)-operation. On the other hand, if we define a mapping Φ by

Φ(µ) = L
(∫ ∞

0
e−t dX

(µ)
t

)
, µ ∈ Ilog(Rd) ,

where {X(µ)
t , t ≥ 0} is a Lévy process on Rd with µ ∈ I (Rd ) as its distribution at time

1, then it is known that for m ∈ Z+, Lm(Rd) is realized as the range of the m + 1 times

composition of Φ, namely, R(Φm+1) = Lm(Rd), where the domain of Φm+1 is Ilogm+1(Rd ).

Furthermore, the limit L∞(Rd ) := limm→∞ Lm(Rd) = ⋂∞
m=0 Lm(Rd ) is known to be equal
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to S(Rd ), which is the closure under convolution and weak convergence, of the class of all
stable distributions. Namely,

lim
m→∞ Qm+1(P(Rd)) = lim

m→∞ Qm+1(I (Rd )) = lim
m→∞ R(Φm+1) = L∞(Rd) = S(Rd ) .

The following were already done as to nested subclasses of L〈α〉(Rd), α ∈ R. Jurek

[9] studied nested subclasses of L〈−1〉(Rd), Maejima and Sato [12] found the limit of the
nested subclasses of L〈α〉(Rd ),−1 ≤ α < 0, defined by mappings, and Maejima et al. [11]

investigated nested subclasses of L〈α〉(Rd), α < 2, in terms of mappings. However, the study
on nested subclasses of L〈α〉(Rd), α ∈ R, in terms of limit theorems and mappings is not
completed yet and the purpose of this paper is to do it.

Maejima and Sato [12] proved that the limits of several nested classes defined by stochas-

tic integral mappings are identical with S(Rd ). Then a natural question arose. Can we find

mappings by which, as the limit of iteration, we get a larger or a smaller class than S(Rd )?

Sato [22] constructed mappings producing a class smaller than S(Rd ) and Maejima and Ueda

[15] found mappings which produce a larger class than S(Rd ). In Theorem 4.6, we will see
that stochastic integral mappings associated with classes L〈α〉(Rd), α ∈ (0, 2), make smaller

classes than S(Rd) as the limits of the ranges of their iteration, which is the same iterated
limit as that of Sato’s mappings above. Also, in Corollary 4.2, we see a result about nested
classes of L〈α〉(Rd) based on H ⊂ I (Rd ) with certain properties instead of I (Rd ), which
enable us to find the iterated limit of some other stochastic integral mappings, (see Remark
4.3 and Maejima and Ueda [14]).

Organization of this paper is as follows. In Section 2, we explain necessary notation

and give some preliminaries. In Section 3, we study nested subclasses of L〈α〉(Rd) in terms
of a limit theorem. In Section 4, we investigate nested subclasses of L〈α〉(Rd ) in terms of a
mapping of infinitely divisible distributions, by using the results in Section 3. In Section 5, a
supplementary remark is mentioned.

2. Notation and preliminaries

In this section, we explain necessary notation and give some preliminaries.
Throughout this paper, we use the Lévy-Khintchine representation of the characteristic

function of µ ∈ I (Rd ) in the following form:

µ̂(z) = exp

{
−1

2
〈z,Az〉 + i〈γ, z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉

1 + |x|2
)

ν(dx)

}
, z ∈ Rd ,

where 〈·, ·〉 is Euclidean inner product on Rd respectively, A is a nonnegative-definite symmet-

ric d × d matrix, γ ∈ Rd , and ν is a measure satisfying ν({0}) = 0 and
∫

Rd (|x|2 ∧ 1)ν(dx) <

∞. ν is called the Lévy measure of µ ∈ I (Rd ). We also call (A, ν, γ ) the Lévy-Khintchine
triplet of µ and we write µ = µ(A,ν,γ ) when we want to emphasize its Lévy-Khintchine
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triplet. Cµ(z), z ∈ Rd , denotes the cumulant function of µ ∈ I (Rd ), that is, Cµ(z) is the

unique continuous function satisfying µ̂(z) = eCµ(z) and Cµ(0) = 0. For µ ∈ I (Rd ) and

t > 0, we call the distribution with characteristic function µ̂(z)t := etCµ(z) the t-th convolu-
tion of µ and denote it by µt .

A set H ⊂ P(Rd) is said to be closed under type equivalence if L(X) ∈ H implies

L(aX + c) ∈ H for a > 0, and c ∈ Rd . H ⊂ I (Rd ) is called completely closed in the
strong sense (abbreviated as c.c.s.s.) if H is closed under convolution, weak convergence,
type equivalence, and t-th convolution for any t > 0. Note that I (Rd ) and L(Rd ) are c.c.s.s.,
but S(Rd ) is not.

B0(Rd ) denotes the totality of B ∈ B(Rd ) satisfying infx∈B |x| > 0. Let S = {x ∈
Rd : |x| = 1} and we write, for E ∈ B((0,∞)) and C ∈ B(S), EC := {x ∈ Rd \ {0} : |x| ∈
E and x/|x| ∈ C}.

We also use stochastic integrals with respect to Lévy processes. Stochastic integrals with
respect to Lévy processes {Xt, t ≥ 0} of nonrandom measurable functions f : [0,∞) → R,

which are
∫ t

0 f (s)dXs, t ∈ [0,∞), are deeply studied in Sato [19, 20], and his way of defining
a stochastic integral with respect to a Lévy process is to define a stochastic integral based
on the Rd -valued independently scattered random measure induced by a Lévy process on
Rd . The improper stochastic integral

∫ ∞
0 f (s)dXs is defined as the limit in probability of∫ t

0 f (s)dXs as t → ∞ whenever the limit exists.
Using stochastic integrals with respect to Lévy processes, we can define a mapping

Φf (µ) = L
(∫ ∞

0
f (t)dX

(µ)
t

)
, µ ∈ D(Φf ) ⊂ I (Rd ) ,(2.1)

for a nonrandom measurable function f : [0,∞) → R, where D(Φf ) is the domain of a

mapping Φf that is the class of µ ∈ I (Rd ) for which
∫ ∞

0 f (t)dX
(µ)
t is definable in the sense

above. When we consider the composition of two mappings Φf and Φg , denoted by Φg ◦Φf ,

the domain of Φg ◦ Φf is D(Φg ◦ Φf ) = {µ ∈ I (Rd ) : µ ∈ D(Φf ) and Φf (µ) ∈ D(Φg )}.
Also, for a mapping Φf and m ∈ N, we denote by Φm

f the m times composition of Φf itself.

Once we define such a mapping, we can characterize a subclass of I (Rd ) as the range of Φf ,
R(Φf ) := Φf (D(Φf )). See also Sato [21].

3. Nested subclasses of the class of α-selfdecomposable distributions defined by
limit theorems and their characterizations in terms of Lévy measures

We start this section with the following definition, which defines a subclass of I (Rd )

through a limit theorem.

DEFINITION 3.1. Let α ∈ R and H ⊂ I (Rd ). µ ∈ P(Rd) is said to belong to the
class Qα(H) if there exist a sequence {µj , j ∈ N} ⊂ I (Rd ) satisfying {µj , j ≥ j0} ⊂ H

for some j0 ∈ N, an > 0, ↑ ∞ satisfying an+1/an → 1, cn ∈ Rd , and pn > 0 satisfying
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pn/a
α
n → 1 such that

lim
n→∞

n∏
j=1

µ̂j (a
−1
n z)pnei〈cn,z〉 = µ̂(z) , for z ∈ Rd .(3.1)

REMARK 3.2. In Definition 3.1, we assume H to be a subclass of I (Rd ) because we
need the t-th convolution of its elements for t > 0. Due to this assumption, we do not need
the infinitesimal condition, as Jurek [9] remarked. Then, Definition 3.1 is similar to the limit
theorem characterizing the class of selfdecomposable distributions L(Rd ).

The following is immediately obtained by definition.

LEMMA 3.3. Let α ∈ R. If H1 ⊂ H2 ⊂ I (Rd ), then Qα(H1) ⊂ Qα(H2).

We can characterize the classes Qα(H) by the decomposability and L〈α〉(Rd) by the
Qα(·)-operation as follows.

THEOREM 3.4. Let α ∈ R and let H ⊂ I (Rd ) be c.c.s.s.
(i) µ ∈ Qα(H) if and only if µ ∈ I (Rd ) and for each b > 1 there exists ρb ∈ H

satisfying (1.1).
(ii) Qα(I (Rd )) = L〈α〉(Rd).

PROOF. (i) We first show the “if” part. Let µ ∈ I (Rd ) and for each b > 1 there exists

ρb ∈ H satisfying (1.1). Then, it suffices to set µ1 := µ ∈ I (Rd ), µ̂j (z) := ρ̂j/(j−1)(jz)j
−α

for j ≥ 2, an := n, pn := nα , and cn := 0. Indeed, {µj , j ≥ 2} ⊂ H since H is c.c.s.s., and
for all n ≥ 2,

n∏
j=1

µ̂j (a
−1
n z)pnei〈cn,z〉 = µ̂

(
1

n
z

)nα n∏
j=2

ρ̂j/(j−1)

(
j

n
z

)( n
j

)α

= µ̂

(
1

n
z

)nα n∏
j=2

µ̂
(

j
n
z
)( n

j

)α

µ̂
(

j−1
n

z
)( n

j−1

)α = µ̂(z) ,

implying (3.1).
We next show the “only if” part. For any b > 1, we can take nl,ml ∈ N diverging to ∞

such that ml < nl and anl a
−1
ml

→ b as l → ∞. This is possible, due to the argument in the
proof of Theorem 15.3 (i) of Sato [18]. Then,

nl∏
j=1

µ̂j

(
a−1
nl

z
)pnl ei〈cnl

,z〉 =


ml∏
j=1

µ̂j

(
a−1
ml

(amla
−1
nl

z)
)pml e

i
〈
cml

,aml
a−1
nl

z
〉

pnl
p−1

ml

×
nl∏

j=ml+1

µ̂j

(
a−1
nl

z
)pnl e

i
〈
cnl

−cml
aml

a−1
nl

pnl
p−1

ml
,z
〉
,
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where the left-hand side and the first term of right-hand side tend to µ̂(z) and µ̂(b−1z)b
α

as
l → ∞, respectively, by virtue of the uniform convergence of the characteristic functions.
Since µ̂(z) is the limit of the sequence of infinitely divisible distributions, µ is also infinitely

divisible and thus µ̂(b−1z)b
α �= 0 for all z ∈ Rd . The second term of the right-hand side

converges to µ̂(z)/µ̂(b−1z)b
α

which is continuous at z = 0 and therefore the characteristic
function of some probability measure ρb . Then, (1.1) holds. Furthermore, since {µj , j ≥
j0} ⊂ H and H is c.c.s.s., we have ρb ∈ H .

(ii) This is an immediate consequence of the part (i) that we have just shown and the
definition of L〈α〉(Rd ). �

The following holds from Theorem 3.4.

COROLLARY 3.5. Let H( �= ∅) ⊂ I (Rd ) be c.c.s.s. Then, Q2(H) is the class of all
Gaussian distributions on Rd , and for α > 2, Qα(H) is the class of all δ-distributions on Rd .

PROOF. We first prove that Qα(H) includes the class of all Gaussian distributions if
α = 2, and all δ-distributions if α > 2. Indeed, if H( �= ∅) ⊂ I (Rd ) is c.c.s.s., then µ ∈
H exists and for all γ ∈ Rd , δγ = limn→∞ µ1/n ∗ δγ ∈ H since H is c.c.s.s. If µ is

Gaussian, then for each b > 1, there is cb ∈ Rd satisfying µ̂(z) = µ̂(b−1z)b
2
ei〈cb,z〉. Also,

if α > 2 and µ is a δ-distribution, then for each b > 1, there is cb ∈ Rd satisfying µ̂(z) =
µ̂(b−1z)b

α
ei〈cb,z〉. Noting that δcb ∈ H , we have the assertion.

We next show that Qα(H) is included in the class of all Gaussian distributions if α = 2,
and all δ-distributions if α > 2. By Lemma 3.3 and Theorem 3.4 (ii), we have Qα(H) ⊂
L〈α〉(Rd ). Note that L〈α〉(Rd) is equal to the class of all Gaussian distributions if α = 2, and
all δ-distributions if α > 2, (see Maejima and Ueda [13]). �

For 0 < β ≤ 2, Sβ(Rd) stands for the totality of β-stable distributions on Rd . Let

S(Rd ) := ⋃
β∈(0,2] Sβ(Rd).

COROLLARY 3.6. Let 0 < α ≤ 2. Then, Qα

({δγ : γ ∈ Rd}) = Sα(Rd ).

PROOF. Note that µ ∈ Sα(Rd) if and only if for each b > 1 there exists cb ∈ Rd

satisfying µ̂(z) = µ̂(b−1z)b
α
ei〈cb,z〉. Then, Theorem 3.4 (i) implies the statement. �

For α < 2, let

Cα(Rd ) :=
{
µ = µ(A,ν,γ ) ∈ I (Rd ) : lim

r→∞ rα

∫
|x|>r

ν(dx) = 0

}
.

Note that Cα(Rd ) = I (Rd ) if α ≤ 0. If α < 2, µ ∈ Cα(Rd) and H is c.c.s.s., then, µ ∈ Qα(H)

can be characterized by a limit theorem slightly different from Definition 3.1 as follows.

THEOREM 3.7. Let α < 2 and let H ⊂ I (Rd ) be c.c.s.s. Assume µ ∈ Cα(Rd). Then,
µ ∈ Qα(H) if and only if there exist a sequence {µj , j ∈ N} ⊂ H , an > 0, ↑ ∞ satisfying
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an+1/an → 1, cn ∈ Rd , and pn > 0 satisfying pn/a
α
n → 1 such that

lim
n→∞

n∏
j=1

µ̂j (a
−1
n z)pnei〈cn,z〉 = µ̂(z) , for z ∈ Rd .

PROOF. The “if” part is trivial by Definition 3.1.
Let us prove the “only if” part. If µ = µ(A,ν,γ ) ∈ Qα(H), then for each b > 1,

there exists ρb ∈ H satisfying (1.1) by virtue of Theorem 3.4 (i). Then, it suffices to set

µ̂j (z) := ρ̂(j+1)/j ((j +1)z)(j+1)−α
, an := n, pn := nα , cn := 0 if α ≤ 0, and cn := nα−1γ +

nα
∫

Rd x
{
(1 + |x|2)−1 − (1 + |nx|2)−1

}
ν(n dx) if 0 < α < 2. Indeed, {µj , j ∈ N} ⊂ H

since H is c.c.s.s. and

n∏
j=1

µ̂j (a
−1
n z)pn =

n∏
j=1

ρ̂(j+1)/j

(
j + 1

n
z

)( n
j+1

)α

=
n∏

j=1

µ̂
(

j+1
n

z
)(

n
j+1

)α

µ̂
(

j
n
z
)(

n
j

)α =
µ̂
(

n+1
n

z
)( n

n+1

)α

µ̂
( 1

n
z
)nα

which tends to µ̂(z) as n → ∞, if α ≤ 0. If 0 < α < 2, we have

nαCµ

(
n−1z

) − i〈cn, z〉 = −1

2
nα−2〈z,Az〉 + nα

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉

1 + |x|2
)

ν(n dx) .

For any bounded continuous function f : Rd → R vanishing on a neighborhood of 0, it
follows that

lim
n→∞ nα

∫
Rd

f (x)ν(n dx) = 0 ,

since µ ∈ Cα(Rd ). Recalling that ν(B) ≥ nαν(nB) for B ∈ B(Rd) from (1.1), we have

lim
ε↓0

lim
n→∞

∣∣∣∣ nα−2〈z,Az〉 + nα

∫
|x|≤ε

〈z, x〉2ν(n dx)

∣∣∣∣
≤ lim

n→∞ nα−2 |〈z,Az〉| + lim
ε↓0

∫
|x|≤ε

〈z, x〉2ν(dx) = 0 .

Then, it follows from Theorem 8.7 of Sato [18] that limn→∞ µ̂(n−1z)n
α
e−i〈cn,z〉 = 1. Thus

n∏
j=1

µ̂j (a
−1
n z)pnei〈cn,z〉 =

µ̂
(

n+1
n

z
)( n

n+1

)α

µ̂
(

1
n
z
)nα

e−i〈cn,z〉
→ µ̂(z) ,

as n → ∞. �
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Corollaries 3.5, 3.6 and Theorem 3.7 yield the following.

COROLLARY 3.8. (i) Let α ∈ (−∞, 0] ∪ (2,∞). Then, for all c.c.s.s. H ⊂ I (Rd ),
Qα(H) ⊂ H .

(ii) Let α ∈ (0, 2]. Then, there exists a c.c.s.s. H ⊂ I (Rd ) satisfying Qα(H) �⊂ H .
(iii) Let α ∈ (0, 2). Then, for all c.c.s.s. H ⊂ I (Rd ), Qα(H) ∩ Cα(Rd) ⊂ H .

PROOF. (i) If α ≤ 0, and H ⊂ I (Rd ) is c.c.s.s., then Theorem 3.7 implies Qα(H) ⊂
H . Let α > 2 and let H ⊂ I (Rd ) be c.c.s.s. If H = ∅, then Qα(∅) = ∅. Assume H �= ∅.
Then Corollary 3.5 implies Qα(H) = {δγ : γ ∈ Rd} ⊂ H .

(ii) See Corollary 3.6.
(iii) See Theorem 3.7. �

We are ready to define nested subclasses of L〈α〉(Rd ) by using the Qα(·)-operation. Let
H ⊂ I (Rd ) and α ∈ R. For m = 0, 1, 2, . . . ,∞, we denote the m times iteration of Qα(·) by
Qm

α (·), namely,

Qm
α (H) = Qα(Qα(. . . (Qα︸ ︷︷ ︸

m

(H)) . . . )) ,

where Q0
α(H) = H , and Q∞

α (H) = ⋂∞
m=1 Qm

α (H). By Corollary 3.8 (ii), it is not always

true that Q1
α(H) ⊂ Q0

α(H)(= H). However, it will be seen in Proposition 3.10 (iii) that

if H ⊂ I (Rd ) is c.c.s.s., then Qm+1
α (H) ⊂ Qm

α (H),m ∈ N, so that limm→∞ Qm
α (H) =⋂∞

m=1 Qm
α (H), if we regard Qm

α (H) as a sequence with m ∈ N.
For 0 < α < 2, let

Iα(Rd ) :=
{
µ ∈ I (Rd ) :

∫
Rd

|x|αµ(dx) < ∞
}

.

We first prepare the following lemma.

LEMMA 3.9. Let 0 < α < 2. Suppose µ ∈ L〈α〉(Rd). Then, for all b > 1, ρb in
Definition 1.1 satisfies ρb ∈ Iα(Rd).

PROOF. Let b > 1. Denoting the Lévy measures of µ and ρb by ν and νb, respectively,
we have that νb(B) = ν(B) − bαν(bB) for B ∈ B0(Rd ) by (1.1). Then, it follows that∫

|x|>1
|x|ανb(dx) =

∞∑
k=0

∫
|x|∈(bk, bk+1]

|x|ανb(dx) ≤
∞∑

k=0

bα(k+1)νb

(
(bk, bk+1]S)

=
∞∑

k=0

bα(k+1){ν((bk, bk+1]S) − bαν
(
(bk+1, bk+2]S)}

=
∞∑

k=0

{
bα(k+1)ν

(
(bk, bk+1]S) − bα(k+2)ν

(
(bk+1, bk+2]S)}
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= lim
n→∞

{
bαν

(
(1, b]S) − bα(n+2)ν

(
(bn+1, bn+2]S)}

≤ bαν ((1, b]S) < ∞ .

This implies µ ∈ Iα(Rd ), due to Corollary 25.8 of Sato [18]. �

We now prove several properties of Qm
α (H).

PROPOSITION 3.10. Let H ⊂ I (Rd ) be c.c.s.s. Then, we have the following.
(i) For α ∈ R and m ∈ {0, 1, 2, . . . ,∞}, Qm

α (H) is also c.c.s.s.

(ii) For α ∈ R and m ∈ Z+, µ ∈ Qm+1
α (H) if and only if µ ∈ I (Rd ) and for each

b > 1 there exists ρb ∈ Qm
α (H) satisfying (1.1).

(iii) Let α ∈ R. Then, Qm
α (H) is decreasing in m ∈ N with respect to set inclusion,

namely,

Qm
α (H) ⊃ Qm+1

α (H) for m ∈ N .(3.2)

(iv) Let α ∈ R. Then Q∞
α (H) is invariant under the Q∞

α (·)-operation, that is,

Qα

(
Q∞

α (H)
) = Q∞

α (H) ,

which is equivalent to that µ ∈ Q∞
α (H) if and only if µ ∈ I (Rd ) and for each

b > 1 there exists ρb ∈ Q∞
α (H) satisfying (1.1).

(v) Let m ∈ {0, 1, 2, . . . ,∞}. If Qα(H) ⊂ H for all α ∈ (0, 2], then Qm
α (H) is

decreasing in α ∈ R with respect to set inclusion, namely,

Qm
α1

(H) ⊃ Qm
α2

(H) for α1 < α2 .(3.3)

PROOF. (i) Let us show the statement for m ∈ Z+ by induction. The case for m = 0

is obvious. Assume that Qm−1
α (H) is c.c.s.s. Then, Theorem 3.4 (i) yields that µ ∈ Qm

α (H)

if and only if µ ∈ I (Rd ) and for each b > 1 there exists ρb ∈ Qm−1
α (H) satisfying (1.1).

By using this decomposability, it is easy to see that Qm
α (H) is c.c.s.s. Thus Qm

α (H) is c.c.s.s.
for all m ∈ Z+. Recalling that the intersection of c.c.s.s. classes is again c.c.s.s., we have the
assertion for m = ∞.

(ii) Noting (i), we can apply Theorem 3.4 to the class Qm
α (H) in place of H .

(iii) We first show the case for α ∈ (−∞, 0] ∪ (2,∞). It follows from Corollary 3.8
that Qα(H) ⊂ H . Then Lemma 3.3 yields (3.2). We next show the case for α ∈ (0, 2).

Suppose that m ∈ N and µ ∈ Qm+1
α (H). Then it follows from (ii) that for each b > 1 there

exists ρb ∈ Qm
α (H) satisfying (1.1). Then µ ∈ L〈α〉(Rd) and hence ρb ∈ Iα(Rd) ⊂ Cα(Rd )

by Lemma 3.9. Therefore ρb ∈ Qm
α (H) ∩ Cα(Rd) ⊂ Qm−1

α (H) by Corollary 3.8. Then it
follows from (ii) that µ ∈ Qm

α (H). Thus (3.2) holds. We finally show the case for α = 2. If
H = ∅, then Qm

α (H) = ∅ for m ∈ N and thus (3.2) is true. Let H �= ∅. It is sufficient to show
that

for all m ∈ N, Qm
2 (H) is the class of all Gaussian distributions .(3.4)
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Let us show this statement by induction. If m = 1, the assertion is Corollary 3.5. Assume

that the assertion is valid for m. Then Qm+1
2 (H) = Q2

(
Qm

2 (H)
) = Q2({µ ∈ P(Rd) :

µ is Gaussian}), which is equal to the class of all Gaussian distributions on Rd by Corollary
3.5. Then the statement is true for m + 1. Therefore the statement is true for all m ∈ N.

(iv) It follows from (iii) that Qm
α (H) ⊃ Q∞

α (H) for all m ∈ N. Then, Lemma 3.3

entails that Qm+1
α (H) ⊃ Qα

(
Q∞

α (H)
)

for all m ∈ N. Therefore Q∞
α (H) ⊃ Qα

(
Q∞

α (H)
)
.

To prove the converse inclusion, let µ ∈ Q∞
α (H). Then µ ∈ Qm+1

α (H) for all m ∈ Z+.
Therefore it follows from (ii) that for any b > 1 there exists ρm,b ∈ Qm

α (H) such that

µ̂(z) = µ̂(b−1z)b
α
ρ̂m,b(z). Since µ ∈ I (Rd ), µ̂(b−1z)b

α
does not vanish. Therefore

ρ̂m,b(z) = µ̂(z)/µ̂(b−1z)b
α
, which is independent of m. Denoting it by ρ̂∞,b(z), we have

ρ∞,b ∈ Qm
α (H) for all m ∈ Z+, namely, ρ∞,b ∈ ⋂∞

m=0 Qm
α (H) ⊂ Q∞

α (H). Then

µ ∈ Qα

(
Q∞

α (H)
)

by Theorem 3.4. Hence Q∞
α (H) ⊂ Qα

(
Q∞

α (H)
)
.

(v) Note that Qα(H) ⊂ H for all α ∈ R by Corollary 3.8 (i) and the assumption. Let
us show the statement for m ∈ Z+ by induction. The case for m = 0 is trivial. Assume that
the assertion is valid for m − 1. If µ ∈ Qm

α2
(H), then, by (ii), for each b > 1 there exists

ρb ∈ Qm−1
α2

(H) satisfying (1.1) for α2 in place of α. Noting that bα2 − bα1 > 0, we have

µ̂(z) = µ̂(b−1z)b
α1 {

µ̂(b−1z)b
α2−bα1

ρ̂b(z)
}
.

By (iii), we have µ ∈ Qm
α2

(H) ⊂ Qm−1
α2

(H). Then, the assumption of induction entails that

µ, ρb ∈ Qm−1
α2

(H) ⊂ Qm−1
α1

(H). Since Qm−1
α1

(H) is c.c.s.s. from (i), the distribution with

characteristic function µ̂(b−1z)b
α2−bα1 ρ̂b(z) also belongs to Qm−1

α1
(H). Hence µ ∈ Qα1(H)

by virtue of (ii). Therefore the statement is true for all m ∈ Z+. Taking the intersection under
m ∈ N of the both sides of (3.3), we have the assertion for m = ∞. �

For H ⊂ P(Rd), we write H for the closure of H under weak convergence and convo-
lution. Some facts related to the class of stable distributions are the following.

PROPOSITION 3.11. Let H ⊂ I (Rd ) be c.c.s.s. and m ∈ {1, 2, . . . ,∞}.
(i) If α ≤ 0 and H ⊃ S(Rd ), then Qm

α (H) ⊃ S(Rd ).

(ii) If 0 < α < 2 and H ⊃ ⋃
β∈[α,2] Sβ(Rd), then Qm

α (H) ⊃ ⋃
β∈[α,2] Sβ(Rd ).

(iii) If α = 2 and H �= ∅, then Qm
2 (H) is the class of all Gaussian distributions.

(iv) If α > 2 and H �= ∅, then Qm
α (H) is the class of all δ-distributions.

PROOF. Let µ ∈ S(Rd ). Then, there exists β ∈ (0, 2] such that for each b > 1 there is

cb ∈ Rd satisfying µ̂(z) = µ̂(b−1z)b
β
ei〈cb,z〉. Noting that α < β and letting

ρ̂b(z) := µ̂(b−1z)b
β−bα

ei〈cb,z〉 ,(3.5)

we have (1.1). Since µ ∈ S(Rd ) ⊂ H and hence ρb ∈ H , it follows that µ ∈ Qα(H). Then,
looking at (3.5) and taking into account that Qα(H) is c.c.s.s., we have ρb ∈ Qα(H), which



NESTED SUBCLASSES OF THE CLASS OF α-SELFDECOMPOSABLE DISTRIBUTIONS 393

implies µ ∈ Q2
α(H) by Proposition 3.10 (ii). Iterating this argument, we have µ ∈ Qm

α (H)

for all m ∈ N. Therefore Qm
α (H) ⊃ S(Rd) for all m ∈ N. Since Qm

α (H) is c.c.s.s., it follows

that Qm
α (H) ⊃ S(Rd) for all m ∈ N. Thus Q∞

α (H) = ⋂∞
m=1 Qm

α (H) ⊃ S(Rd).
(ii) It is proved in a similar way to (i).

(iii) For m ∈ N, what we have to show is (3.4) itself, which is already shown. For
m = ∞, we have that Q∞

2 (H) = ⋂∞
m=1 Qm

2 (H) = {µ ∈ P(Rd) : µ is Gaussian}.
(iv) For m ∈ N, the statement can be proved in the same way as that for (3.4). For

m = ∞, it is proved in the same way as (iii).
�

We now define L
〈α〉
m (Rd), the nested subclasses of L〈α〉(Rd). Define L

〈α〉
m (Rd) by

Qm+1
α (I (Rd )) for α ∈ R and m ∈ {0, 1, 2, . . . ,∞}. Take into account that L

〈α〉
0 (Rd) =

L〈α〉(Rd ). Noting that Qα(I (Rd )) ⊂ I (Rd ) for all α ∈ (0, 2] and I (Rd ) ⊃ S(Rd), we have
the following two propositions immediately from Propositions 3.10 and 3.11.

PROPOSITION 3.12. The following hold.

(i) For α ∈ R and m ∈ {0, 1, 2, . . . ,∞}, L
〈α〉
m (Rd ) is c.c.s.s.

(ii) For α ∈ R and m ∈ Z+, µ ∈ L
〈α〉
m+1(R

d) if and only if µ ∈ I (Rd ) and for each

b > 1 there exists ρb ∈ L
〈α〉
m (Rd) satisfying (1.1).

(iii) Let α ∈ R. Then L
〈α〉
m (Rd) ⊃ L

〈α〉
m+1(R

d) for m ∈ Z+.

(iv) Let α ∈ R. Then, Qα

(
L

〈α〉∞ (Rd)
)

= L
〈α〉∞ (Rd), namely, µ ∈ L

〈α〉∞ (Rd) if and only

if µ ∈ I (Rd ) and for each b > 1 there exists ρb ∈ L
〈α〉∞ (Rd) satisfying (1.1).

(v) Let m ∈ {0, 1, 2, . . . ,∞}. Then L
〈α1〉
m (Rd) ⊃ L

〈α2〉
m (Rd) for α1 < α2.

PROPOSITION 3.13. Let m ∈ {0, 1, 2, . . . ,∞}.
(i) If α ≤ 0, then L

〈α〉
m (Rd) ⊃ S(Rd ).

(ii) If 0 < α < 2, then L
〈α〉
m (Rd) ⊃ ⋃

β∈[α,2] Sβ(Rd).

(iii) If α = 2, then L
〈2〉
m (Rd) is the class of all Gaussian distributions.

(v) If α > 2, then L
〈α〉
m (Rd) is the class of all δ-distributions.

We next characterize L
〈α〉
m (Rd) in terms of Lévy measures. For m = 0,

Maejima and Ueda [13] proved the following.

THEOREM 3.14. Let α < 2. Then, µ ∈ I (Rd ) with Lévy measure ν belongs to

L
〈α〉
0 (Rd ) if and only if

ν(B) =
∫

S

λ(dξ)

∫ ∞

0
11B(rξ)r−α−1kξ (r)dr , B ∈ B(Rd \ {0}) ,

where λ is a probability measure on S and kξ (r) is right-continuous and nonincreasing in
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r ∈ (0,∞) and measurable in ξ ∈ S, and for all ξ ∈ S,∫ ∞

0
(r2 ∧ 1)r−α−1kξ (r)dr =

∫
Rd

(|x|2 ∧ 1)ν(dx) ,

which is independent of ξ . If ν �= 0, then this λ is uniquely determined by ν, and this kξ (·) is
uniquely determined by ν up to ξ of λ-measure 0.

For characterizations of L
〈α〉
m (Rd ), we need some preparation.

DEFINITION 3.15. Let α < 2. For µ ∈ L
〈α〉
0 (Rd ) with Lévy measure ν �= 0, we

call kξ (r) in Theorem 3.14 the k-function of ν (or µ). If ν = 0, then we define the k-
function of ν (or µ) as the zero-function. And we call the function hξ (u), u ∈ R defined by

hξ (u) := kξ (e
−u) the h-function of ν (or µ).

For f : R → R, we introduce the difference operator as follows:

∆n
εf (u) :=

n∑
j=0

(−1)n−j

(
n

j

)
f (u + jε) , for u ∈ R , ε > 0 and n ∈ Z+ .

For m ∈ Z+, f : R → R is said to be monotone of order m if ∆n
εf (u) ≥ 0 for all u ∈ R,

ε > 0 and n = 0, 1, 2, . . . ,m. f : R → R is said to be absolutely monotone if f is monotone
of order m for all m ∈ Z+.

The following four statements are proved by similar arguments to those in Section 1.2 of
Rocha-Arteaga and Sato [16], originally done in Sato [17], so we omit their proofs.

THEOREM 3.16. Suppose α < 2.

(i) Let m ∈ Z+. Then µ ∈ L
〈α〉
m (Rd) if and only if µ ∈ L

〈α〉
0 (Rd) and the h-function

hξ (u) of µ is monotone of order m + 1 in u ∈ R for λ-a.e. ξ ∈ S.

(ii) µ ∈ L
〈α〉∞ (Rd) if and only if µ ∈ L

〈α〉
0 (Rd) and the h-function hξ (u) of µ is abso-

lutely monotone in u ∈ R for λ-a.e. ξ ∈ S.

LEMMA 3.17. Let α < 2 and 0 < c < ∞. A function hξ (u) is absolutely monotone
in u ∈ R and measurable in ξ ∈ S and satisfies∫ ∞

−∞

(
e−2u ∧ 1

)
eαuhξ (u)du = c

for all ξ ∈ S if and only if

eαuhξ (u) =
∫

(0,2)∩[α,2)
eβuΓξ (dβ) ,

where Γξ is a measure on (0, 2) ∩ [α, 2) for each ξ ∈ S satisfying∫
(0,2)∩[α,2)

(
1

β
+ 1

2 − β

)
Γξ(dβ) = c
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and Γξ (B) is measurable in ξ ∈ S for every B ∈ B ((0, 2) ∩ [α, 2)).

THEOREM 3.18. Let α < 2.
(i) If µ ∈ L

〈α〉∞ (Rd) with Lévy measure ν, then

ν(B) =
∫

(0,2)∩[α,2)
Γ (dβ)

∫
S

λβ(dξ)

∫ ∞

0
11B(rξ)r−β−1dr , B ∈ B(Rd \ {0}) ,

where Γ is a measure on (0, 2) ∩ [α, 2) satisfying∫
(0,2)∩[α,2)

(
1

β
+ 1

2 − β

)
Γ (dβ) < ∞ ,

and λβ is a probability measure on S for each β ∈ (0, 2) ∩ [α, 2), and λβ(C)

is measurable in β ∈ (0, 2) ∩ [α, 2) for every C ∈ B(S). This Γ is uniquely
determined by µ and this λβ is uniquely determined by µ up to β of Γ -measure 0.

(ii) If µ ∈ I (Rd ) with Lévy measure ν is expressible as in (i), then µ ∈ L
〈α〉∞ (Rd).

THEOREM 3.19. (i) If α ≤ 0, then L
〈α〉∞ (Rd) ⊂ S(Rd ).

(ii) If 0 < α < 2, then L
〈α〉∞ (Rd) ⊂ ⋃

β∈[α,2] Sβ(Rd).

Combining this theorem with Proposition 3.13 with m = ∞, we conclude

THEOREM 3.20. (i) If α ≤ 0, then L
〈α〉∞ (Rd) = S(Rd ).

(ii) If 0 < α < 2, then L
〈α〉∞ (Rd) = ⋃

β∈[α,2] Sβ(Rd).

To conclude this section, we go back once to the case for a general c.c.s.s. H ⊂ I (Rd ).

THEOREM 3.21. Let H ⊂ I (Rd ) be c.c.s.s.

(i) If α ≤ 0 and H ⊃ S(Rd ), then Q∞
α (H) = S(Rd).

(ii) If 0 < α < 2 and H ⊃ ⋃
β∈[α,2] Sβ(Rd), then Q∞

α (H) = ⋃
β∈[α,2] Sβ(Rd ).

PROOF. We only prove (i), since (ii) is similarly proved. Proposition 3.11 yields that

Q∞
α (H) ⊃ S(Rd ). Using Lemma 3.3 repeatedly, we have Qm+1

α (H) ⊂ Qm+1
α (I (Rd )) =

L
〈α〉
m (Rd ) for m ∈ Z+. Hence Q∞

α (H) ⊂ L
〈α〉∞ (Rd) = S(Rd ) by Theorem 3.20. Thus we have

Q∞
α (H) = S(Rd ). �
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4. Nested subclasses of the class of α-selfdecomposable distributions in terms of
mapping

For α ∈ R, Maejima et al. [11] defined mappings Φα : D(Φα) → I (Rd ) by

Φα(µ) =



L
(∫ −1/α

0
(1 + αt)−1/αdX

(µ)
t

)
, when α < 0 ,

L
(∫ ∞

0
e−t dX

(µ)
t

)
, when α = 0 ,

L
(∫ ∞

0
(1 + αt)−1/αdX

(µ)
t

)
, when α > 0 .

(4.1)

Due to Theorems 2.4 and 2.8 of Sato [21], the domains D(Φα) are as follows, (see also p. 49
of Sato [21]).

D(Φα) =



I (Rd ) , when α < 0 ,

Ilog(Rd) , when α = 0 ,

Iα(Rd) , when 0 < α < 1 ,

I∗
1 (Rd) , when α = 1 ,

I 0
α(Rd) , when 1 < α < 2 ,

{δ0} , when α ≥ 2 ,

where

I 0
α(Rd) =

{
µ ∈ Iα(Rd) :

∫
Rd

xµ(dx) = 0

}
, for 1 ≤ α < 2 ,

I∗
1 (Rd) =

{
µ = µ(A,ν,γ ) ∈ I 0

1 (Rd) : lim
T →∞

∫ T

1
t−1dt

∫
|x|>t

xν(dx) exists in Rd

}
.

As to the ranges R(Φα), Theorem 4.6 of Maejima et al. [11] says the following.

R(Φα) =



L〈α〉(Rd) , when α < 0 ,

L〈0〉(Rd) , when α = 0 ,

L〈α〉(Rd) ∩ Cα(Rd) , when 0 < α < 1 ,

L〈1〉(Rd) ∩ C∗
1 (Rd) , when α = 1 ,

L〈α〉(Rd) ∩ C0
α(Rd) , when 1 < α < 2 ,

{δ0} , when α ≥ 2 ,

(4.2)

where

C∗
1 (Rd) =

{
µ̃(Ã,̃ν,γ̃ ) ∈ L〈1〉(Rd) ∩ C1(Rd) : ν̃(B) =

∫
S

λ̃(dξ)

∫ ∞

0
11B(rξ)r−2k̃ξ (r)dr ,
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lim
ε↓0

∫ 1

ε

tdt

∫
S

ξ λ̃(dξ)

∫ ∞

0

r2

1 + t2r2 dk̃ξ (r) exists in Rd and equals γ̃

}
,

C0
α(Rd) = Cα(Rd ) ∩ I 0

1 (Rd), for 1 < α < 2 .

Now, we characterize Φm
α

(
H ∩ D(Φm

α )
)

with a c.c.s.s. H ⊂ I (Rd ) using the results in

the previous section. Note that, for α < 0, D(Φm
α ) = I (Rd ),m ∈ N, since D(Φα) = I (Rd ).

However, henceforth we do not treat the case for α ≥ 2, since it is obvious that Φm
α ({δ0}) =

{δ0} for all m ∈ N.

THEOREM 4.1. Let H ⊂ I (Rd ) be c.c.s.s., and let m ∈ N.
(i) When α < 0, Φm

α (H) = Qm
α (H).

(ii) When α = 0, Φm
0

(
H ∩ D(Φm

0 )
) = Qm

0 (H).

(iii) When 0 < α < 1, Φm
α

(
H ∩ D(Φm

α )
) = Qm

α (H) ∩ Cα(Rd).

(iv) When α = 1, Φm
1

(
H ∩ D(Φm

1 )
) = Qm

1 (H) ∩ C∗
1 (Rd).

(v) When 1 < α < 2, Φm
α

(
H ∩ D(Φm

α )
) = Qm

α (H) ∩ C0
α(Rd).

PROOF. (i) It is proved in a similar way to (v).
(ii) We prove the statement by induction. The case for m = 0 comes from Lemma 4.1

of Barndorff-Nielsen et al. [1] and Theorem 3.4 (i) with α = 0 of this paper. Now assume that
the statement is valid for m−1 with m ≥ 2 in place of m and let us prove Φm

0

(
H ∩ D(Φm

0 )
) =

Qm
0 (H). If we put H ′ := Φ0 (H ∩ D(Φ0)), then it is equal to Q0(H) by the statement

for m = 0 and thus it is c.c.s.s. Applying the assumption of induction to H ′ instead of

H , we have that Φm−1
0

(
Φ0 (H ∩ D(Φ0)) ∩ D(Φm−1

0 )
)

= Qm
0 (H). Since it is easy to see

that Φ0 (H ∩ D(Φ0)) ∩ D(Φm−1
0 ) = Φ0

(
H ∩ D(Φm

0 )
)
, it follows that Φm

0

(
H ∩ D(Φm

0 )
) =

Qm
0 (H).

(iii) It is proved in a similar way to (v).
(iv) We prove the statement by induction. Let us prove the case for m = 1. We first

show that Φ1 (H ∩ D(Φ1)) ⊂ Q1(H) ∩ C∗
1 (Rd). If µ ∈ Φ1 (H ∩ D(Φ1)), then µ = Φ1(µ0)

for some µ0 ∈ H ∩ D(Φ1). We have, for any b > 1 and z ∈ Rd ,

Cµ(z) − bCµ(b−1z) =
∫ b−1

0
Cµ0

(
(1 + t)−1z

)
dt = Cρb (z) ,

where

ρb = L
(∫ b−1

0
(1 + t)−1dX

(µ0)
t

)
.

Since H is c.c.s.s., ρb ∈ H for all b > 1. Then it follows from Theorem 3.4 (i) that µ ∈
Q1(H). Since µ ∈ R(Φ1) ⊂ C∗

1 (Rd), we have µ ∈ Q1(H) ∩ C∗
1 (Rd). We next show that

Φ1 (H ∩ D(Φ1)) ⊃ Q1(H)∩C∗
1 (Rd). If µ ∈ Q1(H)∩C∗

1 (Rd), then µ ∈ L〈1〉(Rd )∩C∗
1 (Rd )
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and hence µ = Φ1(µ0) for some µ0 ∈ D(Φ1). On the other hand, due to Theorem 3.4 (i), for
each b > 1, there is ρb ∈ H satisfying (1.1) with α = 1. Then, it follows that

Cµ0(z) = lim
b↓1

1

b − 1

∫ b−1

0
Cµ0

(
(1 + t)−1z

)
dt(4.3)

= lim
b↓1

1

b − 1

{
Cµ(z) − bCµ(b−1z)

}
= lim

b↓1

1

b − 1
Cρb (z) .

This entails µ0 ∈ H since H is c.c.s.s. Then µ = Φ1(µ0) ∈ Φ1 (H ∩ D(Φ1)). Therefore
the case for m = 0 is proved. Now assume that the statement is valid for m − 1 with m ≥ 2
in place of m and let us prove Φm

1

(
H ∩ D(Φm

1 )
) = Qm

1 (H) ∩ C∗
1 (Rd). We first show that

Φm
1

(
H ∩ D(Φm

1 )
) ⊂ Qm

1 (H) ∩ C∗
1 (Rd). If µ ∈ Φm

α

(
H ∩ D(Φm

1 )
)
, then µ = Φm

1 (µ0) for

some µ0 ∈ H ∩ D(Φm
1 ). We have, for any b > 1 and z ∈ Rd ,

Cµ(z) − bCµ(b−1z) =
∫ b−1

0
C

Φm−1
1 (µ0)

(
(1 + t)−1z

)
dt = Cρb (z) ,

where

ρb = L
(∫ b−1

0
(1 + t)−1dX

(
Φm−1

1 (µ0)
)

t

)
.

Since Φm−1
1 (µ0) ∈ Qm−1

1 (H) ∩ C∗
1 (Rd) by the assumption of induction and Qm−1

1 (H) is

c.c.s.s., we have ρb ∈ Qm−1
1 (H) for each b > 1. Then, µ ∈ Qm

1 (H) due to Proposition

3.10 (ii). Since µ ∈ R(Φm
1 ) ⊂ R(Φ1) ⊂ C∗

1 (Rd ), we have µ ∈ Qm
1 (H) ∩ C∗

1 (Rd ). We

next show that Φm
1

(
H ∩ D(Φm

1 )
) ⊃ Qm

1 (H) ∩ C∗
1 (Rd). If µ ∈ Qm

1 (H) ∩ C∗
1 (Rd), then

µ ∈ L〈1〉(Rd) ∩ C∗
1 (Rd) since Qm

1 (H) ⊂ Qm
1 (I (Rd )) = L

〈1〉
m−1(R

d ) ⊂ L〈1〉(Rd ). Hence
µ = Φ1(µ0) for some µ0 ∈ D(Φ1). On the other hand, due to Proposition 3.10 (ii), for

each b > 1, there is ρb ∈ Qm−1
1 (H) satisfying (1.1). Then, (4.3) holds. Since Qm−1

1 (H) is

c.c.s.s., µ0 ∈ Qm−1
1 (H). Noting that µ0 ∈ D(Φ1) = I∗

1 (Rd), we have µ0 ∈ Qm−1
1 (H) ∩

I∗
1 (Rd). Since Qm−1

1 (H) ⊂ Qm−1
1 (I (Rd )) = L

〈1〉
m−2(R

d ) ⊂ L〈1〉(Rd), we have that µ0 =
µ0(A0,ν0,γ0)

∈ L〈1〉(Rd) ∩ C1(Rd). Therefore ν0 has the polar decomposition as follows:

ν0(B) =
∫

S

λ0(dξ)

∫ ∞

0
11B(rξ)r−2k0,ξ (r)dr , B ∈ B(Rd \ {0}) ,

where k0,ξ (r) is right-continuous and nonincreasing in r ∈ (0,∞) and measurable in ξ ∈ S,
and satisfies limr→∞ k0,ξ (r) = 0 for each ξ ∈ S. Then Lemma 5.1 and its proof of Maejima
et al. [11] yield that

ν0(B) =
∫ 1

0
ν1(s

−1B)s−2ds, B ∈ B(Rd \ {0}) ,

∫
Rd

(|x|2 ∧ |x|)ν1(dx) < ∞ ,
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with

ν1(B) = −
∫

S

λ0(dξ)

∫ ∞

0
11B(rξ)r−1dk0,ξ (r) , B ∈ B(Rd \ {0}) .

Taking into account that µ0 ∈ I∗
1 (Rd), we have

∫
Rd xµ0(dx) = 0, which is equivalent to that

γ0 = −
∫

Rd

x|x|2
1 + |x|2 ν0(dx) = −

∫ 1

0
s−2ds

∫
Rd

sx|sx|2
1 + |sx|2 ν1(dx)

=
∫ 1

0
sds

∫
S

ξλ0(dξ)

∫ ∞

0

r2

1 + s2r2 dk0,ξ (r) .

This yields µ0 ∈ C∗
1 (Rd ) and hence µ0 ∈ Qm−1

1 (H) ∩ C∗
1 (Rd ). By the assumption of in-

duction, we have µ0 = Φm−1
1 (µ2) for some µ2 ∈ H ∩ D(Φm−1

1 ). Then µ = Φ1(µ0) =
Φm

1 (µ2) ∈ Φm
1

(
H ∩ D(Φm

1 )
)
.

(v) We prove the statement by induction. Let us prove the case for m = 1. We first

show that Φα (H ∩ D(Φα)) ⊂ Qα(H)∩C0
α(Rd). If µ ∈ Φα (H ∩ D(Φα)), then µ = Φα(µ0)

for some µ0 ∈ H ∩ D(Φα). We have, for any b > 1 and z ∈ Rd ,

Cµ(z) − bαCµ(b−1z) =
∫ (bα−1)/α

0
Cµ0

(
(1 + αt)−1/αz

)
dt = Cρb (z) ,

where

ρb = L
(∫ (bα−1)/α

0
(1 + αt)−1/αdX

(µ0)
t

)
.

Since H is c.c.s.s., ρb ∈ H for all b > 1. Then it follows from Theorem 3.4 (i) that µ ∈
Qα(H). Since µ ∈ R(Φα) ⊂ C0

α(Rd ), we have µ ∈ Qα(H) ∩ C0
α(Rd). We next show that

Φα (H ∩ D(Φα)) ⊃ Qα(H)∩C0
α(Rd). If µ ∈ Qα(H)∩C0

α(Rd), then µ ∈ L〈α〉(Rd )∩C0
α(Rd )

and hence µ = Φα(µ0) for some µ0 ∈ D(Φα). On the other hand, due to Theorem 3.4 (i),
for each b > 1, there is ρb ∈ H satisfying (1.1). Then, it follows that

Cµ0(z) = lim
b↓1

α

bα − 1

∫ (bα−1)/α

0
Cµ0

(
(1 + αt)−1/αz

)
dt(4.4)

= lim
b↓1

α

bα − 1

{
Cµ(z) − bαCµ(b−1z)

} = lim
b↓1

α

bα − 1
Cρb (z) .

This entails µ0 ∈ H since H is c.c.s.s. Then µ = Φα(µ0) ∈ Φα (H ∩ D(Φα)). Therefore
the case for m = 0 is proved. Now assume that the statement is valid for m − 1 with m ≥ 2

in place of m and let us prove Φm
α

(
H ∩ D(Φm

α )
) = Qm

α (H) ∩ C0
α(Rd). We first show that

Φm
α

(
H ∩ D(Φm

α )
) ⊂ Qm

α (H) ∩ C0
α(Rd ). If µ ∈ Φm

α

(
H ∩ D(Φm

α )
)
, then µ = Φm

α (µ0) for
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some µ0 ∈ H ∩ D(Φm
α ). We have, for any b > 1 and z ∈ Rd ,

Cµ(z) − bαCµ(b−1z) =
∫ (bα−1)/α

0
C

Φm−1
α (µ0)

(
(1 + αt)−1/αz

)
dt = Cρb (z),

where

ρb = L
(∫ (bα−1)/α

0
(1 + αt)−1/αdX

(
Φm−1

α (µ0)
)

t

)
.

Since Φm−1
α (µ0) ∈ Qm−1

α (H) ∩ C0
α(Rd ) by the assumption of induction and Qm−1

α (H) is

c.c.s.s., we have ρb ∈ Qm−1
α (H) for each b > 1. Then, µ ∈ Qm

α (H) due to Proposition

3.10 (ii). Since µ ∈ R(Φm
α ) ⊂ R(Φα) ⊂ C0

α(Rd), we have µ ∈ Qm
α (H) ∩ C0

α(Rd ). We

next show that Φm
α

(
H ∩ D(Φm

α )
) ⊃ Qm

α (H) ∩ C0
α(Rd). If µ ∈ Qm

α (H) ∩ C0
α(Rd), then

µ ∈ L〈α〉(Rd ) ∩ C0
α(Rd) since Qm

α (H) ⊂ Qm
α (I (Rd )) = L

〈α〉
m−1(R

d) ⊂ L〈α〉(Rd ). Hence
µ = Φα(µ0) for some µ0 ∈ D(Φα). On the other hand, due to Proposition 3.10 (ii), for

each b > 1, there is ρb ∈ Qm−1
α (H) satisfying (1.1). Then, (4.4) holds. Since Qm−1

α (H)

is c.c.s.s., µ0 ∈ Qm−1
α (H). Noting that µ0 ∈ D(Φα) = I 0

α(Rd) ⊂ C0
α(Rd), we have µ0 ∈

Qm−1
α (H) ∩ C0

α(Rd ). By the assumption of induction, we have µ0 = Φm−1
α (µ1) for some

µ1 ∈ H ∩ D(Φm−1
α ). Then µ = Φα(µ0) = Φm

α (µ1) ∈ Φm
α

(
H ∩ D(Φm

α )
)
. �

Let α < 2 and let H ⊂ I (Rd ) be c.c.s.s. Then it follows from Proposition 3.10 (iii) and
the theorem above that Φm

α

(
H ∩ D(Φm

α )
)
,m ∈ N, are nested subclasses of Φα (H ∩ D(Φα)).

Using the results in the previous section, we obtain the limit limm→∞ Φm
α

(
H ∩ D(Φm

α )
) =⋂∞

m=1 Φm
α

(
H ∩ D(Φm

α )
)

as follows.

COROLLARY 4.2. Let H ⊂ I (Rd ) be c.c.s.s.
(i) If α < 0 and H ⊃ S(Rd ), then

lim
m→∞ Φm

α (H) = Q∞
α (H) = S(Rd ) .

(ii) If α = 0 and H ⊃ S(Rd ), then

lim
m→∞ Φm

0

(
H ∩ D(Φm

0 )
) = Q∞

0 (H) = S(Rd ) .

(iii) If 0 < α < 1 and H ⊃ ⋃
β∈[α,2] Sβ(Rd), then

lim
m→∞ Φm

α

(
H ∩ D(Φm

α )
) = Q∞

α (H) ∩ Cα(Rd)

=
⋃

β∈[α,2]
Sβ(Rd ) ∩ Cα(Rd ) = L

〈α〉∞ (Rd) ∩ Cα(Rd) .
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(iv) If α = 1 and H ⊃ ⋃
β∈[1,2] Sβ(Rd), then

lim
m→∞ Φm

1

(
H ∩ D(Φm

1 )
) = Q∞

1 (H) ∩ C∗
1 (Rd)

=
⋃

β∈[1,2]
Sβ(Rd ) ∩ C∗

1 (Rd) = L
〈1〉∞ (Rd) ∩ C∗

1 (Rd ) .

(v) If 1 < α < 2 and H ⊃ ⋃
β∈[α,2] Sβ(Rd), then

lim
m→∞ Φm

α

(
H ∩ D(Φm

α )
) = Q∞

α (H) ∩ C0
α(Rd)

=
⋃

β∈[α,2]
Sβ(Rd ) ∩ C0

α(Rd ) = L
〈α〉∞ (Rd) ∩ C0

α(Rd) .

REMARK 4.3. Let Φf be a stochastic integral mapping defined by (2.1). It is a

interesting problem to characterize the limit limm→∞ R(Φm+1
f ) as in Maejima and Sato

[12]. Corollary 4.2 can be applied to this problem as follows. Assume that Φf is de-
composed in the form that Φf = Φα ◦ Φg = Φg ◦ Φα for some α ∈ (−∞, 2) and

some stochastic integral mapping Φg . Then R(Φm
f ) = Φm

α

(
R(Φm

g ) ∩ D(Φm
α )

)
, so that

Φm
α

(
H ∩ D(Φm

α )
) ⊂ R(Φm

f ) ⊂ R(Φm
α ), where H = limm→∞ R(Φm+1

g ). If H fulfills

the conditions in Corollary 4.2, then we have limm→∞ R(Φm+1
f ) = limm→∞ R(Φm+1

α ). An

example of this application is found in Maejima and Ueda [14]. This is why we consider
nested classes of L〈α〉(Rd ) based on not only I (Rd ) but also general c.c.s.s. H ⊂ I (Rd ).

Let µ ∈ L∞(Rd) = L
〈0〉∞ (Rd), and let Γ and λβ be the measures in Theorem 3.18 with

α = 0. We call Γ the Γ -measure of µ ∈ L∞(Rd), sometimes denoted by Γ µ. We also
write λ

µ
β for λβ . For a set A ∈ B((0, 2)), let LA∞(Rd) denote the class of µ ∈ L∞(Rd) with

Γ µ satisfying Γ µ ((0, 2) \ A) = 0. Note that L
〈α〉∞ (Rd ) = L

[α,2)∞ (Rd) for α ∈ (0, 2) due to
Theorem 3.18.

LEMMA 4.4. Let 0 < α < 2. We have L
〈α〉∞ (Rd ) ∩ Cα(Rd ) = L

(α,2)∞ (Rd).

PROOF. Let µ ∈ L
〈α〉∞ (Rd ) = L

[α,2)∞ (Rd) with Lévy measure ν. Then,

ν(B) =
∫

[α,2)

Γ µ(dβ)

∫
S

λ
µ
β (dξ)

∫ ∞

0
11B(rξ)r−β−1dr , B ∈ B(Rd) .

Since

rα

∫
|x|>r

ν(dx) = rα

∫
[α,2)

Γ µ(dβ)

∫ ∞

r

u−β−1du =
∫

[α,2)

β−1rα−βΓ µ(dβ) ,

it follows from the bounded convergence theorem that

lim
r→∞ rα

∫
|x|>r

ν(dx) = α−1Γ µ({α}) .
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Thus µ ∈ Cα(Rd) if and only if Γ µ({α}) = 0 under the condition µ ∈ L
〈α〉∞ (Rd) =

L
[α,2)∞ (Rd). �

Using the lemma above, we have the following.

THEOREM 4.5. Let H ⊂ I (Rd ) be c.c.s.s.
(i) If 0 < α < 1 and H ⊃ ⋃

β∈[α,2] Sβ(Rd), then

lim
m→∞ Φm

α

(
H ∩ D(Φm

α )
) = L(α,2)∞ (Rd ) .

(ii) If α = 1 and H ⊃ ⋃
β∈[1,2] Sβ(Rd), then

lim
m→∞ Φm

1

(
H ∩ D(Φm

1 )
) =

{
µ = µ(A,ν,γ ) ∈ L(1,2)∞ (Rd ) :

lim
ε↓0

∫
(1,2)

B

(
3 − β

2
,
β + 1

2

)
1 − εβ−1

β − 1
Γ µ(dβ)

∫
S

ξλ
µ
β (dξ) = −γ

}
.

(iii) If 1 < α < 2 and H ⊃ ⋃
β∈[α,2] Sβ(Rd), then

lim
m→∞ Φm

α

(
H ∩ D(Φm

α )
) = L(α,2)∞ (Rd) ∩ I 0

1 (Rd) .

PROOF. The statements (i) and (iii) come from Corollary 4.2 and Lemma 4.4.

Let us prove the statement (ii). Suppose µ ∈ L
(1,2)∞ (Rd) with Lévy measure ν. Let

c := ∫
Rd (|x|2 ∧ 1)ν(dx). Note that L

(1,2)∞ (Rd) ⊂ L
[1,2)∞ (Rd) = L

〈1〉∞ (Rd ) ⊂ L〈1〉(Rd). Let λ

and kξ (r) be the ones in Theorem 3.14 with α = 1. It follows from Theorem 3.16 and Lemma
3.17 with α = 1 that

kξ (r) =
∫

[1,2)

r1−βΓξ (dβ) ,

∫
[1,2)

(
1

β
+ 1

2 − β

)
Γξ (dβ) = c ,

where Γξ , ξ ∈ S, are the measures in Lemma 3.17 with α = 1. Choosing a [1, 2)-valued
random variable X and an S-valued random variable Y with joint distribution

P (X ∈ dβ, Y ∈ dξ) := c−1
(

1

β
+ 1

2 − β

)
λ(dξ)Γξ (dβ) ,

we have

Γ µ(dβ) = c

(
1

β
+ 1

2 − β

)−1

P(X ∈ dβ) , λ
µ
β (dξ) = P(Y ∈ dξ | X = β) Γ µ-a.e. β

from the uniqueness of Γ µ and λ
µ
β . Since Γ µ({1}) = 0, it follows that Γξ ({1}) = 0 λ-a.e.

ξ ∈ S. Then we have

−
∫ 1

ε

tdt

∫
S

ξλ(dξ)

∫ ∞

0

r2

1 + t2r2
dkξ (r)



NESTED SUBCLASSES OF THE CLASS OF α-SELFDECOMPOSABLE DISTRIBUTIONS 403

= −
∫ 1

ε

tdt

∫
S

ξλ(dξ)

∫
(1,2)

Γξ (dβ)

∫ ∞

0

r2

1 + t2r2 d(r1−β)

=
∫ 1

ε

tdt

∫
S

ξλ(dξ)

∫
(1,2)

(β − 1)Γξ (dβ)

∫ ∞

0

r2−β

1 + t2r2 dr

=
∫ 1

ε

dt

∫
S

ξλ(dξ)

∫
(1,2)

(β − 1)tβ−2Γξ (dβ)

∫ ∞

0

s2−β

1 + s2 ds ,

which is, by 3.251.2 in Gradshteyn and Ryzhik [2], equal to∫ 1

ε

dt

∫
S

ξλ(dξ)

∫
(1,2)

β − 1

2
B

(
3 − β

2
,
β − 1

2

)
tβ−2Γξ (dβ)

=
∫ 1

ε

dt

∫
S

ξλ(dξ)

∫
(1,2)

B

(
3 − β

2
,
β + 1

2

)
tβ−2Γξ(dβ)

=
∫ 1

ε

dt

∫
(1,2)

B

(
3 − β

2
,
β + 1

2

)
tβ−2Γ µ(dβ)

∫
S

ξλ
µ
β (dξ)

=
∫

(1,2)
B

(
3 − β

2
,
β + 1

2

)
1 − εβ−1

β − 1
Γ µ(dβ)

∫
S

ξλ
µ
β (dξ) .

Thus, under the condition µ ∈ L
(1,2)∞ (Rd),

lim
ε↓0

∫ 1

ε

tdt

∫
S

ξλ(dξ)

∫ ∞

0

r2

1 + t2r2
dkξ (r) = γ

if and only if

lim
ε↓0

∫
(1,2)

B

(
3 − β

2
,
β + 1

2

)
1 − εβ−1

β − 1
Γ µ(dβ)

∫
S

ξλ
µ
β (dξ) = −γ .

This completes the proof due to Corollary 4.2 and Lemma 4.4. �

Letting H = I (Rd ) in Theorems 4.1 and 4.5 and Corollary 4.2, we have the following
two theorems.

THEOREM 4.6. Let m ∈ Z+.

(i) When α ≤ 0, R(Φm+1
α ) = L

〈α〉
m (Rd).

(ii) When 0 < α < 1, R(Φm+1
α ) = L

〈α〉
m (Rd) ∩ Cα(Rd).

(iii) When α = 1, R(Φm+1
1 ) = L

〈1〉
m (Rd ) ∩ C∗

1 (Rd).

(iv) When 1 < α < 2, R(Φm+1
α ) = L

〈α〉
m (Rd) ∩ C0

α(Rd).

THEOREM 4.7. (i) When α ≤ 0,

lim
m→∞ R(Φm+1

α ) = L∞(Rd) .
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(ii) When 0 < α < 1,

lim
m→∞ R(Φm+1

α ) = L(α,2)∞ (Rd ).

(iii) When α = 1,

lim
m→∞ R(Φm+1

1 ) =
{
µ = µ(A,ν,γ ) ∈ L(1,2)∞ (Rd) :

lim
ε↓0

∫
(1,2)

B

(
3 − β

2
,
β + 1

2

)
1 − εβ−1

β − 1
Γ µ(dβ)

∫
S

ξλ
µ
β (dξ) = −γ

}
.

(iv) When 1 < α < 2,

lim
m→∞ R(Φm+1

α ) = L(α,2)∞ (Rd) ∩ I 0
1 (Rd).

REMARK 4.8. The two theorems above in the case α = 0 are well-known results.
Also, Theorem 4.7 in the case −1 ≤ α < 0 is already proved in Example 3.5 (5) of Maejima
and Sato [12]. Mappings having the same iterated limits as those of Φα, α ∈ (0, 2), were
already found by Sato [22].

5. A supplementary remark

Theorems 3.20 and 4.7 have given us the limits of the nested subclasses in terms of limit
theorems and mappings, respectively, where, the forms of the limits look quite dependent on
α. However, if we do not care explicit forms of the classes, we can unify the expressions of
the results into one expression as follows. The first one is a restatement of Theorem 3.20.

THEOREM 5.1. Let α ∈ R. Then L
〈α〉∞ (Rd) = L〈α〉(Rd) ∩ S(Rd ).

PROOF. (iii) and (iv) of Proposition 3.13 assure the statement for α ≥ 2. If α ≤ 0,
Proposition 3.13 (i) and Theorem 3.20 yields the statement. Let 0 < α < 2. Then

Propositions 3.12 (iii) and 3.20 (ii) yields that L
〈α〉∞ (Rd ) ⊂ L〈α〉(Rd) ∩ S(Rd ). Let µ ∈

L〈α〉(Rd ) ∩ S(Rd ) with Lévy measure ν. Since µ ∈ S(Rd ), we have

ν(B) =
∫

(0,2)

Γ µ(dβ)

∫
S

λ
µ
β (dξ)

∫ ∞

0
11B(rξ)r−β−1dr , B ∈ B(Rd) .

Since µ ∈ L〈α〉(Rd), we have that for all α′ ∈ (0, α),
∫
|x|>1 |x|α′

ν(dx) < ∞. Then∫
(0,2)

Γ µ(dβ)

∫ ∞

1
rα′−β−1dr < ∞ ,

which entails Γ µ((0, α′]) = 0 for all α′ ∈ (0, α). Therefore Γ µ((0, α)) = 0. It follows from

Theorem 3.18 (ii) that µ ∈ L
〈α〉∞ (Rd). �

Using the theorem above, we have the following, which is a restatement of Theorem 4.7.
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THEOREM 5.2. Let α ∈ R. Then

lim
m→∞ R(Φm+1

α ) = R(Φα) ∩ S(Rd) .(5.1)

PROOF. If α ≥ 2, then limm→∞ R(Φm+1
α ) = R(Φα) ∩ S(Rd ) = {δ0}. Combining

Theorem 5.1 with (4.2) and Theorem 4.6, we have the statement for α < 2. �

REMARK 5.3. Many known mappings satisfy (5.1), (see, e.g., Maejima and Sato [12]).
However, some mappings do not fulfill (5.1), (see, e.g., Maejima and Ueda [15]).
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