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Abstract. In [2] and [3], we discuss the existence and the (a, t)-joint continuity of the distribution-valued

additive functional A7 (a : t, w) = fé T(Xs —a)forT € Hﬁ except for the case of the (a, t)-joint continuity with
p = 1. In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive functional A7 (a : ¢, w)
forT € Hlﬂ .

1. Introduction and preliminaries

In this paper, we discuss the (a, t)-joint continuity of the distribution-valued additive

functional A7 (a : t, w) = fé T(Xs—a)forT € Hlﬂ which is the case we did not finish doing
in [2] and [3]. The main results are Theorem 9 and 11 whose proof are produced by Lemma
8.

Throughout this paper, we shall use the same notations as those in [2] and [3]. But we
notice some notations and remember the results of [2] and [3].

We denote the Fourier transform of ¢ (a) by é(k):
600 = [pteas

and the Fourier inverse transform of (1) by F~'(¥)(a):

1

—1 _
Fl@= g

/ Y (Re ),

where x - y (x € R%,y € R?) denotes the inner product.
Let T € §’. We denote the Fourier transform of 7 by T.

DEFINITION 1. We say that T is an element of Hf (1<p<oo —00<f < o0)if
and only if T is an element of S” and the Fourier transform of T has a version as a function
f"()») on R? such that

A B
TO)A+ AP)Z e LP.
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Then we set

A g
1Tl = 1T QA+ 1A e

We note F~1(T)(1) = 2n) =T (=1) for T € H}.

Let { X} be the standard Brownian motion on R? or one-dimensional real valued stable
process with index @ (0 < a < 2) or d-dimensional real valued symmetric stable process
with index o (0 < o < 2).

We define 7, and 0; as follows:

Ty Xi(tew) = Xi(w) + x
and
0 : X5 (0rw) = Xpy5(w) .

We remember preliminary results in [2].

LEMMA 2. LetT € D', ¢ € DandsetT * ¢p(x) = (Ty, ¢p(x —y))y. Then

t
(Ar(t, ), ) =/0 T % (X, (@))ds

is well-defined and we have
Ar(t,w) e D .
LEMMA 3.
(A1 (1, Trw), ¢) =(Ar (1, @), $(- + X))
(Ar(s +1, 0), ) =(A7(s, @), ¢) + (AT (1, O50), @) .
LEMMA 4. Let T be an element ofH;f. Then At (t, w) is also an element of Hg.
Now let p. be the mollifier. We denote
AT (t, 0) = (A7 (t, ), pe)
and
Af(a :t,w) = AS(t, T_4w) .
We note that
(AT (t, w), ¢) = (A7 (t, ®), ps % @) .

Here we emphasize AST (a : t, ) is a usual function of a. We can take p, such that p; — §p
as ¢ — 0 and o, uniformly converges to one in wider sense tending ¢ to zero and || fe |loo < 1.
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We studied the convergence of distribution-valued additive functional A% (a : ¢, @) for

TeH 1’3 in [2] and [3], tending € to zero. We remember their results.
First, in the case of d-dimensional Brownian motion, we had

THEOREM 5. ForT € Hf}

m% Af(a:t,w)=Ar(a:t,0) inL*dPy),
E—>

where we take f > —1.

Second, in the case of one-dimensional stable process with index & whose characteristic
function is (7), we had

THEOREM 6. ForT € Hlﬂ

lim AS(a:t,0) = Ar(a:t,w) inL*dPy),
e—0

where we take B > —a /2 but if @ < 1 and yo # O we take f > —1/2. We notice that yy is a
real number in (8).

Last, in the case of d-dimensional symmetric stable process with index «, we had
THEOREM 7. ForT € H'

m% Af(a:t,w)=Ar(a:t,0) inL*dPy),
£—

where we take B > —a /2.

The (a, t)-joint continuity theorem in the case of each is following.

Theorem 9 corresponds to the d-dimensional Brownian motion.

Theorem 11 corresponds to the one-dimensional stable process with index «.

Corollary 12 corresponds to the d-dimensional symmetric stable process with index «.

They will be proved in Section 2.

The following lemma is modified version of the lemma in [2]. This lemma plays impor-
tant role of proof of the continuity theorems.

LEMMA 8. Let p4q > 0and p > q. For any » € R?,

sup (14 [ ™P(1+ [+ AH77 < (14 1D 7. (1)
neRd

Specially, there exists C > 0 such that

sup (1 + ) PA+ |+ AH"1 <A+ A7 forx eRE 2
neR

PROOF. The case of ¢ = 0 is clear. We will consider the case where ¢ is negative and
the other case where ¢ is positive.



186 TADASHI NAKAJIMA

First, we consider the case where ¢ is negative. By (1) to the —1/g-th power both sides,
we have to show that

sup (14 [P0+ [+ A3 =< 1+ A2, 3)
neRd

Moreover, for p + g > 0 we have —g > 1. Then, (3) is rewritten as

I+ +2%

- 2
:Rd ERPECS 14+ Al form>1.
n

If we take u = 0,

1 NE
sup M > 14+ |A2.
perd (L [p?)m
By m > 1 we get

(1+ [+ A%

SUP T
(14 |+ A%
perd L+ Inf?
(14 2[ul* + 2127
< su 3
JeRd 1+ |ul
201 + [ (A + 2127
< su 3
LeRY 1+ |

<21+ AP

Hence we get (1), if ¢ < 0.
Second, we consider the case where g is positive. In a similar way where ¢ is negative,
we have to show that

inf (14 ()P40 + |+ 2% < 1+ 2.
neRd

If we take u = 0,

inf (14 |w)P9(0 + |+ A5 < 1T+ 2.
neRd

Next, since p/q > 1 we get

inf (14 )P0 + |+ %)
nweRd

> inf (14 (A + e+ 2)
nweRd
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inf {1+ A 1+ +)L2
= in - = -
ek ) T3
f 1+2||+||2+ A -1-)L2
= in — - = =
JeR 2 TFT 2 FT2
>1+|A|2
2
Therefore we get Lemma 8. O

2. Continuity theorems

2.1. The case of d-dimensional Brownian motion. Let P, be the probability mea-
sure of the d-dimensional standard Brownian motion {X,} starting from x. We notice that the
characteristic function of Xj is

. A2
E.[e*%] = exp {—%s + i)\x} )

THEOREM 9. LetT € H{s where we take B > —1. Suppose that 5§ = min(1, 8 + 1).
Then Ar(a : t,w) has (a,t)-jointly continuous modification, which is locally Holder-
continuous with exponent y, where 0 <y < 4.

PROOF. We will estimate
Ex[(AS(a:t,w) — AS(b - 5, 0)>"]

and then we apply Kolrnogorov—éentsov theorem([1, P. 55, Problem 2.9]) to get the joint
continuity.

Without loss of generality, for fixed N > 0 we take ¢ and s such that N > ¢ > s and we
suppose that Brownian motion starts from zero and b = 0.

We set

Eol(A%(a : t,®) — A5(0 1 5, 0)™]
< 22MEo[(AS(a : 1, w) — A5(0 : 1, )™ ]| + 22| Eo[(A5(0 : 1, w) — A5(0 : 5, 0))*"]]
=221, +2*"|L;|, say.

First we estimate I,. Using Parseval’s equality we get

I (2n)! /dk /d)\ /d /d /t d
a (2]‘[)2nd 1 2n uj uj- . Uz

X T (an) - T(A1)Be(Aan) - - e (1)

Aoy +-ta 12

2
Iop+ron_1l
— = (upp— —U2p—2) — =

|>»2
x e~ n (uon—uon—1)—
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x (ethnd — 1)(girm-1a — 1)...(el*1r¢ — 1),

Then we have

| al EW(”T”Hf’) "l Be o)™
N B
x sup (1+ A7) 72 (14 [A2n]7) "2
Ao Aop
X |eiA2n-a _ 1||eiA2n_|»a _ 1| .. |€i)q-a _ 1|
t t t
x/dm/duzou/ duoy,
0 uy Uzn—1
2 Aon+hon_1 12 a2
X e*Mzﬁ" (“2}17142}171)7' 2)1+22n 1l (“2}1717142}172)7‘“7Mzn+2+)h]‘ uj .

We change the variables A; (1 <i <2n)to u; (1 < j < 2n) as follows:
Han = Ao

Mon—1 = Aop + Aop—1

M1 =Aw + A1+ -+ AL

Then we get
@n)! 2051 \2n
1al SW(IITIIH{S) (I19¢ lloo)

_B _B _B
x sup (141 — pal) 77 (14 [pane1 — p2nH 721+ ponH) 72

x Ieiuzn-a _ 1||ei(uzn—1—M2n)-a —1]--- |ei(ul—uz)-a —1]

t t t 2 2 2
_ luopl _ Il oy el
X/ dMl/ duz---/ dusye S (ugn—un—1) S (uy—u)——— uy
0 uj Up—1

Now we notice that for any k € C(Re(k) > 0)

t
/ e ds
0

<
1+ |k

andforany 1 >1[; >0

. 1
et — 1] < Cala"' (1 + |u|») 7, (4)

where C1 and C; are positive constants.
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Then we apply these inequalities to /,:
2n)!K;

[1g] EW

UT 1y (B lloo)*

_(B_1 _(B_1
x sup (14 |p1 — w2l ™72 (U papet — ponH ™27 2)
M1y 20

_ _ 1_(B_1
(14 gD (U F a1 D7 4 )G,

where K| = (C1C2)?".
We first estimate the following. We set
g_1 g_!
12" = sup(1 + [pan-1 = paa) 27D (1 4 e H 77273,
H“2n

Now we apply (2) to this equation. If S satisfies
B I B I
- — = I+=—-——=1]=>=0
<2 2 U 2 2) 7

_(B_h
112" < C(1 + |uan—11H ™27 2.

then we get

Therefore, by induction, we reach the inequality

(2n)!K,C* ! . IR
|fal < T 100> (Ul elloo)* la P sup(1 + |y B 7172,

(277)2nd 231

For the finiteness of this inequality, we set the following condition:

Thus we obtain the condition
Bg=h—1 (5)

and
[l <Kala™ (T 160" (15 o)

where K> is a positive constant and only depends on n.
Next we estimate /; in a similar way of I,. But we notice that for any [ > 0, k €
C(Re(k) > 0) and fixed N > 0, there exists a positive constant C3 such that

s slz ﬁ
/ e kdu| < 03( ) for s € [0, N],
0 1+ |k
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s
/ e M dy
0

is a bounded function on (s, |k|) € [0, N] x [0, 00). Then we have
2n)!K3
(2].[)2nd

because it is easy to see that

b

STET( 4 T

1
2n—2— N
1A= It — s R (IT 1) (11 Be Nl o) ™"

_B _B
x sup (141 — pal®) 72 - (1 + [pan—1 — panl») 2
M1seees A2

N 2\~ 2 -5k
x (14 |p1]?) 2% - (T + Jpu2n—117) 277 4+ |uanl) 2+l

where K3 = C32".

We apply (2) to the inequality with respect to w1, ..., u2, of I;. Then we obtain the
condition
Pz ©
- bh4+1

for the finiteness of this integral and

I
2n 2 2 ~ 2
[I:] =K4lt — s| ]2“(||T||H]ﬂ) " (1 e lloc) ™"

where K4 is a positive constant and only depends on n, N.
Therefore by (5) and (6) we make /] and /5 satisfy the following equality:
1

- =/ —1
h+1

Since [; is positive, if S satisfies the condition in Theorem 5, then we obtain
|Eol(A%(a : t, ) — A5(0: 5, 0)™"]|

< Com(lal® + 1t = sP" )T 160> (15e loo)™

where we take § as follows and Cgy = max(K», Ky).
For 8 > —1 wetake § as B + 1 > & by (5) or (6).
Thus tending € to zero, we get (a, t)-joint continuity of Ar(a : ¢, w) by Kolmogorov—
Centsov theorem. O
2.2. The case of stable process with index «. Let P, be the probability measure of

the one-dimensional stable process { X} with index «(0 < o < 2) starting from x. We notice
that the characteristic function of X is

E.[e*%5] = exp{—sy¥ (L) + iAx}, 7
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where 1/ (A) is given in the following. For some constants ¢ > 0, —1 <y < 1 and yp € R, if
o # 1 then

Y(A) = c|A|“<1 —iy(sgnA) tan %a) + iyor ®)
and if « = 1 then
.2 .
YA = c|A|(1 + ly;(sgn)») logl)»l) + iyoA .

We remember the following lemma in [3].

LEMMA 10. Let F = |f0 e VN3 ds|. Then we get

Fe—S ©)
A+ 22)?

where we take n = o but if « < 1 and yy # 0 then we take n = 1.

Next we discuss the (a, t)-joint continuity of Ar(a : t, w). We get the following in the
similar way to the case of Brownian motion.

THEOREM 11. LetT € Hlﬁ, where we take B > —a /2. Suppose that

1. In the case where o > 1
o
d =min|( 1, —
(17+5)

2. Inthe case where a <1
8:min<a,,3+%>.

3. Inthe case where x < 1 and yg # 0

1
§=min| I, —].
min < B+ 2)
Then Ar(a : t,w) has (a,t)-jointly continuous modification, which is locally Holder-

continuous with exponent y, where 0 <y < 4.

PROOF. Without loss of generality, for fixed N > 0 we take r and s such that N > ¢ >
s and we suppose that the stable process starts from zero and b = 0.
We set

Eol(AS(a : t, ®) — A5(0 : 5, w))™"]
< 22" Eo[(As(a : 1, w) — (A5(0 : 1, 0))* ]| + 22" | Eo[(A5(0 : 1, w) — (A5(0 : 5, @))*"]|
=221 ] + 2% ;).
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First we estimate /,. By the similar calculation of the case of Brownian motion we obtain

(2n)! .
|| SW(||T||H5)2"(||/)8||OO>2"
2.8 2.8
x sup (L+[A])72 - (14 [An|?) 72
AlseensAon
x |e*i)»2nd _ 1||e*i()»2n+12n71)d — 1 |e*i()»2n+~~+)»1)a —1]

X

t t t
/ du / du2~~/ duoy
0 uy Un—1

x e~ ¥ Oan) (Uan—tizn—1) =¥ (an+A20—1) (U2n—1—t2n-2) ==Y Qg +--+Au)

By the change of variables we have

(2m)! o
Ll <555 AT 1) e lloo)™"
2.8 2.8 2.8
x sup (L4 lpr —p2l) "2 - (L4 [p2p—1 — p2al?) " 21 + [12,]7) 2
K15 MU2n
% |e—iuz;1a _ 1||e—i(uzn—1—M2n)a —1]--- |e—i(M1—M2)a —1]

t t t
X'/ dul/’dur,,/' ity o B2 W=tz 1) == (e2) =) = () |
0 uj U2n—1

Then we apply (4) and (9) to I,:
[l <K5UT )" (e loo) ™ la "

] I

5+

"

)

x sup (14 |p1 — pal?) (1 |an—1 — panl?

_n _n 1,
X (L4172 (U Lr2a1]) 72 (14 )72 071HP)

Now we apply (2) to the above inequality. Then for the finiteness of /,, we have
p—1 n+p-h
>0.
< 2 + 2 -

B>l — g (10)

Thus we get

and
|lal <Kela*" M AT 1|00 15113

where Kg is a positive constant and only depends on n.
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Next we estimate /; in a similar way of I,. But we notice that for any /3 > 0 and fixed
N > 0, there exists a positive constant C5 such that

‘ / Y g,
0

/
2np3 A
il <71t = sI BT AT )™ (1e loo)™

1

53 LT
§C5(4n) for s € [0, N].
(1+|ul?)?

Then we have

_B _B
x sup (14 |p1 — p2l®) "2 - (1 + |pan—1 — panl?) 2

2\~ 2\~ 7mAD 25wk
X (L4 1)) 2B oo (1 4 |u2n—117) 2B (1 + |u2a]”) 3D,

We apply (2) to the above inequality. Then we have

n
T b

and
2”% 2n A 2n
il <Kglt = s 5T )™ 1 pelloo)™
where K3 is a positive constant and only depends on n and N.

Therefore by (10) and (11) we make /| and /3 satisfy the following equality:
n n

=0 - =

2+ 1) 2
That is, I3 = 211 /(n — 2I1). Since [ is positive, B > —a//2 and then we get
|Eol(AS-(a : t, ) — A5(0 : 5, w)™]|

< CullalP +1r = s AT ) (loelloo) (12)

where we denote /1 by é§ and Cs; = max(Kg, K3g).

Therefore we get the condition in the theorem.

Then tending ¢ to zero, we get (a, t)-jointly continuity of Ar(a : t, w) by Kolmogorov—
Centsov theorem. O

We can apply the above method to the d-dimensional symmetric stable process. Let { X}
be the d-dimensional symmetric stable process with index «. That is,

E [e*%s] = exp{—c|A|%s +iA - x},

where c is a positive constant and x - y(x € R, y € R) denotes the inner product.
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Noting

/'e—c|x“sds <&
0 T (I+ APz

We have the next corollary.

COROLLARY 12. Let T € Hﬂ, where we take B > —a/2. Suppose that § =
min(x/2, B + %). Then Ar(a : t,w) has (a,t)-jointly continuous modification, which is
locally Holder-continuous with exponent y, where 0 < y < 6.
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