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Abstract. In this paper we study the Cartier duality of certain finite subgroup schemes of G(λ) in positive

characteristic, where G(λ) denotes the form of Gm determined by λ. To establish the Cartier duality of these group
schemes, we use certain deformations of Artin-Hasse exponential series.

1. Introduction

Throughout the paper, p denotes a prime number. LetA be a commutative ring with unit
element and λ an element ofA. T. Sekiguchi, F. Oort and N. Suwa [3] have introduced a group

scheme G(λ) = Spec A[X, 1/(1 + λX)] over A, which is a deformation of the additive group
scheme Ga (in the case λ = 0) to the multiplicative group scheme Gm (in the case λ ∈ A∗).
(We recall the group structure of G(λ) in section 3 below.) The group scheme G(λ) is useful
for studying the deformation of Artin-Schreier theory to Kummer theory. More precisely the
following surjective homomorphism

ψ : G(λ) → G(λp); x �→ λ−p((1 + λx)p − 1)

plays a key role in the unified Kummer-Artin-Schreier theory.
If A is of characteristic p, then ψ(x) = xp. Put N = Ker ψ . Let F : Ga,A → Ga,A be

the Frobenius endomorphism. Y. Tsuno [6] showed the following:

THEOREM 1 ([6]). Assume that A is of characteristic p. Then the Cartier dual of N

is canonically isomorphic to Ker[F − λp−1 : Ga,A → Ga,A].
Our purpose in this paper is to generalize Tsuno’s theorem as follows. For a group

scheme G, let Ĝ be the formal completion along the zero section. The homomorphism ψ

induces the natural homomorphism ψ : Ĝ(λ) → Ĝ(λp). Let l be a positive integer. We
consider the following surjective homomorphism

ψ(l) : Ĝ(λ) → Ĝ(λp
l
); x �→ λ−pl ((1 + λx)p

l − 1)
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which is clearly a generalization of ψ : Ĝ(λ) → Ĝ(λp). If A is of characteristic p, then

ψ(l)(x) = xp
l
. Set Nl = Ker ψ(l). The essential point in our argument is that the for-

mal scheme Nl is nothing but the finite subgroup scheme Spec A[X]/(Xpl ) of G(λ). Let
Wl,A be the Witt ring scheme of length l over A. Let F : Wl,A → Wl,A be the Frobe-
nius endomorphism of Wl,A and [λ] : Wl,A → Wl,A the Teichmüller lifting of λ ∈ A. Set

F (λ) = F − [λp−1]. (We analogously define an endomorphism F (λ) : WA → WA.) Then the
result of this paper is the following:

THEOREM 2. Assume that A is of characteristic p. Then the Cartier dual of Nl is

canonically isomorphic to Ker[F (λ) : Wl,A → Wl,A].
The case l = 1 of Theorem 2 is nothing but Tsuno’s Theorem 1. Tsuno proved his theorem
by skillful calculations. Our proof is different from Tsuno’s proof even in the case l = 1.
To prove Theorem 2, we make use of the deformations of Artin-Hasse exponential series

introduced by Sekiguchi and Suwa [4] and a duality between Ker[F (λ) : W(A) → W(A)]
with Ĝ(λ) proved by them [Ibid.].

The contents of this paper is as follows. The next two sections are devoted to the defini-
tions and the some reviews of properties of the Witt scheme and the deformation Ep(v, λ; x)
of Artin-Hasse exponential series (v ∈ W(A), x ∈ Ĝ(λ)). In section 4 we give a proof of
Theorem 2.

Notation

Ga,A : additive group scheme over A

Gm,A : multiplicative group scheme over A

Wn,A : group scheme of Witt vectors of length n over A

WA : group scheme of Witt vectors over A

Ĝm,A : multiplicative formal group scheme over A

F : Frobenius endomorphism of WA

V : Verschiebung endomorphism ofWA

Rn : restriction homomorphism of WA to Wn,A

[λ] : Teichmüller lifting (λ, 0, 0, . . . ) ∈ W(A) of λ ∈ A
F(λ) : = F − [λp−1]

W(A)F
(λ) : = Ker[F (λ) : W(A) → W(A)]

W(A)/F (λ) : = Coker[F (λ) : W(A) → W(A)]

2. Witt vectors

In this short section we recall necessary facts on Witt vectors for this paper. For details,
see [1, Chap. V] or [2, Chap. III].



CARTIER DUALITY OF CERTAIN FINITE GROUP SCHEMES 119

2.1. Let X = (X0,X1, . . . ) be a sequence of variables. For each n ≥ 0, we denote by
Φn(X) = Φn(X0,X1, . . . , Xn) the Witt polynomial

Φn(X) = X
pn

0 + pX
pn−1

1 + · · · + pnXn

in Z[X] = Z[X0,X1, . . . ]. Let Wn,Z = Spec Z[X0,X1, . . . , Xn−1] be the n-dimensional

affine space over Z. We define a morphism Φ(n) by

Φ(n) : Wn,Z → AnZ; x �→ (Φ0(x),Φ1(x), . . . , Φn−1(x)) ,

where AnZ is usual n-dimensional affine space over Z. We call Φ(n) the phantom map. The
scheme AnZ has a natural ring scheme structure. It is well-known thatWn,Z has a unique com-

mutative ring scheme structure over Z such that the phantom mapΦ(n) is a homomorphism of
commutative ring schemes over Z. Then the points of Wn,Z are called Witt vectors of length
n over Z.

2.2. The Verschiebung homomorphism V is defined by

V : W(A) → W(A); x = (x0, x1, . . . ) �→ x′ = (0, x0, x1, . . . ) .

The restriction homomorphism Rn is defined by

Rn : W(A) → Wn(A); x = (x0, x1, . . . ) �→ xn = (x0, x1, . . . , xn−1) .

We define a morphism F : Wn(A) → Wn−1(A) by

Φi(Fx) = Φi+1(x)

for x ∈ Wn(A). If A is of characteristic p, F is nothing but the usual Frobenius endomor-

phism. For λ ∈ A, [λ] denotes the Teichmüller lifting [λ] = (λ, 0, 0, . . . ) ∈ W(A) and F (λ)

denotes the endomorphism F − [λp−1] of W(A).
For a = (a0, a1, . . . ) ∈ W(A), we also define a morphism Ta : W(A) → W(A) by

Φn(Tax) = a0
pnΦn(x)+ pa1

pn−1
Φn−1(x)+ · · · + pnanΦ0(x)

for x ∈ W(A). Then it is known that this morphism has the equality Ta = ∑
k≥0 V

k · [ak].
(cf. [5, Chap. 4, p. 20])

3. Deformed Artin-Hasse exponential series

In this short section we recall necessary facts on the deformed Artin-Hasse exponential
series for this paper.

3.1. Let A be a ring and λ an element of A. Put G(λ) = Spec A[X, 1/(1 + λX)]. We

define a morphism α(λ) by

α(λ) : G(λ) → Gm,A; x �→ 1 + λx .
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It is well-known that G(λ) has a unique group scheme structure such that the morphism α(λ) is

a homomorphism over A. Then the group scheme structure of G(λ) is given as follows:

multiplication: X �→ X ⊗ 1 + 1 ⊗X + λX ⊗X ,

unit: X �→ 0 ,

inverse: X �→ −X/(1 + λX) .

If λ is invertible in A, α(λ) is an A-isomorphism. On the other hand, if λ = 0, G(λ) is nothing
but the additive group scheme Ga,A.

3.2. The Artin-Hasse exponential series Ep(X) is given by

Ep(X) = exp

( ∑
r≥0

Xp
r

pr

)
∈ Z(p)[[X]] .

We define a formal power series Ep(U,Λ;X) in Q[U,Λ][[X]] by

Ep(U,Λ;X) = (1 +ΛX)
U
Λ

∞∏
k=1

(1 +Λp
k

Xp
k

)
1
pk
(( U
Λ
)p
k−( U

Λ
)p
k−1

)
.

As in [4, Corollary 2.5] or [5, Lemma 4.8], we see that this formal power series Ep(U,Λ;X)
is integral over Z(p). Note that Ep(1, 0;X) = Ep(X).

Let A be a Z(p)-algebra. Let λ ∈ A and v = (v0, v1, . . . ) ∈ W(A). We define a formal
power series Ep(v, λ;X) in A[[X]] by

Ep(v, λ;X) =
∞∏
k=0

Ep(vk, λ
pk ;Xpk)

= (1 + λX)
v0
λ

∞∏
k=1

(1 + λp
k

Xp
k

)

1

pkλp
k
Φk−1(F

(λ)v)
.

Moreover we define a formal power series Fp(v, λ;X,Y ) as follows:

Fp(v, λ;X,Y ) =
∞∏
k=1

(
(1 + λp

k
Xp

k
)(1 + λp

k
Y p

k
)

1 + λp
k
(X + Y + λXY)p

k

) 1

pkλp
k
Φk−1(v)

.

As in [4, Lemma 2.16] or [5, Lemma 4.9], we see that the formal power series Fp(v, λ;X,Y )
is integral over Z(p). For the formal power series Fp(F (λ)v, λ;X,Y ), we have the following
equalities:

Fp(F
(λ)v, λ;X,Y ) =

∞∏
k=1

(
(1 + λp

k
Xp

k
)(1 + λp

k
Y p

k
)

1 + λp
k
(X + Y + λXY)p

k

) 1

pkλp
k Φk−1(F

(λ)v)

= Ep(v, λ;X)Ep(v, λ; Y )
Ep(v, λ;X + Y + λXY)

.
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We put [p]Ep(v, λ;X) = Ep([p]v, λ;X), and we define a new formal power series

Ẽ(w, λ2;E) as follows:

Ẽ(w, λ2;E) = E
w0
λ2

∞∏
r=1

([p]rE)
1

prλ2
pr
Φr−1(F

(λ2)w)

where E = Ep(v, λ1;X). Then it is known that the formal power series Ẽ(w, λ2;E) has the

equality Ẽ(w, λ2;E) = Ep(Tvw, λ1;X). (cf. [5, Chap. 4, p. 26])

4. Proof of Theorem 2

In this section we give a proof of Theorem 2.

Suppose that A is a ring of characteristic p and λ is an element of A. Let G(λ) be the

group scheme defined in section 3 and Ĝ(λ) the formal completion of G(λ) along the zero
section. We consider the following homomorphism:

ψ(l) : Ĝ(λ) → Ĝ(λp
l
); x �→ λ−pl ((1 + λx)p

l − 1) .

For the kernel of the homomorphism ψ(l), we have

Nl = Ker ψ(l) = Spf A[[X]]/(Xpl ) = Spec A[X]/(Xpl ) .
Note that this is a finite subgroup scheme of order pl of G(λ). The following exact sequence

is induced by the homomorphism ψ(l)

0 −−→ Nl
ι−−→ Ĝ(λ) ψ(l)−−→ Ĝ(λpl ) −−→ 0(1)

where ι is a canonical inclusion. This exact sequence (1) deduces the following long exact
sequence:

0 −−→ Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−→ Hom(Nl, Ĝm,A)

∂−−→ Ext1(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−→ Ext1(Ĝ(λ), Ĝm,A) −−→ · · · .

(2)

On the other hand, as in [4, Theorem 2.19.1.] or the case n = 1 of [5, Theorem 5.1.], the
following morphisms are isomorphic:

W(A)F
(λ) → Hom(Ĝ(λ), Ĝm,A); v �→ Ep(v, λ; x)(3)

W(A)/F (λ) → H 2
0 (Ĝ(λ), Ĝm,A); w �→ Fp(w, λ; x, y) .(4)

Here H 2
0 (G,H) denotes the Hochschild cohomology group consisting of symmetric 2-

cocycles of G with coefficients in H for formal group schemes G and H . (c.f. [1, Chap.
II.3 and Chap. III.6])
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We consider the following diagram:

0 −−→ W(A)
V l−−→ W(A)

Rl−−→ Wl(A) −−→ 0

F (λ
pl )

	 F (λ)

	 F (λ)

	
0 −−→ W(A)

V l−−→ W(A)
Rl−−→ Wl(A) −−→ 0 .

The exactness of the horizontal sequences are obvious. By the well-known elementary prop-

erties on F, V and [λ], we have F (λ) ◦ V l = V l ◦ F (λpl ). Therefore, by the snake lemma for
this diagram, we have the following exact sequence:

0 −−→ W(A)F
(λp

l
) V l−−→ W(A)F

(λ) Rl−−→ Wl(A)
F (λ)

∂−−→ W(A)/F (λ
pl ) V l−−→ W(A)/F (λ)

Rl−−→ Wl(A)/F
(λ) −−→ 0 .

(5)

Now, by combining the exact sequences (2), (5) and the isomorphisms (3), (4), we have
the following diagram:

Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−→ Hom(Nl, Ĝm,A)

φ1


 φ2


 φ



W(A)F

(λp
l
) V l−−→ W(A)F

(λ) Rl−−→ Wl(A)
F (λ)

∂−−→ Ext1(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−→ Ext1(Ĝ(λ), Ĝm,A)

φ3


 φ4



∂−−→ W(A)/F (λ

pl ) V l−−→ W(A)/F (λ) ,

(6)

where φ is the following homomorphism induced from the exact sequence (1) and the iso-
morphism (3):

φ : Wl(A)
F (λ) → Hom(Nl, Ĝm,A); vl �→ Ep(vl , λ; x) .

We remark that φ1 and φ2 are isomorphisms, and that φ3 and φ4 are injective but may be not

isomorphisms since H 2
0 (Ĝ(λ), Ĝm,A) � Ext1(Ĝ(λ), Ĝm,A) in general. But we can replace the

groups of extensions with Hochschild cohomology groups in the diagram (6), since we have

Im ∂ ⊆ Im φ3 and Im (ψ(l))∗ ⊆ Im φ4. Thus we get the following diagram whose each row
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is exact and all vertical morphisms are isomorphisms except φ:

Hom(Ĝ(λpl ), Ĝm,A)
(ψ(l))∗−−−→ Hom(Ĝ(λ), Ĝm,A)

(ι)∗−−→ Hom(Nl, Ĝm,A)

φ1


 φ2


 φ



W(A)F

(λp
l
) V l−−→ W(A)F

(λ) Rl−−→ Wl(A)
F (λ)

∂−−→ H 2
0 (Ĝ(λ

pl ), Ĝm,A)
(ψ(l))∗−−−→ H 2

0 (Ĝ(λ), Ĝm,A)

φ3


 φ4



∂−−→ W(A)/F (λ

pl ) V l−−→ W(A)/F (λ) .

(7)

If the diagram (7) is commutative, then the five lemma shows that φ is isomorphism,

i.e.,Wl(A)
F (λ) � Hom(Nl, Ĝm,A). Since Hom(Nl, Ĝm,A) � Hom(Nl,Gm,A) and the Cartier

duals are characterized by the character groups, we obtain the Theorem 2. Therefore it is
sufficient to prove that the diagram (7) is commutative.

LEMMA 1. (ψ(l))
∗ ◦ φ1 = φ2 ◦ V l .

PROOF. By the definition and the results stated in [5, Proposition 4.11.], we have the

following equalities for v ∈ W(A)F (λp
l
)
:

Ep(v, λp
l ;ψ(l)(x)) = Ep(v, λp

l ; λ−pl ((1 + λx)p
l − 1))

= Ep(v, λp
l ; λ−pl (Ep([λ], λ; x)pl − 1))

= Ẽp(v, λp
l ;Ep(pl [λ], λ; x)) ·Gp(F (λp

l
)v, λp

l ;Ep(pl[λ], λ; x))
= Ep(Tλ−pl pl [λ]v, λ; x) .

Since the third equality is always true for variables, v, λ and x as in [5, Chap.4, p.29], the
above last equality is true for any element (even nilpotent) λ ∈ A. Thus we must show the

equality of V l = T
λ−pl pl [λ] in our case.

In order to show the equality, by Lemma 4.2 of [5], it is sufficient that we prove the

equality λ−plpl[λ] = (0, . . . , 0, 1, 0, . . . ): all component is 0 except the l-th component

1. By the phantom map we can calculate pl [λ] = (x0, x1, . . . ) as follows. By the equal-
ity Φi(pl[λ]) = Φi(x0, x1, . . . ) for each i (where Φi is the Witt polynomial) we have the
following equalities:

xi = p−i (plλpi − x
pi

0 − px
pi−1

1 − · · · − pi−1x
p

i−1) = p−i
(
plλp

i −
i−1∑
j=0

pjx
pi−j
j

)
.
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We claim the following

xi ≡
{

0 (mod p) if i 
= l

λp
l
(mod p) if i = l .

We show the claim by induction on i. If i = 0, then it is obvious. Now assume that we have
the following congruencies for j < i:

xj ≡
{

0 (mod p) if j 
= l

λp
l
(mod p) if j = l .

If l < i, we see the following equalities:

xi = p−i
(
plλp

i −
i−1∑
j=0

pjx
pi−j
j

)
= p−i

(
plλp

i − plx
pi−l
l −

i−1∑
j=0
j 
=l

pj x
pi−j
j

)
.

The assumption of the induction gives the following congruencies:

pjx
pi−j
j ≡

{
0 (mod pi+1) if j 
= l

pj λp
i
(mod pi+1) if j = l .

Therefore we obtain the congruence xi ≡ 0 (mod p). In the case of i ≤ l, it is similarly
verified. Consequently we have the claim. Hence we obtain the equalities:

λ−plpl [λ] = (0, . . . , 0, 1, 0, . . . ) and T
λ−pl pl[λ] = V l .

�

LEMMA 2. (ι)∗ ◦ φ2 = φ ◦ Rl .
PROOF. This follows from the definitions of φ and (ι)∗. �

LEMMA 3. ∂ ◦ φ = φ3 ◦ ∂ .

PROOF. We can calculate ∂Ep(vl, λ; x) (vl ∈ Wl(A)
F (λ)) by the direct product Ĝm,A×

Ĝ(λpl ) such that the following diagram is commutative:

0 −−→ Nl −−→ Ĝ(λ) ψ(l)−−→ Ĝ(λpl ) −−→ 0

Ep(vl ,λ;x)
	 ϕ

	 ∥∥∥
0 −−→ Ĝm,A −−→ Ĝm,A × Ĝ(λpl ) −−→ Ĝ(λpl ) −−→ 0 .

(8)

We choose an inverse image w of vl for the homomorphism Rl : W(A) → Wl(A). By the
commutativity of the diagram (8), ϕ should be given by:

ϕ : Ĝ(λ) → Ĝm,A × Ĝ(λp
l
); x �→ (Ep(w, λ; x),ψ(l)(x)) .
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(Note that Ep(vl , λ; x) : Ĝ(λ) → Ĝm,A is not a homomorphism.) We endow Ĝm,A × Ĝ(λpl )

with a group scheme structure such that ϕ : Ĝ(λ) → Ĝm,A × Ĝ(λpl ) is a homomorphism. i.e.,
the following equality should be satisfied:

ϕ(x1x2) = ϕ(x1) · ϕ(x2) (x1, x2 ∈ Ĝ(λ)) ,
where

ϕ(x1x2) = (Ep(w, λ; x1 + x2 + λx1x2), ψ
(l)(x1x2)) ,

ϕ(x1) · ϕ(x2) = (Ep(w, λ; x1), ψ
(l)(x1)) · (Ep(w, λ; x2), ψ

(l)(x2)) .

For elements (t1, y1) and (t2, y2) of Ĝm,A× Ĝ(λpl ), we choose x1 and x2 in the inverse images

of y1 and y2 for the homomorphism ψ(l), respectively. Then the group structure of Ĝm,A ×
Ĝ(λpl ) should be given by

(t1, y1) · (t2, y2) =
(
t1t2 · Ep(w, λ; x1 + x2 + λx1x2)

Ep(w, λ; x1) · Ep(w, λ; x2)
, y1 + y2 + λp

l

y1y2

)
.

Hence the boundary map ∂ should be given by the following formal power series:

Fp(F
(λ)w, λ; x1, x2) = Ep(w, λ; x1) ·Ep(w, λ; x2)

Ep(w, λ; x1 + x2 + λx1x2)

=
∞∏
k=1

(
(1 + λp

k
x1
pk )(1 + λp

k
x2
pk )

1 + λp
k
(x1 + x2 + λx1x2)p

k

) 1

pkλp
k Φk−1(F

(λ)w)

.

To prove the equality of Lemma 3, we must show the following equality of the formal
power series:

Fp(F
(λ)w, λ; x1, x2) ≡ Fp(z, λ

pl ;ψ(l)(x1), ψ
(l)(x2)) (mod p) ,

where z is an inverse image of the boundary ∂vl for W(A) → W(A)/F (λ
pl ). This equality is

proved as follows:

Fp(F
(λ)w, λ;x1, x2) = Fp(V

lz, λ; x1, x2)

=
∞∏
k=1

(
(1 + λp

k
x1
pk )(1 + λp

k
x2
pk )

1 + λp
k
(x1 + x2 + λx1x2)p

k

) 1

pkλp
k
Φk−1(V

lz)

=
∞∏
r=1

(
(1 + λp

l+r
x1
pl+r )(1 + λp

l+r
x2
pl+r )

1 + λp
l+r
(x1 + x2 + λx1x2)p

l+r

) 1

prλp
r+l Φr−1(z)

≡
∞∏
r=1

(
(1 + λp

l+r
x1
pl+r )(1 + λp

l+r
x2
pl+r )

1 + λp
l+r
(x
pl

1 + x
pl

2 + λp
l
x
pl

1 x
pl

2 )
pr

) 1

pr λp
r+l Φr−1(z)

(mod p)
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= Fp(z, λ
pl ; xpl1 , x

pl

2 ) = Fp(z, λ
pl ;ψ(l)(x1), ψ

(l)(x2)) .

�

LEMMA 4. (ψ(l))∗ ◦ φ3 = φ4 ◦ V l .

PROOF. We can calculate (ψ(l))∗Fp(v, λ; x1, x2) (v ∈ W(A)/F (λ
pl )) by the direct

product Ĝm,A × Ĝ(λ) such that the following diagram is commutative:

0 −−→ Ĝm,A −−→ Ĝm,A × Ĝ(λ) −−→ Ĝ(λ) −−→ 0∥∥∥ Ψ

	 ψ(l)

	
0 −−→ Ĝm,A −−→ Ĝm,A × Ĝ(λpl ) −−→ Ĝ(λpl ) −−→ 0 .

(9)

By the commutativity of the diagram (9), Ψ should be given by

Ψ : Ĝm,A × Ĝ(λ) → Ĝm,A × Ĝ(λp
l
); (t, x) �→ (t, ψ(l)(x)) .

We endow Ĝm,A × Ĝ(λ) with a group scheme structure such that Ψ is a homomorphism. For

local sections (t1, x1) and (t2, x2) in Ĝm,A × Ĝ(λ), suppose that the product (t1, x1) · (t2, x2)

is written as (t1, x1) · (t2, x2) = (t1t2G(x1, x2), x1 · x2), where G(x1, x2) is a cocycle on

Ĝm,A × Ĝ(λ). Then we have

Ψ (t1, x1) · Ψ (t2, x2) = (t1, ψ
(l)(x1)) · (t2, ψ(l)(x2))

= (t1t2Fp(v, λp
l ;ψ(l)(x1), ψ

(l)(x2)), ψ
(l)(x1) · ψ(l)(x2)) ,

on the other hand, we have

Ψ ((t1, x1) · (t2, x2)) = Ψ (t1t2G(x1, x2), x1 · x2) = (t1t2G(x1, x2), ψ
(l)(x1) · ψ(l)(x2)) .

Hence, in order for Ψ to be a homomorphism, the following equality is necessary:

G(x1, x2) = Fp(v, λp
l ;ψ(l)(x1), ψ

(l)(x2)) .

To prove the equality of Lemma 4, we must show the following equality:

Fp(v, λp
l ;ψ(l)(x1), ψ

(l)(x2)) = Fp(V
lv, λ; x1, x2) ,

but this equality has been already proved in Lemma 3. �

These lemmas show that the diagram (7) is commutative. Hence we obtain the Theo-
rem 2.
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