TOKYO J. MATH. Vol. 6, No. 1, 1983

Remarks on Stability for Semiproper Exceptional Leaves

Akira SEITOH

Gakushuin University (Communicated by T. Mitsui)

Introduction

A leaf of a codimension one foliation of a closed manifold is called stable if it has a saturated tubular neighborhood foliated as a product. About 1950, G. Reeb [12] (See also A. Haefliger [6].) showed that a compact leaf is stable if and only if it has a trivial holonomy group. It seems reasonable to conjecture that a proper leaf with a finitely generated fundamental group will be stable if it has a trivial holonomy (Note that the fundamental groups of compact leaves are algroup. ways finitely generated and see also T. Inaba [11].) In fact, in 1976, T. Inaba [9], [10] extended Reeb's original theorem for proper leaves with finitely generated fundamental groups of codimension one foliations of closed three-manifolds. But this result is false if the fundamental groups of the leaves are not finitely generated. (See H. Imanishi [8].) In this paper, we extend Inaba's result for semiproper leaves and show that this extension is also false for leaves with infinitely generated fundamental groups by constructing a counterexample explicitly.

Section 1 gives basic definitions and fundamental properties of holonomy. Section 2 shows that Inaba's result is valid for semiproper leaves as well. Section 3 summarizes the result of G. Hector [7] for use in Section 4. Section 4 is devoted to constructing an example of unstable semiproper exceptional leaves without holonomy.

I would like to express my gratitude to T. Inaba for his valuable advice and hearty encouragement during the preparation of this paper.

§1. Introduction to the techniques.

First of all we recall some definitions and basic notions. Throughout this paper, \mathscr{F} will denote a transversely orientable $C^r(0 \le r \le \infty)$ codimension one foliation with C^{∞} leaves of a closed manifold M and \mathscr{L} will Received January 12, 1982

denote a fixed one-dimensional C^{∞} foliation transverse to \mathscr{F} . (Such a transverse foliation \mathscr{L} always exists if $r \ge 1$, while if r=0 we will only treat the case in which such an \mathscr{L} exists, say, the case in which every leaf of \mathscr{F} is integral to a C° hyperplane field.)

A leaf L of \mathscr{F} can be locally dense (i.e. $\operatorname{int} \overline{L} \neq \emptyset$), proper (locally closed, hence a regular submanifold of M), or exceptional (all other cases). An \mathscr{F} -saturated set is a subset of M which is a union of leaves of \mathscr{F} . The \mathscr{F} -saturation of a subset X of M is the smallest \mathscr{F} -saturated set containing X and is denoted by $\operatorname{sat}_{\mathscr{F}} X$. An injective immersion $f: (M, \mathscr{F}) \to (M', \mathscr{F}')$ of a foliated manifold (M, \mathscr{F}) into another foliated manifold (M', \mathscr{F}') is foliation-preserving if f maps each leaf of \mathscr{F} onto a leaf of \mathscr{F}' .

DEFINITION 1. (See T. Inaba [11].) A proper leaf L of \mathscr{F} is stable if there exist an open \mathscr{F} -saturated neighborhood U of L in M and a foliation-preserving diffeomorphism

$$\varphi: (L \times]-1, 1[, \{L \times \{t\}\}_{t \in]-1, 1[}) \longrightarrow (U, \mathscr{F} | U)$$

such that $\varphi(L \times \{0\}) = L$. Otherwise, L is called unstable.

Sides of leaves of \mathscr{F} are the leaves of $q^*\mathscr{F}$, where $q: \widetilde{M} \to M$ is the unit tangent bundle to \mathscr{L} . A side \widetilde{L} of a leaf $L=q(\widetilde{L})$ of \mathscr{F} is proper if a transversal $\tau: [0, 1] \to M$ starting from L in the direction \widetilde{L} satisfies $\tau(]0, \varepsilon[) \cap L = \emptyset$ for some $\varepsilon > 0$. A leaf of \mathscr{F} is semiproper if it has a proper side. Note that semiproper leaves are always nowhere dense.

DEFINITION 1'. A semiproper leaf L with a proper side \tilde{L} of \mathscr{F} is stable on \tilde{L} if there exists a foliation-preserving injective immersion

$$\varphi: (L \times [0, 1[, \{L \times \{t\}\}_{t \in [0, 1[}) \longrightarrow (M, \mathscr{F})])$$

such that $\varphi(x, 0) = x$ and $d\varphi_{(x,0)}(\partial/\partial t)$ points in the direction \tilde{L} for all $x \in L$. Otherwise, L is called *unstable on* \tilde{L} .

For all $x \in M$, we let L_x and T_x denote the leaves of \mathscr{F} and \mathscr{L} which contain x respectively. Let L be a leaf of \mathscr{F} and $l:([0, 1], \{0, 1\}) \rightarrow (L, x)$ a loop in L at $x \in L$. By the standard argument for the foliated structures, we can construct a *fence* F at x such that the following conditions are satisfied:

(1) $F: [0, 1] \times V \rightarrow M$ is a continuous map, where V is a neighborhood of 0 in R.

 $(2) \qquad F(\cdot, 0) = l: [0, 1] \longrightarrow L.$

$$(3) \quad F(t, s) \in L_{F(0,s)} \cap T_{F(t,0)} \text{ for all } (t, s) \in [0, 1] \times V.$$

 $(4) \qquad F(0, \cdot): V \longrightarrow M \quad \text{is a } C^r \text{ embedding }.$

/ **A** \

Similarly, we can define a *fence* F at x on a side \tilde{L} of L. In this situation, we require that V is a neighborhood of 0 in $[0, \infty[$ and $dF_{(t,0)}(\partial/\partial s)$ points in the direction \tilde{L} for all $t \in [0, 1]$.

For each fence F at x, the local diffeomorphism

at x is defined. The pseudogroup of all γ_F 's is called the holonomy pseudogroup of L at x and is denoted by $\mathscr{HP}(L, x)$. The set of germs of elements of $\mathscr{HP}(L, x)$ (called holonomies) forms a group called the holonomy group of L at x and is denoted by $\mathscr{H}(L, x)$. The isomorphism class of $\mathscr{H}(L, x)$ is independent of the choice of the base point x, therefore we will sometimes omit it. The well-defined map

is a surjective homomorphism called the holonomy homomorphism, where F is a fence at x and $[F(\cdot, 0)]$ is the homotopy class represented by $F(\cdot, 0)$. Similarly, by using fences at x on a side \tilde{L} of L, the holonomy pseudogroup $\mathscr{HP}_{\tilde{L}}(L, x)$ of L at x on \tilde{L} and the holonomy group $\mathscr{H}_{\tilde{L}}(L, x)$ at x on \tilde{L} are defined.

DEFINITION 2. (See T. Inaba [11] and R. Sacksteder and A. J. Schwartz [13].) Let L be a leaf of $\mathscr{F}, x \in L, \tilde{L}$ a side of L, and $\tau: ([0, 1], 0) \to (T_x, x)$ a transversal starting in the direction \tilde{L} . Then $\mathscr{HP}(L, x)$ [resp. $\mathscr{HP}_{\tilde{L}}(L, x)$] is locally trivial if there exists a neighborhood N_x of x in T_x [resp. $\tau([0, 1]) \cap T_x$] such that the restriction to N_x of every element of $\mathscr{HP}(L, x)$ [resp. $\mathscr{HP}_{\tilde{L}}(L, x)$] is the identity. Otherwise, $\mathscr{HP}(L, x)$ [resp. $\mathscr{HP}_{\tilde{L}}(L, x)$] is called locally infinite.

We let K denote the interval I=[-1, 1] or the circle S^1 .

DEFINITION 3. (See A. Haefliger [6, 1.8].) $(\xi; \mathscr{F}) = (p, E, B; \mathscr{F})$ is called a *foliated K-bundle* over B if E is the total space of a K-bundle ξ over B, $p: E \rightarrow B$ is the bundle projection, and \mathscr{F} is a codimension one foliation of E such that each fiber of ξ is transverse to \mathscr{F} .

Given a manifold B with base point x and a homomorphism

 $\varphi: \pi_1(B, x) \to \text{Diff}^r K$, where $\text{Diff}^r K$ is the group of C^r diffeomorphisms of $K, \pi_1(B, x)$ acts on the universal covering space \tilde{B} of B by covering transformations. It also acts on K via φ , and on $\tilde{B} \times K$ by acting on each factor:

$$\pi_1(B, x) \times (\widetilde{B} \times K) \longrightarrow \widetilde{B} \times K .$$

$$\overset{\mathbb{U}}{(\omega, (y, t))} \longmapsto (y \cdot \omega, \varphi(\omega^{-1})(t))$$

A foliated K-bundle $(\xi; \mathscr{F}) = (p, E, B; \mathscr{F}(\varphi))$ is defined so that the total space of ξ is a foliated manifold $(E, \mathscr{F}(\varphi)) = (\widetilde{B} \times K, \{\widetilde{B} \times \{t\}\}_{t \in K})/\pi_1(B, x)$ and the bundle projection $p: E = (\widetilde{B} \times K)/\pi_1(B, x) \to \widetilde{B}/\pi_1(B, x) = B$ is the natural map between orbit spaces. Conversely given a foliated K-bundle $(\xi; \mathscr{F}) = (p, E, B; \mathscr{F})$ and $x \in B$, leaves of \mathscr{F} are covering spaces of Band a loop $l: ([0, 1], \{0, 1\}) \to (B, x)$ at x determines a diffeomorphism $\widetilde{l}(0) \mapsto \widetilde{l}(1)$ of the fiber at x, where $\widetilde{l}: [0, 1] \to L_{\widehat{l}(0)}$ is the unique path with initial point $\widetilde{l}(0)$ which covers l. It is clear that this diffeomorphism depends only on the homotopy class of l and this procedure gives a homomorphism $\varphi: \pi_1(B, x) \to \text{Diff}^r K$ such that $\mathscr{F} = \mathscr{F}(\varphi)$. We call φ the total holonomy homomorphism for $(\xi; \mathscr{F})$ and $\mathscr{TH}(\mathscr{F}) = \varphi(\pi_1(B, x))$ the total holonomy group for $(\xi; \mathscr{F})$. The foliation $\mathscr{F} = \mathscr{F}(\varphi)$ has properties analogous to those of the orbit space of the action of $\mathscr{TH}(\mathscr{F})$ on K:

$$\Gamma: \mathscr{TH}(\mathscr{F}) \times K \longrightarrow K .$$

$$\overset{\mathbb{U}}{\underset{(f, t) \longmapsto}{\overset{\mathbb{U}}{\longmapsto}}} f(t)$$

Since we assumed in this paper that \mathscr{F} is transversely orientable, $\mathscr{TH}(\mathscr{F})$ is a subgroup of the group $\operatorname{Diff}_{+}^{r}K$ of orientation-preserving C^{r} diffeomorphisms of K and ξ is orientable. Especially, if $K=I, \xi$ is trivial. If $K=S^{1}$, however, ξ is not always trivial. (See J. W. Wood [16, Theorem 1.1].) Such orientable S^{1} -bundles are classified by their Euler class $\chi(\xi) \in H^{2}(B; \mathbb{Z})$. Fortunately both foliated S^{1} -bundles (p', E', $\Sigma_{3}; \mathscr{F}(\chi'))$ and $(p, E, \Sigma_{3}; \mathscr{F}(\chi))$ over the compact orientable surface Σ_{3} of genus three which we will construct in Sections 3 and 4 are trivial as S^{1} -bundles by the following criterion:

PROPOSITION 1. Let $(\xi; \mathscr{F}) = (p, E, \Sigma_g; \mathscr{F})$ be a C^r foliated (orientable) S¹-bundle over a compact orientable surface Σ_g of genus $g \ge 1$ with base point x and $\varphi: \pi_1(\Sigma_g, x) \to \text{Diff}_+^r S^1$ the total holonomy homomorphism for $(\xi; \mathscr{F})$. Then ξ is trivial if φ factors through a free group F_n on n generators, that is, there exist two homomorphisms ψ and h such that the following diagram commutes:

PROOF. Let $(\eta; \mathcal{G}) = (q, X, BF_n; \mathcal{G})$ be the foliated S¹-bundle over $BF_n = K(F_n, 1) = S^1 \lor \cdots \lor S^1$ (n-times) for which ψ is the total holonomy homomorphism. Take a map $g: \Sigma_g = K(\pi_1(\Sigma_g, x), 1) \to BF_n = K(F_n, 1)$ such that $g_{\sharp} = h$. (g is a classifying map for the principal F_n -bundle over Σ_g determined by h.) Then $g^*\eta = \xi$. $H^2(K(F_n, 1); \mathbb{Z}) = 0$, especially $\chi(\eta) = 0$ and η is trivial. $\chi(\xi) \in g^*(H^2(K(F_n, 1); \mathbb{Z})) \subset H^2(\Sigma_g; \mathbb{Z}) \cong \mathbb{Z}$. Hence $\chi(\xi) = 0$ and ξ is trivial. q.e.d.

§2. Reeb stability for semiproper leaves.

Various authors have investigated stability for proper leaves of codimension one foliations (e.g., G. Reeb [12], T. Inaba [9], [10], [11], P. R. Dippolito [4], [5], J. Cantwell and L. Conlon [1], [2], etc.). Our starting point is the following fundamental theorem:

THEOREM 1. (See G. Reeb [12] and A. Haefliger [6, p. 381].) Let L be a compact leaf of \mathcal{F} . Then L is stable if and only if L has a trivial holonomy group.

In 1976, T. Inaba succeeded in generalizing Theorem 1 for proper leaves of codimension one foliations of closed manifolds as follows:

THEOREM 2. (See T. Inaba [9], [10].) Suppose that M is a closed threemanifold and let L be a proper leaf of \mathscr{F} such that the fundamental group of L is finitely generated. Then L is stable if and only if L has a trivial holonomy group.

Theorem 2 is a direct corollary of following two theorems. (See T. Inaba [9], [10].)

THEOREM 3. Let L be a proper leaf of \mathscr{F} . Then L is stable if and only if L has a locally trivial holonomy pseudogroup.

THEOREM 4. Let M be a compact three-manifold (possibly with boundary) and L a leaf of \mathscr{F} such that the fundamental group of L is finitely generated. \mathscr{F} is supposed to be tangent to ∂M if $\partial M \neq \emptyset$. Then L has a trivial holonomy group if and only if L has a locally trivial holonomy pseudogroup.

We generarize Theorem 2 as follows:

THEOREM A. Suppose that M is a closed three-manifold and let L be a semiproper leaf of \mathscr{F} with a proper side \tilde{L} such that the fundamental group of L is finitely generated. Then L is stable on \tilde{L} if and only if the holonomy group of L on \tilde{L} is trivial.

Theorem A is a direct consequence from Theorem 4 and the following "proper-side-version" of Theorem 3.

THEOREM B. Let L be a semiproper leaf of \mathscr{F} with a proper side \tilde{L} . Then L is stable on \tilde{L} if and only if the holonomy pseudogroup of L on \tilde{L} is locally trivial.

PROOF. For each point x of L, let $\tau^x: ([0, 1], 0) \to (T_x, x)$ be a transversal starting in the direction \tilde{L} and U a component of $M \setminus \bar{L}$ containing $\tau^x(]0, \varepsilon[)$ for some $\varepsilon > 0$. On the completion \hat{U} of U in the metric induced from a Riemannian metric of M, the pullback $\hat{i}^* \mathscr{F}$ has a boundary leaf $L_0 \subset \partial \hat{U}$ containing the limit of $\tau^x(t)$ as $t \searrow 0$, where $\hat{i}; \hat{U} \to M$ is the isometric immersion induced from the inclusion map $i: U \hookrightarrow M$. (See P. R. Dippolito [4].) L_0 covers L and is diffeomorphic to \tilde{L} :

Therefore the local triviality of $\mathscr{HP}_{\tilde{L}}(L, x)$ is equivalent to the local triviality of $\mathscr{HP}(L_0, x_0)$, where $x_0 = \lim_{t \ge 0} \tau^x(t)$ in \hat{U} . Consequently, the proof of Theorem 3 (See T. Inaba [9].) is also valid for Theorem B, via the induced isometric immersion \hat{i} .

However there are counterexamples to Theorems 2 and A if the assumption that L has a finitely generated fundamental group is got rid of. The example of H. Imanishi [8, p. 622] is the one to Theorem 2. We will construct a counterexample to Theorem A without that assumption in Section 4.

On the other hand, it seems quite natural to conjecture that Theorems 2 and A can be extended for closed manifolds of dimension greater than three. (According to T. Inaba [11], we call this conjecture the "generalized Reeb stability conjecture" or abbreviately the "GRS conjecture".) But in 1980, T. Inaba [11] has constructed a C^0 foliation of a closed manifold of dimension five or greater than five with an unstable proper

leaf which has a finitely generated fundamental group and a trivial holonomy group. This *Inaba foliation* is a counterexample to the GRS conjecture for C^0 foliations of closed manifolds of dimension ≥ 5 . The GRS conjecture for C^1 foliations or for closed four-manifolds remains an interesting but difficult open question.

§3. Hector's C^{∞} diffeomorphisms of S^1 .

Let G be a subgroup of $\text{Diff}_+^{\infty}S^1$. A subset C of S^1 is called a *minimal* set of G if C is a nonempty closed subset invariant under G which has no proper subsets with such properties. A minimal set C of G is *exceptional* if C is neither a single closed orbit nor all of S^1 .

In this section, we recall the construction of orientation-preserving C^{∞} diffeomorphisms f and g of S^1 in G. Hector [7] such that the group G' generated by f and g admits an exceptional minimal set C'.

We consider S^1 as the circle obtained from the interval [-2, 14] by identifying its endpoints. At first, we define f by

Next define g so that

(1) $\sup g = \{\overline{t \in S^1; g(t) \neq t}\} = [1, 11],$

(2) the graph of g is symmetric with respect to the line s = -t+12,

(3)
$$\begin{cases} g(t) < t & \text{for all } t \in]1, 11[, \\ g(t) = t + 4 & \text{for all } t \in [7, 9], \\ g'(t) < 1 & \text{for all } t \in]1, 7[,] \end{cases}$$

(4) g(4)=2 and the graph of g|[1, 7] is symmetric with respect to the point (4, 2).*'

Finally define the set C' by $C' = \overline{S^1 \setminus \bigcup_{t \in I} \Gamma_{G'}(t)}$, where $\Gamma_{G'}: G' \times S^1 \to S^1$ is the action of G' on S^1 , $\Gamma_{G'}(t)$ is the orbit of $t \in S^1$ under $\Gamma_{G'}$, and I = [-1, 1].

The following is essential to our construction in Section 4.

PROPOSITION 2. (See G. Hector [7].) $\Gamma_{G'}$ is trivial on I and C' is an exceptional minimal set of G'.

PROOF. See G. Hector [7].

Let Σ_s be a compact orientable surface of genus three with base point x. The fundamental group of Σ_s based at x is presented as follows:

$$\pi_{i}(\Sigma_{3}, x) = \langle \alpha_{i}, \beta_{i} \ (i = 1, 2, 3) | \prod_{i=1}^{n} [\alpha_{i}, \beta_{i}] = e \rangle .$$

We define a homomorphism

 $\chi': \pi_1(\Sigma_3, x) \longrightarrow \operatorname{Diff}_+^{\infty} S^1$

as $\chi'(\beta_1) = f, \chi'(\beta_2) = g$, and $\chi'(\beta_3) = \chi'(\alpha_i) = id$ for i = 1, 2, 3. This provides a C^{∞} foliated S^1 -bundle $(\xi'; \mathscr{F}') = (p', E', \Sigma_3; \mathscr{F}(\chi'))$ for which χ' is the total holonomy homomorphism. Since χ' factors through a free group F_2 on two generators, ξ' is trivial by Proposition 1 and $p': \Sigma_3 \times S^1 \to \Sigma_3$ is the projection to the first factor.

Since each $t \in \Gamma_{a'}(-1) \cup \Gamma_{a'}(1)$ is an endpoint of a gap of the exceptional minimal set C' of G', the following is a direct corollary of Proposition 2.

PROPOSITION 3. $\mathcal{F}(\chi') | \operatorname{sat}_{\mathcal{F}(\chi')}(\{x\} \times I)$ is trivial. Both leaves $L'_{(x,-1)}$

^{*)} In G. Hector [7, p. 252], a confusion prevails, that is, the condition (4) we required above is used without request.

and $L'_{(x,1)}$ of $\mathscr{F}(\mathfrak{X}')$ are semiproper exceptional leaves. The positive side $\widetilde{L}'_{(x,-1)}$ of $L'_{(x,-1)}$ and the negative side $\widetilde{L}'_{(x,1)}$ of $L'_{(x,1)}$ are proper sides.

REMARK. Especially, $L'_{(x,i)}$ is stable on $\widetilde{L}'_{(x,i)}$ for i=-1, 1.

For making short, we let \tilde{x} and L denote (x, -1) and $L'_{(x,-1)}$ respectively. The definition of χ' shows:

PROPOSITION 4. There exists a C^{∞} injective immersion

 $\varphi: L \times I \longrightarrow \Sigma_3 \times S^1$

such that the following properties are satisfied:

(1) $\varphi(L \times I) = \operatorname{sat}_{\mathscr{F}(\chi')}(\{x\} \times I)$,

 $(2) \qquad \varphi: (L \times I, \{L \times \{t\}\}_{t \in I}, \{\{y\} \times I\}_{y \in L}) \longrightarrow (\Sigma_3 \times S^1, \mathscr{F}(\mathcal{X}'), \{\{z\} \times S^1\}_{z \in \Sigma_3})$ is foliation-preserving,

(3) $\varphi(\tilde{x}, t) = (x, t)$ for all $t \in I$,

(4) $\varphi(\cdot, -1): L \longrightarrow \Sigma_3 \times S^1$ is the inclusion map.

§4. Unstable semiproper exceptional leaves without holonomy.

In this section, we prove the following theorem, which is the main result of this paper.

THEOREM C. There exist a closed C^{∞} manifold M of dimension $n \ge 3$ and a C^{∞} codimension one foliation \mathscr{F} of M such that \mathscr{F} has a semiproper exceptional leaf L with a proper side \widetilde{L} satisfying the following properties:

(1) $\pi_1(L)$ is not finitely generated,

(2) $\mathscr{H}_{L}(L)$ is trivial,

(3) $\mathscr{HP}_{\widetilde{L}}(L)$ is locally infinite (hence L is unstable on \widetilde{L}).

PROOF. The proof is performed by constructing an example explicitly. Our first job is to choose an orientation-preserving C^{∞} diffeomorphism h of S^1 . Again we regard S^1 as the interval [-2, 14] with its endpoints identified. f and g are the same as those in Section 3. We start with a sequence $\{a_n\}_{n=0,1}$... such that

$$(1) \qquad \qquad 0 < a_n / 1 .$$

Next define two sequences $\{b_n\}_{n=0,1}$ and $\{c_n\}_{n=0,1}$...:

$$\begin{split} b_n &= \{g^n f(a_n) - g^n f(-a_n)\}/2a \ , \\ c_n &= \{g^n f(a_n) + g^n f(-a_n)\}/2b_n \ , \end{split}$$

where 0 < a < 1. Then

 $(2) 0 < b_n \longrightarrow 0.$

Choose a C^{∞} function $\lambda: \mathbf{R} \to \mathbf{R}$ such that

(3)
$$\{t \in \mathbf{R}; \lambda(t) \neq 0\} = [-a, a],$$

 $(4) \qquad \max\{|\lambda'(t)|; t \in \mathbf{R}\} < 1/\max\{b_n^{n-1}; n \in \mathbf{Z}^+\},\$

(5) λ is C^{∞} tangent to the zero function at -a and a. Next define $\mu_n: \mathbb{R} \longrightarrow \mathbb{R}$ for $n=0, 1, \cdots$:

 $\mu_n(t) = t - b_n{}^n \lambda(t/b_n - c_n)$ for all $t \in \mathbf{R}$.

Then

FIGURE 2. Graph of h

(6)

(6)
$$\sup \mu_n = \{\overline{t \in \mathbf{R}; \mu_n(t) \neq t}\} = [g^n f(-a_n), g^n f(a_n)] \subset \operatorname{int} I_n,$$

where $I_n = [g^n f(-1), g^n f(1)],$

(7) $\mu'_n(t) > 0$ for all $t \in \mathbf{R}$.

Finally define an orientation-preserving homeomorphism h of S^1 by

$$h = \begin{cases} \mu_n & \text{on} \quad I_n \quad \text{for} \quad n = 0, 1, \cdots, \\ \text{id} & \text{on} \quad S^1 \backslash \bigcup_{n=0}^{\infty} I_n . \end{cases}$$

By (2), h is C^{∞} tangent to the identity at 1. This completes the definition of h. Thus $h \in \text{Diff}_+^{\infty}S^1$.

We let G denote the subgroup of $\mathrm{Diff}^\infty_+ S^1$ generated by f, g and h, Γ_g the action of G on S¹, $\Gamma_{G}(t)$ the orbit of $t \in S^{1}$ under Γ_{G} and C the set $\overline{S^{1} \setminus \bigcup_{t \in I} \Gamma_{G}(t)}$. Let G' and C' be as in Section 3.

PROPOSITION 5. C = C' and C is an exceptional minimal set of G. PROOF. This follows from Proposition 2 and the definition of h. We define a homomorphism

$$\chi: \pi_1(\Sigma_3, x) \longrightarrow \operatorname{Diff}^{\infty}_+ S^1$$

as $\chi(\beta_1) = f$, $\chi(\beta_2) = g$, $\chi(\beta_3) = h$, $\chi(\alpha_i) = id$ for i = 1, 2, 3. This provides a C^{∞} foliated S¹-bundle $(\xi; \mathscr{F}) = (p, E, \Sigma_s; \mathscr{F}(\chi))$ for which χ is the total holonomy homomorphism. Since χ factors through a free group F_s on three generators, ξ is trivial by Proposition 1 and $p: E = \Sigma_{\mathfrak{d}} \times S^1 \to \Sigma_{\mathfrak{d}}$ is the projection to the first factor. Let χ' , $\mathscr{F}(\chi')$, $L'_{(x,i)}$ for i=-1, 1, etc. be as in Section 3. Each $t \in \Gamma_{g}(-1) \cup \Gamma_{g}(1)$ is an endpoint of a gap of the exceptional minimal set C of G. So the following is a direct consequence from Proposition 5.

PROPOSITION 6. sat_{$\mathcal{F}(\chi)} ({x} \times I)$ coincides with sat_{$\mathcal{F}(\chi')} ({x} \times I)$, especially</sub></sub> $L_{(x,i)} \in \mathscr{F}(\mathcal{X}) \text{ coincides with } L'_{(x,i)} \in \mathscr{F}(\mathcal{X}') \text{ for } i = -1, 1. \text{ Both leaves } L_{(x,-1)}$ and $L_{(x,1)}$ are semiproper exceptional leaves. The positive side $\widetilde{L}_{(x,-1)}$ of $L_{(x,-1)}$ and the negative side $\widetilde{L}_{(x,1)}$ of $L_{(x,1)}$ are proper sides.

Choose two simple loops u and $v: ([0, 1], \{0, 1\}) \rightarrow (\Sigma_s, x)$ which represent α_s and β_s respectively so that $u([0, 1]) \cap v([0, 1]) = \{x\}$. For $n = 0, 1, \dots$, we can lift u [resp. v] to $\Sigma_3 \times S^1$ so that the unique lift \widetilde{u}_n [resp. \widetilde{v}_n] with initial point $(x, g^n f(-1))$ is a loop in L and $\widetilde{u}_n([0, 1]) = u([0, 1]) \times$ $\{g^n f(-1)\}$ [resp. $\tilde{v}_n([0, 1]) = v([0, 1]) \times \{g^n f(-1)\}$] because $g^n f(-1)$ is a fixed

point of $id = \chi(\alpha_s)$ [resp. $h = \chi(\beta_s)$]. These \tilde{u}_n 's [resp. \tilde{v}_n 's] are pairwise disjoint countably many embedded loops on account of the "unique-lifting property" for p. Since

$$\widetilde{u}_n([0, 1]) \cap \widetilde{v}_m([0, 1]) = \begin{cases} \{g^n f(-1)\} & \text{for} & n=m \\ \phi & \text{for} & n \neq m \end{cases}$$

by the choice of u and $v, L \setminus \bigcup_{n=0}^{\infty} \tilde{v}_n([0, 1])$ is connected. Hence L has countably many handles so that $\pi_1(L, \tilde{x})$ is not finitely generated.

Let $\mathcal{TH}(\mathcal{F}(\chi))_t$ be the isotropy group of $t \in S^1$ in $\mathcal{TH}(\mathcal{F}(\chi))$ and $H = \{\gamma \in \pi_1(\Sigma_3, x); \chi(\gamma)(-1) = -1\} = \chi^{-1}(\mathcal{TH}(\mathcal{F}(\chi))_{-1})$. Then H is a subgroup of $\pi_1(\Sigma_3, x)$ and is obviously isomorphic to $\pi_1(L, \tilde{x})$:

$$(p \circ \varphi)_{\sharp}: \pi_1(L, \widetilde{x}) \cong H$$
,

where $\varphi: L \times I \rightarrow \Sigma_3 \times S^1$ is the C^{∞} injective immersion in Proposition 4.

$$\begin{array}{cccc} \pi_1(L,\,\widetilde{x}) & \xrightarrow{\simeq} & H & \xrightarrow{\chi|H} & \operatorname{Diff}_+^{\infty} I \\ & \varphi_{\sharp} & & \cap \\ \pi_1(\Sigma_3 \times S^1,\,\widetilde{x}) & \xrightarrow{p_{\sharp}} & \pi_1(\Sigma_3,\,x) & \xrightarrow{\chi} & \operatorname{Diff}_+^{\infty} S^1 \end{array}$$

H is also isomorphic to $\pi_1(L_{(x,1)}, (x, 1))$ because $\mathscr{TH}(\mathscr{F}(\chi))_{-1} \equiv \mathscr{TH}(\mathscr{F}(\chi))_1$ by the definition of χ . Moreover a C^{∞} diffeomorphism $k: (L, \tilde{x}) \to (L_{(x,1)}, (x, 1))$ is defined as follows: For each $(y, t) \in L$, k(y, t) is the point at which the path on the fiber $p^{-1}(y) = \{y\} \times S^1$ starting from (y, t) in the positive direction \tilde{L} meets $L_{(x,1)}$ at the first time. Note that $p|L=(p|L_{(x,1)})\circ k$.

Let $q: L \times I \to L$ is the projection to the first factor. Then $(\eta; \mathscr{F}(\psi)) = (q, L \times I, L; \varphi^* \mathscr{F}(\chi))$ is a C^{∞} foliated *I*-bundle for which $\psi = (\chi|H) \circ p_* \circ \varphi_*$: $\pi_1(L, \tilde{x}) \to \text{Diff}_+^{\infty} I$ is the total holonomy homomorphism, where $\varphi_*: \pi_1(L, \tilde{x}) \to \pi_1(\Sigma_3 \times S^1, \tilde{x})$ and $p_*: \pi_1(\Sigma_3 \times S^1, \tilde{x}) \to \pi_1(\Sigma_3, x)$ are the homomorphisms induced from φ and p respectively.

Hence stability of L [resp. $L_{(x,1)}$] on \tilde{L} [resp. $\tilde{L}_{(x,1)}$] in $\mathscr{F}(\chi)$ is equivalent to stability of $L \times \{-1\}$ [resp. $L \times \{1\}$] in $\mathscr{F}(\psi)$. Let $\bar{\mu}_n = (g^n f | I)^{-1}(\mu_n | I_n)(g^n f | I) \in \text{Diff}^{\infty}_+ I$. By (6),

$$(\overline{6})$$
 supp $\overline{\mu}_n = [-a_n, a_n] \subset \operatorname{int} I$ for $n = 0, 1, \cdots$.

By the first part of Proposition 3, (6), and the definition of ψ , $\mathscr{H}(L \times \{-1\}, (\tilde{x}, -1))$ [resp. $\mathscr{H}(L \times \{1\}, (\tilde{x}, 1))$] is trivial but $\mathscr{HP}(L \times \{-1\}, (\tilde{x}, -1))$ [resp. $\mathscr{HP}(L \times \{1\}, (\tilde{x}, 1))$] is locally infinite by (1) and ($\overline{6}$). Thus $\mathscr{H}_{\widetilde{L}}(L, \tilde{x})$ [resp. $\mathscr{HP}_{\widetilde{L}(x,1)}(L_{(x,1)}, (x, 1))$] is trivial but $\mathscr{HP}_{\widetilde{L}}(L, \tilde{x})$ [resp.

 $\mathscr{HP}_{\widetilde{L}_{(x,1)}}(L_{(x,1)}, (x, 1))]$ is locally infinite, that is L [resp. $L_{(x,1)}]$ is unstable on \widetilde{L} [resp. $\widetilde{L}_{(x,1)}]$ by Theorem B. This completes our construction if n=3. And if $n \ge 4$, the foliated manifold $(S^{n-3} \times \Sigma_3 \times S^1, S^{n-3} \times \mathscr{F}(\mathfrak{X}))$ and the leaf $S^{n-3} \times L_{(x,1)} \in S^{n-3} \times \mathscr{F}(\mathfrak{X})$ for i=-1, 1 suffices. q.e.d.

REMARK 1. Similarly, we can construct a C^1 (but not C^2) foliation of $\Sigma_2 \times S^1$ which has unstable semiproper exceptional leaves without holonomy by using Denjoy's C^1 (but not C^2) diffeomorphism f_D (See A. Denjoy [3] or P. A. Schweitzer [15, Appendix].) instead of by using Hector's C^{∞} diffeomorphisms f and g, where Σ_2 is a compact orientable surface of genus two.

REMARK 2. R. Sacksteder [13] had already constructed a C^{∞} foliation with an exceptional minimal set when G. Hector [7] constructed such a foliation. However Sacksteder's semiproper exceptional leaves have holonomy, so the Sacksteder foliation can not be used for our construction.

References

- J. CANTWELL and L. CONLON, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc., 265 (1981), 181-209.
- [2] J. CANTWELL and L. CONLON, Reeb stability for noncompact leaves in foliated 3-manifolds, Proc. Amer. Math. Soc., 83 (1981), 408-410.
- [3] A. DENJOY, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375.
- [4] P. R. DIPPOLITO, Codimension one foliations of closed manifolds, Ann. of Math., 107 (1978), 403-453.
- [5] P. R. DIPPOLITO, Corrections to "Codimension one foliations of closed manifolds", Ann. of Math., 110 (1979), 203.
- [6] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397.
- [7] G. HECTOR, Quelques exemples de feuilletages—Espèces rares, Ann. Inst. Fourier (Grenoble), 26 (1976), 239-264.
- [8] H. IMANISHI, On the theorem of Denjoy-Sacksteder for codimension one foliations without holonomy, J. Math. Kyoto Univ., 14 (1974), 607-634.
- [9] T. INABA, On stability of proper leaves of codimension one foliations, J. Math. Soc. Japan, 29-4 (1977), 771-778.
- [10] T. INABA, Stability of Proper Leaves of Codimension One Foliations (Japanese), Kyoto Univ. Surikaiseki-Kenkyujo Kokyuroku, 286 (1977), 46-55.
- [11] T. INABA, Reeb stability for noncompact leaves, Topology, 22 (1983), 105-118.
- [12] G. REEB, Sur les Propriétés Topologiques des Variétés Feuilletées, Act. Sci. et Ind. 1183, Hermann, Paris, 1952.
- [13] R. SACKSTEDER, On the existence of exceptional leaves in foliations of codimension one, Ann. Inst. Fourier (Grenoble), 14 (1964), 221-226.
- [14] R. SACKSTEDER and A. J. Schwartz, Limit sets of foliations, Ann. Inst. Fourier (Grenoble), 15 (1965), 201-214.

- [15] P. A. SCHWEITZER, Counterexamples to the Seifert conjecture and opening closed leaves of foliations, Ann. of Math., **100** (1971), 386-400.
- [16] J. W. WOOD, Bundles with totally disconnected structure group, Comment. Math. Helv., 46 (1971), 257-273.

Present address: DEPARTMENT OF MATHEMATICS GAKUSHUIN UNIVERSITY MEJIRO, TOSHIMA-KU, TOKYO, 171