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Introduction

In what follows, ¢ denotes any positive number and ¢, with or without
suffix, denotes a positive absolute constant, not necessarily the same at
each occurence, unless otherwise specified.

Let B.(x) denote the k-th Bernoulli polynomial, [x] the integral part
of x, P (x):=B,(x—[x]) the k-th periodic Bernoulli polynomial, o,(n):=
S, d" the sum of »-th powers of divisors of », and define the basic
functions G, .(x) by

Goalw):= 3, nPy L)

nsell

for real a and ke N.
As is well known, the summatory function of the divisor function
d(n): =04n) admits the asymptotic formula

2.d(n)=zxlog x+ 27 —1)x+ 4(x) ,

nST

where Y=0.5772... is the Euler(-Mascheroni) constant and the estimate
4(x)=0(x"*) is due to Dirichlet. The problem of estimating the error
term 4(x) carries the name of the Dirichlet divisor problem, the best
known estimate being

A(x) —_ O(x85/108+¢)
due to Kolesnik [16], and there is a conjecture that
0.1) A(xz) =0(x***) .

In view of the well-known asymptotic relation (see e.g. MacLeod [19])
Received July 8, 1983
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0.2) 4(x)=—2G,,(x)+01) ,
(0.1) is equivalent to
0.3) Gy, () =0(x'/*t*) .

As a generalization of (0.3), Chowla and Walum [3] conjectured that for
0=<acZ, as x— o,

(0.4) Ga,k(x) — O(x¢/2+1/¢+l)

holds, and proved the special case a=1, k=2 of (0.4) without e-factor.
Another special case a=0, k=2, which is much harder than the former
one, was again stated by Chowla in his book [4].

After Chowla and Walum’s work [3], several attempts have been made
toward conjecture (0.4) (see [12]-[15], [19]-[22], [25]), and the best known
estimate is : ‘

(O(x2/>+1/%) for a>—;— ,
O(x' log x) for a=—;— ’
(0.5) G, (%) =+ 1 1
O(z**3*%%(log x)’s18)  for —5—-§a <? ’
O(x"***"(log z)'~*/") for 0=<a <% ’

the first two being due to the author and Sita Rama Chandra Rao [12],
and the second, due to Nowak [21].

On the other hand, regarding the estimation from below, that is,
regarding 2-results, the following has just been announced ([14], Theorem
2): : '

Q. (2 (log x)4-o2) for 'oga<% ,

Q (gerrin (log log x)'4~o2 £ 1
_(x exp {c Tog log log 2)"" }) or 0<a< 5’

0.6) G..(@)=

0.7) lim inf 4G, (&) = — oo ,
(0.8) G o(2) =2, (2 log log ) ,

0.9)  Gun(@)+2°Gy_so(2)=2.(x**) for —;-<a<-g—, a=1.
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Of these, (0.9) follows from a theorem of Chandrasekharan and
Narasimhan [2] together with our Theorem 1 below. If we could prove
271Gy, o(X) =0(x***4), then (0.9) would provide a complete solution of
conjecture (0.4) in the case k=2, 1/2<a<38/2, a#1. However, we have
only 2°7'G,_, .(x)=0(x****) and so it is still an open problem to get an
omega result for G,,(x) in the case a>1/2. The 2, -results in (0.6) and
(0.8) are consequences of a general theorems of Hafner [8] combined with
Theorem 1, which also give £2,-results for G,.(x) in the case —1/2<a<0.
Finally, (0.7) is a consequence of a theorem of Berndt [1] and the series
representation proved in [13].

The first object of this paper is to prove Theorem 1 in section 2,
giving an asymptotic relation between R(z,r) (for this, see (0.13)) and
G,_,.(x) valid for —1/2<r<8, r+#0,1, and analogous to (0.2), which
yields, with the aid of (0.5), improvements on the so far known best
results due to Landau [17] and Wilson [80] (which are improvements of
Ramanujan’s results [28]).

The second (and main) objective is to establish a general Q2-theorem
for the Riesz sums of arithmetical functions whose generating Dirichlet
series satisfy the functional equation of the type studied by Chandra-
sekharan and Narasimhan [2], Berndt [1], Hafner [7], [8], et al. As one
of the corollaries to this theorem we deduce Q2-results for R(x, ), which
then lead us to 2,-results for G, .,(x) when —2<a< —1/2 as well as the
2_-result for G,,(x) stated in (0.6). All of these will be done in section 3.

In closing this section we shall introduce further notation which will
be used throughout in what follows.

For >0, =0, put

(0.10) Pe(x, r, b)=

I'(o +1) 25 (@ —n’yo_.(n)—SK((®z)’, 7, b)

(0.11) R(x, ry=P'(x, r, r) ,

where the prime on the summation sign means that if 0=0 and n=ux,
the term o_,(n) is to be multiplied by 1/2, and

EEm GBI (bs+17) \a+
(0.12) Se(x, r, b)= Z Rees TetotD P,

wherein ¢ runs through all the poles of the function descrlbed above in
the half-plane Re¢> —p0—1—Fk, and k is such that

—r+1/2
- 2b ’
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so that

0.13) R, =3 (& —n")a_,(n)— {-L—C(l —P)z+ T L+ Pz
nis 1—r 14+7r

) ey (=7
ot }

Actually, we apply Corollary 1 to Theorem 3, a specialized form of
Theorem 2, to P°(x, r, b) and obtain Q-results for it under some restric-
tions (Corollay 2). Then we incorporate Q-results for R(x, r) obtainable
from the theorems of Berndt [1], Hafner [8], Steinig [27] with ours to
get Corollary 3.

§1. A relation between R(x, r) and G,_, ().
The main result in this section is the following

THEOREM 1. Let —1/2=<r<38 and r+0,1. Then
R(z, )= — 287G\ o(®) + O™ 4log z)'r—11) .

For the proof of this theorem we need some lemmas.

LEMMA 1. For complex s+ —1 we have

S = w++ — P(@)a" +{(~8)+ ZP@u' + 0@~ .

nse S 1

PROOF. An application of the Euler-Maclaurin sum formula shows
that for s*=—1

s+1

c(e)+0(x° %) if o0<2
O(x°~?) if o=2,

1.1) ES:', == Pl(x)w'+%P2(x)x‘“ + {

s+1

where for 0<2, s+ —1

1.2) c(s)=—

1,1 s 8(8—1)(8—-2)S°°Pa(t)
s+1 +2 12+ 3! 1 3 dt .

Hence it suffices to prove the lemma in the case 0<2. But, then, from
(1.2) we see that c(s) is analytic in {se Clo<2, s+ —1}, where, from (1.1)
we have c¢(8)={(—s) for 6 <—1. Hence, by analytic continuation, the
conclusion follows.

LEMMA 2. Let F(x, )= <. 0.n). Then for r+0, —1 we have
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F(z, r)= —C—(:—fli)- ot —atG_, (%) + —;—x"lGl_,,z(x) +CA—r)

— G, (@) — (P +Pf<wm>}x"2——;—c<—r>
+O(x(r—1)+wr—2(log x)a(r)) ,

where 3(r)=1 or 0 according as r=38 or not, and the error estimate s
meaningful only if r=4.

ProoF, Since

Fa,n=Se=3 oL+ = o
a bs2l/2 g1/2<as2/b

absw aspl/2
=z 3, a''—G, (@) —{#"—P"} 3, o'+ 3, Xa,
asgll? aSzl/2 b<pli2 aSw(d

we may apply Lemma 1 repeatedly to compute the sums of the form
S.a". After simplification, we get the assertion of the lemma.

REMARK 0. In [19, Theorem 6] MacLeod obtains an asymptotic for-
mula for the sum Y., n‘c.(n) for integers ¢=0, a=1, which overlaps
with our Lemma 2 in some cases.

PROOF OF THEOREM 1. Since x"F(x,—7)—F(x, r)=3,<. &"—n"o_.(n),
we find by Lemma 2 that for 0, +1, |r|<3

(1.3) R(z, r)= —g—w"‘Gl_,,z(w) *%x“Gm,z(x) + 0wt

whenee follows the theorem on appealing to (0.5).

COROLLARY 1. We have

(O(er-114) if 0<r <—;— ,

O(log ) iof 1‘=—;- ’
R(z, r)=+ o 1 4

O(xs(zr-n/m(log x)a,.,”) ,,,f ?<fr§g ,

O(x‘”‘”'”“(log w)(mr—»)/n) f %<7‘§1

\ .

PROOF. This follows immediately from Theorem 1 and (0.5).
Note that Corollary 1 improves in all cases the so far known best
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results
/ - ] 1
O(x(zr D/ if 0<1‘<-§- ,
R(z, r)={0(log* z) if 'r=-;—,
O(x(2r—1)(r+1)/(2r+8)) if l<r<1
2 H

the first two being due to Wilson [30] and the third due to Landau [17].

§2. 2-theorems.

Before stating the main theorem we must introduce some notation
essentially due to Chandrasekharan and Narasimhan [2].

DEFINITION. Let {a,}, {b.} be two sequences of complex numbers not
all the terms of which are zero. Let {\,}, {#.} be two sequences of posi-
tive numbers, strictly increasing to «~. Let

2.1) 4(s) =ﬁ I'a,s+8,),

where N € N, B, is an arbitrary complex number, ,>0, and 4: =%, a,>
1/2. Suppose that

pe)=an:" and p@=3 b’ ,

each of which converges in some half-plane with finite abscissa of absolute
convergence o; and of, respectively. Then ¢(s) and +(s) are said to
satisfy the functional equation

(2.2) #(8)4(8) = (0 —8)4(0 —3)

if there exists in the s-plane a domain 2, which is the exterior of a

bounded, closed set & in which there exists a holomorphic function X(s)
with the property

(2.8) lim X(o+1t)=0,

|t|—c0

uniformly in any finite interval — o <¢,<0=<0,< e, and

X(s)=¢(8)4(s) , for o>oF,
X(8)=4(0—s8)4d(0—s8), for o<dé—af.
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For p=0 we form the Riesz sum of a,:

1 (= _I'(8)¢(8)

Al () = '
@): = 2 (B M) B0 = e-—t°°F(8+,0+1)

F(p+1) nSz
where ¢>0, ¢c> 03, and the prime on the summation sign means as before
that if 0=0, v,=x then we add only a,/2. Furthermore, define the main
term (sum of the residues) S"(x) as in [2], [11] by

L{ L@ e
2ni JsI'(s+p0+1)

(2.4) ‘ Se(x) = ;-
where & is the rectangle with vertices at ¢,—1iR, ¢,+1R, ¢,+1iR, ¢.—1R.
Herein ¢,>0, ¢,>0*; R is so large that the integrand is regular for [{|=
R. Moreover, ¢,=—(m,+1/2),0=m,€ Z. m, is chosen so large that &
encloses all the singularities of the integrand to the right of o=—p—
1—k, where k is such that k>|6/2—1/4A4|, and all the singularities of ¢(s)
lie in o> —k (so that if p is integral, & encloses all the singularities of
#(s) and the poles 0, —1, -+, —p of I'), and that

5 +L tme>oF, 5+-L+m,> Re (- By ) 1<y<N,
(2.5) 2 a,
3,1 3 o+1/2] 1 8,—1
5 +—= 5 +mo>max{2A oA }, > +me> Re( - ), 1§v’§1’\;7.

Then we shall consider the error term P*(x) defined by

I'(s)é(s)

(2.6) Pr(a): =Ar(w)— 5 ()= 2ri §«1F(8+P+1)

where &, is a contour made up of lines ¢,— oo, ¢,—iR, ¢,—1iR, ¢, +1R, ¢, +
1R, ¢,+100.

We define as in [11] the Laplace transform g, .(s) of P?(x) for >0
and

@.7) 'r>2A(mo+2) @A—1)p
by
2.8) » 9..o(8)=\ @7e Praryde

where the integral on the right-hand side of (2.8) converges absolutely.
This can be seen as follows: Since Af(x)=0 for x<\,, and S°(x)=
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O(x—mo—12+e) 2—0, by the definition of S°(x), we have

(2.9) Pr(z) =0 ™+0) | g, . |

For 0>0, the integral (2.6) is absolutely convergent, so that
(2.10) | Pr(z)=0@"*), z2=,. o

We have, however, S°(x)=0(x") for xz—c, since A%x)=0(x") because
dlla. <4 oo, Hence (2.10) holds for p=0. By (2.7), (2.9) and (2.10)
the integral (2.8) is absolutely convergent.

We need the following results proved by Joris:

LemMA 3 ([11], Lemma 4). Let

2.11) H=ZI_VL a,loga, , B=§_‘, 8,, E=2A-¢-%4
D=—p/2—3/4— A3/2—B+N2,
(2.12) a=r+(2A—1)p+1/2+Ad.

Suppose that there exists a number ¥ such that
(2.13) | |20 — s | ™ = O(et})
for n=2. Then for m<p.<Y,0<o<(1/2)Em"* we have
0°9, 0(0 L1EW4) = B exp(+7iD)b,, pt, /211410124 4 O(g YT)
with a constant B>0 and a real number F.
LEMMA 4 ([11], Lemma 5).- Let 0<w<Ew/*4. Notation being the
same -as in Lemma 3, we have for 6>0 and |s+iEp*4|Zw, ne N
9r,0(8) =O(@™%(8[") + O([g|~r—*~apTadimot/n)) |
where F'>0 is a constant. |

Now we can state our Theorem 2 whose proof is in principle in the
spirit of Ingham [9], Gangadharan [6], Corridi and K4tai [5], and Redmond
[24], using the above two lemmas due to Joris [11].

Suppose that the following conditions are satisfied. First, for each
=1, the set {¢,<x} contains a subset Q=Q,: ={y¢, <zxlk=1, - .-, N=N(x)}
such that no number g.*4 is representable as a linear combination of the
numbers ;24 with coefficients +1, unless p}*4=p;*4 for some r, in which
case ;4 has no other representation, and
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(2.14) 2, [Reb, |uzarerBrdz e L(x) , €>0,

p‘nkeQw
for all x=1, where L(x) is an increasing slowly varying function (for

the details of the theory of slowly varying functions, see Seneta [26]).
Let

N (z)
)a:n=0’ Ly Py * 05 r.=0, £1, Z"%Zl} .

k=1

N (x)
S,: = {77= l Gt DI Y
k=1

Suppose there exists an e S, such that »<1. Then the function
#(a): =inf S,=min S, |

satisfies the inequalities

(2.15) 0<7(x)<1,

and so we may put

(2.16) q(x): = —log 7j(x) (>0),

on which we impose the following restrictions:

2.17) cméq(x)éexp(c,, @ ) Cy >0 .
log =

Moreover, suppose that

N(a:)gexp(B; x ), B;>0,

log «
— X
(2.18) max pnk—o<exp exp(c oz @ )) , ¢>0,
and put
(2.19) ¢s: =max(c;, 2B;) .
Then
. x
(2.20) Q) = exp(c8 e )
satisfies

2.21) (i) ¢>0,
(i) q@x)=Q(),

(iii) Q(x)/x is increasing,
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(iv) N(=x)=0(Q(x)) .

Note that from (iii) it follows that Q(x) is stnctly 1ncreas1ng
Finally, suppose that

(2.22) Rebd, = 0
for at least one ‘v.alue of m.
THEOREM 2. Under the conditions (2.1)-(2.22) we have (c-,‘> 0)
Re Pr(x) =R {x?/*/4a+0-1240¢e [ (¢, log log 2-log log log x)} .

If in assumptions (2.14) and (2.22) we replace Reb,, by Imb,, Rebd, by
Imb,, respectively, then imn conclusion we should have Im P°(x) instead of
Re Pr(x).

PROOF. For a sufficiently large x we let

(2.23) 6, A5—-——+(2A o+— Q ( ) '7,=sgp Re Pe(u*)u" .

In view of (2.22) we may apply Chandrasekharan and Narasimhan’s result
(2], Theorem 38.2) to obtain

7.>0 .
Also, if 7,=+ o, then
Re Pp(u) :Q+(u0¢/2A) — Q+(u0/2—1/(4+(1—1/2A)p+(1/2A)Q(m)) ,

which is much stronger than the result claimed in our theorem. Thus
we may suppose that

0<7, <400,
Hence we may put
(2.24) o.(u)="7,u’—Re PP(u*4) .

Then ¢,(u)=0 for u=1.
Moreover, for z=x, t real, u=0, let

o,=exp(—2Q(x)) ,
(2.25) V(t)-:_;_(z-;-e“-;-e-“)=2(cos—-t->2g0 (Fejér kernel of order 2), |

T.=T.w= II V(E'ﬂ"“u+Pk);0,

F"k
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where o, are real numbers to be precisely specified later.
By (2.7), (2.9) and (iv) of (2.21), we see that

ot S:u'PP(u“) T (w) exp (— o,u)du=0(c%2" ") = O[exp{ — 2aQ(z) + 0(Q@))}]
=0(1)
as £— oo, on noting a>1 in view of (2.7) and (2.12). Hence
(2.26) a‘;S:u’¢,(u) T, (u) exp (— o, u)du
=g Swu”;b,,(u) T, (u) exp(—o,u)du+ oz ,,S:u” %T,(u) exp (—o,u)du
_ agSlRe Pe(utyur T, (u) exp (— o,u)du
=0+0+0(1)=0(Q1) .
Now, for any trigonometric polynomial
T(u') = Z kv exp (—— itvu) ’

where %k, are complex and ¢, are real and distinet, and any holomorphic
function U(s), we introduce the notation TA U(s) as in Gangadharan [6]
(each of the subsequent authors Corrddi and Katai [5], Joris [10] and
Redmond [24] uses this same notation) to mean

(2.27) (TAU)8)=>k,U(s+1t,) .
Moreover, we put for ¢>0 | '
(2.28) Iy(s)=s"".

Using (2.8), (2.27) and (2.28), we may rewrite the left-hand side of (2.26)
as

0':'7,,['(7' + 0:: + 1) Tz /\ Ir+0m+1(az) - 0: Re (Tw /\ gr,P(az)) ’
thus obtaining the fundamental inequality
(2°29) 0(1) é 0’:’79;['(”‘ + 0:6 + 1) Tx A Ir+0,+1(az) - 0: Re (Tc A\ gr.P(aa)) ’
as r—r oo,

Now we are in a position to prove an analogue of Lemma 3 in
Redmond [24] which in turn is a generalization of the corresponding results
in the papers of Gangadharan [6], Corrddi and Katai [5] and Joris [10].
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LEMMA 5. (1) If 620 and >0, then as x— «, we have
(T.AL)(0)=0""+0(8" et

(2) With 6, and o, as defined by (2.28) and (2.25), respectively, we have,
as &— oo

a:{ Ta N Ir+0,+1(0~)} =e’ + 0(1) .

3) As x— 0,
Reb,
Re ga{T,N9,,(0.)}=B 3, 7.%:;;:%+0(1),
”"IceQ‘pnk

where B is the constant appearing in Lemma 3.

ProOF. We write

50 T.w) = To)+ Tuw) + Tu(w)+ Tu(u)
with
Ty(uw)=1,
=1 ) ; 1/24
(2'31) < Tl(u)_?Fnkzeleexp(zpb_‘_zE#“k u) ’

T\(u)= Ti(—u)
Tz(u) = 2 hm exp ( - Ef"mu) ’

where m ranges over 3"—2N-—1 integers, |h,|<1/4 and the 7, are real
and are distinct numbers of the form

Z Q”'kf‘}a’:‘i ’

Bnp €

where r, € {0, +1} with Zynkeq ri=2. From the definition of #j(x) (2.16),
and (ii) of (2.21), we see that

(2.32) E|n,+ 14| = Efj(x) = Ee~®

for p,=0, p,, tt, -+, and every 7, 1=<j7=<N.
(1) By (2.27) we have

T AIL(e)=0" .
Next,
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IT /\Io(O')I——z— E eXp(@Pk)(O'—-zE'/,t”“ -6

I‘nk

lE-o 2 mwu« Z 1=N

#ng € #ny €
as £— oo, Likewise
| T AI(6) €N as x—oo .

Since |h,.|<1/4, we have by (2.82) with p,,=0, as x— oo,

| T ALy (0)| = | 3, (0 +1E9,) "0 | €8V

Combining these results gives (1) by (2.31).
(2) Since
1 1

1
2. 1: Aa — — — —
(2.33) r+6,+ r+ +2+(2A 1)p+Q( ) a+Q(x)>1

by (2.7), (2.23) and (2.12), we may apply the result in (1) to get

KT AL o, 1(0)}=07""0 4L 0T AT 10,44(0,) — 077 %7}
=O;I/Q(w)+0(0.:3Ne(r+0,+1)0(m)) ,

which is seen to be identical with
e+o(1)

by sucecessive applications of (2.25), (2.23) and (iv) of (2.21). Thus (2) is
proved.
(3) We have by Lemma 4 and (2.12)

(2.34) 0H{ToN g, o(0)}=0(g3* ot itoM=e" ) =0(1) as x— oo

in view of the third inequality in (2.5). By (2.27), (2.31) and Lemma 3
with Y=g/

od{T.Ng, p(az)}-"‘é' > e_Pkamgr p(O’,-’bE[!”u

Fnk

= ? >, eXp(z(‘ok —D))b, O/ A+ 0r2 )

F‘nk

+O(om#nN > 1)

Bng €

= Z Re b, cos (0, —7D) p—('/2+1/44+p/24)

Bng €

—Im b,.k sin (0, — ﬂD)ﬁ""“”‘“"’“’ + (o, Nuz ) -
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Hence, choosing

3 {n‘D if Reb,, =0
=12(D+1) if Reb, <0,

we have

(2.35) Reoi{TiNg,(0.)}= .‘éB_ quRe bnkl 7 ,:a/2+1/44+p/24)
Bng ©

+ O<exp{ —2 exp(c, 10: " )(1 +o(1))+ B; 102 = })
B

=, 3 JRe by Jpuzermsaren 4 o(1)

2 HBng €

by (2.25), (2.20). In a similar way, we have
(2_ 36) Re 0:{ Tl NG, P(g")} =_gﬂ’§0|l{e bn,,| 7 ,:a/z+1/44+p/24) + 6(1) .

Finally, consider

0:{ Tz/\gr,P(an)} =0‘: gl hmgr,P(az +iE771n) .

We have
|0+ U E = 2 4)| Z E|7, = 14| = Ee~%®

for p,=0, g, s, -+ by (2.32). Also, by the definition of 7, we have for
2 sufficiently large

|0s+iED| S0.+ ENp A <2E 24 |

ny = TN

Thus by Lemma 4 with w=FEe ¢*, we have

(2.37) 0.:{ T’2 A g"p(o.z)} <<o.:eaQ(s) (Nﬂ:,’;.‘)F3N + 0.:3Ne(r+1+24p—2A(mo+1/2))Q(l)

<exp { —aQ(x) +0< 10: = ) + o(exp(c lo: a;>)}

+exp{('r+1+2Ap—-2A(mo+1/2)—-2a)Q(x)

+ o(exp (c lo: - ))} =o(1) ,

as x— o by (2.18), (iv) of (2.21), (2.25) and the first inequality of (2.5)
and the fact that a>1.
Combining the results (2.84)-(2.87) gives (8) by (2.15). This completes
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the proof of Lemma 5.
If we combine (2.29) with the results of Lemma 5, we have as x— oo

(2.38) (e+o))v,I'(r+6,+1)=B Z |Re b, |pa At 1 o(1) |

F'nk
NO\‘N a+(1/Q(x)) is positive and bounded away from zero, and 1/Q(x)—0
as r— oo by (iii) of (2.21), we have, as 2 —

r(a+Q—(—)-) —I'(@)+0o(1) .

From this and (2.38) we conclude that
,Y ZB, Z lRe bnkl#n(d/2+1/4A+p/2A)+O(1) ,

I‘nk

as £— o, where B'=B/(I'(a)e*)>0. Hence by the definition (2.28) of 7v,,
there exists a sequence {u,} tending to infinity as x— o such that

Re PP(uz*)u;’»= B’ >, |Reb,,|p, 2+ maters
zB’:':kL(m) ,
by (2.14), i.e.
(2.39) uz;% Re PP(u24) =csL(x) , ¢>0.

We now proceed as in Redmond [24]: Let v,=uY?®. Then
(2log u,)/Qx)=21log v,. If 2logv,<1, then 2log u,<Q(x). Since Q(x) is
strictly increasing by (iii) of (2.21), we have -

Q'2log u,)=x,

where @' denotes the functional inverse of Q. If 2logwv,=>1, then by
(iii) of (2.21),

Q) , Q@xlogv,)  QRzlogwv,) Q@)

x 2log u, 2xlogv, =~ =«

Therefore Q(2xlogv,) =2logwu,, for « sufficiently large and hence
QR '2logu,)=2xlogv,. If we set w,=max{l, 2logv,}, we may put

(2.40) Q'Q2logu,)=xw, .
For « sufficiently large, we have

(2.41) : W,=C0: , (6,>0),
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for any ¢>0. Hence by (2.23), (2.40) and (2.41) we have

Re Pe(uit) 1
wAd-1/2+zd-Vp L{Q_I(Z log u,)}
_ Re Pr(u24) ) ulew 1 . v,
uge L{Q™'(2log u.)}cs ® Lesvs)

Since L(x) is slowly varying, it admits the representation

L(x)=exp {n(x) + S“%t)dt}

%0

with some constant x,>0, where 7 is a bounded measurable function on
[%o, o) such that 7(x) - C (|C|< <), and ¢ is a continuous function on [, =)
such that e(x) —0 as — . Hence, if z is sufficiently large, we have
for any 6>0,

le(t)| <o for t>«z
and
() —n(@w,)| < |n() — Cl+ [n(zw,) — C| <25
in view of w,=1. Therefore

0 glogl‘-l(_:”(—:’)’) = (w,) — (@) + g:"'—“:%)-dt <25+8log w,
<20+ologc,+edlogv,<alogw,

with some a, 0<a<1, by (2.41), so that

"_IT(I;,(sz;Tv' >evit>0c

since v,=1. This gives
(2.42) Re Pr(z)=Q (¢’ /14t0—1240e LIQ~(log x)}) .
Since
Q(c:' log x log log x) =exp{log £+ o(log x)} ,

we see that there exist positive ¢, ¢,, such that, for z sufficiently large,
we have

(2.43) ¢ log x log log 2 <Q'(x)<c, log x log log « .
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Combining (2.42) and (2.43) gives
Re Pr(x) = {x?*-44+0-120e [ (e, log log 2 log log log )} .

The 2_-result is proved similarly.
This completes the proof of Theorem 2.

THEOREM 3. Under the suppositions of Theorem 2 we put p,=Amnd,
where A,>0, b>0 are absolute constants, suppose that 2A/b is a natural
number, and take Q as follows: Q=Q,={¢*|lq e Q’}, where Q' =Q., is the
set of all square free integers made up of all the primes in P, written
in increasing order of magnitude, where P=P, is a set of prime numbers
satisfying the estimates

(2.44) B—2% .-<>1=<B-*%

for all x>1 and some positive comstants B, and B,; take as L(x) the
Junction

(2.45) exp (c12 Ioaga: ) ,

where 0<\<1, and c,>0 is an absolute constant. Then we have

Re Pp(x) — Qi {xﬂ/2—1/4:1+(1—1/2.4)p exp <c1s (log(;g;ciigxz);l_z )} ,

where ¢,;>0 i3 an absolute constant.

If the condition (2.14) holds for Imb,, instead of Rebd,, with the
Sfunction in (2.45) as L(x), then we have a corresponding result for
Im Pr(x) also.

PrROOF. The proof goes on the same lines as that of Theorem 2 save
for the necessary modifications of the values of constants appearing in
the argument, in view of the presence of the superfluous factor 4,, which
does not make its appearance in the proof of Theorem 2. The essential
point in the proof is the application of Joris’ or Besicovitch’s result on
the linear independence of fractional powers of integers over @ (see H.
Joris [11]).

COROLLARY 1. If imn addition to the conditions of Theorem 2 we
suppose that Re b,=Re b(n) is a multiplicative function of n which satisfies

(2.46) |Re b(p)| = c.p®
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Jor all pe P and some a such that
(2.47) a>0/2+1/4A+p/2A—-1)b ,

then we have

= - - (log log x)1+b(¢-—a/z—1/44_p,2 )
Re Pr(x)= ‘Q:i:{ 0/2-1/44+(1-1/24)p gy 1y ( (log log log x)b(l/2+1/44+P/2 a—a)

with an absolute constant ¢,,>0, where the same proviso as that of Theorem
2 holds here also.

PrROOF. Follows as in Redmond [24] by virtue of the left-hand side
inequality of (2.48).

COROLLARY 2. Under the notation of section 1 we have if

2.48) 20, p<r+1/2, my+1/2> max(:, r;b2,r+gb 12),

then

= —r/241/4+ (B—1/2) (log log x)W/2tr—er2
2.49) Pe(z, r, b) —Qi{x P exp (cw (log log log 2) T/ )} ’

where ¢,,>0 and we have more explicitly than in section 1,

P(220)e )z
2.50) Pr(z, 7, b)=—> 5V (@ —nVo_,(n)—{ —0

oD% or (T ro+1)

1
1 ' — 1+bp
i (5) £ (D Y=t —bn), sy

br<%+p+1) = nl I(—n+p+1)

PRrROOF. We take

(2.51) B(e)=(8)=3,0 (m)(mn) =B (bs+r)T ™ ,
so that A,=zn*. Then ¢, 4 satisfy the functional equation with
0; =0F =max {111 1 } o= lb L a,=p0= 32=%, A=b.

b b
Moreover, we have o_.(p)<1, so that a=0. Since (2.50) assures that the
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conditions in (2.5) are satisfied, we may apply Corollary 1 to obtain the
assertion of our Corollary 2.

Incorporating the results deducible from the theorems of Berndt [1],
Chandrasekharan and Narasimhan [2], Hafner [8], Steinig [27] and ours
in this paper, we now state

COROLLARY 3. There exist positive constants ¢, ¢ such that

Qi{wr/z—m exp (c (log log &)1 )}

17
1 5/2—r/2
Rz, r)= (log log log azf) . 3
(Corollary 2 of this paper) 2
O(x?) (trivial)
2. {x(log x)™>~*/*} (Berndt, Hafner, Steinig) 3
Rz, r)= 1<r<=
(@ 7) {O(x"*) (trivial) 2
2_{(x log x)"*~/*} (Berndt, Hafner, Steinig)
0 r/2—1/4 ) (log log )2~
R(x, r)= +{x exp('c " (log log log 2)”*~"" >} —;—<'rSI

(Corollary 2 of this paper)
O(wS(zr—-n/w) )
R(x 1 )_ !.Q_(log’ log ) (Hafner)
* 2/ |O(log ) (Corollary 1 of this paper)
Qi(xr/z—l/i)
O(xr/z—m)
PROOF. Our results follow from Corollary 2 on taking p=1, b=r>

(1/2), m,=2 since the contribution from S'(x, r, r) comes only from those
terms corresponding to n=0, 1.

1
R(x, r)= { (Chandrasekharan and Narasimhan) |7 <3 -

REMARK 1. Although we applied theorems of Berndt [1], Hafner [8]
and Steinig [27] in their simplest form, they are applicable to P*(x, r, b)
(Steinig’s theorem is applicable in case b=1) and give non-trivial 2-results.

REMARK 2. As Theorem 1 suggests, it is very likely that there might
be more general relations between G, ,(x) and P°(x, r, b) than that given
there, although we have not succeeded in finding such relations yet. Such
relations, if any, would provide the O-estimates and £2-results with each
other just as has been done in this paper.

REMARK 8. Once one notices the fact that the function in (2.51)
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satisfies the funectional equation, one could obtain a Series representation
for Pe(x, r, b) on appealing to a theorem of Hafner [7], in particular, a
series representation for R(x, r) would follow, which, then, yields a series
representation for G,_,.(x) in view of Theorem 1. We retained, however
our original proof in [13], since for one thing it is self-contained and
elementary, and another thing it can be used in another setting, e.g. in
the investigation of the logarithmic Riesz sum of ¢,(n), which is relevant,
more or less, to Chowla and Walum'’s conjecture. The details will appear
in a forthcoming paper.
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