Generating Function for the Spherical Functions on a Gelfand Pair of Exceptional Type

Shigeru WATANABE

Sophia University
(Communicated by T. Nagano)

Let X be a non-compact Riemannian symmetric space of rank 1. Then it is known that X = G/K, where G is a connected simple Lie group with finite center, K is a maximal compact subgroup of G, and if G = KAN is an Iwasawa decomposition, we have $\dim A = 1$. From the classification theory, it is known that X is either one of the classical hyperbolic spaces corresponding to the groups $SO_0(1, n)$, SU(1, n) and Sp(1, n) over the fields K, K and K or the exceptional space corresponding to the exceptional simple group $F_{4(-20)}$, the so-called Cayley hyperbolic plane. Let K be the centralizer of K in K, then the Martin boundary K/M of K is not a symmetric space, except for the case of real numbers. But, as is well known, K is a Gelfand pair, i.e. the convolution algebra of functions on K bi-invariant by K is commutative. A theory of the corresponding spherical functions is given in an exposé of Takahashi [5] for the classical case, while the exceptional case is treated in [6].

In the case of real hyperbolic spaces, the space K/M is the usual unit sphere S^{n-1} in \mathbb{R}^n , and we have the classical theory of spherical harmonics; the zonal spherical functions are given essentially by the Gegenbauer polynomials $C_p^{(n-2)/2}$ and we have the classical generating function expansion:

$$(1-2tx+t^2)^{-(n-2)/2} = \sum_{p=0}^{\infty} C_p^{(n-2)/2}(x)t^p, \qquad -1 \le x \le 1, \quad -1 < t < 1,$$

which can be considered also as giving a generating function for the zonal spherical functions of the space SO(n)/SO(n-1). In the papers [7], [8], we have shown that similar constructions are possible also in the other classical cases. The purpose of the present paper is to give a generating function in the exceptional case.

In what follows, we will follow the notations of [6].

The compact group K acts transitively on $\{F_2^u + F_3^v : u, v \in O, |u|^2 + |v|^2 = 1\} \cong S^{15}$ and the isotropy group of F_2^1 is the subgroup $M \subset L$, that is $K/M \cong S^{15}$, and it's identification is given by $kM \mapsto kF_2^1 = F_2^u + F_3^v$. See §4 iv) in [6].

A zonal spherical function φ of K/M depends only on Re(u) and |u|, and there uniquely exists a pair of nonnegative integers (p, q) such that

$$\varphi(kF_2^1) = c_{pq} C_p^3 \left(\frac{Re(u)}{|u|} \right) |u|^p {}_2F_1(-q, p+q+7; p+4; |u|^2) ,$$

where

$$c_{pq} = \frac{(-1)^q (p+4)_q}{(4)_q} \left[C_p^3(1) \right]^{-1}.$$

See the formula (12), (13) of §6 in [6]. From now on, we denote φ by φ_{pq} . When we denote $\{f * \varphi_{pq} \mid f \in L^2(K/M)\}$ by H_{pq} , H_{pq} is K-irreducible and moreover $H_k^{(16)} \cong \bigoplus_{p+2q=k} H_{pq}$, $L^2(K/M) = \bigoplus_{p,q=0}^{\infty} H_{pq}$, where $H_k^{(16)}$ is the space of restrictions to S^{15} of harmonic polynomials on \mathbb{R}^{16} which are homogeneous of degree k. The main theorem is

THEOREM 1. If $k \in K$, $w \in O$, |w| = 1 and $0 \le r < 1$, then

$$\int_{SO(7)} \left[1 - 2r \, Re(\alpha(u)w) + r^2\right]^{-7} d\alpha = \sum_{p,q=0}^{\infty} \gamma_{pq} \varphi_{pq}(kF_2^1) C_p^3(Re(w)) r^{p+2q} \,, \tag{1}$$

where da is the normalized Haar measure on SO(7) and

$$KF_{2}^{1} = F_{2}^{u} + F_{3}^{v},$$

$$\gamma_{pq} = \frac{2p+6}{\Gamma(p+q+4)} \frac{(7)_{p+q}(4)_{q}}{q!}.$$

The series on the right hand side converges absolutely and uniformly for k, w and $r \le \rho$ for each $\rho < 1$.

PROOF. The function f defined by

$$f(\xi) = \|\xi - e_1\|^{-14}$$
, $\xi = (\xi_1, \xi_2) \in \mathbf{O}^2$, $e_1 = (1, 0) \in \mathbf{O}^2$,

is harmonic on $|\xi| < 1$. Therefore we have the following expansion which converges uniformly on every compact subset of $|\xi| < 1$,

$$f(\xi) = \sum_{\nu=0}^{\infty} h_{\nu}(\xi) ,$$

where the function h_v is a harmonic polynomial on \mathbb{R}^{16} which is homogeneous of degree v. We define the \mathbb{R} -linear map a as follows:

$$a: F_2^{u'} + F_3^{v'} \mapsto (u', v') \in O^2$$
.

For $k \in K$ and $0 \le r < 1$, if we put $\xi = ra(kF_2^1)$, then we obtain that

$$f(ra(kF_2^1)) = \sum_{\nu=0}^{\infty} r^{\nu} h_{\nu}(a(kF_2^1))$$
.

The function $k \mapsto f(ra(kF_2^1))$ is M bi-invariant because $e_1 = a(mF_2^1)$ for all $m \in M$ and $||a(lkF_2^1)|| = ||a(kF_2^1)||$ for all $l \in L$ (see Lemma 2 of §3 in [6]). So the functions $k \mapsto h_{\nu}(a(kF_2^1))$ are also M bi-invariant. Thus there exist constants $a_{pq} \in R$ such that

$$h_{\nu}(a(kF_2^1)) = \sum_{p+2q=\nu} a_{pq} \varphi_{pq}(kF_2^1)$$
.

So we see that

$$f(ra(kF_2^1)) = \sum_{v=0}^{\infty} r^v \sum_{p+2q=v} a_{pq} \varphi_{pq}(kF_2^1)$$
.

From the function equations for φ_{pq} , for $k' \in L$

$$\int_{M} f(ra(k'mkF_{2}^{1}))dm = \sum_{v=0}^{\infty} r^{v} \sum_{p+2q=v} a_{pq} \varphi_{pq}(k'F_{2}^{1}) \varphi_{pq}(kF_{2}^{1}), \qquad (2)$$

where dm is the normalized Haar measure on M. We now define $k' \in L$ by

$$(\alpha_1, \alpha_2, \alpha_3) = k' \in D_4$$
, where $\alpha_1(u) = wu$, $\alpha_2(u) = uw$ and $\alpha_3(u) = \bar{w}u\bar{w}$

(see Lemma 2 of §3 in [6]). If we write $m = (\tilde{\alpha}, \alpha, \kappa \tilde{\alpha})$ ($\alpha \in SO(7), \tilde{\alpha} \in SO(8)$), then

$$k'mkF_2^1 = F_2^{\alpha(u)w} + F_3^{\bar{w}(\kappa\tilde{\alpha}(v))\bar{w}}$$
.

That is to say

$$a(k'mkF_2^1) = (\alpha(u)w, \bar{w}(\kappa\tilde{\alpha}(v))\bar{w}).$$

So we see that

$$f(ra(k'mkF_2^1)) = [1 - 2rRe(\alpha(u)w) + r^2]^{-7}$$
.

From (2), we can conclude that

$$\int_{SO(7)} [1 - 2rRe(\alpha(u)w) + r^2]^{-7} d\alpha$$

$$= \sum_{y=0}^{\infty} r^y \sum_{p+2q=y} a_{pq} [C_p^3(1)]^{-1} C_p^3(Re(w)) \varphi_{pq}(kF_2^1). \tag{3}$$

We now determine the constants a_{pq} using the following formula. See [3]. If $\mu > \lambda > 0$, then we have

$$C_{\nu}^{\mu}(t) = \sum_{q=0}^{[\nu/2]} \gamma_q^{(\nu)}(\mu, \lambda) C_{\nu-2q}^{\lambda}(t),$$

where

$$\gamma_q^{(v)}(\mu,\lambda) = \frac{(\lambda+v-2q)}{(\lambda+v-q)} \frac{(\mu)_{v-q}}{(\lambda)_{v-q}} \frac{(\mu-\lambda)_q}{q!}.$$

Putting k=e, i.e. u=1, in (3), we obtain that

$$(1-2rRe(w)+r^2)^{-7}=\sum_{v=0}^{\infty}r^v\sum_{p+2q=v}a_{pq}[C_p^3(1)]^{-1}C_p^3(Re(w)).$$

So we see that

$$\sum_{p+2q=\nu} a_{pq} [C_p^3(1)]^{-1} C_p^3(Re(w)) = C_{\nu}^7(Re(w)),$$

and moreover

$$a_{pq}[C_p^3(1)]^{-1} = \frac{2p+6}{\Gamma(p+q+4)} \frac{(7)_{p+q}(4)_q}{q!}.$$

Finally, it follows from the definitions of φ_{pq} that $|\varphi_{pq}(kF_2^1)| \le \varphi_{pq}(F_2^1) = 1$ for $k \in K$, which implies the last assertion.

The formula (1) means that the zonal spherical functions φ_{pq} appear as the coefficients in the expansion of the left hand side of (1) by the powers of r and by the spherical functions of $S^7 \cong \{u \in O : |u| = 1\}$. So we can consider that (1) gives a generating function for the functions φ_{pq} . This interpretation for generating function is similar to the classical cases. See [7], [8].

References

- [1] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Higher Transcendental Functions, Vol. 2, McGraw-Hill (1953).
- [2] J. FARAUT and K. HARZALLAH, Deux Cours d'Analyse Harmonique, Birkhäuser (1987).
- [3] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Amer. Math. Soc. (1963).
- [4] K. D. JOHNSON and N. R. WALLACH, Composition series and intertwining operators for the spherical principal series I, Trans. Amer. Math. Soc. 229 (1977), 137–173.
- [5] R. Takahashi, Lectures on harmonic analysis in hyperbolic spaces (in preparation).
- [6] R. Takahashi, Quelques résultats sur l'analyse harmonique dans l'espace symétrique non compact de rang 1 du type exceptionnel, *Analyse Harmonique sur les Groupes de Lie. II*, Lecture Notes in Math. 739 (1979), 511-567, Springer.
- [7] S. WATANABE, Generating functions for the spherical functions on some classical Gelfand pairs, Proc. Japan Acad. Ser. A 68 (1992), 140-142.
- [8] S. WATANABE, Generating functions and integral representations for the spherical functions on some classical Gelfand pairs, J. Math. Kyoto Univ. 33 (1993), 1125-1142.

Present Address:

CENTER FOR MATHEMATICAL SCIENCES, THE UNIVERSITY OF AIZU, TSURUGA, IKKI-MACHI, AIZU-WAKAMATSU CITY, FUKUSHIMA, 965–80 Japan.