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\S 1. Introduction.

The aim of this paper is to study the relationship between stable vector bundles $\ovalbox{\tt\small REJECT}$

of rank two on $P^{3}$ and their determinant surfaces $S$ determined by two sections of $d$ .
We discuss specifically the case $c_{1}(\ovalbox{\tt\small REJECT})=4$ in detail.

Vector bundles on a variety are closely related to its special subvarieties. On $P^{3}$ ,
a general surface has Picard number one by the Noether-Lefschetz theorem (cf. [Lo]):
If $S$ is a general surface of degree $d\geq 4$ in $P^{3}$ , then Pic $S\cong Z$ with the generator $\mathcal{O}_{S}(1)$ .
On the other hand, a smooth determinant surface $S$ is not general because its Picard
number is at least two by Theorem 3.1:

THEOREM 1.1. A smooth surface $S$ in $P^{3}$ occurs as a determinant surface ofa rank
two vector bundle 8on $P^{3}$ if and only if $S$ has a surjective morphism onto $P^{1}$ .

In this paper we give an estimate of $\rho(S)$ from below in terms of the behaviour of
8 under the restriction to lines and planes. Defining the jumping planes in (5.5), we
can state a sufficient condition for $S$ to have Picard number $\geq 3$ in (5.6). Moreover we
have the following estimate:

THEOREM 1.2. Let $\ovalbox{\tt\small REJECT}$ be a stable vector bundle of rank two on $P^{3}$ with $c_{1}(d)=4$

and $c_{2}(\ovalbox{\tt\small REJECT})\geq 9$ . Suppose that 8 has a smooth determinant surface $S$ and that
$c_{2}(d)/(h^{1}(\ovalbox{\tt\small REJECT}(-4))+1)=(degree$ ofafibre ofthe Steinfactorization ofthe morphism $S\rightarrow P^{1}$

as in Theorem $1.1$ ) $\geq 4$ . Then

$\rho(S)\geq 2++\# J(\ovalbox{\tt\small REJECT})$ ,

where $\# J(\ovalbox{\tt\small REJECT})$ is the number ofjumping planes for 8

As a corollary of these theorems and (2.13), we have:

COROLLARY 1.3. For any given $c_{2}\geq 5$ , there exists a stable vector bundle $\dot{\ovalbox{\tt\small REJECT}}$ ofrank
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two with $c_{1}(S)=0$ and $c_{2}(d)=c_{2}$ on $P^{3}$ such that the restriction $d|_{H}$ is stable on any plane
$H$ in $P^{3}$ .

If $c_{1}(d)=0$ and $c_{2}(d)=2$ , there exists a plane $H$ in $P^{3}$ such that the restriction $\ovalbox{\tt\small REJECT}|_{H}$

is not stable on $H$ [Ha 2, Proposition 9.10], and for any null-correlation bundle $A^{\prime}$ (a

stable rank 2 bundle with $c_{1}(\mathscr{N})=0$ and $c_{2}(\mathscr{N})=1),$ $\swarrow V|_{H}$ is not stable for any plane
$H$ in $P^{3}$ [Ba].

Throughout the paper, we work over a complex number field $C$, and we use the
standard notation of algebraic geometry [Ha 1].

I would like to thank Professors N. Sasakura, T. Urabe and T. Sasai for many
valuable comments and suggestions during the preparation of this paper. Without their
encouragement this work may not have been completed. In particular, (2.13) was
communicated to me by Professor Urabe.

\S 2. Preliminaries.

In this section we review known results about rank 2 vector bundles on $P^{3}$ . Let $d$

be a rank 2 vector bundle on $P=P^{3}$ and let $s\in H^{O}(P^{3}, \ovalbox{\tt\small REJECT})$ be a section whose scheme
of zeros has codimension 2, then we obtain a curve $Y=(s)_{0}$ (By a curve we mean a
l-dimensional closed subscheme $ofP^{3}.$). In this case we say that the bundle $\ovalbox{\tt\small REJECT}$ corresponds
to the cuve Y. For any curve $Y\subset P^{3}$ , let $\omega_{Y}=dxt_{p}^{2}(\mathscr{O}_{Y,\omega})$ denote its dualizing sheaf.
The following proposition is well known and one of the foundation of our theory.

PROPOSmON 2.1 (Serre [Ha 2, Theorem 1.1]). A curve $Y$ in $P^{3}$ occurs as the
scheme of zeros of a section of a rank 2 vector bundle $g$ on $P^{3}$ if and only if $Y$ is a local
complete intersection and $\omega_{Y}$ is isomorphic to the restriction to $Y$ ofsome invertible sheaf
on $P^{3}$ .

COROLLARY 2.2 ($[Ha2$ , Corollary 1.2]). If a bundle $d$ corresponds to a curve $Y$,
then $Y$ is a complete intersection if an only if $d$ is a direct sum of line bundle.

PROPOSITION 2.3 ($[Ha2$ , Proposition 2.1]). Let $\ovalbox{\tt\small REJECT}$ correspond to a curve $Y$, and
let $Y$ have degree $d$ and arithmetic genus $p_{a}$ . Then $d=c_{2}$ and $2p_{a}-2=c_{2}(c_{1}-4)$ .

DEFINITION 2.4. A vector bundle $g$ of rank 2 on $P^{n}(n\geq 2)$ is stable (respectively,
semistable) if for every invertible subsheaf $\mathscr{L}$ of $\ovalbox{\tt\small REJECT}$,

$c_{1}(\mathscr{L})<*c_{1}(\ovalbox{\tt\small REJECT})$ (respectively, $\leq$ ).

REMARK 2.5. (1) Let $c_{1}(\ovalbox{\tt\small REJECT})$ (respectively, $c_{2}(\ovalbox{\tt\small REJECT})$) denote the first (respectively, the
second) Chem class of $g$ a rank 2 vector bundle on $P^{3}$ . Since the Chow ring of $P^{3}$ is
isomorphic to $Z[h]/h^{4}$ , we will regard $c_{1}$ and $c_{2}$ as integers. From the general theory
it follows that $\wedge 2\ovalbox{\tt\small REJECT}=\mathscr{O}(c_{q}(8)),$ $c_{1}(\ovalbox{\tt\small REJECT}(m))=c_{1}(d)+2m$ and $c_{2}(\ovalbox{\tt\small REJECT}(m))=c_{2}(\ovalbox{\tt\small REJECT})+mc_{1}(\ovalbox{\tt\small REJECT})+m^{2}$

for any $m\in Z$. Since $g$ has rank 2, the natural map $d\otimes\ovalbox{\tt\small REJECT}\rightarrow\wedge d2$ is a perfect pairing,
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whence $\mathscr{E}^{v}\cong \mathscr{E}(-c_{1})$ .
(2) Avector bundle $\mathscr{E}ofrank2onP^{n}(n\geq 2)$ is stable if and only if $\mathscr{E}(m)$ is stable

for any $m\in Z$. Since twisting a rank 2 bundle by $m$ changes its first Chem class by $2m$ ,
we can twist any bundle so that its first Chem class becomes $0$ or $-1$ . In this case we
will say that 8 is normalized. If 8 is normalised, then 8 is stable if and only if $H^{0}(d)=0$ .
In case $c_{1}=0,$ $\mathscr{E}$ is semistable if and only if $H^{O}(\mathscr{E}(-1))=0$ .

PROPOSITION 2.6 ($[Ha2$ , Corollary 8.4]). The possible values of $c_{1},$ $c_{2},$
$\alpha$ for a

normalised stable rank 2 bundle on $P^{3}$ are

$c_{1}=0,$ $\alpha=0,$ $c_{2}\geq 1$ . $c_{1}=0,$ $\alpha=1,$ $c_{2}\geq 3$ . $c_{1}=-1,$ $c_{2}$
$even\geq 2$ .

The following proposition gives a criterion for a bundle to be stable:

PROPOSITION 2.7 ($[Ha2$ , Proposition 3.1]). Let 8 be a rank 2 bundle on $P^{3}$

corresponding to a curve $Y$ in $P^{3}$ . Then 8 is stable (respectively, semistable) if and only if
(1) $c_{1}(\ovalbox{\tt\small REJECT})>0$ (respectively, $c_{1}(\mathscr{E})\geq 0$) and
(2) $Y$ is not contained in any surface of degree $\leq\neq c_{1}((g)$ (respectively, $<\neq c_{1}(d)$).

DEFINITION 2.8. Let $\mathscr{E}$ be a stable rank 2 vector bundle on $P^{n}(n\geq 2)$ with $c_{1}(g)=0$ .
Since any vector bundle on $P^{1}$ is a direct sum of line bundles and $c_{1}(d)=0$ , we know
that for any line $L$ in $P^{n},$ $d|_{L}\cong \mathscr{O}_{L}(-a)\oplus \mathscr{O}_{L}(a)$ for some $a\geq 0$ . By the theorem of
Grauert-M\"ulich [Ba, Theorem 1], $d|_{L}\cong \mathscr{O}_{L}\oplus \mathscr{O}_{L}$ for almost all lines. The lines for which
this does not hold are called jumping lines of order $a$ $(>0)$ for 8

For the restriction $\ovalbox{\tt\small REJECT}|_{H}$ to a plane $H$ in $P^{3}$ , the following is known.

PROPOSITION 2.9 ([Ba, Theorem 3]). Let 8 be a stable rank 2 vector bundle on
$P^{3}$ , then for almost all planes $H$ in $P^{3}$ , the restriction $d|_{H}$ is stable, unless $=\mathscr{N}(a)$ for
some $a\in N$ ( $\mathscr{N}$ denotes a null-correlation bundle.)

DEFINITION 2.10. Let $g$ be as in (2.9). The planes for which the restriction $\ovalbox{\tt\small REJECT}|_{H}$ is
not stable are called unstable planes for 8

PROPOSITION 2.11 ($[Ha2$ , Theorem 3.3]). Let 8 be a semistable rank 2 bundle on
$P^{3}$ , then for almost all planes $H$ in $P^{3}$ , the restriction $\ovalbox{\tt\small REJECT}|_{H}$ is semistable. $\mathscr{N}|_{H}$ is semistable
for any $H$ in $P^{3}$ .

We will need the following two technical propositions. Professor T. Urabe pointed
out the following fact (2.13) by using the theory of period of K-3 surfaces.

PROPOSITION 2.12. Let $X$ be a smooth hypersurface of $d=\deg X\geq 2$ in $P^{n}(n\geq 3)$

and $H$ be a hyperplane in $P^{n}$ . Then the hyperplane section $X\cap H$ has only isolated
singularities.

PROOF. Let $f,$ $h$ and $g$ be defining polynomials of $X,$ $H$ and $X\cap H$ respectively.
Then $f=hf_{1}+g$ for some $f_{1}$ of degree $d-1$ . Let $\Sigma$ be the singular locus of $X\cap H$ . If
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$\dim\Sigma\geq 1$ , then $\Sigma\cap\{f_{1}=0\}\neq\emptyset$ . By calculating the differential of $f$, we can see that $X$

has singularities along $\Sigma\cap\{f_{1}=0\}$ . Q.E.D.

PROPOSmON 2.13. For any given $d\geq 3$ , there exists an elliptic K-3 surface $S$ of
degree 4 in $P^{3}$ such that $\rho(S)=2$ and $\deg$($fibre$ of the elliptic fibration) $=d$.

\S 3. The correspondence between vector bundles and surfaces.

In this section we study a correspondence between vector bundles and surfaces
induced by the determinant. Let 9 be a rank 2 vector bundle on $P=P^{3}$ . Let $s_{1}$ and $s_{2}$

be nonzero global sections of $f$. Assume that $s_{1}$ and $s_{2}$ are linearly independent, and
that both of the scheme of zeros of $s_{1}$ and $s_{2}$ are curves. Then the scheme of zeros of
$s_{1}\wedge s_{2}\in H^{0}(P^{3}, \wedge d)2$ of degree $c_{1}(\ovalbox{\tt\small REJECT})$ in $P^{3}$ , is called a determinant surface of 8 and is
denoted by $(s_{1}\wedge s_{2})_{0}$ . We also say that $d$ has a determinant surface $S$.

Our first result is to characterize the smooth surface $S$ which occur in this way,
and to show how to recover the bundle $d$ from $S$. The following theorem is wel known
(cf. [Ma]), but we have to give the proof because the important thing is the relationships
of bundles, sections, surfaces, morphisms and fibres.

THEOREM 3.1. A smooth surface $S$ in $P^{3}$ occurs as $a$ &terminant surface ofa rank
two vector bundle $\ovalbox{\tt\small REJECT}$ on $P^{3}$ if and only if $S$ has a surjective morphism to $P^{1}$ .

PROOF. (1) Only if part: We can write $S=(s_{1}\wedge s_{2})_{0}$ for some $s_{1},$ $s_{2}\in H^{0}(P^{3}, d)$ .
Since $S$ is smooth, {support of $(s_{1})_{0}$} $\cap$ { $support$ of $(s_{2})_{0}$ } $=\emptyset$ and $\dim(\eta_{1}s_{1}+\eta_{2}s_{2})_{0}=1$

for any $\eta=$ $(\eta_{1} : \eta_{2})\in P^{1}$ . By sending $(s_{\eta} : =\eta_{1}s_{1}+\eta_{2}s_{2})_{0}$ to $\eta$ , we obtain a projection
from $S$ onto $P^{1}$ .

(2) If part: By considering the Stein factorization of the projection $\varphi:=S\rightarrow P^{1}$ ,
we get a surjective morphism (say, $\pi$) from $S$ onto $P^{1}$ with connected fibres. Note that
the target of $\pi$ is $P^{1}$ since $q(S)=h^{0}(S, \Omega_{S}^{1})=0$ . Let $F_{i}(1\leq i\leq\lambda)$ be mutually distinct
smooth fibres of $\pi$, and put $e=\deg F_{1}=\deg F_{i},$ $g=genus$ of $F_{i}$ . Let $Y$ be the disjoint
union of $F_{1},$ $F_{2},$ $\cdots,$ $F_{\lambda}$ . In this notation, we have:

Claim. There exists a rank 2 vector bundle $d$ on $P^{3}$ and a nonzero global section
$s\in H^{0}(P^{3}, \ovalbox{\tt\small REJECT})$ such that $Y=(s)_{0}$ .

Proof of the claim. By (2.1), it is sufficient to show that $Y$ is a local complete
intersection and $\omega_{Y}$ is isomorphic to the restriction to $Y$ of some line bundle on $P^{3}$ .
$Y$ is smooth, and hence a local complete intersection. By adjunction formula

$\omega_{S}\otimes \mathscr{O}_{Y}\cong\omega_{Y}\otimes(\mathscr{O}_{S}(-Y)\otimes \mathscr{O}_{1^{r}})\cong\omega_{1}$, and $\omega_{S}\cong\omega,\otimes \mathscr{O}Ad$) $\otimes \mathscr{O}_{S}$, where $d=\deg S$. So $\omega_{1^{r}}$ is
isomorphic to the restriction to $Y$ of $\mathcal{O}_{p}(d-4)$. These imply the claim by (2.1).

Continuation of the proof. By (2.3), $c_{1}(\ovalbox{\tt\small REJECT})=d=\deg S$ and $c_{2}(d)=e\lambda=\deg Y$. Ap-
$s$ $s^{v}$

plying the functor $\ovalbox{\tt\small REJECT}_{0\alpha t}(\cdot, \mathscr{O}_{p})$ to a map $\mathscr{O},\rightarrow\ovalbox{\tt\small REJECT}$, we get a map $d‘‘\rightarrow \mathscr{O}$, whose image
is a sheaf of ideal $J_{Y}$ in $\mathscr{O},$ . Since $Y$ has codimension 2, locally the two generators of
$J_{Y}$ form a regular sequence.in $\mathscr{O},$, so the local Koszul complexes glue together to give a
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resolution of $J_{Y}$ :

$o-\wedge(S^{\vee})2\rightarrow d^{v}\rightarrow^{s^{v}}J_{Y}\rightarrow 0$ .

By identifying $f^{v}$ to $\ovalbox{\tt\small REJECT}(-c_{1}(\ovalbox{\tt\small REJECT}))$ , we obtain:

$0\rightarrow \mathscr{O}_{p}(-c_{1}(d))\rightarrow d(-c_{1}(\ovalbox{\tt\small REJECT}))\rightarrow J_{Y}\rightarrow 0$ .

Moving to the long exact sequence, we get the following exact sequence

$0\rightarrow H^{0}(P^{3}, \mathscr{O},)\rightarrow^{\mu}H^{0}(P^{3}, d)\rightarrow^{v}H^{0}(P^{3}, J_{r}(d))\rightarrow 0$ ,

where $\mu(\cdot)=\cdot s,$ $v(\cdot)=\cdot\wedge s$ . Since $Y$ is contained in $S$, there exists an $f\in H^{0}(P^{3}, J_{Y}(d))$

such that $S=\{f=0\}$ . Let $s_{1}\in H^{O}(P^{3}, \ovalbox{\tt\small REJECT})$ be an element with $f=v(s_{1})=s_{1}\wedge s$ . One knows
that $S=(s_{1}\wedge s)_{0}$ is a determinant surface. Q.E.D.

REMARK 3.2. (1) In the proof above, if we take $\lambda\in N$ satisfying the inequality
$e\lambda>d^{2}/2$ , then $g$ is stable by (2.7).

(2) If $e\lambda>d^{2}$ , then $h^{0}(P^{3}, J_{Y}(d))=1$ , so $h^{0}(\ovalbox{\tt\small REJECT})=2$ .
(3) $\rho(S)=$ ($Picard$ number of $S$) $\geq 2$ .
COROLLARY 3.3. If a bundle 8 has a smooth determinant surface $S$, then $\ovalbox{\tt\small REJECT}$ is a

direct sum of line bundles if and only if $Y$ is a complete intersection, where $Y$ is a general

fibre of the natural projection $\varphi:=S\rightarrow P^{1}$ as in the proof of (3.1).

$PR\infty F$ . It follows from (2.2) and (3.1). Q.E.D.

\S 4. Determinant surfaces of stable bundles with $c_{1}(\ovalbox{\tt\small REJECT})=4$ .
Throughout this section $\ovalbox{\tt\small REJECT}$ will denote a stable vector bundle of rank two on $P=P^{3}$

with $c_{1}(d)=4$ , and assume that $f$ has a smooth determinant surface $S=(s_{1}\wedge s_{2})_{0}$ for
some $s_{1},$ $s_{2}\in H^{O}(d)$ . We denote the natural morphism $ S\supset(\eta_{1}s_{1}+\eta_{2}s_{2})_{0}\rightarrow\eta=(\eta_{1} : \eta_{2})\in$

$P^{1}$ by $\varphi$ . Let $\pi:S\rightarrow P^{1}$ be the Stein factorization of $\varphi$ . By $Y$ we denote a general fibre
of $\varphi$ .

PROPOSmON 4.1. Let $S$ be as above, then $S$ is an elliptic K-3 surface. Conversely,
every elliptic K-3 surface of degree 4 in $P^{3}$ with $\deg$(fibre of $\varphi$) $\geq 5$ occurs in this way.

PROOF. Since $\deg S=c_{1}(d)=4,$ $S$ is a K-3 surface. We may assume that $Y=(s_{1})_{0}$

is a disjoint union of smooth curves. $Y=Y_{1}\coprod Y_{2}\coprod\cdots IIY_{\lambda}$ for some $\lambda\in N$. Since $Y_{1}$

is linearly equivalent to $Y_{i}(1\leq i\leq\lambda),$ $\deg Y_{1}=\cdots=\deg Y_{\lambda}$ and $p_{a}(Y_{q})=\cdots=p_{a}(Y_{\lambda})$ .
Hence $p_{a}(Y)=1-\chi(\mathscr{O}_{\gamma})=1-\lambda(1-p_{a}(Y_{1}))$ . By (2.3), we can see $\deg Y_{1}=c_{2}/\lambda$ and
$p_{a}(Y_{1})=1$ . Hence the morphism $\pi:S\rightarrow P^{1}$ gives the structure of elliptic surface. The
second statement follows from (3.1). Q.E.D.

REMARK 4.2. (1) For any given $d\geq 3$ , there is a smooth elliptic curve of degree
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$d$ on a smooth quartic surface in $P^{3}$ [Mo]. So, given $d\geq 3$ , there exists an elliptic K-3
surface $\pi:S\rightarrow P^{1}$ (with connected fibres) such that $\deg$($fibre$ of $\pi$) $=d$.

(2) By (2.6), we have $c_{2}\geq 5$ by stability. By (2.7) and (1) just above, there is a
stable rank 2 bundle 8, $c_{1}(\ovalbox{\tt\small REJECT})=4$ which has a smooth determinant surface.

PROPOSmON 4.3. $\lambda:=$ (number of irreducible components of $Y$) $=h^{1}(d(-4))+1$ .
PROOF. As in the proof of (3.1), we get the following resolution of $J_{Y}$

$0\rightarrow \mathscr{O},(-4)\rightarrow\ovalbox{\tt\small REJECT}(-4)\rightarrow J_{Y}\rightarrow 0$ ,

from which follows $h^{1}(d(-4))=h^{1}(J_{Y})$ . Viewing the exact sequence
$0\rightarrow J_{Y}\rightarrow \mathscr{O},\rightarrow \mathscr{O}_{Y}\rightarrow 0$ ,

we have $h^{o}(\mathscr{O}_{Y})=h^{0}(\mathscr{O},)+h^{1}(J_{Y})$ . Since $ h^{0}(\mathscr{O}_{Y})=\lambda$ , we have $\lambda=h^{1}(d(-4))+1$ . Q.E.D.

A determinant surface $S$ with $c_{2}/\lambda=3$ has a special property as below.

PROPOSITION 4.4. In our situation, $c_{2}/\lambda=3$ if and only if there exists a line $L_{0}$ on
$S$ such that $(L_{0}, Y)=c_{2}$ . Moreover, such $L_{0}$ is unique if it exists and $\pi$ corresponds to
$\Phi_{|H-L_{O}|}$ , where $H$ is the hyperplane section of $S$ and $\Phi_{|H-L_{O}|}$ is a morphism to $P^{1}$ associated
to the linear system $|H-L_{0}|$ .

PROOF. (1) Assume that there exists a line $L_{0}$ on $S$ such that $(L_{0}, Y)=c_{2}$ . Let
$H_{0}$ be a generic hyperplane section of $S$ containing $L_{0}$ . Then $H_{0}=L_{0}+R_{0}$ as a divisor
on $S$, where $R_{0}$ is a smooth plane cubic curve on $S$. Since $c_{2}=(H_{0}, Y)=(L_{0},Y)+(R_{0}, Y)$ ,
we get $(R_{O}, Y)=0$. Henoe $R_{0}$ is contained in some fibre of $\pi$ . By genericity of
$R_{O}=H_{O}-L_{0},$ $H_{0}-L_{0}$ is linearly equivalent to the fibre of $\pi$ . Hence $c_{2}/\lambda=3$ and $\pi$

corresponds to $\Phi_{|H-L_{O}|}$ . If there is a line $L_{1}$ on $S$ such that $(L_{1}, Y)=c_{2}$ , for any plane
$H_{1}$ containing $L_{1}$ , we have $H_{O}-L_{0}\sim Y_{1}$ and $H_{1}-L_{1}\sim Y_{1}$ as above, where $Y_{1}$ is a fibre
of $\pi$ and $\sim$ means linearly equivalence. By $4=(H_{0}, H_{1})=(L_{0}+Y_{1}, L_{1}+Y_{1})=6+(L_{0}$ ,
$L_{1})$ , we have $L_{O}=L_{1}$ .

(2) Next assume that $c_{2}/\lambda=3$ . Let $Y_{1}$ be a fibre of $\pi$ . $Y_{1}$ is a plane cubic curve,
so there is a unique plane $H$ containing $Y_{1}$ . We also denote the hyperplane section
of $S$ by $H$. Then $(L_{O}, Y)=(L_{O}, \lambda Y_{1})=3\lambda=c_{2}$ and $\pi$ corresponds to $\Phi_{|H-L_{O}|}$ : $S\rightarrow P^{1}$ ,
since $H-L_{O}=Y_{1}$ . Q.E.D.

PROPOSmON 4.5. If $S$ contains a smooth rational curve $C\cong P^{1}$ , then $\rho(S)\geq 3$ , unless
$c_{2}/\lambda=3$ and $C=L_{0}$ such that $(L_{0}, Y)=c_{2}$ as above.

PROOF. Let $M$ be the intersection matrix with respect to three divisors $H$

(hyperplane section of $S$), $Y$ and C. $\det M=-2(2(Y, C)^{2}-c_{2}(Y, C)\deg C-c_{2}^{2})$ , so
$\det M=0$ if and only if $\deg C=1$ and $(Y, C)=c_{2}$ . Hence this proposition follows from
(4.4). Q.E.D.

PROPOSmON 4.6. Let $H$ be a plane in $P^{3}$ . The restriction $d|_{H}$ to $H$ is semistable,
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unless $c_{2}/\lambda=3$ and $H$ contains a line $L_{0}$ lying on $S$ such that $(Y, L_{0})=c_{2}$ .

PROOF. Since $c_{1}(\mathscr{E}(-2)|_{H})=0$ , it is sufficient to show that $H^{O}(\mathscr{E}(-3)|_{H})=0$ . If $H$

contains an irreducible component $Y_{i}$ of $Y$, then $\deg Y_{i}=3$ and $c_{2}/\lambda=3$ . In this case, by
(4.4), there exists a line $L_{0}$ such that $H\cap S=Y_{i}+L_{O}$ and that $c_{2}=(L_{O}, Y)$ . So we may
assume that $\dim Y\cap H=0$ . The exact sequence

$0\rightarrow \mathscr{O},(-3)\rightarrow d(-3)\rightarrow J_{Y}(1)\rightarrow 0$ ,

induces the exact sequence
$0\rightarrow \mathscr{O}_{H}(-3)\rightarrow\theta(-3)|_{H}\rightarrow J_{Z}(1)\rightarrow 0$ ,

where $Z=Y\cap H$ is a zero-dimensional scheme of degree $c_{2}$ in $H$, and $h^{0}(d(-3)|_{H})=$

$h^{0}(J_{Z}(1))$ . $Z$ lies on the reduced plane quartic curve $C=S\cap H$. Since $c_{2}\geq 5$ , the scheme
$Z$ is contained in some line on $H$ if and only if $H$ contains a line $L$ on $S$ such that
$(L, T)=c_{2}$ . Hence this follows from (4.4). Q.E.D.

PROPOSITION 4.7. Let $H$ be a plane in $P^{3}$ . Assume that $S\cap H$ is irreducible and
that $c_{2}(\mathscr{E})>8$ . Then the restriction $d|_{H}$ is stable on $H$.

$PR\infty F$ . Since $c_{1}(\mathscr{E}(-2)|_{H})=0$ , it is sufficient to show that $H^{0}(d(-2)|_{H})=0$ . This
follows from the same argument as in (4.6). Q.E.D.

COROLLARY 4.8. Let $H$ be a plane in $P^{3}$ . Assume that $c_{2}(d)>8$ and that $\rho(S)=2$ .
Then the restriction $\mathscr{E}|_{H}$ is stable on $H$, unless $c_{2}/\lambda=3$ and $H$ contains a line $L_{0}$ on $S$

such that $(L_{O}, Y)=c_{2}$ .

PROOF. $\cdot$ It follows from (4.5) and (4.7), since any reducible plane quartic curve
contains a smooth rational curve as a component. Q.E.D.

As a corollary of (2.13), (3.1) and (4.8), we get:

COROLLARY 4.9. For any given $c_{2}\geq 5$ , there exists a stable vector bundle $g$ of rank
two with $c_{1}(\mathscr{E})=0$ and $c_{2}(\mathscr{E})=c_{2}$ on $P^{3}$ such that the restriction $\mathscr{E}|_{H}$ is stablefor any plane
$H$ in $P^{3}$ .

\S 5. Jumping planes.

From (4.8), if $c_{2}(\mathscr{E})\geq 9$ , the unstability of $ff|_{H}$ gives some information on the Picard
number $\rho(S)$ . Our main object is to estimate the value $p(S)$ by the grade of unstability
of $\mathscr{E}|_{H}$ . First of all we shall study jumping lines and pairs ofjumping lines and unstable
planes.

$NoTATIONS$ .
$d$ : a stable vector bundle of rank two with $c_{1}(\mathscr{E})=4$ and $c_{2}(\mathscr{E})\geq 9$ on $P^{3}$ .
$S=(s_{1}\wedge s_{2})_{0}$ : asmooth determinant surface of $\mathscr{E},$ $\deg S=4$ .
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$\varphi:S\supset(\eta_{1}s_{1}+\eta_{2}s_{2})_{0}\rightarrow(\eta_{1} : \eta_{2})\in P^{1}$ denotes the natural projection.
$Y$ : a generic fibre of $\varphi,$ $\deg Y=c_{2}$ .
$\lambda=h^{1}(\ovalbox{\tt\small REJECT}(-4))+1=the$ number of the irreducible components of $Y$.
$\pi:S\rightarrow P^{1}$ the Stein factorization of $\varphi$ .
$Y_{1}$ : a generic fibre of $\pi,$ $\deg Y_{1}=c_{2}/\lambda$ .
5.1. Let $L$ be a line in $P^{3}$ . $\ovalbox{\tt\small REJECT}(-2)|_{L}=\mathcal{O}_{L}(-a)\oplus \mathscr{O}_{L}(a)$ for some $a\geq 0$ . Pick a section

$s_{\eta}=\eta_{1}s_{1}+\eta_{2}s_{2}\in H^{O}(\ovalbox{\tt\small REJECT})$ . Put $Y_{\eta}=(s_{\eta})_{0}$ and let

$0\rightarrow \mathscr{O}_{p}\rightarrow^{s_{\eta}}d\rightarrow J_{Y_{\eta}}(4)\rightarrow 0$

be the corresponding exact sequence as in the proof of (3.1). If $Y_{\eta}$ meets $L$ at finite
number of points $P_{1},$ $P_{2},$ $\cdots,$ $P_{r}(0\leq r\leq c_{2})$, then the tensor products with $\mathscr{O}_{L}$ give an
exact sequenoe

$0\rightarrow \mathcal{O}_{L}\rightarrow\ovalbox{\tt\small REJECT}|_{L}\rightarrow \mathscr{O}|_{L}(4-\sum P_{i})\oplus\sum k_{p\iota}\rightarrow 0$ ,

where $k_{p_{i}}$ is the skyscraper sheaf $C$ at $P_{i}$ . If $r=0$, then $H^{O}(\ovalbox{\tt\small REJECT}(-5)|_{L})=0$ so we must
have $d(-2)|_{L}\cong \mathcal{O}\oplus \mathscr{O},$ $\mathscr{O}(-1)\oplus \mathscr{O}(1)$ or $\mathcal{O}(-2)\oplus \mathcal{O}(2)$ . If $r=1,$ $f(-2)|_{L}\cong \mathcal{O}\oplus \mathcal{O}$ or
$\mathscr{O}(-1)\oplus \mathcal{O}(1)$ . If $r\geq 2,$ $d(-2)|_{L}\cong \mathcal{O}(-r+2)\oplus \mathscr{O}(r-2)$ .

DEFINITION 5.2. Let $L$ be a line in $P^{3}$ . If $L$ is the jumping line of order $a(>0)$
for $\ovalbox{\tt\small REJECT}(-2)$ in the sense of (2.8), we call that $L$ is the jumping line oforder $a$ $(>0)$ for $d$.

PROPOSmON 5.3. (1) Let $L$ be a jumpimg line of order $a\geq 3$ for $d$. Then $L\subset S$

and the intersection number $(Y, L)=a+2$ .
(2) Let $H$ be an unstable plane for 8 Then $H$ contains at most two jumping lines

with order greater than 2.

PROOF. (1) By (5.1), $Y_{\eta}\cap L=(a+2)$-points scheme, but if $L\not\subset S$ then $\deg(L\cap S)$

$=4$. So $L\subset S$ and $(Y, L)=(Y_{\eta}, L)=a+2$ .
(2) By (4.7), $S\cap H$ is reducible (but reduced, since $s$ is smooth). From the proof

of (4.6) and (4.7), $\ovalbox{\tt\small REJECT}|_{H}$ is not stable (possibly not semistable) if and only if
$h^{O}(d(-2)|_{H})=h^{o}(H, J_{Z}(2))\neq 0$, where $Z=H\cap Y$ is a $c_{2}$-points scheme in $H$. Take a
nonzero section $\tau\in H^{0}(H, J_{Z}(2))$, then $(\tau)_{0}$ is a conic on $H$containing $Z$ (possibly $(\tau)_{0}\not\in S$).
Assume that $(\tau)_{0}$ is smooth. $Z\subset(\tau)_{0}\subset S\cap H$ and $H$ has no jumping line with order
greater than 2 by considering the intersection $(\tau)_{0}\cap$ ($a$ line) of degree two. Assume that
$(\tau)_{0}$ is a singular conic. Let $L$ be ajumping line of order $a\geq 3$ on $H$. Then $(\tau)_{0}\cap L$ contains
5-points scheme, so $L\subset(\tau)_{0}$ . Q.E.D.

5.4. Let $H$ be an unstable plane (2.10) in $P^{3}$ . Then continuing the argument of
the proofof(5.3), we get the following $(5.4.1)-(5.4.3)$ . Note that $S\cap H$ is reduced by (2. 12).

(5.4.1) Assume that $H$ has exactly one jumping line $L$ with order greater than 2.
Then $S\cap H=L+R$ as a divisor on $S$, where $R$ is the residual curve. In this case
$(L, Y)\geq c_{2}-4$ and there exists a line $L^{\prime}$ on $H$ (possibly $L^{\prime}\not\in S$) such that $Z\subset L\cup L^{\prime}$ .
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(5.4.2) Assume that $H$ has two jumping lines $L_{1}$ and $L_{2}$ with order greater than
2. Then $S\cap H=L_{1}+L_{2}+R$ , where $R$ is the residual curve and contained in a singular
fibre ofthe elliptic fibration $\pi:S\rightarrow P^{1}$ . In this case $Z\subset L_{1}\cup L_{2}$ and $(Y, L_{q})+(Y, L_{2})=c_{2}$ .

(5.4.3) Assume that $H$ has no jumping line with order greater than 2. Then
$S\cap H=C+R$ , where $C$ is a smooth conic such that $(C, Y)=c_{2},$ $Z\subset C$ . In this case the
residual curve $R$ is contained in a singular fibre of $\pi$ .

Let $U$ be a set of these triple $(H, P, R)$, where $H$ is an unstable plane, $P=L$ in case
(5.4.1), $P=L_{1}\cup L_{2}$ in case (5.4.2), $P=C$ in case (5.4.3) and $R$ is the residual curve in
the corresponding case. We define the following equivalence relation $\sim$ between the
elements of $U$;

$(H_{1}, P_{1}, R_{1})\sim(H_{2}, P_{2}, R_{2})$ if and only if $P_{1}=P_{2}$ (as a set).

Set $ J:=U/\sim$ the quotient set of $U$ and denote by $[(H, P, R)]\in J$ the equivalence class
of $(H, P, R)\in U$.

DEFINITION 5.5. An element $h=[(H, P, R)]\in J$ is called ajumping plane of type $J_{\xi}$ ,
if $P=L$ (as in (5.4.1)) and $\xi=c_{2}-(Y, L)$, in this case $0\leq\xi\leq 4$ and $\lambda|\xi$ ; of type $J_{\xi}$, if
$P=L_{1}\cup L_{2}$ (as in (5.4.2)) and $\xi=\min\{(L_{1}, Y), (L_{2}, L)\}$ , in this case $5\leq\xi\leq[c_{2}/2]$ (integral
part of $c_{2}/2$) and $\lambda|\xi$ , and of type $J_{c_{2}}$ , if $P=C$ (as in (5.4.3)).

Set $Ja=$ {$h\in J;h$ is ajumping plane of type $J_{\xi}$ and $0\leq\xi\leq 4$}, $\alpha=\# Ja$ ,
$Jb=$ {$h\in J;h$ is ajumping plane of type $J_{\xi}$ and $5\leq\xi\leq[c_{2}/2]$ }, $\beta=\# Jb$,
$Jc=$ {$h\in J;h$ is ajumping plane of type $J_{c_{2}}$ } and $\gamma=\# Jc$,

where $\# A$ stands for the number of elements of a finite set $A$ .
REMARK 5.6. (1) In general $U$ is an infinite set, but $J$ is always finite.
(2) By (4.4), the following conditions are equivalent.

(i) $c_{2}/\lambda=3$ . (ii) There exists one and only one jumping plane of type $J_{0}$ .
(3) By (4.8) if $c_{2}/\lambda\geq 4$ and $\rho(S)=2$ , then $ U=J=\emptyset$ i.e. if $ J\neq\otimes$ then $p(S)\geq 3$ .
(4) If $\lambda\geq 5$ , then $Ja=$ {a jumping plane of type $J_{0}$ }.
5.7. Intersection ofjumping planes. Let $(H_{1}, P_{1}, R_{1}),$ $(H_{2}, P_{2}, R_{2})\in U$ and assume

$[(H_{1}, P_{1}, R_{1})]\neq[(H_{2}, P_{2}, R_{2})]$ in $J$. Note that $(P_{i}, P_{j})+(P_{i}, R_{j})=4-(R_{i}, P_{j})-(R_{i}, R_{j})=$

degree of $P_{i}$ in $H_{i}$ for $i,j=1,2$ . A possible common component of $P_{1}+R_{1}$ and $P_{2}+R_{2}$

is the line $L=H_{1}\cap H_{2}$ . Moreover if $L$ is their component, then Supp$(P_{1}+R_{1}-L)\cap$

$ Supp(P_{2}+R_{2}-L)=\emptyset$ and $(L, L)=-2$ . By these facts we can show the following:
(1) Assume that both $P_{1}$ and $P_{2}$ are smooth conics. Then $(P_{1}, P_{2})=(R_{1}, R_{2})=0,1$

or 2. More precisely, $ P_{1}\cap P_{2}=\emptyset\Leftrightarrow R_{1}\cap R_{2}=\emptyset$ or a line, $\deg(P_{1}\cap P_{2})=r\Leftrightarrow\deg(R_{1}\cap$

$R_{2})=r(r=1,2)$ .
(2) Assume that $P_{1}$ is a smooth conic and that $P_{2}$ is a singular conic. Then

$(P_{1}, P_{2})=(R_{1}, R_{2})=0,1$ or 2 and the same as (1).
(3) Assume that both $P_{1}$ and $P_{2}$ are singular conics. Then $(P_{1}, P_{2})=(R_{1}, R_{2})=0,1$

or 2. More precisely, $P_{1}\cap P_{2}=a1ine\Rightarrow R_{1}\cap R_{2}=\emptyset,$ $\deg(P_{1}\cap P_{2})=r\Leftrightarrow\deg(R_{1}\cap R_{2})=$
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$r(r=1,2),$ $ R_{1}\cap R_{2}=\otimes$ or a $ 1ine\Rightarrow P_{1}\cap P_{2}=\otimes$ .
(4) $AssumethatP_{1}isasmoothconicandthatP_{2}$ isaline. Then $(P_{1}, P_{2})=0or$

$1$ . Namely, $P_{1}\cap P_{2}=\emptyset\Rightarrow R_{1}\cap R_{2}=a$ single point or $a$ line; in this case $(R_{1}, P_{2})=$

$(R_{1}, R_{2})=1$ . $\deg(P_{1}\cap P_{2})=1\Rightarrow\deg(R_{1}\cap R_{2})=2$ ; in this case $(R_{1}, R_{2})=2,$ $(R_{1}, P_{2})=0$ .
(5) $AssumethatP_{1}isasingularconicandthatP_{2}$ isaline. If $(P_{1}, P_{2})>0$ , then

there exists a plane $H_{O}\subset P^{3}$ such that $S\cap H_{0}$ contains $P_{2}$ and one of the irreducible
component $L_{1}$ of $P_{1}$ . But this leads a contradiction: $c_{2}=(H_{0}, Y)\geq(L_{1}, Y)+(P_{2}, Y)>c_{2}$ .
In this case $P_{1}\cap P_{2}=\emptyset,$ $(R_{1}, P_{2})=1$ and $R_{1}\cap R_{2}$ is a single point or a line.

(6) $AssumethatbothP_{1}andP_{2}$ are lines. Then, the same as in (5), $ P_{1}\cap P_{2}=\emptyset$ ,
$(R_{1}, R_{2})=2andR_{1}\cap R_{2}isa$ finite scheme of degree two oraline.

If $c_{2}/\lambda=3$ , the unstable planes for $g$ is completely described. Because ofthe following
proposition and (4.8), we have to assume $c_{2}/\lambda\geq 4$ for Theorem 2.

PROPOSITION 5.8. If $c_{2}/\lambda=3$ , then $J$ consists of only one element of type $J_{O}$ and $U$

is parametrized by $P^{1}$ .
$PR\infty F$ . By (4.4) and 5.6 (2), there exists a jumping plane of type $J_{0}$ ,

$h_{O}=[(H_{0}, L_{O}, R_{0})]$ and the fibre $Y_{1}$ of $\pi$ is a plane cubic curve. Now $L_{O}+Y_{1}\sim H$

(linearly equivalent to the hyperplane section).
(1) Assume that there exists $h_{1}=[(H_{1}, L_{1}, R_{1})]\in Ja$ . Now $\lambda\geq 3$ by assumption

$c_{2}\geq 9$ . Combining with 5.6 (4), $\lambda=3$ or 4. Let $\lambda=3$ , then $c_{2}=9$ . By 5.7 (6), $ L_{0}\cap L_{1}=\emptyset$

so $(L_{O}, L_{1})=0$ . Hence $1=(H, L_{1})=(L_{O}, L_{1})+(Y_{1}, L_{1})=(Y_{1}, L_{1})$ . On the other hand,
since $h_{1}$ is of type $J_{3},3=c_{2}-(Y, L_{1})=9-(Y, L_{1})$ so $(Y, L_{1})=6$ . By $6=(Y, L_{1})=$

$(\lambda Y_{1}, L_{1}),$ $(Y_{1}, L_{1})=2$ . This is a contradiction $1=(Y_{1}, L_{1})=2$ . The same argument
applies to the case $\lambda=4$ and $c_{2}=12$ .

(2) Assume that there exists $h_{2}=[(H_{2}, P_{2}, R_{2})]\in Jb\cup Jc$ . $R_{2}$ is contained in some
singular fibre $Y_{1}$ of $\pi$ . Noting that $R_{2}$ is a reduced conic, there is $a$ line $L$ on $S$ such
that $Y_{1}=R_{2}+L$ . Then $3=(L_{O}, Y_{1})=(L_{0}, R_{2}+L)=(L_{0}, R_{2})+(L_{O}, L)$ . By 5.7 (4) and
(5), $(L_{O}, R_{2})=0$ or 1, so we have $(L_{O}, L)=2$ or 3. This is impossible. Q.E.D.

\S 6. Picard numbers of determinant surfaces.

In this section we will prove Theorem 1.2. The proof consists of some lemmas.
Throughout this section we will use the same notations as in \S 5 and the following.

$\alpha=\# Ja$ , $\beta=\# Jb$ , $\gamma=\# Jc$ , $\# J=\alpha+\beta+\gamma$ (see (5.5)).

$\langle D_{1}, D_{2}, \cdots, D_{n}\rangle$ : the intersection matrix of divisors $D_{1},$ $D_{2},$ $\cdots,$ $D_{n}$ on $S$.
DEFINITION 6.1. Le$tD_{i}\cong P^{1}(i=1,2, \cdots, n)$ be curves on $S$ with $D_{i}\neq D_{j}$ if $i\neq j$ .

By a cyclic chain contained in $\bigcup_{i=1}^{n}D_{i}$ , we shall mean a curve composed of some
of components say $D_{1},$ $D_{2},$ $\cdots,$ $D_{b}$ such that $(D_{1}, D_{2})=(D_{2}, D_{3})=\cdots=(D_{b-1}, D_{b})=$

$(D_{b}, D_{1})=1$ and $(D_{i}, D_{j})=0$ for other pairs $(i,j)$ .
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Theorem 1.2 follows easily from the following two propositions.

PROPOSITION 6.2. The following inequalities (1)$-(3)$ hold.
(1) $\rho(S)\geq 1+\alpha$ . (2) $\rho(S)\geq 3+\alpha$ if $\beta>0$ . (3) $\rho(S)\geq 2+\alpha$ if $\gamma>0$ .

PROPOSITION 6.3. The following inequalities (1) and (2) hold.
(1) $\rho(S)\geq 2++(\beta+\gamma)$ . (2) $\rho(S)\geq 2+\alpha+\gamma$ if $\alpha>0$ .
PROOF OF THEOREM 1.2. We may assume that $\# J\geq 3$ by 3.2 (3) and 5.6 (3).
(1) If $\alpha=0$ then $\rho(S)\geq 2+\frac{1}{2}(\beta+\gamma)=2+\frac{1}{2}\# J$ by 6.3 (1).
(2) If $\beta+\gamma=0$ then $\rho(S)\geq 1+\alpha>2+\frac{1}{2}\# J$ by 6.2 (1).
(3) If $\frac{1}{2}\# J\leq\beta+\gamma<\# J$ then $\rho(S)\geq 2+\beta+\gamma\geq 2+\neq\# J$ by 6.3 (2).
(4) If $\neq\# J<\alpha<\# J$ then $\rho(S)\geq 2+\alpha>2+\frac{1}{2}\# J$ by 6.2 (2) and (3). Q.E.D.

$PR\infty FOF6.2$ . $Leth_{i}=[(H_{i}, L_{i}, R_{i})]\in Ja(i=1,2, \cdots, \alpha)$ . Note that $(L_{i}, L_{j})=0for$

$i\neq j$ by 5.7 (6).
(1) Then

$\langle H, L_{1}, L_{2}, \cdots, L_{\alpha}\rangle=$ $(4111$ $-201$

$-21$

$-201]$

has maximum rank.
(2) Let $h_{\beta}=[(H_{\beta}, L_{\beta 1}\cup L_{\beta 2}, R_{\beta})]\in Jb$ . $(L_{i}, L_{\beta_{j}})=0$ for any $ 1\leq i\leq\alpha$ and $j=1,2$ by

5.6 (5). Then

$\langle H, L_{\beta 1}, L_{\beta 2}, L_{1}, \cdots, L_{\alpha}\rangle=$
$\left\{\begin{array}{lllll}4 & 1 & 1 & 1 & 1\\1 & -2 & 1 & 0 & 0\\1 & 1 & -2 & 0 & 0\\1 & 0 & 0 & -2 & 0\\\vdots & & & & \\1 & 0 & 0 & 0 & -2\end{array}\right\}$

has maximum rank.
(3) $Leth_{\gamma}=[(H_{\gamma}, C_{\gamma}, R_{\gamma})]\in Jc$ . Now $(L_{i}, C_{\gamma})=0orlby5.6(4)$ . So we may assume

that $(L_{i}, C_{\gamma})=1$ for $1\leq i\leq k,$ $=0$ for $ k<t\leq\alpha$ for some $k(0\leq k\leq\alpha)$ . Then by elementary
transformations of rows and columns,
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$\langle H, C_{\gamma}, L_{1}, \cdots, L_{k}, L_{k+1}, \cdots, L_{\alpha}\rangle$

$=[421111$ $-.....\cdot 220011$ $-2011$

$\ldots$

$\Rightarrow[422228$ $-.\cdot 440022$ $-2011$

$-211$

$-201$

$-2001]$

$-211$

$-201$

$-2001]$

$\Rightarrow\left\{\begin{array}{llllll}k+l+8 & k+4 & 1 & l & l & 1\\k+4 & k-4 & 1 & 1 & 0 & 0\\0 & 0 & -2 & & & 0\\\vdots & & & & & \\0 & 0 & & -2 & & \\0 & 0 & & & -2 & \\\vdots & & & & & \\0 & 0 & 0 & & & -2\end{array}\right\}$

and

$det\left(\begin{array}{lll}k+l+8 & k & +4\\k+4 & k & -4\end{array}\right)=(k-4)(l-4)-64$ ,

where $l=\alpha-k$ . Since $S$ is a K-3 surface, $\rho(S)\leq 20$. By (1) $1+\alpha\leq p(S)\leq 20$, so $\alpha=k+l\leq 19$

and $(k-4)+(l-4)\leq 11$ . Then $(k-4)(l-4)-64<0$ . Hence $rank\langle H, C_{\gamma}, L_{1}, \cdots, L_{\alpha}\rangle=$

$ 2+\alpha$ . Q.E.D.
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For Proposition 6.3, we have to investigate more carefully the intersections of
jumping planes of type $Jb$ and of type $Jc$ .

6.4. Let $h_{i}=[(H_{i}, P_{i}, R_{i})]\in JbuJc,$ $i=1,2,$ $\cdots,$ $n$ . Assume that $\bigcup_{i=1}^{n}R_{i}\subset\pi^{-1}(p)$

for some $p\in P^{1}$ . Set $N=the$ number of the irreducible components of $\bigcup_{i=1}^{n}R_{i}$ , and let
$\sum_{i=1}^{n}R_{i}=\sum_{i=1}^{N}f_{i}F_{i}(f_{i}\in N)$ be the irreducible decomposition. Note that $R_{i}$ is either a
smooth conic or a union of two lines with normal crossing at one point. We consider
the following five cases.

(6.4.1) Every $R_{i}$ is a smooth conic and $\bigcup_{i=1}^{n}R_{\iota\subsetneqq\pi^{-1}(p)}$ . Then $N=n$ and
$\langle F_{1}, F_{2}, \cdots, F_{n}\rangle$ has maximum rank by the following well known Lemma 6.6.

(6.4.2) Every $R_{i}$ is a smooth conic and $\bigcup_{i=1}^{n}R_{i}=\pi^{-1}(p)$ . Then $N=n$ and
$\langle F_{1}, F_{2}, \cdots, F_{n-1}\rangle$ has maximum rank by Lemma 6.6. Moreover, $\pi^{*}(p)=\sum_{i=1}^{n}m_{i}R_{i}$ for
some $m_{i}\in N$ and $c_{2}/\lambda=\deg\pi^{*}(p)=\deg\sum_{i=1}^{n}m_{i}R_{i}=2\sum_{i=1}^{n}m_{i}$ .

(6.4.3) There is $a$ singular conic and $a$ smooth conic. We may assume that $R_{1}$ is
a singular conic and $R_{2}$ is a smooth conic. By induction on $n$ , we get $N\geq n+1$ . By
Lemma 6.6, $\langle F_{1}, F_{2}, \cdots, F_{n}\rangle$ has maximum rank.

(6.4.4) Every $R_{i}$ is a singular conic and $N\geq n+1$ . By Lemma6.6, $\langle F_{1}, F_{2}, \cdots, F_{n}\rangle$

has maximum rank.
(6.4.5) Every $R_{i}$ is a singular conic and $N\leq n$ . Then by the following Lemma

6.5, we can see that $\bigcup_{i=1}^{n}R_{i}$ is $a$ cyclic chain and $N=n$ . Then by the classification of
singular fibres of elliptic surfaces [Ko], $\pi^{*}(p)$ is a singular fibre of type $mI_{\hslash}(m=multi-$

plicity $\geq 1,$ $n=the$ number of the irreducible components $\geq 3$) or of type IV. Then
$\sum_{i=1}^{n}R_{i}=2red(\sum_{i=1}^{n}R_{i}),$ $\pi^{*}(p)=mred(\sum_{i=1}^{n}R_{i})=(m/2)\sum_{i=1}^{n}R_{i}$ and $c_{2}/\lambda=\deg\pi^{*}(p)=$

$(m/2)\sum_{i=1}^{n}\deg R_{i}=mn$ . By Lemma 6.6, $\langle F_{1}, F_{2}, \cdots, F_{n-1}\rangle$ has maximum rank.

LEMMA 6.5. Under the situation of (6.4.5), $\bigcup_{i=1}^{n}R_{i}$ is a cyclic chain and $N=n$ .
$PR\infty F$ . (1) Assume that every $f_{i}$ is greater than 1. By chasing the component

$R_{i}$ , we can see $\bigcup_{i=1}^{n}R_{i}$ has $a$ cyclic chain. By the classification of singular fibres of
elliptic surfaces [Ko], $\bigcup_{i=1}^{n}R_{i}=\pi^{-1}(p)=the$ cyclic chain. If$f_{1}\geq 3$ , we may assume that
$F_{1}\subset R_{1}\cap R_{2}\cap R_{3}$ . We can write $R_{i}=F_{1}+R_{i}^{\prime}(i=1,2,3)$ for some line $R_{i}^{\prime}(i=1,2,3)$, note
that $F_{1}\neq R_{i}^{\prime}(i=1,2,3)$ and $R_{i}^{\prime}\neq R_{j}^{\prime}$ if $i\neq j$ . Then $(F_{1}, R_{i}^{\prime})=1(i=1,2,3)$ , this is impossible,
since $\bigcup_{i=1}^{n}R_{i}=the$ cyclic chain. Therefore we have $f_{i}=2$ for any $1\leq i\leq N$ , and $N=n$ .

(2) Assume that $f_{N}=1$ . We want to show that $N\geq n+1$ by induction on $n$ . We
may assume that $F_{N}\subset R_{n}$ and $F_{N}\not\in R_{i}$ for any $1\leq i\leq n-1$ . Let $\sum_{i=1}^{n-1}R_{i}=\sum_{i=1}^{N-1}f_{i}^{\prime}F_{i}(f_{\dot{t}}^{\prime}\geq$

$0)$ be the irreducible decomposition. If $f_{i}^{\prime}\geq 2$ for any $f_{i}^{\prime}\neq 0$ , then $\bigcup_{i=1}^{n-1}R_{i}=\pi^{-1}(p)$ by
(1) as above. Since $F_{N}\not\in\bigcup_{i=1}^{n-1}R_{i}$ , there exists $j$ such $thatf_{i}^{\prime}=1$ . By the induction hypothe-
sis, (the number of the irreducible components of $\sum_{i=1}^{n-1}R_{i}$) $\geq n$ . Also by $F_{N}\not\subset\bigcup_{i=1}^{n-1}R_{i}$ ,
$N\geq n+1$ . By the assumption $N\leq n$ , every $f_{i}$ must be greater than 1. Q.E.D.

LEMMA 6.6 (cf. [Be, Corollary VIII. 4]). Let $X$ be a smooth projective surface, $B$

a smooth projective curve and $g:X\rightarrow B$ a surjective morphism with connectedfibres. Let
$b\in B,$ $g^{*}(b)=\sum_{i}m_{i}X_{i}$ be the irreducible decomposition and let $D=\sum_{i}r_{i}X_{i}(r_{i}\in Z)$. Then
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$D^{2}\leq 0$ , with equality if and only if $D=rg^{*}(b)$ for some $r\in Q$ .

LEMMA 6.7. Let $D_{1},$ $D_{2},$ $\cdots,$ $D_{k}$ be divisors on S. Suppose that $(Y, D_{i})=0$ for each
$1\leq i\leq k$ . Then $\det\langle H, Y, D_{1}, D_{2}, \cdots, D_{k}\rangle=-c_{2}^{2}\det\langle D_{1}, D_{2}, \cdots, D_{k}\rangle$ .

$PR\infty F$ . Since $(H, H)=\deg S=4,$ $(H, Y)=\deg Y=c_{2}$ and $(Y, Y)=0$,

$\langle H, Y, D_{1}, D_{2}, \cdots, D_{k}\rangle=[c_{2}4**$ $c_{0}o^{2}00*\langle D_{1}, D_{2}, \cdots, D_{k}\rangle 0*)$ .

At first, expand along th$e$ first row. By expanding each cofactor along the first column,
we get the assertion. Q.E.D.

$PR\infty F$ OF 6.3 (1). Let $h_{i}=[(H_{i}, P_{i}, R_{i})]\in Jb\cup Jc(i=1,2, \cdots, \beta+\gamma)$ . Since $c_{2}/\lambda=$

$\deg\pi^{*}(p)\geq 4$ and $\deg R_{i}=2,$ $R_{i}\subsetneqq\pi^{-1}(p)$ for any $ 1\leq i\leq\beta+\gamma$ . Hence we need at least two
$h_{i}$ and $h_{j}$ so that $R_{i}\cup R_{j}=\pi^{-1}(p)$ . By $(6.4.1)-(6.4.5)$ , we can find k-irreducible curves
$F_{1},$ $F_{2},$ $\cdots,$ $F_{k}$ contained in singular fibres such that $rank\langle F_{1}, F_{2}, \cdots, F_{k}\rangle=k$, where
$k=\beta+\gamma-[(\beta+\gamma)/2]$ . By (6.7), $\langle H, Y, F_{1}, F_{2}, \cdots, F_{k}\rangle$ has maximum rank. So $\rho(S)\geq$

$2+\neq(\beta+\gamma)$ . Q.E.D.

LEMMA 6.8. Assume that there exists an $h_{0}=[(H_{0}, L_{O}, R_{0})]\in Ja$ . Then both of
(6.4.2) and (6.4.5) do not occur.

PROOF. (1) Assume that (6.4.2) does occur. Then $\pi^{*}(p)=\sum_{i=1}^{n}m_{i}R_{i}$ for some
$m_{i}\in N$ and $c_{2}/\lambda=2\sum_{i=1}^{n}m_{i}$ . Note that $(L_{0}, R_{i})=0$ or 1 by 5.7 (4), (5). Now
$c_{2}-4\leq(L_{0}, Y)=(L_{0}, \lambda\pi^{*}(p))=\lambda(L_{0}, \sum_{\iota=1}^{n}m_{i}R_{i})=\lambda\sum_{\iota=1}^{n}m_{i}(L_{0}, R_{i})\leq\lambda\sum_{\iota=1}^{n}m_{i}=c_{2}/2$ .
We get $c_{2}\leq 8$ . This contradicts our assumption $c_{2}\geq 9$ .

(2) Assume that (6.4.5) does occur. Then $\pi^{*}(p)=(m/2)\sum_{i=1}^{n}R_{i}$ for some $m\in N$ and
$c_{2}/\lambda=\deg\pi^{*}(p)=(m/2)\sum_{i=1}^{n}\deg R_{i}=mn$ . Note that $(L_{0}, R_{i})=0$ or 1 by 5.7 (4), (5). Now
$c_{2}-4\leq(L_{O}, Y)=(L_{O}, \lambda\pi^{*}(p))=\lambda(L_{O}, (m/2)\sum_{i=1}^{n}R_{i})=(\lambda m/2)\sum_{i=1}^{n}(L_{O}, R_{i})\leq(\lambda/2)mn=$

$c_{2}/2$ . We get $c_{2}\leq 8$ . This contradicts our assumption $c_{2}\geq 9$ . Q.E.D.

$PR\infty F$ OF 6.3 (2). By Lemma 6.8, (6.4.1), (6.4.3) or (6.4.4) occurs. So we can
find $(\beta+\gamma)$-irreducible curves $F_{1},$ $F_{2},$ $\cdots,$ $F_{\beta+\gamma}$ contained in singul$ar$ fibres such that
$rank\langle F_{1}, F_{2}, \cdots, F_{\beta+\gamma}\rangle=\beta+\gamma$ . By Lemma 6.7, $\langle H, Y, F_{1}, F_{2}, \cdots, F_{\beta+\gamma}\rangle$ has maximum
rank. So $ p(S)\geq 2+\beta+\gamma$ . Q.E.D.
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