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Introduction.

Given a field K and a subring 4 of K, we consider the set of valuation rings of K
which contain 4. This set has a structure of a local ringed space, denoted by Zar(K |A)
(see [6] or [7]).

In this paper, we shall show that normal integral schemes (X, Oy) proper over
SpecA with rational function field K are quotient spaces of Zar(K |A) and Oy =94 ,0,.
Here 0, is the structure sheaf of Z=Zar(K |_A) and &,: Z— X is the quotient mapping.
In order to show this, we introduce a category €y(K |A) of local ringed spaces, which
contains both Zar(K |A) and all integral schemes proper over Spec 4 with rational function
field K (see Theorems 1 and 1°).

For objects X of (K |A), we introduce sheaves Q% of differential forms as in the
case of schemes over SpecA. In particular if 4 is a perfect field and X is a regular
scheme, then Q% coincides with the ordinary sheaf of regular differential forms and
Q% =P ,Q7 for any multi-index m (see Theorem 2). From this, the birational invariance
of regular differential forms of regular varieties follows immediately.

To define structure sheaves on quotient spaces of Zar(K |A) and sheaves Q% on
objects X of €(K |A) in a unified way, we shall introduce the notion of intersection
sheaf in §0. ‘ _

The author would like to express his thanks to Professor Shigeru Iitaka for his
advices and warm encouragement.

§0. Let o/ be the category of 4-modules or the category of 4-rings, where 4 is
a commutative ring with unity. For an object N of &, we denote by Sub_(N) the totality
of subobjects of N. For a subset E of N, we put

Sub (N|E)y={MeSub(N) | EcM} .
Let (E;);c; be a family of subsets of N. Then
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ey SUbd(N U Ei) = () Sub (N |Ei) s
iel iel

) Sub,,(N N E,) > JSub(N|E).
iel iel

There exists a unique topology on Sub_(N) with open base
3) Z={Sub(N|E) | E is a finite subset of N} .

In what follows, given a subset X of Sub_(N), we consider the relative topology,
which is called the Zariski topology on X. Then for M e X, we obtain

“ {M}={M'eX|M'cM}.

Hence X is a T-space. Let Y be an irreducible closed subset of X and put &y ={),,., M.
Then we obtain

(5) | Y={MeX|Mc&)}.

Thus Y has a generic point if and only if £y € X. In this case &, is the unique generic
point of Y.

Let X be a topological space and let s: X—Sub_(N) be a mapping (not necessary
continuous). For any open subset ¥ of X, we put

© F)= { xOV %), where V#QJ,

0 where V=g.

Let U and V be open subsets of X such that Uc V. If U# ¢, then F(V)c F(U)<N,
and we denote by p, , the inclusion mapping. If U=, we define p, , to be the
O-mapping. Then it is clear that & is an «/-valued presheaf on X. For a family (V;);.,
of non empty open subsets of X, we have

@) .aw(U V,)= NFW).

iel iel

LEMMA 1. Let X, o, N and s be as above. Then
(1) the preshearf % defined by (6) satisfies the local uniqueness conditions.
(ii) For any non empty subset E of X, we have

indlimF V)~ F(V)< () sx),

xeE

where V runs over all open subsets of X containing E. Especially if we put E={x}, then

e9§=k‘,)-9’(V)C6(X)-
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(iii) If X is either irreducible or empty, then ¥ satisfies the local existence
conditions. Especially if card #(X)=2, then the converse holds.

(iv) The following three conditions are equivalent:

(@) The mapping s is continuous.

® U FW)=s(x) for any xe X.

V :open

Vax
© U FW)= () s(x) for any non empty subset E of X.
V :open xeE
VSE

The proof is similar to that of Lemma 1 in [6].

COROLLARY. Suppose that X is irreducible and that s is continuous. Then & is an
& -valued sheaf on X and &,=s(x) for any x€ X.

Thus we also have
® F(V)= ﬂy% ,

for any non empty open subset V of X.
The sheaf & is said to be the intersection sheaf of X with respect to the mapping s.

LEMMA 2. Let o/ and N be as above. Let Y and X be irreducible topological spaces
and let

Y s > X

)] Sx

Sub (N)

be a diagram in topological spaces (not necessarily commutative). Assume that %y (resp.
Fy) is the intersection sheaf of Y (resp. X) with respect to sy (resp. sx).

() If sx(f(y)=s(y) holds for any yeY, then there exists a morphism
[t Py [Py of sheaves on X such that fXV): F(V)>Ff (V) is the inclusion
mapping for any non empty open subset V of X. Then [}: Fx ;,,—>Fy.y is also the
inclusion mapping for any yeY.

(ii) If the triangle (9) commutes, then we have %y = f~ ' F.

The proof is easy.
§1. Let K be a field and A a subring of K. We denote by Loc(K|A4) the set of

local subrings R of K which contain 4. We do not assume QR=K, where QR is the
quotient field of R. By Lemma 1, we have the local ringed space L =Loc(K |A) consisting
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of the Zariski topology and the intersection sheaf @, with respect to the inclusion
mapping:

LOO(K IA) — Sub(A-rings)(K) .
Next we consider the mapping ng,: Loc(K |A)-—>SpecA defined by
(10) nxaR)=4nm(R), for ReLoc(K|4),

where m(R) is the unique maximal ideal of R. Then Ttg|4 is surjective and continuous.
Moreover, we have

49)) z=(7‘x|4)*0L .

Letting n’xl 4 be the natural isomorphism in (11), we obtain a morphism (nx |45 n}, 4) of
local ringed spaces. By restriction, we also obtain a local ringed space Zar(K |A) and a
morphism

(10") Oy 4: Zar(K|A4)>SpecA

of local ringed spaces. Then ®Px |4 is a surjective and closed mapping (see Theorem 2.5
in [1] or Lemma 4 (p. 117) in [8]).

For a local ringed space (X, 0y), we define a mapping n,: X —Spec®,(X) by
X px M(m(Oy ), where Px.x: Ox(X)—0Oy , are the canonical mappings. Then we con-
sider the following condition for a local ringed space (X, 0y):

(12) X has an open base consisting of open sets V
such that =, is dominant .

This is the condition (8) in [7] (see also [7], sec. 2).
Both the local ringed spaces Loc(K |A) and Zan(K IA) satisfy the condition (12). We
remark that n; =my , for L=Loc(K|A).

LEMMA 3. Let (X, Ox) be an integral local ringed space satisfying the condition (12)
and let L=Loco(RatX|0,(X)). Then

(i) the mapping ¥y : X— L defined by
(13) Py(x)=0x, , for xeX
is continuous, dominant and Oy = ¥ x ' O, is the intersection sheaf of X with respectto ¥ x.

(ii) There exists a morphism ¥%: 0,— Yx«Ox of sheaves on L such that
(Px, ¥3): (X, Ox)—>(L, 0,) is a morphism of local ringed spaces over SpecOx(X):

X — L
O -
"l\ TR X |0x(X) = FL

SpecOx(X)
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The proof is easy from Lemma 7 in [7], Lemma 1, (iv) and Lemma 2.

CoROLLARY. Foratopological space X, the following two conditions are equivalent:

(a) There exists a sheaf Oy of rings over X such that (X, Oy) is an integral local
ringed space satisfying the condition (12).

(b) X is irreducible, and there exist a field K and a dominant continuous mapping
s: X—LocKk.

For an integral domain A, we also write
(13" ¥4=Yspeca: SpecA—Loc(QA|A).

We consider the following condition for a local ringed space (X, Oy):
(14) For any x € X, there exists a morphism of local ringed spaces

(x> %) : SpecOy ,— X such that Im(j,)={ye X | xe {y}} and
UPe: Ox, ;. =(0x,)p for any PeSpecOy, .

This is the condition (21) in [7] (see also Lemmas 8 and 9 in [7]).

In general, the local ringed space Loc(K |A) does not satisfy the condition (14), but
Zar(K|A) satisfies (14).

Let (X, Oy) be an integral local ringed space satisfying the conditions (12) and (14).
Then the triangle:

b 4
X - T Loc(Rat X|0x(X))
SpecOy ,

commutes for any x € X. Therefore j, is an into-homeomorphism for any x € X, because
Yo, . s an into-homeomorphism.

§2. Let K be a field and 4 a subring of K. Then the category €(K' |A) was defined
in [7] as follows.

The objects (X, Oy) satisfy the following conditions:

(15) X is a topological space with a generic point and satisfies the separa-
ble condition T .

(16) (X, Oy) is an integral local ringed space satisfying the conditions (12)
and (14).

an K=Rat(X, 0y) .
(18) A<= 0x(X) and the morphism X—Spec4 is valuative-proper .
The morphisms (f, 6) satisfy the condition:
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(19) (f, 0) is a dominant morphism of local ringed spaces over
. Spec 4 and Rat(f, 0) is the identity mapping of K .

Let (X, Oy) be an object of €(K|4). Then the mapping ®y : Zar(K|4)— X is defined
by

(20) Px(R)=x if and only if R dominates Oy ,

for any ReZar(K|A) and x€ X (see also Lemma 16 in [7]).
Since the triangle

Zar(K|0y ,) %y
SpecOy, .
commutes for any xe X, we obtain:
22) ®x '(X)=Pg o, (m(Ox,,)) , for any xeX.
(23) ®(Zar(K|0x ))=Im(j,), forany xeX.
(24) xe{y} < Oy,c0y, < Ox,=(0x.)p for some PeSpecly .,
for any x,yeX.
(25) If Oy, dominates Oy ,, then x=y, for any x, ye X .
(26) X is normal < Oy=95,0,

< Oyx.,= () R forany xeX.

Re®yx'(x)

DEerFINITION. Let K be a field and 4 a subring of K. We denote by ‘€o(K|A) the
full subcategory of €(X; |A) consisting of all objects (X, @Ox) such that
27N Dy : Zar(K |A)—>X is a quotient mapping .

It is clear that Zar(K|A4) is the initial object of €o(K |A) and all the morphisms of
€o(K |A) are quotient mappings.

LeMMA 4. Let K, A and €,(K|A) be as above.
(i) Let X be a normal object of (KO(KIA). Then the equivalence relation ~ of
Zar(K |A) associated to the mapping Py satisfies the following four conditions:

(28) For any ReZar(K|A), the ring (g .x R’ is a local ring
with quotient field K and

m( N R’)= (\ R'Am(R).
R R’'~R

‘~R
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(29) For any a€K, the set {ReZar(K|A)| R*~R=0a€cR’} is
open in Zar(K|A) .

(30) R, ~R, ifandonlyif (| R= ()| R, forany R,, R,eZar(K|A).

R~R; R~R>
(31) (N ReR, < () R= () R
R~R; R~R; R~R;
< [ R=( N R) for some PeSpec( N R)
R~R> R~R; P R~R,

< p(RYe{P(R,)} in Zar(K|A),. ,
for any Ry, R,eZar(K|A4).

Here we denote by p: Zar(K |A)—>Zar(K|A),~ the natural projection, and introduce the
quotient topology for Zar(K|A), ..

(i) Conversely, assume that an equivalence relation ~ of Zar(K IA) satisfies the
conditions (28), (29), (30) and (31), and let X=Zar(K |A),~. Then there exists a sheaf Oy

of rings on X with respect to the quotient topology such that (X, O) is a normal object
in €o(K|A).

PROOF. (i) Let ReZar(K|A4) and put x=®4(R). Then by (26), we obtain

(26" Oxx= () R'<R.
R'~R

(28) is induced from Lemma 9 in [7], (20) and (26’). (29) is verified from (26’) and the
continuity of @5 and ¥y. (30) follows immediately from (25) and (26’). (31) is proved
by (23), (24) and (26').

(i) By (28) and (29), we can define a continuous mapping ¢’ : Zar(X |A)—>Loc(K |A)
by R— (g g R’- Then by (30), ¢’ induces a continuous injection g such that

’

Zar(K|A)
P 1 2
X

Loc(K|4)

Let O be the intersection sheaf of X with respect to ¢g. Then (X, O) becomes a normal
object of €o(K|A4). Q.E.D.

We denote by #,(K|4) the totality of equivalence relations ~ on Z=Zar(K|4)
satisfying the conditions (28), (29), (30) and (31). The set .#,(K|A4) is abbreviated as 4.
For relations ~,;, ~, e .#,, we define ~, < ~, if the following two conditions hold:
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(32) If R~,R’, then R~ ,R', forany R,R'e€Z,

(33) m( N R’): N R’nm( N R"), for any ReZ.
R R

'~3R ‘~3R R’"~3R
Then it is clear that (.#,, <) is an ordered set.

THEOREM 1. Let K be a field and A a subring of K.

(1) Take a normal object X of @o(KIA). If ~eM#, is the equivalence relation
associated to @y, then we obtain an isomorphism Zar(K|A),. ~ X of €(K|A).

(i) Take a relation ~ € #,. Letting X = Zar(KlA),,., we see that the equivalence
relation associated to @y coincides with the relation ~ .

Therefore, there exists a bijection between the totality of isomorphic classes of normal
objects in €o(K|A) and the set M,.

(ii) Suppose that X; and ~ ;(i=1, 2) correspond to each other by the above mapping.
Then there exists a morphism X,— X, of €,(K |A), ifand only if ~ < ~,.

PROOF. (i) Itis clear that the mapping Zar(K|A4),.— X defined by p(R)+— ®x(R)
is a homeomorphism. By (26’) and the definition of the intersection sheaves, this is an
isomorphism of € (K |A). (i) is induced from p=d,. (ii) is easy to verify.

COROLLARY. Let€)(K ]A) be the full subcategory of €,(K |A) consisting of all normal
objects. Then we obtain an order-isomorphism: €§(K|A),~ ~ #,.

Next we consider the schemes. Assume that

(34) A is noetherian and X is a finitely generated extension over QA4 .

Then we denote by €,(K |A) the category of integral schemes proper over Spec4 with
rational function field K (the morphisms are the same as in €(K|A4)). Replacing “proper”
by “projective”, we obtain the category €,(K|A).

Since ®gp defined by (10°) is a closed mapping for any subring B of K,
@y : Zar(K|4)—~ X is also a closed mapping for any object X of €,(K|4). Therefore
€,(K|A4) and €,(K]|A) are the full subcategories of €,(K|A4).

Let .#, be the subset of .|, consisting of all relations ~ € .#,, satisfying the following
condition:

(35) For any RyeZar(K |A), there exists a ring B such that
(i) AcBcR,, Bis of finite type over A.
(ii) there exists PeSpecB such that Bp=[,. ., R’, if and only if
BcR, for any Re Zar(K|A).
(iii) R; ~R, if and only if BN m(R,)= B m(R,),
for any R,, R, € Zar(K|B).

THEOREM 1.  Supposing that K and A satisfy (34), we assume that a normal object
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(X, Ox) in €o(K |A) and a relation ~ € M, correspond to each other by the mapping in
Theorem 1. Then X is an object in €,(K|A) if and only if ~ € #,.

ProOF. For any x,€ X, there exists R,e Zar(K|4) such that xo=Px(R,). Let B
be as in (35), and put V=¥ 3y !(Im ¥5). Then ¥V is an affine open neighborhood of x,
in X. Conversely, for any R,e Zar(K |A), we put x,=P,(R,). Let V be an affine open
neighborhood of x, in X, and put B=0,(V). Then B satisfies (35). Q.E.D.

COROLLARY. There exists an order-isomorphism:

¢VK|A)~ ~ A, .

§3. Let X be a field, A a subring of K and n=dimZar(K|A)2 1. Then Y is said
to be a prime divisor of Zar(K|4), if Y is an irreducible closed subset of Zar(K|4) and
dimY=n—1. It is also called a prime divisor of K|4.

If Y is a prime divisor of K |A, then by (4) and (5), there exists a unique R e Zar(K |A)
such that Y=TI_€?. This R is also called a prime divisor of K|A. If necessary, we call R
a Zariski prime divisor (see also [8], sec. 14).

Let X be an object of €o(K |A). Then R is said to be a (Zariski) prime divisor of
X, if R is a prime divisor of K|4 and there exists an element x of X such that
R=0y.,.

We denote by N(X) the totality of prime divisors R of X and K. The free abelian
group Div X generated by the prime divisors of X is said to be the divisor group of X.
This is an ordered abelian group. If X =Zar(K|4), then we also write N(X’ )=N(K|A)
and Div.X=Div(K|A).

Let f: Y—X be a morphism of €4(K|4). Then we have

(36) N(X)=N(Y)=N(K|4),
37 ~ DivX<DivY<cDiv(K|4).
Therefore, we obtain a contravariant functor
Div: %,(K|4)—>(Mod).
Next we assume that

A isoffinite type over a subfield k£ and

(34 K isfinitely generated over QA4 .

Then we have

(38) N(K|4)= N(K|_k) N Zar(K|A) .

LEMMA 5. Suppose that K and A satisfy (34"). Then for any R, - - -, R e N(K|A),
there exists an integrally closed integral domain B such that K=QB, Ac Bc Ni., R, B
is of finite type over A and R;= By, for some P,eSpecB (1 <i<q).
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The proof is similar to that of Theorem 31 in [8].
COROLLARY. Let € be a subcategory of €,(K |A) satisfying the condition:

39) If a ring B is an intermediate ring between A and K such that QB=K
and B is of finite type over A, then there exists an object X of € and an
affine open subset V of X such that B=0,(V).

Then
(40) NK|4)=) NX),
41) Div(K|4)=ind.limDivX,

where X runs over all the objects in €.

Note that €,(K|4) and €,(K|A4) satisfy the condition (39). See also Theorem 2in [7].

Let K be a field, 4 a subring of K and N=N(K |A). Then N is irreducible, because
N has the generic point K. Therefore N becomes a local ringed space with the Zariski
topology and the intersection sheaf @y with respect to the inclusion mapping:

N — Sub(A-rings)(K) .

LEMMA 6. Suppose that K and A satisfy (34’). Let N= N(K IA) and take an object
X from €,(K|A). Then

(i) the restriction mapping ®y|y: N—X is surjective.

(ii) If we put N,=N n ®x '(x) for any x€ X, then the integral closure of Oy , in K
is ﬂRENx R.

(iii) If we put Z=Zar(K|A) and let i: N—Z be the inclusion mapping, then
we obtain
42) 0N=i_102=02|N ’
(43) Oy=i 0y .

PrROOF. (i) and (ii) are proved in a way similar to the proof of Theorem 35 in [8].
(iii) is verified from Lemma 2 and (ii).

CoRrOLLARY. (i) Ifdim0Oy ,=1, then 1 <cardN,# oo. Especially if x is a normal
point of X, then N,={0x .} that is the one point set.

(i) If dimOyx,>2, then there exists o€ K such that the set {ReN,|a¢ R} is
infinite. Thus N is also infinite.

ProOF. (i) is verified by using the similar method to the proof of Theorems 32
and 33 in [8]. (ii) is induced from Theorem 12.3 in [5].

§4. For a ring homomorphism 4— B, we denote by Q25 , the B-module of regular
differential forms of B over 4. For a positive integer r, we denote by Qg , the r-th
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exterior power of QBl 4 as B-modules. Moreover, for any multi-index m=(m,, - - -, m,)
of non negative integers, we define
44) QUB)=(25)°™ ® - - ®(Q3,9°™ .

Putting |m{=m;+2m,+ - - - +nm,, we have an A-multilinear mapping dpj,: B'™'—
Q™(B) and

(45) QuB)= X BBdglA(xla T X)) -
X157y X|m|€

For any homomorphism ¢ : B, — B, of A-rings, there exists a homomorphism Q%(¢) of
B,-modules such that

Imi
Bllml @ B|2m|
3014 l o l d5u1a
QUB,) —gmy > LA(B)

Thus a functor Q% : (4-rings)—(Mod) is obtained.
For any multiplicative subset S of B, we have a commutative diagram of B-modules
and an isomorphism of S~ !B-modules:
QU(B)
(46) cano l Qi)

STIQMB) ~ QS !B)

where i: B-»S™ 1B is the canonical mapping. Especially if B is an integral domain,
K=0QB and iz x: B—K is the inclusion mapping, then by (46),

47) Q%(igx) is injective if and only if Q7%(B) is a torsion free B-module .
LEMMA 7. Let B be aring, A a subring of B and m a multi-index. Then the mapping
SBla’ SUD gings)(B|4) = Subpyoea)(R274(B)) defined by
SB IA(R) =ImQ%(ix 1) 5 Jor Re€Subgyg(B IA)
is continuous. Here let iz |5: R— B denote the inclusion mapping.

PROOF. For any weQ7(B), we put V'=Sub,qs(R2%(B) | {w}). Then it suffices to
prove that 5%, 4" Y(V) is open in Sub(Ring,,(BlA). For any Resj, 4 1(V), there exists
o € 2%(R) such that w=Q%(ig ;s wo). By (45), we can write

W = 'Zl yidﬂu(xu, Ty xilml) .
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Put E= {yl’ T Ve X1 T x'lml} <R al‘ld U= Sub(kin's)(BlA[E]). Then ReUc
$B1a ~ (V). Thus s3,,~ (V) is an open set. Q.E.D.

Let K be a field, 4 a subring of K and m a multi-index. For any object X of €,(K |A),
we consider the mapping 5% : X— Suby,q)(27%(K)) defined by

(48) s¥(x)=ImQ%G), for xeX,

where i, : Oy ,—K is the inclusion mapping. By Lemmas 3 and 7, the mapping s7% is
continuous. Therefore we obtain the intersection sheaf Q7% of X with respect to s7.

LEMMA 8. Let K, A, m and X be as above. Then

(1) Q% is a sheaf of Oy-modules.

(i) For any xeX, Q% ,~QW0x,) if and only if Q70Ox.) is a torsion free
Oy -module.

PROOF. (i) is easy to prove. (ii) is induced from (47).

Let f: Y—> X be a morphism of €K |A). Then by Lemma 2, we have

(49) QXN <= QS IV,
for any open set V# . Thus we also have
49) QX)) =QY(Y)=QZZ)=QYK),

where Z=Zar(K|A).

Let K be a field, 4 a subring of K, Z=Zar(K|4), N=N(K|A4), i: N-Z the inclusion
mapping and m a multi-index. Let Q% be the intersection sheaf of N with respect to
the mapping s7 o i. Then Q% is a sheaf of Oy-modules and QT =i~ Q7= Q7%|y- By Lemma
2, we also have

(50) QNU)=Q™U A N),
for any open set U# & and hence
(50" QNZ) = QMN)<= Q™(K) .

Finally, we consider regular forms on schemes. Let 4 be a ring and X a separated
scheme over SpecA. Then there exists a sheaf Q%4 of Ox-modules such that

TN
Q;|Aluzgﬂ|4’zgﬂ(3) s
for any affine open subset U~ Spec B of X. (See [4], sec.5.3 and 5.4.) Hence we obtain
(51) (%)) =2%(0x,,)

for any xe X.

ReEMARK. To avoid confusion, we denote by Q% the intersection sheaf of an object
X in ‘KO(KIA) and by Q%) , the sheaf of regular forms on a scheme X over SpecA.
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THEOREM 2. Let k be a perfect field, K a field finitely generated over k, Z =Zar(K ]k)

and N= N(K|k).

(1) Assume that there exists a regular object X of €K |k). Then we obtain
QR =0y, Q7 =(Py|y), 2% for any multi-index m. Therefore Q% X) is a birational
invariant.

i) If€.,KXK Ik) has enough regular objects, i.e., for any object X of €,(K |k), there

exist a regular object Y and a morphism f: Y—X of € 1(K|k), then Q%7 =i Q% for any
multi-index m. Note that €,(K|k) could be replaced by € ,(K|k).

ProOF. (i) Since X is regular, Q7(Oy ,) is a free Oy ,-module for any xe X. By
Lemma 8, (ii) and (51), we obtain Q% ,~Q%. By (49) and (50), we obtain

QXV)=QUPx (V)= QP (V)N N),

for any non empty open subset ¥ of X. Conversely, let we QW®Px (V) N). For any
xeV and PeSpecOy, such that htP=1, we have (Ox,)pe®P5x (V)N N. Then
we QIT(((QX,x)P) = Q;c”(@X,x)P = (QQ,X)P' Since Q?,x = ﬂhgp =1 (Q ?,x)Pa we haVC we Q;,x and
hence we QY V). Therefore we obtain

(52) QYV)=Q%(Px'(V)=Q%Px (V)" N).

(i) Note that the set {®5 (V) | X is a regular object of ¥ 1(K|k) and V is open in
X} is an open base of the Zariski topology on Z. Thus by (52), we obtain Q7 =i, QF.
Q.E.D.
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