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Introduction.

The purpose of this note is to study compact and weakly compact homomorphisms
between algebras of continuous functions. For a completely regular Hausdorff space
$S$, we denote by $C(S)$ the algebra of all complex-valued continuous functions on $S$

endowed with its compact-open topology. M. Lindstr\"om and J. Llavana [4] gave
characterizations of compact and weakly compact homomorphisms from $C(S)$ to $C(T)$ ,
where $T$ and $S$ are completely regular Hausdorff spaces. Let $A$ and $B$ be closed
subalgebras of $C(S)$ and $C(T)$ respectively. Here we study compact and weakly compact
homomorphisms $\varphi$ from $A$ to $B$ .

After some preliminaries in \S 1, we introduce in \S 2 closed subalgebras of some type
which are called function algebras induced by uniform algebras. These subalgebras
contain $C(S)$ and algebras of analytic functions. We discuss in \S 2 compactness and
weak compactness of $\varphi$ in the case $A$ is a function algebra induced by a uniform algebra
and $\varphi$ is a composition operator. We give conditions under $\varphi$ is compact or weakly
compact and establish the relationship between compactness and weak compactness of $\varphi$ .

\S 1. Preliminaries.

For a completely regular Hausdorff space $X$, we denote by $C(X)$ the algebra of all
complex-valued continuous functions on $X$ endowed with its compact-open topology.
Throughout this note we let $S$ and $T$ denote completely regular Hausdorff spaces.

Let $A$ and $B$ be subalgebras of $C(S)$ and $C(T)$ respectively. Then we easily have
the following (cf. [6], [8]).

(a) Let $\varphi$ be a continuous linear operator from $A$ to $B$ . Then there is a continuous
mapping $\tau$ from $T$ to the dual space $A^{\prime}$ of $A$ with respect to the $w^{*}$-topology $\sigma(A^{\prime}, A)$

such that

$(*)$ $[\varphi(f)](y)=\tau(y)(f)$ , $f\in A$ and $y\in T$ .

(b) Let $\varphi$ be a continuous homomorphism from $A$ to $B$ . Then there is a continuous
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mapping $\tau$ from $T$ to $A^{\prime}$ with respect to the topology $\sigma(A^{\prime}, A)$ such that $(*)$ is satisfied
and $\tau(y)$ is a continuous homomorphism from $A$ to the complex field $C$ for any $y\in T$.

Let $X$ be a completely regular Hausdorff space. We say that $A$ is a function algebra
on $X$ if it is a closed subalgebra of $C(X)$ separating points in $X$ and containing constant
functions.

Now let $A$ and $B$ be function algebras on $S$ and $T$ respectively and let $\varphi$ be a
continuous homomorphism from $A$ to $B$ . The homomorphism $\varphi$ is called a composition
operator if there is a continuous mapping $\theta$ from $T$ to $S$ such that

$[\varphi(f)](y)=f(\theta(y))$ , $f\in A$ and $y\in T$ .

Let $A$ be a function algebra on $S$. We consider the following conditions on $A$ :
(1) For any non-trivial continuous homomorphism $\psi$ from $A$ to $C$, there is an

$\alpha\in S$ such that $\psi(f)=f(\alpha)$ for any $f\in A$ .
(2) For any $x_{0}\in S$ and any open neighborhood $V$ of $x_{0}$ , we can find a finite

number of functions $f_{1},$ $f_{2},$ $\cdots,f_{n}$ in $A$ and $\delta>0$ such that $f_{i}(x_{0})=0(i=1,2, \cdots, n)$

and $\bigcap_{i=1}^{n}\{x\in S:|f_{i}(x)|<\delta\}\subset V$.
The conditions (1) and (2) guarantee that any continuous homomorphism $\varphi$ from

$A$ to $B$ with $\varphi(1)=1$ is a composition operator. We easily see the following.

LEMMA 1.1. Let $A$ and $B$ be function algerbas on completely regular Hausdorff
spaces $S$ and $T$ respectively. Suppose that $A$ satisfies conditions (1) and (2). If $\varphi$ is a
continuous homomorphism from $A$ to $B$ with $\varphi(1)=1$ , then $\varphi$ is a composition operator.

PROOF. For any $y\in T,$ $\tau(y)$ in $t*$ ) is a non-trivial continuous homomorphism from
$A$ to $C$ by (b). Since $A$ satisfies condition (1), there is an $\alpha\in S$ such that $\tau(yXf)=fl\alpha)$

for any $f\in A$ . This $\alpha$ is uniquely determined since $A$ separates points of $S$. If we put
$\theta(y)=\alpha,$ $\theta$ is a mapping from $T$ to $S$ and $[\varphi(f)](y)=f(\theta(y))$ for $f\in A$ and $y\in T$. It
remains only to show that $\theta$ is continuous. If $y_{\lambda}\rightarrow y$ in $T$, then $\tau(y_{\lambda})\rightarrow\tau(y)$ in $\sigma(A^{\prime}, A)$ .
So $f(\theta(y_{\lambda}))=\tau(y_{\lambda}Xf)\rightarrow\tau(y)\omega=f(\theta(y))$ for $f\in A$ . From condition (2), for any open
neighborhood $V$ of $\theta(y)$ , there are $f_{1},$ $f_{2},$ $\cdots,f_{n}\in A$ and $\delta>0$ such that $f_{i}(\theta(y))=0$

$(i=1,2, \cdots, n)$ and $\bigcap_{i=1}^{n}\{x\in S:|f_{i}(x)|<\delta\}\subset V$. Since $f_{i}(\theta(y))=0,$ $|f_{i}(\theta(y_{\lambda}))|<\delta$ for any
$\lambda\geq\lambda_{O}$ for some $\lambda_{O}(i=1,2, \cdots, n)$ . Hence $\theta(y_{\lambda})\in V$ for $\lambda\geq\lambda_{O}$ and $\theta$ is continuous.

EXAMPLES. (i) Let $S$ be a completely regular Hausdorff space. Then $A=C(S)$

satisfies condition (1) (cf. [3]). $A$ evidently satisfies condition (2).
(ii) LetG be an open subset inCand letA $=H(G)$ be the algebra of all analytic

functions on $G$ . Then $H(G)$ satisfies conditions (1) and (2).
(iii) Let $G$ be an open polydisc in $C^{2}$ and let $H(G)$ be the algebra of all analytic

functions on $G$ . Then $H(G)$ has condition (1). The algebra $H(G)$ also satisfies condition (2).
(iv) Let X $=D\times J$, whereD $=\{z\in C:|z|<1\}$ and J $=(0,1)$ . We putA $=\{f\in C(X)$ ;

$f$ can be approximated uniformly by polynomials in $z$ and $t$ on any compact subset of
$X\}$ . Let $\varphi$ be a non-trivial continuous homomorphism from $A$ to $C$. If $\varphi(z)=\alpha$ and
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$\varphi(t)=\beta$ , then $\beta$ is a real number and $(\alpha, \beta)\in X$, where $z,$
$t$ are the coordinate functions.

This shows that $A$ satisfies condition (1). One sees that $A$ satisfies condition (2).

Let $S$ be a completely regular Hausdorff space. We say that $S$ is a $k_{R}$-space if a
complex-valued function $f$ on $S$ is continuous whenever $f|F$ is continuous on $F$ for
any compact subset $F$ of $S$ . The space $C(S)$ is complete if and only if $S$ is a $k_{R}$-space
(cf. [9]). A subset $H$ of $C(S)$ is called equicontinuous if for any $x\in S$ and any $\epsilon>0$ , there
is an open neighborhood $V$ofx such that $|f(y)-f(x)|<\epsilon$ for any$f\in H$and any $y\in V$.

In order to give a characterization of compact homomorphisms from $A$ to $B$ we
will need the following compactness criteria of Arzela-Ascoli type (cf. [4]).

LEMMA 1.2. Let $S$ be a completely regular Hausdorff $k_{R}$-space. Then a subset $H$

of $C(S)$ is relatively compact if and only if (i) $H$ is equicontinuous on $S$ and
(ii) $\{f(x):f\in H\}$ is bounded in $C$ for any $x\in S$ .

For given two locally convex spaces $E$ and $F$, we call a continuous linear operator
$\varphi$ from $E$ to $F$ is compact (resp. weakly compact) if it maps bounded subsets of $E$ to
relatively compact (resp. relatively weakly compact) subsets of $F$.

Let $A$ and $B$ be function algebras on $S$ and $T$ respectively, and let $\varphi$ be a composition
operator from $A$ to $B$ , that is, $\varphi$ is of the form $\varphi(f)=f\circ\theta$ , where $\theta$ is a continuous
mapping from $T$ to $S$ . It is not hard to see the following.

LEMMA 1.3. Let $S$ and $T$ be completely regular Hausdorff spaces and assume that
$T$ is a $k_{R}$-space. Let $A$ and $B$ be function algebras on $S$ and $T$ respectively. Then a
composition operator $\varphi$ from $A$ to $B$ is compact if and only $\iota f$ for any $y\in T$ any net
$y_{\alpha}\rightarrow y$ in $T$ implies that $supf\in F|f(\theta(y_{\alpha}))-f(\theta(y))|\rightarrow 0$ for any bounded set $F$ in $A$ .

PROOF. $M(\subset B)$ is equicontinuous on $T$ if and only if for any $y$ in $T$, any net
$y_{\alpha}\rightarrow y$ in $T$ implies that $\sup_{g\in M}|g(y_{\alpha})-g(y)|\rightarrow 0$ . Hence the lemma is clear by Lemma
1.2 since $B$ is closed in $C(T)$ .

\S 2. Compact and weakly compact composition operators.

Let $A_{0}$ be a uniform algebra on the maximal ideal space $M_{A_{0}}$ of $A_{0}$ . Let $\mathfrak{P}_{0}$ be
the family of all Gleason parts for $A_{0}$ and let $S$ be the union of members of a subfamily
$\mathfrak{P}$ of $\mathfrak{P}_{0}$ , that is, $S=\bigcup_{P\in \mathfrak{P}}P$ . Here $S$ is a completely regular Hausdorff space as a
subspace of $M_{A_{O}}$ . We set $A=\{f\in C(S):f$ can be approximated uniformly on $F$ by
functions in $A_{0}|S$ for any compact subset $F$ of $S$ }. Such an $A$ is called the function
algebra on $S$ induced by $A_{0}$ . It is the smallest closed subalgebra in $C(S)$ containing $A_{0}|S$ .
We say that $P$ is a non-trivial part for $A$ if it is a non-trivial Gleason part for $A_{0}$ which
is in $\mathfrak{P}$ , and $P$ is atrivial part for $A$ if it is atrivial Gleason part for $A_{0}$ and $P\in \mathfrak{P}$ .

EXAMPLES. (i) Let $S$ be a completely regular Hausdorff space and let $\beta S$ be the
\v{C}ech compactification of $S$ . Then $C(S)$ is the function algebra on $S$ induced by the
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uniform algebra $C(\beta S)$ . Any part for $C(S)$ is trivial.
(ii) Let $D=\{z\in C:|z|<1\}$ and let $A_{0}$ be the disc algebra on $\overline{D}$ . Then $A=H(D)$

is the function algebra on $D$ induced by $A_{0}$ and $D$ is the unique part for $A$ .
(iii) Let $G=\{z=(z_{1}, z_{2})\in C^{2} : |z_{1}|<1, |z_{2}|<1\}$ and let $A_{0}$ be the polydisc algebra

on $\overline{G}$ . Then $A=H(G)$ is the function algebra on $G$ induced by $A_{0}$ and $G$ is the unique
part for $A$ .

(iv) Let $X=D\times J$, where $D=\{z\in C;|z|<1\}$ and $J=(0,1)$ . Let $A_{0}$ be the cylinder
algebra, that is, $A_{0}=\{f\in C(\overline{D}\times[0,1]):f$ can be approximated uniformly by polyno-
mials in $z$ and $t$ on $\overline{D}\times[0,1]$ }. Then $A$ on $D\times J$ of Example (iv) in \S 1 is the function
algebra on $X$ induced by $A_{0}$ and any part for $A$ is of the form $D\times\{a\}$ for $a\in J$.

Let $A$ be the function algebra on $S$ induced by a uniform algebra $A_{0}$ and let $B$ be
a function algebra on $T$. We consider a continuous homomorphism $\varphi$ from $A$ to $B$ .
Here we confine our attention to the case $\varphi$ is a composition operator. We are now in
a position to discuss compactness of $\varphi$ . First we have the following.

THEOREM 2.1. Let $A_{0}$ be a uniform algebra on $M_{A_{O}}$ and let $A$ be thefunction algebra
on $S$ induced by $A_{0}$ . Let $B$ be a function algebra on a completely regular Hausdorff
$k_{R}$-space T. Let $\varphi$ be a compact composition operator from $A$ to B. Then for any $y\in T$,
there is an open neighborhood $U$ of $y$ such that $\theta(U)$ is contained in a part for $A$ .

PROOF. Suppose that there is a $y_{0}\in T$ such that $\theta(U)$ is not contained in the part
$P$ for $A$ containing $\theta(y_{0})$ for any open neighborhood $U$ of $y_{0}$ . Let now $I$ be any fixed
open neighborhood base at $y_{0}$ in $T$. Then the order relation $U\leq V$ if and only if $U\subset V$

directs $I$. If we take $y_{U}\in U$ such that $\theta(y_{U})\not\in P$ for any $U\in I$, then $\theta(y_{U})$ is in a different
part $P_{1}$ for $A$ from $P$ . Hence $\sup\{|f(\theta(y_{U}))-f(\theta(y_{0}))| : f\in A_{0}, \Vert f\Vert\leq 1\}=2$ , and so for
any $U\in I$, there is an $f_{U}\in A_{0},$ $\Vert f_{U}\Vert\leq 1$ such that $1\leq|f_{U}(\theta(y_{U}))-f_{U}(\theta(y_{0}))|$ . Since
$A_{0}|S\subset A,$ $F=\{f_{U}|S:U\in I\}$ is a bounded set in $A$ . From this,

$1\leq|f_{U}(\theta(y_{U}))-f_{U}(\theta(y_{0}))|\leq\sup_{g\in F}|g(\theta(y_{U}))-g(\theta(y_{0}))|$

for any $U\in I$. Since $\varphi$ is compact and $y_{U}\rightarrow y_{0}$ , this is a contradiction from Lemma 1.3.

REMARK. In Theorem 2.1, if $T$ is connected, there is a uniquely determined part
$P$ for $A$ which is independent of $y$ in $T$.

Next we will give the converse of Theorem 2.1 under a suitable assumption. We
begin with explanation of the condition that $A$ has some analytic property. Let $P$ be a
non-trivial part for the function algebra $A$ induced by a uniform algebra. We consider
the following condition:

$(\alpha)$ For any $x\in P$, there are an open neighborhood $V$ of $x$ in $P$ and a
homeomorphism $\rho$ from the open unit polydisc $D^{n}$ (disc if $n=1,$ $n$ depends on x) onto
$V$ such that $ f\circ\rho$ is analytic on $D^{n}$ for all $f\in A$ .
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If any non-trivial part $P$ for $A$ satisfies this condition, then we say $A$ has $(\alpha)$ . This
property $(\alpha)$ can be found in [6].

REMARK. All of function algebras $C(S),$ $H(D),$ $H(G)$ and $A$ on $D\times J$ of Examples
in \S 2 have $(\alpha)$ .

Here we wish to show the converse of Theorem 2.1.

THEOREM 2.2. Suppose that the function algebra $A$ on $S$ induced by a uniform
algebra $A_{0}$ has $(\alpha)$ and $S$ is a locally compact Hausdorff space. Let $\varphi$ be a continuous
composition operator from $A$ to a function algebra $B$ on a completely regular Hausdorff
$k_{R}$-space T. Iffor any $y$ in $T$ there is an open neighborhood $U$ of $y$ such that $\theta(U)$ is
contained in a part for $A$ , then $\varphi$ is compact.

PROOF. From Lemma 1.3, in order to prove the theorem, it suffices to show that
if $y_{\alpha}\rightarrow y$ in $T$, then $supf\in F|f(\theta(y_{\alpha}))-f(\theta(y))|\rightarrow 0$ for any bounded set $F$ in $A$ . By the
hypothesis, for any $y\in T$, there is an open neighborhood $U$ of $y$ such that $\theta(U)$ is
contained in a part $P$ for $A$ . Let $y_{\alpha}\rightarrow y$ in $T$ and let $F$ be a bounded set in $A$ . If $\{\theta(y)\}$

is a trivial part for $A$ , there is an open neighborhood $U$ of $y$ such that $\theta(U)=\{\theta(y)\}$ . It
is simple to check that $supf\in F|f(\theta(y_{\alpha}))-f(\theta(y))|\rightarrow 0$ as $y_{\alpha}\rightarrow y$ . Next, let the part $P$

containing $\theta(y)$ be non-trivial. From $(\alpha)$ , there is a homeomorphism $\rho$ from $D^{n}$ onto an
open neighborhood $V$ of $\theta(y)$ in $P$ such that $ f\circ\rho$ is analytic on $D^{n}$ for any $f\in A$ .
Since $S$ is locally compact, there is an open neighborhood $W$ of $\rho^{-1}(\theta(y))$ in $D^{n}$ such
that $\rho(W)$ is an open neighborhood of $\theta(y)$ inPand the closure $\overline{p(W)}$ of $\rho(W)$ inSis
compact. Since $F$ is a bounded set in $A$ , $supf\in F\Vert f\Vert_{\overline{\rho\langle W)}}<\infty$ . Since $y_{\alpha}\rightarrow y,$

$\theta(y_{\alpha})\rightarrow\theta(y)$ in
$S$ . It implies that for some $\alpha_{0}\theta(y_{\alpha})\in\rho(W)$ for every $\alpha\geq\alpha_{0}$ since $\theta(U)\subset P$ . Here for any
$\epsilon>0$ there is an open neighborhood $W_{1}(W_{1}\subset W)$ of $\rho^{-1}(\theta(y))$ in $D^{n}$ such that for any
$z\in W_{1}$ and any $f\in F$

$|f(\rho(z))-f(\rho(\rho^{-1}(\theta(y))))|<\epsilon$ ,

since $ f\circ\rho$ is analytic on $W$ for any $f\in F$and $supf\in F\Vert f\Vert_{\overline{\rho\langle W)}}<\infty$ . Now since $\theta(y_{\alpha})\in\rho(W_{1})$

for $\alpha\geq some\alpha_{1},$ $\theta(y_{\alpha})=\rho(z_{\alpha})$ for a $z_{\alpha}\in W_{1}(\alpha\geq\alpha_{1})$ . Hence

$\sup_{fF}|f(\theta(y_{\alpha}))-f(\theta(y))|=\sup_{f\in F}|f(\rho(z_{\alpha}))-f(\rho(\rho^{-1}(\theta(y))))|<\epsilon$

for $\alpha\geq\alpha_{1}$ . The proof is completed.

REMARKS. (1) When $A=C(S)$ , the hypotheses in Theorem 2.2 that $S$ is locally
compact and $A$ has $(\alpha)$ are unnecessary since any part for $A$ is trivial. Hence if $A=C(S)$ ,

we have the following by Theorems 2.1 and 2.2: Assume that $S$ and $T$ are completely
regular Hausdorff spaces and $T$ is a $k_{R}$-space. A continuous homomorphism $\varphi$ from
$C(S)$ to $C(T)$ is compact if and only if $\theta$ is locally constant. This was given in [4,

Proposition 3].
(2) The identity mapping $\varphi$ from $H(D)$ to itself is compact by Theorem 2.2. This
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also can be seen in [5]. On the other hand, ifA is the function algebra on S $=D\cup\{1\}$

induced by the disc algebra on $\overline{D}$, then the identity mapping from $A$ to itself is not
compact by Theorem 2.1.

Our next aim is to find out conditions for a weakly compact composition operator
to be compact. We begin with the following theorem. It is proved by using a way similar
to the argument in [7, Theorem 1].

THEOREM 2.3. Let $A$ be the function algebra on $S$ induced by a umform algebra $A_{0}$

and let $B$ be afunction algebra on a locally compact Hausdorffspace T. Let $\varphi$ be a weakly
compact composition operator from $A$ to B. Then for any $y\in T$, there is an open
neighborhood $U$ of $y$ such that $\theta(U)$ is contained in a part for $A$ .

$PR\infty F$ . For any $y_{0}\in T$, let $P_{O}$ be the part for $A$ containing $\theta(y_{0})$ . Put
$W=\{z\in T;\theta(z)\in P_{0}\}$ . In order to prove the theorem, it suffices to show that $W$ is a
neighborhood of $y_{0}$ . Assume the contrary. Then $W$ does not contain any open
neighborhood of $y_{0}$ . Since $T$ is locally compact, we can choose an open neighborhood
$V_{1}$ of $y_{0}$ such that $\overline{V}_{1}$ is compact. Put $\epsilon_{n}=1/(n+2)^{2}$ for any $n$ . Now if we take a $y_{1}$ in
$V_{1}\backslash W$, then $\theta(y_{1})$ is in a different part for $A$ from $P_{0}$ . Hence there is an $f_{1}\in A_{0},$ $\Vert f_{1}\Vert\leq 1$

such that $[\theta(y_{1})](f_{1})=0,$ $[\theta(y_{0})](f_{1})>1-\epsilon_{1}$ . Put $V_{2}=\{z\in V_{1} : |[\theta(z)](f_{1})|>1-\epsilon_{1}\}$ .
Then $V_{2}$ is an open neighborhood of $y_{0}$ . Take $y_{2}\in V_{2}\backslash W$. Then $\theta(y_{2})$ is in a different
part for $A$ from $P_{0}$ . So there is a $g_{2}\in A_{0},$ $\Vert g_{2}\Vert\leq 1$ such that $[\theta(y_{2})](g_{2})=0$ ,
$[\theta(y_{0})](g_{2})>1-\epsilon_{2}$ . Set $f_{2}=f_{1}g_{2}$ . Then $[\theta(y_{1})](f_{2})=[\theta(y_{2})](f_{2})=0$ , $[\theta(y_{0})](f_{2})>$

$(1-\epsilon_{1})(1-\epsilon_{2})$ and $|[\theta(y_{2})](f_{1})|>1-\epsilon_{1}$ . Continuing this process, we obtain a sequence
$\{y_{n}\}$ in $V_{1}$ and a sequence $\{f_{n}\}$ in $A_{0}$ such that $\Vert f_{n}\Vert\leq 1$ for any $n$ , and

$[\theta(y_{m})](f_{n})=0$ $(1\leq m\leq n)$

(1) $[\theta(y_{0})](f_{n})>(1-\epsilon_{1})(1-\epsilon_{2})\cdots(1-\epsilon_{n})$

$|[\theta(y_{n})](f_{m})|>(1-\epsilon_{1})\cdots(1-\epsilon_{m})$ $(1\leq m<n)$ .
Since $\{y_{n}\}$ is contained in the compact set $\overline{V}_{1}$ , there is a cluster point $z_{0}$ of $\{y_{n}\}$ . Let $\{y_{\alpha}\}$

be a net converging to $z_{0}$ which consists of the members of $\{y_{n}\}$ . By weak compactness
of $\varphi$ , the weak closure $F$ of $\{\varphi(f_{n}|S)\}$ in $B$ is a weakly compact subset in $B$, since $\{f_{n}|S\}$

is a bounded set in $A$ . For any $g\in F,$ $g(y_{\alpha})\rightarrow g(z_{0})$ . Now put $\hat{y}_{\alpha}(g)=g(y_{\alpha})$ and $\hat{z}_{0}(g)=g(z_{0})$

for any $g\in F$. Then $\hat{y}_{\alpha}$ and $\hat{z}_{0}$ are continuous functions on $F$ with respect to the weak
topology $\sigma(B, B^{\prime})$ . Since $\hat{y}_{\alpha}(f)\rightarrow\hat{z}_{O}(f)$ for any $f\in F$ and $F$ is a compact Hausdorff space
with respect to $\sigma(B, B^{\prime}),\hat{y}_{\alpha}$ converges quasi-uniformly to $\hat{z}_{O}$ on $F$ (cf. [1, p. 268]). Hence
for $0<\epsilon<1/4$ , and for any $\alpha_{0}$ , there are $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{m}\geq\alpha_{0}$ such that

$\min_{1\leq i\leq m}|\hat{y}_{\alpha_{i}}(g)-\hat{z}_{O}(g)|<\epsilon$

for any $g\in F$. In particular the inequality
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(2) $\min_{1\leq i\leq m}|\varphi(f_{n}|S)(y_{\alpha_{i}})-\varphi(f_{n}|S)(z_{0})|<\epsilon<1/4$

holds for any $n$ . Put $N=\max\{n_{1}, n_{2}, \cdots, n_{m}\}$ , where $n_{i}$ is a positive integer such that
$y_{\alpha_{i}}=y_{n_{i}}$ . Then we have by (1)

$\varphi(f_{N}|S)(y_{n_{i}})=f_{N}(\theta(y_{n_{i}}))=[\theta(y_{n_{i}})](f_{N})=0$ $(i=1,2, \cdots, m)$ .

Take an $M>N$ such that

(3) $|f_{N}(\theta(y_{M}))-f_{N}(\theta(z_{0}))|<1/6$ .

Hence, from (1) and (3)

$|f_{N}(\theta(z_{0}))|>|f_{N}(\theta(y_{M}))|-1/6=|[\theta(y_{M})](f_{N})|-1/6$

$>(1-\epsilon_{1})(1-\epsilon_{2})\cdots(1-\epsilon_{N})-1/6>1/3$ .
It follows that,

$|\varphi(f_{N}|S)(y_{n_{i}})-\varphi(f_{N}|S)(z_{0})|=|\varphi(f_{N}|S)(z_{0})|=|f_{N}(\theta(z_{0}))|>1/3$

holds for every $1\leq i\leq m$ . This contradicts (2) and the proof is completed.

Thus, by Theorems 2.2 and 2.3, we can give conditions under any weakly compact
composition operator from $A$ to $B$ is compact.

THEOREM 2.4. Let $A$ be the function algebra on $S$ induced by a uniform algebra
$A_{0}$ . Let $B$ be a function algebra on T. Assume that $S$ and $T$ are both locally compact
Hausdorff spaces and $A$ satisfies the condition $(\alpha)$ . Then any weakly compact composition
operator from $A$ to $B$ is compact.

Finally we remark that if $A$ is even a closed subalgebra in $C(S)$ containing $A_{0}|S$

in place of a function algebra on $S$ induced by $A_{O}$ , all of theorems in \S 2 hold true by
defining that a part for $A$ is a member of $\mathfrak{P}$ as before.
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