A Normal Form of First Order Partial Differential Equations with Singular Solution

Shyuichi IZUMIYA

Hokkaido University
(Communicated by T. Nagano)

Abstract. We give a local normal form of first order partial differential equations with singular solution up to contact diffeomorphism.

In [3] we establish the notion of first order differential equations with singular solution by using the method which is originated in Kossowski [4]. In this note we give a local normal form of such equations up to contact diffeomorphism. The method using here depends heavily on ([3], [4]), however we have never seen a normal form theorem for such a class of equations. We now review notions and results in [3]. A first order differential equations (or briefly, an equation) is a relation F=0, where $F:(J^1(\mathbb{R}^n,\mathbb{R}),z_0)\to$ (R, 0) is a submersion germ on the 1-jet space of functions of *n*-variables. Let θ be the canonical contact form on $J^1(\mathbf{R}^n, \mathbf{R})$ which is given by $\theta = dy - \sum_{i=1}^n p_i dx_i$, where (x, y, p)are canonical coordinates of $J^1(\mathbb{R}^n, \mathbb{R})$. Throughout the remainder of this note, we shall consider $J^1(\mathbf{R}^n, \mathbf{R})$ as a contact manifold whose contact structure is given by the canonical 1-form. The notion of a solution of an equation is given by the philosophy of Lie. A geometric solution (or, a Legendrian solution) of F=0 is defined to be an immersion $i: (L, q_0) \rightarrow (J^1(\mathbb{R}^n, \mathbb{R}), z_0)$ from an *n*-dimensional manifold such that $i * \theta = 0$ and $i(L) \subset F^{-1}(0)$ (i.e. a Legendrian submanifold which is contained in $F^{-1}(0)$). The following notion is quite important to consider the notion of singular solutions. We say that z_0 is a contact singular point (or, characteristic point) if $\theta(T_{z_0}F^{-1}(0))=0$. We denote the set of contact singular points by $\Sigma_c(F)$. We call it a contact singular set of F. The notion of singular solutions (in the classical sense) has been appeared accompanied by the notion of complete solutions in classical treatises. A complete solution of F=0 is defined to be a foliation whose leaves are geometric solutions of F=0. We defined the notion of singular solutions (in the strict sense) as follows. A geometric solution $i: (L, q_0) \rightarrow (J^1(\mathbb{R}^n, \mathbb{R}), z_0)$ of F=0 is called a singular solution (in the strict sense) if it satisfies the following condition:

(*) There exists a representative \tilde{i} : $U \rightarrow F^{-1}(0)$ of i such that $\tilde{i}(V)$ is not contained

in a leaf of any complete solutions of F=0 for any open subset $V \subset U$.

In [3] we have shown the following results.

LEMMA. An equation $F: (J^1(\mathbb{R}^n, \mathbb{R}), z_0) \rightarrow (\mathbb{R}, 0)$ has a singular solution (in the strict sense) if and only if $\Sigma_c(F)$ is an n-dimensional submanifold. Moreover, $\Sigma_c(F)$ is a singular solution of F=0.

We call the equation which satisfies the condition in Lemma an equation with singular solution.

We remark that z_0 is a contact singular point of F=0 if and only if $F(z_0) = \partial F/\partial p_i(z_0) = (\partial F/\partial x_i + p_i(\partial F/\partial z_i))(z_0) = 0$. So we can easily check that $\Sigma_c(F)$ is a submanifold or not. Our main result is as follows:

THEOREM. Let $F: (J^1(\mathbf{R}^n, \mathbf{R}), z_0) \rightarrow (\mathbf{R}, 0)$ be an equation with singular solution. Then there is a contact diffeomorphism germ $f: (J^1(\mathbf{R}^n, \mathbf{R}), z_0) \rightarrow (J^1(\mathbf{R}^n, \mathbf{R}), 0)$ such that $f(F^{-1}(0)) = \{y = 0\}$.

For the proof we quote the following very important result.

Kostant-Sternberg's theorem. ([2]) Let (P, ω) be a symplectic manifold, L a Lagrangian submanifold and α a smooth 1-form on a neighbourhood of L in P with $\alpha | L = 0$ and $d\alpha = \omega$. Then there exist a tubular neighbourhood V of L in P, a neighbourhood U of zero section L in T^*L and a unique "local" vector bundle isomorphism $K: (V, L) \rightarrow (U, L)$ such that K is the identity on L and $K^*\theta_L = \alpha$. Here, θ_L is the canonical 1-form on T^*L .

Let $F: (J^1(\mathbb{R}^n, \mathbb{R}), z_0) \to (\mathbb{R}, 0)$ be an equation such that z_0 is a contact singular point. If $F_y = 0$ at z_0 , then $F_{x_i} = F_{p_i} = 0$ at z_0 for any $i = 1, \dots, n$. This contradicts the fact that F is a submersion germ. Then we have $F_y \neq 0$. By the implicit function theorem, there exists a function germ $h: (T^*\mathbb{R}^n, (x_0, p_0)) \to (\mathbb{R}, y_0)$ such that $F^{-1}(0) = \{(x, y, p) \mid y = h(x, p)\}$, where $T^*\mathbb{R}^n$ is the cotangent bundle of \mathbb{R}^n and $z_0 = (x_0, y_0, p_0)$. Here, we consider that $J^1(\mathbb{R}^n, \mathbb{R}) \cong T^*\mathbb{R}^n \times \mathbb{R}$. In the terminology of Kossowski [4] an equation of the above form is called a graphlike equation. The following method is originated by Kossowski. We now define a map germ

$$graph(h): (T^*R^n, (x_0, p_0)) \rightarrow (J^1(R^n, R), z_0)$$

by

$$graph(h)(x, p) = (x, h(x, p), p)$$
.

We define a 1-form on T^*R^n by $\theta_h = graph(h)^*\theta = dh - \sum_{i=1}^n p_i dx_i$. Then we have the following one to one correspondence:

$$\{L \mid L \text{ is a solution of } y - h(x, p) = 0\}$$

$$\operatorname{graph}(h) \iint \Pi_{*}$$

$$T * \mathbf{P}^{n} \text{ is a maximal integral submanifold of } \theta = 0$$

 $\{L \mid i: L \subset T^*R^n \text{ is a maximal integral submanifold of } \theta_h = 0\}$,

where $\Pi(x, y, p) = (x, p)$ and $\Pi_*(L) = \Pi(L)$. Thus a solution of a graphlike equation y - h(x, p) = 0 may be regarded as a maximal isotropic submanifold of (T^*R^n, θ_h) . Since $-d\theta_h = \sum_{i=1}^n dp_i \wedge dx_i$ is the canonical symplectic two form, a solution of y - h(x, p) = 0 is a Lagrangian submanifold of (T^*R^n, ω) , where $\omega = -d\theta_h$. For the definition and properties of Lagrangian submanifolds, see [1]. Under the above preparations, we can prove the normal form theorem.

PROOF OF THEOREM. We have $F^{-1}(0) = \{y - h(x, p) = 0\}$ and $G_h^{-1}(\Sigma_c(F)) = L_h$ is a Lagrangian submanifold of T^*R^n on which θ_h vanishes, where $\theta_h = dh - \sum_{i=1}^n p_i dx_i$. Kostant-Sternberg's theorem asserts that there exist a tubular neighbourhood V of L_h in T^*R^n and a unique (local) vector bundle isomorphism $K \colon V \to T^*L_h$ such that K is identity on L_h and $K^*\theta_{L_h} = -\theta_h$. We denote local coordinates of L_h as (x_1', \dots, x_n') and the corresponding canonical coordinates of T^*L_h' is denoted by (x_1', \dots, x_n') , $x_n' \mapsto x_n' \mapsto x_n'$. We define a diffeomorphism germ $\Phi \colon V \times R \to T^*L_h \times R$ by $\Phi(x, p, y) = (K(x, p), y - h(x, p))$. On the other hand, we have the canonical contact structure on $T^*L_h \times R$ given by the contact form $dy' - \sum_{i=1}^n p_i' dx_i'$, where $(x_1', \dots, x_n', p_1', \dots, p_n', y')$ is the canonical coordinate on $T^*L_h \times R$ induced by the previous arguments. It follows that $\Phi^*(dy' - \sum_{i=1}^n p_i' dx_i') = dy - dh + \theta_h = dy - \sum_{i=1}^n p_i dx_i$. Since $V \times R$ may be considered as an open set of $J^1(R^n, R)$, Φ is a local contact diffeomorphism. By definition, we have $\Phi(\{y = h(x, p)\}) = \{y' = 0\}$ and $\Phi(L_h) = \{p_1' = \dots = p_n' = 0\}$. This completes the proof.

We have some examples of first order differential equations with singular solution in [3], however we only give a typical example here.

Example. Consider the following equation around the origin:

$$y-p^m=0$$
 $(n=1, m \ge 2)$.

We can calculate that $\Sigma_{\pi}(F) = \Sigma_{c}(F) = \{y = p = 0\}$. We consider the following diffeomorphism germ at the origin:

$$\begin{cases} X = x - \frac{m}{m-1} p^{m-1} \\ Y = y - p^m \\ P = p \end{cases}$$

Then it is easy to show that this local diffeomorphism is a contact diffeomorphism and it sends $\{y-p^m=0\}$ to $\{Y=0\}$.

Finally, we remark that the normal form theorem can be easily generalized to the case for overdetermined systems of first order equations.

References

- [1] V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, Vol. 1, Monographs Math. 82 (1985), Birkhäuser.
- [2] M. GOLUBITSKY and V. GUILLEMIN, Contact equivalence for Lagrange manifolds, Adv. in Math. 15 (1975), 375–387.
- [3] S. IZUMIYA, Singular solutions of first order differential equations, Bull. London Math. Soc. 26 (1994), 69-74.
- [4] M. Kossowski, First order partial differential equations with singular solution, Indiana Univ. Math. J. 35 (1986), 209-223.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, HOKKAIDO UNIVERSITY, SAPPORO, 060 JAPAN.