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Abstract. We give a local normal form of first order partial differential equations with singular solution
up to contact diffeomorphism.

In [3] we establish the notion of first order differential equations with singular
solution by using the method which is originated in Kossowski [4]. In this note we give
a local normal form of such equations up to contact diffeomorphism. The method using
here depends heavily on ([3], [4]), however we have never seen a normal form theorem
for such a class of equations. We now review notions and results in [3]. A first order
differential equations (or briefly, an equation) is a relation F=0, where F: (J'(R", R), zo)—
(R, 0) is a submersion germ on the 1-jet space of functions of n-variables. Let 6 be the
canonical contact form on J*(R", R) which is given by 6 =dy—> }_, p;dx;, where (x, y, p)
are canonical coordinates of J}(R", R). Throughout the remainder of this note, we shall
consider J*(R", R) as a contact manifold whose contact structure is given by the canonical
1-form. The notion of a solution of an equation is given by the philosophy of Lie. 4
geometric solution (or, a Legendrian solution) of F=0 is defined to be an immersion
i: (L, qo)~>(J(R", R), zy) from an n-dimensional manifold such that i*¢=0 and
i(Lyc F~1(0) (i.e. a Legendrian submanifold which is contained in F~(0)). The following
notion is quite important to consider the notion of singular solutions. We say that z,
is a contact singular point (or, characteristic point) if 6(T, . F~'(0)) =0. We denote the set
of contact singular points by X (F). We call it a contact singular set of F. The notion
of singular solutions (in the classical sense) has been appeared accompanied by the
notion of complete solutions in classical treatises. A complete solution of F=0 is de-
fined to be a foliation whose leaves are geometric solutions of F=0. We defined the
notion of singular solutions (in the strict sense) as follows. A geometric solution
i: (L, qo)=(J(R", R), z4) of F=0 is called a singular solution (in the strict sense) if it
satisfies the following condition:

(*) There exists a representative i: U—F~1(0) of i such that (V) is not contained
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in a leaf of any complete solutions of F=0 for any open subset V< U.
In [3] we have shown the following results.

LEMMA. An equation F: (JY(R", R), z;)—(R, 0) has a singular solution (in the strict
sense) if and only if Z (F) is an n-dimensional submanifold. Moreover, X (F) is a singular
solution of F=0.

We call the equation which satisfies the condition in Lemma an equation with
singular solution.

We remark that z, is a contact singular point of F=0 if and only if
F(zo,)=0F/0p;(z5) =(0F/0x;+ p{0F|0z;)z0)=0. So we can easily check that Z(F) is a
submanifold or not. Our main result is as follows:

THEOREM. Let F: (JY(R", R), z;)—(R, 0) be an equation with singular solution. Then
there is a contact diffeomorphism germ f: (JY(R", R), zo)—>(J(R", R),0) such that
SFH0)={y=0}.

For the proof we quote the following very important result.

KOSTANT-STERNBERG’S THEOREM. ([2]) Let (P, w) be a symplectic manifold, L a
Lagrangian submanifold and o. a smooth 1-form on a neighbourhood of L in P with oc|L =0
and do=w. Then there exist a tubular neighbourhood V of L in P, a neighbourhood U
of zero section L in T*L and a unique *“local”’ vector bundle isomorphism K : (V, L)—(U, L)
such that K is the identity on L and K*0, =a. Here, 0, is the canonical 1-formon T*L.

Let F: (JY(R", R), z,)—(R, 0) be an equation such that z, is a contact singular
point. If F,=0 at z,, then F, =F, =0 at z, for any i=1, - - -, n. This contradicts the
fact that F is a submersion germ. Then we have F,#0. By the implicit function
theorem, there exists a function germ h: (T*R", (x,, po))—(R, y,) such that F~(0)=
{(x, y, p)|y="h(x, p)}, where T*R" is the cotangent bundle of R" and z,=(Xo, Yo, Po)-
Here, we consider that J}(R", R)= T*R" x R. In the terminology of Kossowski [4] an
equation of the above form is called a graphlike equation. The following method is
originated by Kossowski. We now define a map germ

graph(h): (T*R", (x,, po)—(J/(R", R), z,)

by

graph(h)(x, p)=(x, h(x, p), p) .

We define a 1-form on T*R" by 6,=graph(hy*6=dh—) ;_, p.dx;. Then we have the
following one to one correspondence:

{L | L is a solution of y— h(x, p)=0}
graph(h) Il m,

{L | i: Lc T*R" is a maximal integral submanifold of 0,=0},
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where I1(x, y, p)=(x, p) and II (L)=II(L). Thus a solution of a graphlike equation
y—h(x, p)=0 may be regarded as a maximal isotropic submanifold of (T*R", 0,). Since
—d0,=Y7_, dp; A dx; is the canonical symplectic two form, a solution of y—h(x, p)=0
is a Lagrangian submanifold of (T*R", w), where w= —d#f,. For the definition and
properties of Lagrangian submanifolds, see [1]. Under the above preparations, we can
prove the normal form theorem.

PROOF OF THEOREM. We have F~!(0)={y—h(x, p)=0} and G, {(Z(F)=L, is a
Lagrangian submanifold of 7*R" on which 6, vanishes, where 6,=dh—Y7_ p.dx;.
Kostant-Sternberg’s theorem asserts that there exist a tubular neighbourhood ¥V of
L, in T*R" and a unique (local) vector bundle isomorphism K: V= T*L, such that K
is identity on L, and K*8; = —6,. We denote local coordinates of L, as (x}, - - -, x7)
and the corresponding canonical coordinates of T*L; is denoted by (x}, - - -,x., pi,
***,pn)- We define a diffeomorphism germ &: VxR—-T*L,xR by &(x,p,y)=
(K(x, p), y—h(x, p)). On the other hand, we have the canonical contact structure on
T*L,x R given by the contact form dy’'—Y7_. pidx{, where (x|, -, x5, ph, *°»
Pn» ¥') is the canonical coordinate on 7T*L, x R induced by the previous arguments.
It follows that ®*(dy'—Y [_, pidx;)=dy—dh+0,=dy—>"_, p,dx,. Since VxR may
be considered as an open set of J!(R", R), @ is a local contact difftomorphism. By
definition, we have &({y =h(x, p)})={y'=0} and &(L,)={p} = - - =p,=0}. This com-
pletes the proof.

We have some examples of first order differential equations with singular solution
in [3], however we only give a typical example here.

ExaMPLE. Consider the following equation around the origin:
y—p"=0 n=1,m=2).

We can calculate that X (F)=X(F)={y=p=0}. We consider the following diffeo-
morphism germ at the origin:

X=x——" pm !
m—1

Y=y—p"

P=p.

Then it is easy to show that this local diffeomorphism is a contact diffecomorphism and
it sends {y —p™=0} to { Y=0}.

Finally, we remark that the normal form theorem can be easily generalized to the
case for overdetermined systems of first order equations.
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