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Abstract. Starting from a trivial pure state Ψ 0, we construct non-trivial tracial states (Ψ i) on the θ -deformed

2m-plane Calg (R2m
θ ). Furthermore we generalize Ψ i to another tracial state on Calg (R2m

θ ). We study extreme

points of the tracial state space of Calg (R2m
θ ) in the case that deformation parameters are irrational numbers. Non-

trivial pure states (Φk
t ) on Calg (R2m

θ ) are also given.

1. Introduction

The deformations of funtion algebras by using anti-symmetric real-valued matrix θ =
(θij ) are called the θ -deformations (cf. [3],[4]). The C∗-algebra C(T m

θ ) (cf.[10]) correspond-
ing to the algebra of continuous functions on the noncommutative torus T m

θ is well-known as
an example of θ -deformations. Besides, in[3] various examples of θ -deformations are studied
in detail.

In this paper, we restrict our attention to the θ -defomed 2m-plane Calg(R2m
θ ). The al-

gebra Calg(R2m
θ ) is corresponding to the unital ∗-algebra of polynomial functions on the

θ -deformed 2m-plane R2m
θ . The purpose of this paper is to construct non-trivial tracial states

on Calg(R2m
θ ) for every m ∈ N. On the other hand, an algebraic probability space (cf. [1]) is

defined to be a pair (A, ϕ), where A is a unital ∗-algebra and ϕ is a state on A. The notion is
obtained by considering a generalization of random variables and their expectation values in
probability theory.

Our aim is to give non-trivial examples of algebraic probability spaces. To that end, it

is crucial to give a criterion for the trivial pure state Ψ 0 on Calg(R2m
θ ). Suggested by this

criterion, we construct a tracial class Ψ i , and its generalization.
We study also extreme points of the tracial state space in the case that deformation pa-

rameters θij are irrational numbers. Further investigation for the tracial states on Calg(R2m
θ )

will be given in the forthcoming paper.
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2. Preliminaries

In this paper, we use ¯ instead of ∗-operation in consideration of the simplification of

the description. We begin by recalling the definition of the θ -deformed 2m-plane Calg(R2m
θ )

(cf.[3]) which is a fundamental example of θ -deformations.

DEFINITION 1. Let Calg(R2m
θ ) be the unital ∗-algebra generated by m elements zi

(i = 1, . . . ,m) with the commutation relations:

zizj = λij zj zi

z̄i z̄j = λij z̄j z̄i

zi z̄j = λji z̄j zi (1 ≤ i, j ≤ m) . (1)

Here λij is defined as λij = e2πiθij = λji , where θ = (θij ) is an anti-symmetric real-valued
matrix of degree m.

3. Tracial state Ψ i

We give the notion of tracial state on ∗-algebra.

DEFINITION 2. Let A be a unital ∗-algebra and ϕ be a linear functional ϕ : A → C.
We say that ϕ is a state on A if ϕ satisfies the properties:

1. ϕ(āa) ≥ 0 (∀a ∈ A),
2. ϕ(1A) = 1

where 1A is the unit element of A. The set of states of an algebra A forms a convex set which
is called the state space. An extreme point of state space is called a pure state. On the other
hand, a non-extreme point of state space is called a mixed state.

DEFINITION 3. A state ϕ is called a tracial state if ϕ has the property: ϕ(xy) = ϕ(yx)

for ∀x, y ∈ A. The set of tracial states forms a convex set which is called the tracial state
space.

First of all, let us recall a trivial state Ψ 0 on Calg(R2m
θ ).

DEFINITION 4. Let n1, n
′
1, . . . , nm, n′

m be in Z≥0, and consider the monomial X =
(z1)n1(z̄1)n

′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ). We set Ψ 0 as a linear functional satisfying

Ψ 0(X) :=
{

1 if n1 = n′
1 = · · · = nm = n′

m = 0 ,

0 otherwise
(2)

for X.



TRACIAL STATES ON THE θ -DEFORMED PLANE 539

We characterize this trivial functional from a little general viewpoints. We denote the unit

element of Calg(R2m
θ ) by 1. First we consider a map φ : Calg(R2m

θ ) → C which satisfying

φ(zizj ) := λij φ(zj z̄i) := λij φ(zi z̄j ) := λji

φ(z̄j z̄i) := λji φ(zj zi) := 1 φ(z̄j zi) := 1

φ(z̄i z̄j ) := 1 φ(z̄izj ) := 1 φ(zi) := 0

φ(z̄i ) := 0 φ(1) := 1 (1 ≤ i ≤ j ≤ m) . (3)

We put z1 = w1, z̄
1 = w2, . . . , z

m = w2m−1, z̄
m = w2m, and let ι(1), . . . , ι(n) be in N such

that 1 ≤ ι(1), . . . , ι(n) ≤ 2m, where ι(1), . . . , ι(n) are allowed overlapping. Furthermore,
we require that

φ(wι(1) . . . wι(n)) :=
n∏

k<l

φ(wι(k)wι(l)) (4)

for the monomial A = wι(1) · · · wι(n) of degree more than 2, and linearity such that

φ(λX + µY) = λφ(X) + µφ(Y ) , λ,µ ∈ C, X, Y ∈ Calg(R2m
θ ) .

LEMMA 5. φ is well-defined uniquely by (3) and (4) as a linear functional.

PROOF. It suffices to show following equalities based on (4).

φ(wι(1) · · · wι(k)(w2p−1w2q−1 − λpqw2q−1w2p−1)wι(k+1) · · · wι(n)) = 0 ,

φ(wι(1) · · · wι(k)(w2pw2q − λpqw2qw2p)wι(k+1) · · · wι(n)) = 0 ,

φ(wι(1) · · · wι(k)(w2pw2q−1 − λqpw2q−1w2p)wι(k+1) · · · wι(n)) = 0

p, q, k ∈ N, 1 ≤ p, q ≤ m, 1 ≤ k ≤ n − 1 . (5)

Note that w2p−1 = zp,w2p = z̄p, w2q−1 = zq,w2q = z̄q . We will show the first equation of
(5).

φ(wι(1) · · · wι(k)(w2p−1w2q−1 − λpqw2q−1w2p−1)wι(k+1) · · · wι(n))

= φ(wι(1) · · · wι(k)w2p−1w2q−1wι(k+1) · · · wι(n))

− λpqφ(wι(1) · · · wι(k)w2q−1w2p−1wι(k+1) · · ·wι(n))

= (φ(w2p−1w2q−1) − λpqφ(w2q−1w2p−1))

k∏
e=1

φ(wι(e)w2p−1)φ(wι(e)w2q−1)

×
n∏

f =k+1

φ(w2p−1wι(f ))φ(w2q−1wι(f ))
∏

1≤g<g ′≤n

φ(wι(g)wι(g ′))

= 0

by (4) .
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Hence the first equation is proved. The remaining are proved similarly. Consequently we see
that a map φ is uniquely determined as a linear functional. �

Next let us introduce some notations. Let t, i(1), . . . , i(t) be in N such that 1 ≤ i(1) �

· · · � i(t) ≤ m, 1 ≤ t ≤ m.

DEFINITION 6. Let T i(1)···i(t ) be the set of monomials formed by generators

1, zi(1), z̄i(1), . . . , zi(t), z̄i(t) ∈ Calg(R2m
θ ). Particularly, we denote the set {1} by T 0.

For example 1, z̄1z̄3, z1z2 ∈ T 1·2·3.

DEFINITION 7. We say that X is regular in T i(1)···i(t ) or simply we say that X is regular

if there exists a monomial Y ∈ T i(1)···i(t ) such that X = λYY, λ ∈ C − {0}.
EXAMPLE 8. The monomial X = z̄2z1z2z̄1 is regular in T 1·2. In fact, if we set Y =

z2z̄1 ∈ T 1·2, then it holds X = λ21YY .

LEMMA 9. The functional Ψ 0 is expressed as follows by using the above terms.

Ψ 0(X) :=
{

φ(X) if X is regular in T 0 ,

0 otherwise
(6)

for any monomial X ∈ Calg(R2m
θ ).

Our intention is generalizing Ψ 0 in accordance with the form of (6). Let us define a

functional Ψ i(1)···i(t ) on Calg(R2m
θ ).

DEFINITION 10. Let Ψ i(1)···i(t ) be the linear functional defined by setting

Ψ i(1)···i(t )(X) :=
{

φ(X) if X is regular in T i(1)···i(t ) ,

0 otherwise

for any monomial X ∈ Calg(R2m
θ ).

In the following we denote Ψ i(1)···i(t ) simply by Ψ i .

REMARK 11. In definition 10, if T i(1)···i(t ) = T 0, then Ψ i(1)···i(t ) = Ψ 0.

Now we will prove that Ψ i is a tracial state on Calg(R2m
θ ). The following Lemma is

fundamental.

LEMMA 12. We put z1 = w1, z̄
1 = w2, . . . , z

m = w2m−1, z̄
m = w2m. Suppose that

X = wj(1) · · · wj(k) ∈ T i(1)···i(t ) for j (1), . . . , j (k) ∈ {1, . . . , 2m}, k ∈ N. Then we have

Ψ i(XX) = 1 . (7)

PROOF. If X = 1, then (7) is obvious. Therefore, we assume that X �= 1. Let p, q be
in N such that 1 ≤ q � p ≤ k. Then we get

Ψ i(XX) = Ψ i(w̄j (k) · · · w̄j (1)wj (1) · · · wj(k))
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= φ(w̄j (k) · · · w̄j (1)wj (1) · · · wj(k))

=
∏
p �=q

φ(w̄j (p)w̄j (q))φ(wj(q)wj(p))︸ ︷︷ ︸
1

φ(w̄j (p)wj(q))φ(w̄j (q)wj (p))︸ ︷︷ ︸
1

= 1 .

�

LEMMA 13. If X and Y are regular, then XY,XY are regular.

Note that the converse of Lemma 13 is not true in general.

PROPOSITION 14. If X and Y are regular, then we have

Ψ i(XY) = Ψ i(X)Ψ i(Y ) . (8)

PROOF. If X or Y is a scalar multiplication of 1, then (8) is obvious. Therefore, we
assume X,Y �= λ1, λ ∈ C − {0}. Let zj be one of elements which forms X. Then z̄j is also
one of elements which forms X. Similarly, let zk, z̄k be elements which form Y . Then we
obtain the following equality.

φ(zj zk)φ(zj z̄k)φ(z̄j zk)φ(z̄j z̄k) = 1 .

Since the elements zj and zk are arbitrary, the result is given. �

In relation to Proposition 14, we have the following Lemma.

LEMMA 15. If X is regular and Y is not regular, then

Ψ i(XY) = Ψ i(XY) = 0 . (9)

PROOF. If X is regular and Y is not regular, then XY,XY are not regular. Namely, (9)
is proved by Definition 10. �

Ψ i has the following property.

PROPOSITION 16. Ψ i(xy) = Ψ i(yx) for ∀x, y ∈ Calg(R2m
θ ).

PROOF. By Definition of Ψ i , it suffices to consider the case that xy is regualr. We
put zj = e1, z̄

j = e2, z
k = e3, z̄

k = e4, j, k = 1, . . . ,m. Suppose that k1, k2, k3, k4 ∈
{1, . . . , 4}, however i �= j ⇒ ki �= kj , i, j = 1, . . . , 4. Then it is easy to see that

ek1ek2ek3ek4 = ek2ek3ek4ek1 = ek3ek4ek1ek2 = ek4ek1ek2ek3 .

Hence if X = xy is regular, then it holds xy = yx. �

By the commutation relations of Calg(R2m
θ ), it holds the following property concerned

with Ψ i .

LEMMA 17. Let x be regular and let y be a monomial in Calg(R2m
θ ). Then it holds

Ψ i(xy) = Ψ i(yx).
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DEFINITION 18. Let X,Y be in T i(1)···i(t ). We denote by X ∼ Y if XY is regular.

The relation ∼ is an equivalence relation. We denote the equivalence class of A by [A]
for A ∈ T i(1)···i(t ). Let deg(A) denote the degree of a monomial A, and let [A]min be the
subset of [A] such that

[A]min = {x ∈ [A] | deg(x) ≤ deg(y), ∀y ∈ [A]} .

LEMMA 19. Let X,Y be in T i(1)···i(t ). If X � Y , then

Ψ i(XY) = 0 .

PROOF. If X � Y , then XY is not regular. i.e. Ψ i(XY) = 0. �

PROPOSITION 20. Ψ i is a positive functional.

PROOF. By Lemma 19 and Definition of Ψ i , it suffices to prove Ψ i(XX) ≥ 0 for

X = ∑k
t=1 rt xt , xp ∼ xq , p, q = 1, . . . , k, r1, . . . , rk ∈ C in order for Ψ i to be a positive

functional. We can denote X by
∑k

t=1 r ′
t uyt , where u ∈ [xt ]min, y1, . . . , yk are regular, and

r ′
1, . . . , r

′
k ∈ C. Then it follows from Proposition 14 and Lemma 17 that

Ψ i(XX) = Ψ i

(( k∑
t=1

r̄ ′
t ȳt ū

)( k∑
t=1

r ′
tuyt

))

= Ψ i(ūu)

( k∑
t=1

r̄ ′
tΨ

i(ȳt )

)( k∑
t=1

r ′
tΨ

i(yt )

)

= Ψ i(ūu)

( k∑
t=1

r ′
tΨ

i(yt )

)( k∑
t=1

r ′
tΨ

i(yt )

)
≥ 0 .

Thus it is proved that Ψ i is a state on Calg(R2m
θ ). �

It follows from Proposition 16 and Proposition 20 that the following Theorem.

THEOREM 21. Ψ i is a tracial state on Calg(R2m
θ ).

4. Generalization of Ψ i

Tracial state Ψ i is generalized naturally. Let us define a linear functional Ψ
i(1)···i(t )
x1···xt on

Calg(R2m
θ ). Suppose that x1, . . . , xt � 0, n1, n

′
1, . . . , nm, n′

m ∈ Z≥0.

DEFINITION 22. Let Ψ
i(1)···i(t )
x1···xt be the linear functional defined by setting

Ψ i(1)···i(t )
x1···xt

(X) :=
{

x
ni(1)

1 · · · x
ni(t)

t φ(X) if X is regular in T i(1)···i(t )

0 otherwise
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for the monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ).

In the following we denote Ψ
i(1)···i(t )
x1···xt simply by Ψ i

x .

REMARK 23. If x1 = · · · = xt = 1, then Ψ i
x=Ψ i .

We have the following Propositions.

PROPOSITION 24. If X and Y are regular, then

Ψ i
x (XY ) = Ψ i

x(X)Ψ i
x (Y ) .

PROPOSITION 25. Ψ i
x(xy) = Ψ i

x(yx) for ∀x, y ∈ Calg(R2m
θ ).

We can show the following in a similar way to the proof of Proposition 20.

THEOREM 26. Ψ i
x is a tracial state on Calg(R2m

θ ).

REMARK 27. The unital ∗-algebra Calg(R2m+1
θ ) is defined by adding a selfadjoint

generator zm+1 to Calg(R2m
θ ) with relations zizm+1 = zm+1zi (1 ≤ i ≤ m). We can construct

tracial states on Calg(R2m+1
θ ) in the same way to the case of Calg(R2m

θ ).

5. Extreme points of the tracial state space

We would introduce extreme points of the tracial state space of Calg(R2m
θ ) in the case

that deformation parameter θij (1 ≤ i � j ≤ m) are irrational numbers. Let Ψ (2) be the

tracial state, which is assumed to be t = 2 in Ψ
i(1)···i(t )
x1···xt

. Namely it holds Ψ (2) = Ψ
i(1)i(2)
x1x2 ,

where 1 ≤ i(1) � i(2) ≤ m, x1, x2 � 0.

PROPOSITION 28. If θi(1)i(2) is an irrational number, then Ψ (2) is an extreme point of

the tracial state space of Calg(R2m
θ ).

PROOF. We assume that there exist tracial states Ψ1, Ψ2 on Calg(R2m
θ ) such that

Ψ (2) = (1 − s)Ψ1 + sΨ2 (0 � s � 1) . (10)

We prove this Proposition in three steps.
1ST STEP: Let K be a monomial formed from the set of generators

{z1, z̄1, . . . , zm, z̄m} − {zi(1), z̄i(1), zi(2), z̄i(2)} .

Suppose that L = KK . By definition of Ψ (2) and (10), we have

(1 − s)Ψ1(L) + sΨ2(L) = 0 .

Since a state is positive

Ψ1(L) ≥ 0 Ψ2(L) ≥ 0 .
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Hence

Ψ1(L) = Ψ2(L) = 0 .

Let λ1, λ2 ∈ C − {0}. We assume Ψ1(K) �= 0. Then we have

Ψ1((λ11 + λ2K)(λ11 + λ2K)) = |λ1|2 + 2Re(λ1λ2Ψ1(K)) ≥ 0 . (11)

However, if we take

λ2 = −λ1
1

Ψ1(K)
,

then we have

|λ1|2 + 2Re(λ1λ2Ψ1(K)) = −|λ1|2 � 0 . (12)

(12) contradicts (11). Hence we get Ψ1(K) = 0. As well as Ψ1, we get Ψ2(K) = 0.

2ND STEP: Let M be regular in T i(1)i(2). Then we have

|Ψ (2)(M)|2 = Ψ (2)(MM)

by definition of Ψ (2). Therefore there exists ω (0 ≤ ω � 2π) that satisfies

Ψ (2)((|Ψ (2)(M)|1 + eiωM)(|Ψ (2)(M)|1 + eiωM)) = 0 . (13)

We denote |Ψ (2)(M)|1 + eiωM by S. By (10) and (13) we have

(1 − s)Ψ1(SS) + sΨ2(SS) = 0 .

However, since a state is positive

Ψ1(SS) ≥ 0 Ψ2(SS) ≥ 0 .

Hence

Ψ1(SS) = Ψ2(SS) = 0 .

Let r1, r2 ∈ C − {0}. Assuming that Ψ (2)(S) �= 0, then we have

Ψ (2)((r11 + r2S)(r11 + r2S)) = |r1|2 + 2Re(r1r2Ψ
(2)(S)) ≥ 0 . (14)

However, if we take

r2 = − r1

Ψ (2)(S)
,

then

|r1|2 + 2Re(r1r2Ψ
(2)(S)) = −|r1|2 � 0 (15)

(15) contradicts (14). Hence, we get

Ψ (2)(S) = 0 .
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In the similar way, we get

Ψ1(S) = Ψ2(S) = 0 .

Consequently, we obtain

Ψ (2)(M) = Ψ1(M) = Ψ2(M) .

3RD STEP: Suppose that P,Q ∈ T i(1)i(2) and P is not regular in T i(1)i(2). Then we
have

Ψ1((PΨ1(QQ) − PQQ)(PΨ1(QQ) − PQQ))

= Ψ1(PP)Ψ1(QQ)2 + Ψ1(QQPPQQ) − 2Ψ1(PQQP)Ψ1(QQ)

= 0 . (16)

By (16), we get the following in the same way that the 2nd step.

Ψ1(PQQ) = Ψ1(P )Ψ1(QQ) . (17)

Considering (17), We see that Ψ1(P ) = 0 in order for Ψ1 to be a tracial state in the
case that θi(1)i(2) is an irrational number. Let m,n be in natural number. In fact, if

Ψ1((z
i(1))m(zi(2))n) �= 0, then we get

Ψ1((z
i(1))m(zi(2))n) �= Ψ1((z

i(2))n(zi(1))m) (18)

since θi(1)i(2) is an irrational number. On the other hand, if Ψ1((z
i(1))m) �= 0, then (17) shows

that

Ψ1((z
i(1))m)Ψ1((z̄

i(2))n(zi(2))n) = Ψ1((z
i(1))m(z̄i(2))n(zi(2))n) �= 0 .

Then we obtain

Ψ1((z
i(1))m(z̄i(2))n(zi(2))n) �= Ψ1((z

i(2))n(zi(1))m(z̄i(2))n) .

as well as (18). Eventually, it turns out in these cases that Ψ1 is not tracial. This contradicts to
that Ψ1 is a tracial state. Hence we see that Ψ1(P ) = 0 generally. As well as Ψ1, we see that
Ψ2(P ) = 0.

Eventually we obtain

Ψ (2) = Ψ1 = Ψ2

from three steps. This completes the proof. �

We have the following Corollary in relation to Proposition 28.

COROLLARY 29. Let Aab be the quotient of Calg(R4
θ ) by the two-sided ideal gener-

ated by z̄1z1 − a1 and z̄2z2 − b1, (a, b � 0). If θ12 is an irrational number, then Aab has the
unique tracial state.
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We consider the case that deformation parameters θij (i, j = 1, . . . ,m) of Calg(R2m
θ ) are

irrational numbers and satisfy the following condition: For any integers kij (i, j = 1, . . . ,m)

such that
∑

i�j

∣∣kij

∣∣ �= 0, θij satisfy
∑

i�j kij θij �∈ Z≥0. Then we have the following
Lemma.

LEMMA 30. Let x, y be monomials of Calg(R2m
θ ) which both are not scalar multiple

of 1. If a monomial xy is not regular and xy is formed by two or more different generators,
then xy �= yx.

The following Proposition holds based on Lemma 30.

PROPOSITION 31. If t ≥ 2 for a tracial state Ψ i
x = Ψ

i(1)···i(t )
x1···xt , then Ψ i

x is an extreme

point of the tracial state space of Calg(R2m
θ ).

The proof is obtained by the similar method to Proposition 28.

6. Pure state

We give non-trivial pure states on Calg(R2m
θ ). Suppose that n1, n

′
1, . . . , nm, n′

m ∈ Z≥0,

t ∈ C − {0}, k = 1, . . . ,m.

DEFINITION 32. Let Φk
t be the linear functional defined by setting

Φk
t (X) :=

{
tnk t̄n

′
k if X ∈ T k ,

0 otherwise

for the monomial X = (z1)n1(z̄1)n
′
1 · · · (zm)nm(z̄m)n

′
m ∈ Calg(R2m

θ ).

It is obvious that Φk
t is a positive linear functional. Then we have the following.

THEOREM 33. Φk
t is a pure state on Calg(R2m

θ ).

The proof is obtained by the similar method to Proposition 28.

REMARK 34. We can construct tracial states on the θ -deformed sphere and so on in a
similar way to the θ -deformed plane.
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