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Abstract. Starting from a trivial pure state w0, we construct non-trivial tracial states (¥7) on the 6-deformed
2m-plane calg (R(%m). Furthermore we generalize Wl to another tracial state on C%9 (R(%m). We study extreme
points of the tracial state space of calg (Rg’”) in the case that deformation parameters are irrational numbers. Non-

trivial pure states (Cbtk ) on C49 (Rém ) are also given.

1. Introduction

The deformations of funtion algebras by using anti-symmetric real-valued matrix 6 =
(6;j) are called the 6-deformations (cf. [3],[4]). The C*-algebra C (Tem) (cf.[10]) correspond-
ing to the algebra of continuous functions on the noncommutative torus 7" is well-known as
an example of #-deformations. Besides, in[3] various examples of 8-deformations are studied
in detail.

In this paper, we restrict our attention to the #-defomed 2m-plane C*9 (Rg’"). The al-
gebra C “lg(Rg’") is corresponding to the unital x-algebra of polynomial functions on the
6-deformed 2m-plane Rgm. The purpose of this paper is to construct non-trivial tracial states
on C9 (Rgm) for every m € N. On the other hand, an algebraic probability space (cf. [1]) is
defined to be a pair (A4, ¢), where A is a unital x-algebra and ¢ is a state on .A. The notion is
obtained by considering a generalization of random variables and their expectation values in
probability theory.

Our aim is to give non-trivial examples of algebraic probability spaces. To that end, it
is crucial to give a criterion for the trivial pure state ¥© on C”lg(Rgm). Suggested by this
criterion, we construct a tracial class ¥, and its generalization.

We study also extreme points of the tracial state space in the case that deformation pa-
rameters 6;; are irrational numbers. Further investigation for the tracial states on C alg (Rgm)
will be given in the forthcoming paper.
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2. Preliminaries

In this paper, we use ~ instead of x-operation in consideration of the simplification of
the description. We begin by recalling the definition of the §-deformed 2m-plane C¢/9 (Rgm)
(cf.[3]) which is a fundamental example of 6-deformations.

DEFINITION 1. Let C*9(R3™) be the unital *-algebra generated by m elements z’
(i =1, ..., m) with the commutation relations:

'/ =A7
77 =77

77l = Azl (A<i,j<m). )

Here AV is defined as A"/ = ¢27i0ij = \ji where § = (6;;) is an anti-symmetric real-valued
matrix of degree m.

3. Tracial state W'

We give the notion of tracial state on x-algebra.

DEFINITION 2. Let A be a unital x-algebra and ¢ be a linear functional ¢ : A — C.
We say that ¢ is a state on A if ¢ satisfies the properties:

1. ¢(aa) >0 (Va e A,

2. o1y =1
where 1 4 is the unit element of .A. The set of states of an algebra .4 forms a convex set which
is called the state space. An extreme point of state space is called a pure state. On the other
hand, a non-extreme point of state space is called a mixed state.

DEFINITION 3. A state ¢ is called a tracial state if ¢ has the property: ¢(xy) = ¢(yx)
for Vx, y € A. The set of tracial states forms a convex set which is called the tracial state
space.

First of all, let us recall a trivial state ¥° on C%/9 (Rém).

DEFINITION 4. Let ny, n’l R 7 nﬁn be in Z>o, and consider the monomial X =
Y EhH™ - @y ) € C99(R2™). We set W as a linear functional satisfying
1 ifny=n=---=n, =n :O,
wo(x) = =N " m )

0 otherwise

for X.
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We characterize this trivial functional from a little general viewpoints. We denote the unit
element of C% 9(R§’”) by 1. First we consider a map ¢ : C%9 (R(%’") — C which satisfying

p'2)) =AY Pz =2 p('7)) =20

¢z =20 P/ =1 P2 =1

$E'Z) =1 $(E'e)) =1 ¢z =0

$@Z) =0 ¢ =1 (I=<i<j=m). 3)
We put z! = wy, 2! = wa, ..., 2" = wan_1, 7™ = way, and let ((1), ..., t(n) be in N such
that 1 < «(1),...,t(n) < 2m, where ((1), ..., t(n) are allowed overlapping. Furthermore,

we require that
n
Sw(y - - W) = H¢(wt(k)wt(1)) “)
k<l
for the monomial A = w1 - - - w, () of degree more than 2, and linearity such that
POX +pY) =rp(X) +pup(¥), A pueC, X, YeC"RY).
LEMMA 5. ¢ is well-defined uniquely by (3) and (4) as a linear functional.
PROOEF. It suffices to show following equalities based on (4).
D w1y -+ Wiy (W2p—1wag—1 — APIwog_1W2p— D Wkt 1) -+ Wem) =0,
d(wi1) - - Wy (W2pwag — AP WoqW2p)Wik41) - - W) = 0,
S (w1 -+ Wiy (W2pwag—1 — AP wag1W2p) Wik+1) -+ - Wimy) =0
Note that wyp—1 = 2P, wap = 7P, wag—1 = 27, way = z9. We will show the first equation of
5).
S (wi(1) -+ Wiy (Wap—1w2g—1 — AP W1 W2p— DWikt1) - - Wi(n))
= ¢ (Wi(1) ** W () W2p—1W2g— 1 Wi (k1) * * * Wi(n))

— APAp(wy(1y -+ Wik Wag—1W2p— 1 Wi (k1) * * * Wi(m))
k
= (¢ (wap—_1wrg—1) — AP (wag—1w2p—1)) l_[ D (W) W2p—1) (W () W2g—1)

e=1

X l_[ @ (W2p—1w, (1) (Wag—1W,( 1)) l_[ @ (Wi (g)Wi(gH)

f=k+1 l<g<g'<n
=0
by (4).
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Hence the first equation is proved. The remaining are proved similarly. Consequently we see
that a map ¢ is uniquely determined as a linear functional. a

Next let us introduce some notations. Let #,i(1),...,i(#) bein Nsuchthat 1 <i(1) <
e <Li(t)<m, 1 <t <m.

DEFINITION 6. Let T!(D"i®) be the set of monomials formed by generators
1,2/, 7MW 20,710 ¢ c49(RG™). Particularly, we denote the set {1} by T°.
For example 1, 773, 2122 € 7123,

DEFINITION 7. We say that X is regular in 7/ or simply we say that X is regular
if there exists a monomial ¥ € 7?1 guch that X = AYY, A € C — {0}.

EXAMPLE 8. The monomial X = 727172zl is regular in T2, In fact, if we set Y =
7%z € T'2 then it holds X = A*'YY.
LEMMA 9. The functional ¥° is expressed as follows by using the above terms.
X) if X isregularin T®,
LI,O(X):{qs()f g ©

0 otherwise

for any monomial X € C9 (Ré’").

Our intention is generalizing ¥° in accordance with the form of (6). Let us define a
functional ¢!V on C49(RZ™).

DEFINITION 10. Let i) be the linear functional defined by setting
ity o |#O0 I X is regularin 77010,
0 otherwise
for any monomial X € C%9 (Rg’").
In the following we denote ¥ (D) simply by ¥,
REMARK 11. Indefinition 10, if 7!(D () = 70 then wi(D~i() = @O,

Now we will prove that ¥ is a tracial state on C%9 (Rg’”). The following Lemma is
fundamental.

LEMMA 12. Weputz1 =w,zl =wy, ..., 7" = wom_1, 7" = wom. Suppose that
X=wjqy - wjg € T'DD for j(1),..., jk) € {l,...,2m}, k € N. Then we have

viXX)=1. 7

PROOF. If X = 1, then (7) is obvious. Therefore, we assume that X # 1. Let p, g be
in Nsuchthat 1 <g < p < k. Then we get

WHXX) =W - WiyWian) - W)
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=Wk - WiHWj(1) - Wj(k))

=[] 2@ W)@)b Wi W) ¢ W)W ,gw;p»)
P#q 1

1
=1.

a
LEMMA 13. If X andY are regular, then XY, XY are regular.
Note that the converse of Lemma 13 is not true in general.
PROPOSITION 14. If X and Y are regular, then we have
wHXY) =vI(X)P(Y). (8)

PROOF. If X or Y is a scalar multiplication of 1, then (8) is obvious. Therefore, we
assume X, Y # A1, 1 € C — {0}. Let z/ be one of elements which forms X. Then z/ is also
one of elements which forms X. Similarly, let 7%, 7% be elements which form Y. Then we
obtain the following equality.

¢ PP E pEH = 1.
Since the elements z/ and z* are arbitrary, the result is given. a
In relation to Proposition 14, we have the following Lemma.
LEMMA 15. If X is regular and Y is not regular, then
wiXY)=v (XY)=0. )
PROOF. If X is regular and Y is not regular, then XY, XY are not regular. Namely, (9)
is proved by Definition 10. O
W' has the following property.
PROPOSITION 16. Wi(xy) = Wi (yx) for ¥x, y € CU9(R3™).

PROOF. By Definition of W', it suffices to consider the case that xy is regualr. We
k k

putz/ = e1,z/ = e2,2F = e3,2" = es4, j,k = 1,...,m. Suppose that ki, k2, k3, k4 €
{1,...,4}, howeveri # j = k; #kj,i,j =1,...,4. Thenitis easy to see that
€k, €hy Chy €hy = ChyChy€hyChy = €y €hyChyChy = €kyCkyChy € -

Hence if X = xy is regular, then it holds xy = yx. a

By the commutation relations of C/9 (Rg’"), it holds the following property concerned
with @',

LEMMA 17. Let x be regular and let y be a monomial in C*9 (Ré'"). Then it holds
wl(xy) =¥ (yx).
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DEFINITION 18. Let X, Y bein 7/ We denote by X ~ Y if XY is regular.

The relation ~ is an equivalence relation. We denote the equivalence class of A by [A]

for A e TiW i) et deg(A) denote the degree of a monomial A, and let [A]nyin be the
subset of [A] such that

[Almin = {x € [A]| deg(x) < deg(y), Vy € [A]}.
LEMMA 19. Let X, Y bein T'W 1 [fX < Y, then
wi(XY)=0.
PROOF. If X ~ Y, then XY is not regular. i.e. ¥/ (XY) = 0. O
PROPOSITION 20. W' is a positive functional.

PROOF. By Lemma 19 and Definition of ¥/, it suffices to prove ¥/ (XX) > 0 for

X = Zle TiXt, Xp ~ Xg, p,q =1,...,k,r1,...,r € Cin order for 'l to be a positive
functional. We can denote X by Zle r;uy,, where u € [X¢]lmin, V1, ..., Yk are regular, and
r{,...,r; € C. Then it follows from Proposition 14 and Lemma 17 that
k k
viXX) =¥ (( ) fém) ( ) réun))
=1 =1
k k
= Wl@”)(Zf;‘I’l@t)) ( > oy (y»)
=1 =1
k k
= W(ﬁu)(Zr;wi(yt))(ZréWy») >0.
=1 =1
Thus it is proved that ¥/ is a state on C“lg(Rg’”). O

It follows from Proposition 16 and Proposition 20 that the following Theorem.

THEOREM 21. W' isatracial state on C“'9(R3™).

4. Generalization of ¥

Tracial state W' is generalized naturally. Let us define a linear functional W;](.l.).;t'i(t) on

C“lg(Rg’”). Suppose that x1, ..., x; > 0, ni,nl, ..., np, 0, € Z=.
DEFINITION 22. Let 11/;](.1.).;;"(’) be the linear functional defined by setting

nj

x X Wp(X) if X isregular in 7V ®

0 otherwise

q/l(l)l(l‘)(x) =

X1 X¢
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for the monomial X = (z1)™ (1)1 - .. (zm)"m (Z™)m € CUIRE™).

In the following we denote llf)f,(,l,).,},'i(t) simply by .

REMARK 23. Ifx;=---=x, =1, then &)=,
We have the following Propositions.
PROPOSITION 24. If X and Y are regular, then

UIXY) = WL(X)P(Y).

PROPOSITION 25. Wi(xy) = Wi (yx) forVx,y € C*I(RI™).
We can show the following in a similar way to the proof of Proposition 20.

THEOREM 26. ll/; is a tracial state on C"lg(Rgm).

REMARK 27. The unital *-algebra C*9(R2"*") is defined by adding a selfadjoint

generator 2" ! to C419 (R2™) with relations z/z"+! = 21z (1 < i < m). We can construct

tracial states on C*9 (Rém *1) in the same way to the case of C¢/9 (Ré’").

5. Extreme points of the tracial state space

We would introduce extreme points of the tracial state space of C%9 (Rgm) in the case

that deformation parameter 6;; (1 < i < j < m) are irrational numbers. Let ¥ be the

tracial state, which is assumed to be r = 2 in d/,él(.l.?;t'[(t). Namely it holds ¥ ® = lll)ﬁl()lc;[(z),
where 1 <i(1) <i(2) <m, x1,x2 > 0.

PROPOSITION 28. If6;1)i(2) is an irrational number, then D s an extreme point of
the tracial state space of C%9 (Rgm).

PROOF. We assume that there exist tracial states ¥, ¥ on C9 (Rgm) such that
O = (1 —¥ +s¥ 0<s<1). (10)

We prove this Proposition in three steps.
IST STEP: Let K be a monomial formed from the set of generators

{Zl, Zl, e Zm, Zm} _ {Zi(l), Zi(l), Zi(Z)’ 21(2)} X
Suppose that L = K K. By definition of ¥ ® and (10), we have
(I =)L) +s¥ (L) =0.

Since a state is positive

Yi(L) =0  ¥(L)=0.
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Hence

W (L) = ¥ (L) =0.

Let A1, A2 € C — {0}. We assume ¥ (K) # 0. Then we have

W (Gal+ 22 K) M1+ 1K) = [M1|* + 2Re(ra 1 (K)) = 0.

Howeyver, if we take
1

Ay = —Al———7,
Y1(K)

then we have

2117 4+ 2Re(h1 %1 (K)) = —|21]? 0.

(12) contradicts (11). Hence we get ¥1(K) = 0. As well as ¥, we get ¥»(K) = 0.

2ND STEP: Let M be regular in 7/(D1®) Then we have

D M))> = v MM)

by definition of ¥ . Therefore there exists w (0 < w < 2m) that satisfies

TO(TOM)1+ el M)(|& P (M)[1+ M) =0.
We denote | @ (M)|1 + ¢/“M by S. By (10) and (13) we have
(1 —$)¥1(SS) + s¥>(SS) =0.
However, since a state is positive
PI(SS) =0  ¥(5S)=>0.

Hence

U1(SS) = ¥, (SS) = 0.

Letry, r» € C — {0}. Assuming that 'J/(z)(S) # 0, then we have

(14 r28)(r11 4 128) = |r1|* + 2Re(Fr ¥ P (S)) > 0.

However, if we take
r

rp = _—lI/(Z)(S) s

then
Ir11” + 2Re(Firn¥ P(5)) = —|n|* £ 0
(15) contradicts (14). Hence, we get
vP($)=0.

(1)

12)

13)

(14)

5)
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In the similar way, we get
Yi(S) =¥(S) =0.
Consequently, we obtain

vOM) = v (M) =¥ (M).

3RD STEP: Suppose that P, Q € T! (Vi@ and P is not regular in 7!V Then we
have

w1 ((PY1(QQ) — POQ)(P¥I(QQ) — POQ))
= wi(PP)W1(QQ)* + ¥1(QQPPQQ) —2¥1(PQOP)¥1(00)
=0. (16)
By (16), we get the following in the same way that the 2nd step.
¥ (PQQ) = 1 (P)¥1(Q0Q). (17)

Considering (17), We see that ¥1(P) = 0 in order for ¥ to be a tracial state in the
case that 6;(1);(2) is an irrational number. Let m,n be in natural number. In fact, if

(T D)ym (z D)) #£ 0, then we get

W (D)D) £ e () D)y (18)
since 6;(1);(2) is an irrational number. On the other hand, if ¥, ((zEMym)y # 0, then (17) shows
that

W (DY (E @) (D) = e (@O E @) (@) #£0.
Then we obtain
W (@ D)@ D) D)) # e (D) DY E Y.

as well as (18). Eventually, it turns out in these cases that ¥ is not tracial. This contradicts to
that ¥ is a tracial state. Hence we see that ¥ (P) = 0 generally. As well as ¥, we see that

¥, (P) =0.
Eventually we obtain

v =y =y,
from three steps. This completes the proof. a
We have the following Corollary in relation to Proposition 28.

COROLLARY 29. Let A% be the quotient of C%9 (Rg) by the two-sided ideal gener-

ated by 7zl —aland 7272 — b1, (a, b > 0). If 012 is an irrational number, then A% has the
unique tracial state.
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We consider the case that deformation parameters 6;; (i, j =1, ..., m) of C alg (Rgm) are
irrational numbers and satisfy the following condition: For any integers k;; (i, j =1, ...,m)
such that ZKj |k,~j| # 0, 0;; satisfy Zi<;’ kij0ij ¢ Z=o. Then we have the following
Lemma.

LEMMA 30. Letx,y be monomials of C“lg(Rgm) which both are not scalar multiple
of 1. If a monomial xy is not regular and xy is formed by two or more different generators,
then xy # yx.

The following Proposition holds based on Lemma 30.

PROPOSITION 31. Ift > 2 for a tracial state ¥} = qx,ﬁ](?,?;t"’(f),

point of the tracial state space of C%9 (Ré'").

then W} is an extreme

The proof is obtained by the similar method to Proposition 28.

6. Pure state

We give non-trivial pure states on C“lg(R(%'"). Suppose that ny, n}, ..., ny,, n,, € Zso,
teC—{0},k=1,...,m.

DEFINITION 32. Let 45,]‘ be the linear functional defined by setting
M it X e TF,

ok (Xx) =
! 0 otherwise

for the monomial X = (') (Z1)" - - - (z")" (Z")"n € CUI(RI™).
It is obvious that @ is a positive linear functional. Then we have the following.

THEOREM 33. qﬁtk is a pure state on C“lg(Rgm).
The proof is obtained by the similar method to Proposition 28.

REMARK 34. We can construct tracial states on the #-deformed sphere and so on in a
similar way to the 6-deformed plane.
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