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Introduction.

Let (X, Ox) be a local ringed space, X,; the set of closed points of X andi : X, — X
the inclusion mapping. For a sheaf F of rings or modules over X we denote by

i F i\ F

the natural morphism of sheaves, and introduce the following conditions for X:
(s1) i*:F — i i1 F is an isomorphism for any sheaf F over X,
(s2) i*: Ox — ixi~!Oy is an isomorphism.
Moreover we consider the conditions:
(c1) Ox(X) is a Hilbert ring (see §1),
(c2) ti:t(Xy) — tX is a homeomorphism.
For the functor ¢ on topological spaces, see [4, II, Proposition 2.6] or [10, §11].
Using the morphism 7y : X — Spec Ox (X) of local ringed spaces defined in [8, §1],
we put

Ix(E) = () 7x(x), Zx(@) ={x€X|aCax(®)}=ng'(V(a),
x€eE
for E C X and for an ideal a of Ox (X). Then we introduce the following condition for X;:
(c3) Ja= Ix,(Zx,,(a)) for any ideal a of Ox_,(X,;), where Ox,, = i~10y.
In this paper we shall study the relationship among these conditions and consider an
abstract form of Hilbert Nullstellensatz. The main results are as follows:

THEOREM 1. Foraring A, we put X = Spec A and introduce the condition:
(s i L F > i~ ' Fisan isomorphism for any sheaf F of quasi-coherent Ox-modules
over X.
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Then

A is a Hilbert ring < (c1) © (c2) € (¢3) € (51) & (5)) = (52).

THEOREM 2. For afield K and a subring A of K, we put X = Zar(K IA) and intro-
duce the condition:
1) it : F — i,i~\F is an isomorphism for any intersection sheaf F of Ox-algebras over
X (for intersection sheaves, see [9, §0]).

Then

A is a Hilbert ring<> (c1) € (c2) € (c3) & (s1) © (57) = (52).

REMARK 1. Suppose that Oy is a sheaf of mappings to a field k, in other words,
(X, Oy) and k satisfy the condition (a) in [8, Proposition 1]. Then wx(x) = {f € Ox(X) |
f(x) = 0} forany x € X. Thus Ix(E) = {f € Ox(X)|x € E = f(x) =0} forany E C X
and Zx(a) = {x € X | f € a= f(x) = 0} for any ideal a of Ox(X). Therefore Theorem 1
is one of the generalizations of Hilbert Nullstellensatz. See also Theorem 1” and its corollary
in §2.

REMARK 2. For general local ringed spaces, even if we assume that any irreducible
closed subset has a unique generic point, the conditions (c1), (c2) and (c3) are independent.
See Example 1, - - - , Example 6 in §4. For generalizations of other parts of Theorems 1 and
2, see Theorem 3 and Theorem 4 in §1.

REMARK 3. In general, the implication “(s2) = (s1)” does not hold in Theorems 1
and 2. See Example 7 in §4.

1. Here we prove Theorem 3 and Theorem 4.

LEMMA 1.1. For a continuous mapping f : X — Y, we obtain:
(i) The topology of X is the induced topology of Y with respect to f
& E = f~Y(f(E)) for any closed subset E of X
= E = f~Y(f(E)) forany E € tX
= tf : tX — tY is an injection.
(i) tf :tX — tY is asurjection
= f(f~Y(F)) = F forany F € tY
& f(f~YN(F)) = F for any closed subset F of Y.
(iii) tf : tX — tY is a homeomorphism
& tf is a surjection and the topology of X is the induced topology of Y with respect to f
& E = f~Y(f(E)) for any closed subset E of X and f(f —1(F)) = F for any closed subset
F of Y.
Here “overline” means the closure of topological spaces.

The proof is easy.
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For a topological space X and a subset E of X, we put
E*={xe X|{x}NE #0}.

A ring A is said to be Hilbert if any prime ideals of A are intersections of maximal ideals.

LEMMA 1.2. Foraring A, the following conditions are equivalent:
(co) A is a Hilbert ring.
(1) FNm.Spec A = F for any closed subset F of Spec A.
(2) (VNm.Spec A)* =V for any open subset V of Spec A.
2 (D(f)Nm.Spec A)* = D(f) forany f € A.

The proof is induced from [10, Lemma 8].

LEMMA 1.3. Let (X, Ox) be a local ringed space.' Then Ox g is a local ring for any
irreducible subset E of X.

The proof is easy.

COROLLARY 1. We obtain a functort : (L.R.S.) — (L.R.S.), where (L.R.S.) de-
notes the category of local ringed spaces.

COROLLARY 2. The condition (c3) is equivalent to the following one:
(cy) t@,i* : t(Xa, Ox,) = t(X, Ox) is an isomorphism of local ringed spaces.

THEOREM 3. Let (X, Ox) be a local ringed space.
(i) The following conditions are equivalent:

(@ E = Zx(Ux(E))forany E C X.
(b) E=rmy 1 (mx (E)) for any closed subset E of X.

(ii) The following conditions are equivalent:
(©) +/a= Ix(Zx(a)) for any ideal a of Ox (X).
) nx(n;l(F)) = F for any closed subset F of Spec Ox(X).

(iii) E is irreducible = Ix(E) € Spec Ox(X). If X satisfies (a), then the converse
holds.

PROOF. (i): Verified from Lemma 1.1, (i).
- (ii): Induced from [8, Lemma 2].
(iii): Easy to prove.

COROLLARY 1. (i) The mapping Ix : tX — Spec Ox(X) defined by restriction satis-
fies mx = Ix o ax and aspec Ox(x) © Ix = t(wx). Therefore Ix gives rise to a morphism of
local ringed spaces. Moreover Ix = m;x.

(ii) X satisfies the conditions (a) and (c) < 7;:x is a homeomorphism.

COROLLARY 2. The condition (c3) is equivalent to the following one:
(c’3) X, (Jr;cll (F)) = F for any closed subset F of Spec Ox_(Xc).

THEOREM 4. Let (X, Ox) be a local ringed space.
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(i) If any irreducible closed subset of X has a unique generic point, then
(c2) & (s1)-
(ii) If X satisfies (s2) and wx (X)) D m.Spec Ox(X), then
(c1) = (c3) .
(iii)) If X satisfies
Spec Ox(X) = | Im(Spec px.»)
x€Xal

and nx (X)) C m.Spec Ox(X), then
\ (c3) = (c1) .
(ii") If X satisfies wx (X) = Spec Ox(X), then
(Xe)* = X = Spec Ox(X) = |_J Im(Spec px.x) -

x€Xq

(iv) Ifrx(X) = Spec Ox(X) and wx (X)) C m.Spec Ox(X), then
(c2) = (c1).-

PROOF. We put W = X. (i) (c2) = (s1): Easy from [10, Lemma 3].
(s1) = (c3): From Lemma 1.1, it is sufficient to prove that F N W = F for any closed subset
Fof X. Weputip : F— X, O = i;le and Fx = ip*i;lc’)x. Then Fx is a sheaf of
Ox-algebras. Thus i 8. Fx — i~ Fx is an isomorphism of sheaves from (s;), and hence
iNV) : Fx(V) —» (i~ Fx)(V N W) is an isomorphism of rings for any open subsets V of
X. Since there exists a homomorphism: Or(V N W N F) — Of(V N F) of rings, we obtain
that VNF #@= VNAWNF #@. Therefore FNW = F.

(i) By (52), i*(X) : Ox(X) — Ow(W) is an isomorphism of rings, and hence we
put A = Ox(X) = Ow(W). Then x oi = nw. From m.Spec A C nx(W) = nw(W), we
obtain F = FNm.SpecA C FNaw(W) = th(n;,l(F)) C F for any closed subset F of

Spec A. Therefore nw(nv_vl(F ) =F.

(iii) We put ¢ = i#(X) and f = Specy. Then wx oi = f o ww. Since f is a
surjection, we obtain F = f(f~1(F)) = f(f 1 (F) Naw(W)) C f(f~1(F) Naw(W)) C
FNax(W) C FNm.SpecOx(X) C F for any closed subset F of Spec Ox(X). Therefore
F Nm.Spec Ox(X) = F and hence Ox (X) is a Hilbert ring.

(iii’): Easy to prove.

(iv) From Lemma 1.1, we obtain F = nx(n;I(F)) = er(ngl(F) NnNw) C
nx(n;I(F) NW) c FNax(W) € FNm.SpecOx(X) C F for any closed subset F of
Spec Ox (X). Therefore F N m.Spec Ox(X) = F and hence Ox(X) is a Hilbert ring.

EXAMPLE 0. Let (X, Ox) be alocal ringed space. Suppose that the topology of X is
discrete.
(i) X satisfies (c2) and wx(X) C m.Spec Ox (X).
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(i) X satisfies (c1) = dim Oy , = 0 for any x € X.
(iii) Ox x isafield forany x € X
= dim Oy (X) = 0 and rx (X) is open in Spec Ox (X).
(iv) X is a finite set & wx(X) = m.Spec Ox(X).
(v) (X, Oyx) is an affine scheme < my is a surjection
& X is a finite set and dim Ox (X) = 0.
(vi) If X is a finite set, then

(c1) & (X, Oyx) is an affine scheme < (c3) .

The proof is easy.

2. Here we prove Theorem 1 and Theorem 2.
Let A be aring, i : m.Spec A — Spec A the inclusion mapping and M an A-module.
Then we consider the homomorphism of modules

i*(D(f)) : My — (i~'M)(D(f) N m.Spec A)

for any f € A, induced from i* : M — i,i~!M. Here we write w}’ = i*(D(f)). Then the
following three lemmas are shown.

LEMMA 2.1. Let A be a ring and M an A-module.

@) '1/;” is an injection forany f € A

< V(Anny(a)) Nm.Spec A = V(Annpy (@) for any a € M.

(i1) lllj'i‘ is an injection for any f € A
& W}‘ is an injection for any ideal a of A and f € A

& '1’}’ is an injection for any p € Spec Aand f € A
& lI/}“ is an injection for any m € m.Spec A and f € A.

LEMMA 2.2. Let A be a ring. Ifllf;uIg is an injection for any p € Spec A and f € A,
then A is a Hilbert ring.

LEMMA 2.3. Let Abearingandi : m.Spec A — Spec A the inclusion mapping. If
i% : p — ixi~1p is an isomorphism for any p € Spec A, then (D(f) N m.Spec A)* = D(f)
forany f € A.

The next result is induced from Lemma 1>.2, Theorem 4, (i), Lemma 2.2 and Lemma 2.3.

THEOREM 1'. Foraring A, we put X = Spec Aandi : X;; — X. Then
A is a Hilbert ring
& %1 p — ixi 1P is an isomorphism for any p € Spec A
& it AJp — i,i~AJp is an isomorphism for any p € Spec A.
PROOF OF THEOREM 1. (c2) © (s1): Already proved in Theorem 4, (i).
(co) © (c1) : Obvious from A = Ox(X).
(co) © (c2) : Easy from Lemma 1.1 and Lemma 1.2.
(c1) © (c3) : Induced from Corollary 2 to Theorem 3, Theorem 4, (ii), (iii) and (iii’).
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(s1) = (s7), (s1) = (s2) : Trivial.
(s}) = (co) : Obvious from Theorem 1.

From Theorem 1 and Corollary 1 to Theorem 3, we have:

THEOREM 1”. Foraring A, we put X = m.Spec A and Ox = A|X. Then
A is a Hilbert ring <& /a = Ix(Zx(a)) for any ideal a of Ox(X)
& tX is an affine scheme.

COROLLARY. Suppose that A is a reduced ring of finite type over an algebraically
closed field k.
(1) Ox is a sheaf of mappings to k.
(ii) Foranyidealaof A and f € A, we obtain

f|ZX(a) =0= f € +/a.

PROOF OF THEOREM 2. (c3) < (s1) : Already proved in Theorem 4, (i).
(co) < (c1) : Easy from the fact that A C Ox(X) is an integral extension.
(co) < (c2) : Already proved in [10, Theorem 3].
(c1) © (c3) : Induced from Corollary 2 to Theorem 3, Theorem 4, (ii), (iii) and (iii").
(s1) = (57), (s1) = (s2) : Trivial.
(s "y = (c2) : Weput W = X;. From Lemma 1.1, it is sufficient to prove that F N FNW = F for
any closed subset F of X. The mapping s : X — Loc(K |A) defined by s(R) = RforR € F
and s(R) = K for R ¢ F is continuous. Let Fx denote the intersection sheaf over X with
respect to s. Then Fy is a sheaf of Ox-algebras. Thus i . Fx — i.i~1Fx is an isomorphism
of sheaves from (s} "), and hence (V) : Fx(V) —> (1 Fx)(V N W) is an isomorphism of
rings for any open subsets V of X. By [9, Lemma 2] and that W is irreducible, i ~1Fy is an
intersection sheaf over W. Thus we obtain

VAF£8=VAW#0= [()s®= [] s(RI=VNFNW #0.
ReV RevVnw

Therefore FNW = F.

3. Here we consider the sheaves of real-valued continuous functions.
Let CS’( denote the sheaf of real-valued continuous functions over a topological space X.
Then we obtain a local ringed space (X, C%).

LEMMA 3.1. Let X be a topological space.
G Xis completely regular
& wx : X — Spec c? x (X) is an into- homeomorphism.
(i) nx: X —> SpecC (X) is dominant and

nx(X) = {m € m.Spec CY(X) | Zx(m) # 0}.

Moreover if X is compact, then tx(X) = m.Spec c? % (X).
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(iii) If X is normal, then (ni)x : C?((X Yax(x) = C?(, . is an isomorphism of rings for
anyx € X.

The proof is easy.

COROLLARY 1. X isa compact T, space
& mwy : X = m.Spec Cg (X) is an homeomorphism
& nwx : X > m.Spec C?( (X) is an isomorphism of local ringed spaces.

COROLLARY 2. (i) (X, C%) is an affine scheme = dim COX X)=0
= C%(X) is a Hilbert ring.
(ii) For a compact T, space X, all the conditions in (i) are equivalent.

REMARK. In general, for any topological spaces X, we obtain
C%(X) is a Hilbert ring < dim C%(X) =0
from [2, 2.11].

LEMMA 3.2. Let X be a topological space.
(i) IfX isaT space, then X satisfies (c2).
(i) If X is a compact T, space, then

(c1) © (X, C%) is an affine scheme < (c3) .

The proof is induced from Lemma 1.2, Lemma 3.1, (ii) and Corollary 2 to Lemma 3.1.

LEMMA 3.3. Suppose that X is a compact T, space. Then

C?((X ) is a noetherian Hilbert ring
& C%(X) is an Artin ring
& C ?( (X) is a Hilbert ring and x (x) is a principal ideal for any x € X
< X is a finite set.

The proof is easy.

COROLLARY. For a compact metric space X, we obtain

Cg (X) is a Hilbert ring < X is a finite set.

4. Here we give some examples related to Theorems 1, 2 and 4. Note that all topo-
logical spaces X appeared in the following examples satisfy the property that any irreducible
closed subset of X has a unique generic point.

First we show six examples described in Remark 2.

EXAMPLE 1. Let (X, Ox) be a local ringed space. Suppose that X is an infinite dis-
crete space and Oy  is a field for any x € X. Then X satisfies (c1) and (c3) but does not

satisfy (c3).

The proof is easy from Example O.
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EXAMPLE 2. For a field K and a subring A of K, we put X = Loc(K IA). Suppose
that A is a Hilbert ring but is not a Priifer ring. Then X satisfies (c1) and (c3) but does not

satisfy (c2).
For a proof see [10, Theorem 2].

EXAMPLE 3. For athree points set X = {x;, x2, y}, we introduce a topology by defin-
ing @, {y}, {x1, y}, {x2, ¥} and X to be open subsets. Taking a field k and an indeterminate
T over k, we define a mapping s : X — Loc(k(T)|k) by s(x1) = k, s(x2) = k[Tl),
s(y) = k(T). Then s is continuous. Let Ox denote the intersection sheaf over X with respect
to s. Then the local ringed space (X, Oyx) satisfies (c;) but does not satisfy (c2) and (c3).

The proof is easy.

EXAMPLE 4. Let X be the set of 0 and all primes. We introduce a topology for X
by defining X and finite subsets of {2, 3,5, -} to be closed subsets. Let Ox denote the
intersection sheaf over X with respect to the continuous mapping s : X — Loc(Q|Z) defined
by s(2) = Z2), s(x) = Q (x # 2). Then the local ringed space (X, Ox) satisfies (c2) and
(c3) but does not satisfy (c1).

The proof is easy.

EXAMPLE 5. (i) Let (X, Ox) be a local ringed space. Suppose that X is a finite dis-
crete space and dim Oy , 2 1 for some x € X. Then X satisfies (c2) but does not satisfy (c1)
and (c3).

(i) If a compact metric space X is not a finite set, then (X, C?() satisfies (¢;) but does
not satisfy (c1) and (c3).

PROOF. (i) is easy from Example O.
(ii) is verified from Lemma 3.2 and Corollary to Lemma 3.3.

EXAMPLE 6. Let X be the set of —1, 0 and all primes. We introduce a topology for
X by defining X, {0, 2, 3, 5, - - - } and finite subsets of {2, 3, 5, - - - } to be closed subsets. Let
Ox denote the intersection sheaf over X with respect to the continuous mapping s : X —
Loc(QIZ) defined by s(2) = Z(2), s(x) = Q (x # 2). Then the local ringed space (X, Ox)
satisfies (c3) but does not satisfy (c1) and (c2).

The proof is easy.
Next we show an example described in Remark 3.

EXAMPLE 7. For an algebraically closed field k, we put A = k U {oo}. Take a family
(T3)rea of indeterminates over k, and consider the polynomial ring A = k[T | A € Al of
infinite indeterminates. Then

(i) X = Spec A satisfies (s2) but does not satisfy (sq).
(ii) X = Zar(QA|A) satisfies (s2) but does not satisfy (s1).



SHEAVES ON LOCAL RINGED SPACES 317

PROOF. Since A is a polynomial ring over an algebraically closed field, X satisfies
(s2). For any R € Zar(k(T) |k), there exists p € Spec A such that A/p = R (k-isomorphism).
Thus A is not a Hilbert ring, and hence X does not satisfy (s).
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