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On a Fluctuation Identity for Multidimensional Lévy Processes
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1. Introduction.

Fluctuation identities for one-dimensional Lévy processes, often called Wiener Hopf
factorizations, were investigated by many authors (e.g. Baxter and Donsker [1], Rogozin [9],
Gusak and Korolyuk [5], Pecherskii and Rogozin [8], Borovkov [3], Greenwood and Pitman
[4], Skorohod [11, §4.3 and 4.4], Sato [10, Chapter 9], Bertoin [2, Chapter VI]). There are
several types of identities, for instance, those concerning supremum processes mainly and in-
cluding ladder processes too. We are particularly interested in those given by Pecherskii and
Rogozin [8], involving supremum processes, and developed in Sato [10, Chapter 9]. Our aim
is to give some extension of their results to multidimensional Lévy processes. Our problem
might be discussed from the view-point of Millar’s general results ([6] [7]) on the decomposi-
tion of Markov processes at splitting times but detailed computations would be needed to ar-
rive at our result. In this paper, we employ an elementary method starting from random walks;
it may be a straightforward extension of the method developed in Sato[10, pp. 333–345] but
we emphasize that there is a crucial point concerning a careful definition of X′′(H−(t)∗) and
X′′(H+(t)∗) (see §2 and Lemma 5.4). Another emphasis is that a relevant choice of an ap-
proximating compound Poisson process much simplifies the argument of deriving the result
for general Lévy processes from that for compound Poisson processes (see (5.2) and Lemma
5.4; compare it with the arguments of [11, pp. 207–213] and [10, pp. 342–345]). The method
of approximation is, in the sense of analysis, the same as the well-known method, often called
Yosida’s approximation, in the theory of semigroups of linear operators which makes use of

a bounded operator ε−1(ε−1I − A)−1A to approximate an unbounded infinitesimal generator
A ([12]).

2. The main result.

Given a Lévy process X(t) taking values on Rd , d ≥ 2, with X(0) = 0, we denote by
X′(t) and X′′(t) the first and the other components of X(t), respectively, and so X(t) can be
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expressed as
X(t) = (X′(t),X′′(t))

where X′(t) is a one-dimensional Lévy process and X′′(t) is a (d − 1)-dimensional Lévy
process. The sample paths of these Lévy processes are assumed to be right continuous and
have left limits. We write a ∨ b (resp. a ∧ b) for the maximum (resp. minimum) of a and b

and set

M ′(t) = sup{X′(s) : 0 ≤ s ≤ t} ,

H−(t) = inf{s ∈ [0, t] : X′(s−) ∨ X′(s) = M ′(t)} ,

H+(t) = sup{s ∈ [0, t] : X′(s−) ∨ X′(s) = M ′(t)} ,

X′′(H−(t)∗) =
{

X′′(H−(t)) if X′(H−(t)) = M ′(t) ,
X′′(H−(t)−) if X′(H−(t)−) = M ′(t) ,

X′′(H+(t)∗) : defined similarly ,

M−(t) = (M ′(t),X′′(H−(t)∗)) ,

M+(t) = (M ′(t),X′′(H+(t)∗)) .

In order that X′′(H−(t)∗) is well defined, X′′(·) should be continuous at H−(t) if X′(H−(t)−) =
X′(H−(t)) = M ′(t), a.s. This will be proved in Lemma 5.3.

In this paper u, v and w are always expressed as

u = (ξ + iξ ′, iξ ′′) , v = (η + iη′, iη′′) , w = (ζ + iζ ′, iζ ′′)

with ξ, ξ ′, η, η′, ζ, ζ ′ ∈ R and ξ ′′, η′′, ζ ′′ ∈ Rd−1, (i = √−1). ξ, η and ζ are often denoted
by 	1u,	1v and 	1w, respectively. The notations u · M and 〈ξ ′′,X′′〉 stand for the inner

products in Cd and in Rd−1, respectively.
Our theorem is then stated as follows.

THEOREM 1. Let X(t) = (X′(t),X′′(t)) be a d-dimensional Lévy process with X(0) =
0 (d ≥ 2), and set

A(t) = u · M−(t) + w · (M+(t) − M−(t))(2.1)

+ v · (X(t) − M+(t)) − αH−(t) − βH+(t) ,

B(t) = e−(λ+α+β)tE{eu·X(t) − 1; X′(t) > 0}(2.2)

+ e−(λ+β)tE{ei〈ζ ′′,X′′(t)〉 − 1; X′(t) = 0}
+ e−λtE{ev·X(t) − 1; X′(t) < 0}
+ {e−(λ+α+β)t − e−λt }P {X′(t) > 0}
+ {e−(λ+β)t − e−λt }P {X′(t) = 0} .
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Then we have

(2.3)

∫ ∞

0
e−λtE{eA(t)}dt = 1

λ
exp

{∫ ∞

0
B(t)

dt

t

}
.

for any λ, α, β, u, v and w satisfying the following condition:

(2.4)

⎧⎪⎪⎨
⎪⎪⎩

λ > 0, α ≥ 0, β ≥ 0 and u = (ξ + iξ ′, iξ ′′) ,

v = (η + iη′, iη′′), w = (ζ + iζ ′, iζ ′′) with

ξ ≤ 0, η ≥ 0, ξ ′, η′, ζ, ζ ′ ∈ R and ξ ′′, η′′, ζ ′′ ∈ Rd−1 .

The identity (2.3) can be rewritten in a slightly better form. We set

Ã(t) = u · M−(t) − αH−(t)

+ w · (M+(t) − M−(t)) − β(H+(t) − H−(t))

+ v · (X(t) − M+(t)) − γ (t − H+(t)),

B̃(t) = e−(λ+α)tE{eu·X(t) − 1; X′(t) > 0}
+ {e−(λ+α)t − e−λt }P {X′(t) > 0}
+ e−(λ+β)tE{ei〈ζ ′′,X′′(t)〉 − 1; X′(t) = 0}
+ {e−(λ+β)t − e−λt }P {X′(t) = 0}
+ e−(λ+γ )tE{ev·X(t) − 1; X′(t) < 0}
+ {e−(λ+γ )t − e−λt }P {X′(t) < 0} ,

and introduce an exponential random time T with mean 1/λ and independent of {X(t)}.
COROLLARY. (i) For any γ ≥ 0 and any λ, α, β, u, v,w satisfying the condition

(2.4) we have

(2.5) E{eÃ(T )} = exp

{∫ ∞

0
B̃(t)

dt

t

}
,

(ii) The three random vectors

U = (M−(T ),H−(T ))

V = (M+(T ) − M−(T ),H+(T ) − H−(T ))

W = (X(T ) − M+(T ), T − H+(T ))

are independent.
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3. The case of random walks in Rd .

In this section we prove a theorem for random walks in Rd which is analogous to Theo-
rem 1.

Let {Sn, n ≥ 0} be a random walk in Rd , d ≥ 2. It is expressed as Sn = ∑n
k=1 Xk, S0 =

0, where Xk’s are i.i.d. random variables in Rd . As in §2 we use the expression Sn = (S′
n, S′′

n)

where S′
n = ∑n

k=1 X′
k and S′′

n = ∑n
k=1 X′′

k are random walks in R and in Rd−1, respectively.
Sn is often written as S(n), in particular, when n is replaced by certain random variables such
as H−

n , H+
n , etc. We set

M ′
n = max{S′

k : 0 ≤ k ≤ n} ,

H−
n = min{	 : 0 ≤ 	 ≤ n, S′

	 = M ′
n} ,

H+
n = max{	 : 0 ≤ 	 ≤ n, S′

	 = M ′
n} ,

M−
n = S(H−

n ) = (S′(H−
n ), S′′(H−

n )) = (M ′
n, S′′(H−

n )) ,

M+
n = S(H+

n ) = (S′(H+
n ), S′′(H+

n )) = (M ′
n, S′′(H+

n )) .

The following is a random walk analogue of Theorem 1.

THEOREM 2. Let u = (ξ + iξ ′, iξ ′′), v = (η + iη′, iη′′), w = (ζ + iζ ′, iζ ′′) with
	1u = ξ ≤ 0, 	1v = η ≥ 0, and set

An = u · M−
n + w · (M+

n − M−
n ) + v · (Sn − M+

n ),(3.1)

Bn = (srρ)nE{eu·Sn − 1; S′
n > 0}(3.2)

+ (sρ)nE{ei〈ζ ′′,S ′′
n〉 − 1; S′

n = 0}
+ snE{ev·Sn − 1; S′

n < 0}
+ {(srρ)n − sn}P {S′

n > 0}
+ {(sρ)n − sn}P {S′

n = 0} .

Then for any s, r and ρ satisfying |s| < 1, |r| ≤ 1 and |ρ| ≤ 1 we have

(3.3)

∞∑
n=0

snE{eAnrH−
n ρH+

n } = (1 − s)−1 exp

( ∞∑
n=1

Bn

n

)
.

Evidently both sides do not depend on ζ and ζ ′.

For proving the theorem we employ the same method as in Lemma 45.6 of Sato [10,
p. 336]. We set

T+ = min{n ≥ 1 : S′
n > 0} , T+0 = min{n ≥ 1 : S′

n ≥ 0} ,

T− = min{n ≥ 1 : S′
n < 0} , T−0 = min{n ≥ 1 : S′

n ≤ 0} ,
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fs(u) =
∞∑

n=0

snE{eu·Sn; T−0 > n} ,

g s (v) =
∞∑

n=0

snE{ev·Sn; T+0 > n} ,

hs(w) =
∞∑

n=0

snE{ew·Sn; T+ > n, S′
n = 0} ,

γ +
s (u) = exp

∞∑
n=1

sn

n
E{eu·Sn; S′

n > 0} ,

γ −
s (v) = exp

∞∑
n=1

sn

n
E{ev·Sn; S′

n < 0} ,

cs(ζ
′′) = exp

∞∑
n=1

sn

n
E{ei〈ζ ′′, S ′′

n〉; S′
n = 0} .

LEMMA 3.1. For |s| < 1, |r| ≤ 1, |ρ| ≤ 1, 	1u = ξ ≤ 0 and 	1v = η ≥ 0, we
have

(3.4) fsrρ(u)hsρ(w)g s(v) =
∞∑

n=0

snE{eAnrH−
n ρH+

n } .

PROOF. Let 0 ≤ m ≤ 	. Then

E{ew·S	−m; T+ > 	 − m, S′
	−m = 0}(3.5)

= E{ew·S	−m; S′
k ≤ 0 (0 ≤ ∀k ≤ 	 − m), S′

	−m = 0} .

Since (X1, X2, · · · ,X	−m) is identical in law to (Xm+1,Xm+2, · · · ,X	), the joint distribu-
tion of S	−m, S′

k(1 ≤ k ≤ 	 − m), S′
	−m is the same as that of S	 − Sm, S′

m+k − S′
m(1 ≤ k ≤

	 − m), S′
	 − S′

m. Therefore (3.5) is equal to

E{ew·(S	−Sm); S′
m+k − S′

m ≤ 0 (0 ≤ ∀k ≤ 	 − m), S′
	 − S′

m = 0}
= E{ew·(S	−Sm); S′

m ≥ S′
k (m ≤ ∀k ≤ 	), S′

m = S′
	} .

Similarly, by using the law identity of (X1,X2, · · · ,Xn−	) and (X	+1,X	+2, · · · ,Xn) we
have

E{ev·Sn−	; T+0 > n − 	} = E{ev·Sn−	; S′
k < 0 (1 ≤ ∀k ≤ n − 	)}

= E{ev·(Sn−S	); S′
	 > S′

k (	 + 1 ≤ ∀k ≤ n)} .
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Moreover again by using the law identity of (X1,X2, · · · ,Xm) and (Xm,Xm−1, · · · ,X1) we
have

E{eu·Sm; T−0 > m} = E{eu·Sm; S′
m > S′

j (0 ≤ j ≤ m − 1)} .

Therefore, for |s| < 1, |γ | ≤ 1, |ρ| ≤ 1, 	1u ≤ 0, 	1v ≥ 0 and w = (ζ + iζ ′, iζ ′′) we
have

fsrρ(u)hsρ(w)g s(v) =
∞∑

m=0

(srρ)mE{eu·Sm; T−0 > m}

·
∞∑

	=m

(sρ)	−mE{ew·S	−m; T+ > 	 − m, S′
	−m = 0}

·
∞∑

n=	

sn−	E{ev·Sn−	; T+0 > n − 	}

=
∑

0≤m≤	≤n<∞
snrmρ	E{eu·Sm; S′

m > S′
j (0 ≤ ∀j ≤ m − 1)}

· E{ew·(S	−Sm); S′
m ≥ S′

k (m ≤ ∀k ≤ 	), S′
m = S′

	}
· E{ev·(Sn−S	); S′

	 > S′
k′ (	 + 1 ≤ ∀k′ ≤ n)}

=
∑

0≤m≤	≤n<∞
snrmρ	E{eu·Sm+w·(S	−Sm)+v·(Sn−S	);

S′
m > S′

j (0 ≤ ∀j ≤ m − 1), S′
m ≥ S′

k (m ≤ ∀k ≤ 	),

S′
m = S′

	, S′
	 > S′

k′ (	 + 1 ≤ ∀k′ ≤ n)}
=

∑
0≤m≤	≤n<∞

snrmρ	E{eu·Sm+w·(S	−Sm)+v·(Sn−S	); H−
n = m, H+

n = 	}

=
∞∑

n=0

snE{eAnrH−
n ρH+

n } .

This proves the lemma.

LEMMA 3.2. For |s| < 1

fs(u) = γ +
s (u) on {	1u ≤ 0} ,(3.6)

g s (v) = γ −
s (v) on {	1v ≥ 0} ,(3.7)

hs(w) = cs(ζ
′′) for w = (ζ + iζ ′, iζ ′′) .(3.8)

PROOF. Fixing s and ξ ′′ (|s| < 1, ξ ′′ ∈ Rd−1) we regard fs(u), g s (u), hs(u), γ +
s (u)

and γ −
s (u) as functions of z = ξ + iξ ′ alone and denote them by fs,ξ ′′(z), g s,ξ ′′(z), hs,ξ ′′(z),

γ +
s,ξ ′′(z) and γ −

s,ξ ′′(z) , respectively. Now suppose 	1u = ξ = 0 for the time being. Then by
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putting v = w = u and r = ρ = 1 in (3.4) we have

fs(u)hs(u)g s (u) =
∞∑

n=0

snE{eu·Sn} = {1 − sE(eu·S1)}−1

= exp[− log{1 − sE(eu·S1)}] = exp
∞∑

n=1

sn

n
E(eu·Sn)

= cs(ξ
′′)γ +

s (u)γ −
s (u) ,

or equivalently

(3.9) fs,ξ ′′(z)hs,ξ ′′(z)g s,ξ ′′(z) = cs(ξ
′′)γ +

s,ξ ′′(z)γ
−
s,ξ ′′(z) on {	z = 0} ,

and hence

(3.10)
fs,ξ ′′(z)

γ +
s,ξ ′′(z)

= cs(ξ
′′)γ −

s.ξ (z)

hs,ξ ′′(z)g s,ξ ′′(z)
on {	z = 0} .

Moreover, for fixed s and ξ ′′ (|s| < 1/2, ξ ′′ ∈ Rd−1) the left hand side of (3.10) is bounded
and continuous on {	z ≤ 0} and holomorphic in {	z < 0}; the right hand side of (3.10) is
bounded and continuous on {	z ≥ 0} and holomorphic in {	z > 0}. Therefore the function

(3.11) ϕ(z) =
{

the left hand side of (3.10) on {	z ≤ 0} ,
the right hand side of (3.10) in {	z > 0} ,

is holomorphic and bounded in the whole C and hence equal identically some constant c. The
constant c must be 1 because we can easily prove that fs,ξ ′′(z) → 1 and γ +

s,ξ ′′(z) → 1 as z = ξ

(so z is on the real axis) → −∞. Therefore ϕ(z) ≡ 1 and this implies fs,ξ ′′(z) = γ +
s,ξ ′′(z) on

{	z ≤ 0} and hs,ξ ′′(z)g s,ξ ′′(z) = cs(ξ
′′)γ −

s,ξ ′′(z) on {	z ≥ 0}, or what is the same thing,

fs(u) = γ +
s (u) for |s| < 1/2 and 	1u ≤ 0 ,(3.12)

hs(v)g s(v) = cs(η
′′)γ −

s (v) for |s| < 1/2 and 	1v ≥ 0 .(3.13)

Since all the functions in (3.12) and (3.13) are holomorphic functions of s in {|s| < 1}, (3.12)
and (3.13) hold for |s| < 1. Finally to prove (3.7) and (3.8) we notice that (3.13) yields

g s (v)

γ −
s (v)

= cs(η
′′)

hs(v)
depends only on s and η′′(3.14)

(v = (η + iη′, iη′′) with η ≥ 0) ,

and it is easy to see that the left hand side of (3.14) tends to 1 as η → ∞. Therefore the
common value of (3.14) must be equal to 1 identically, so (3.7) and (3.8) hold. The proof of
lemma is finished.
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The proof of Theorem 2 is completed as follows. By Lemma 3.1 and Lemma 3.2 we
have

∞∑
n=0

snE{eAnrH−
n ρH+

n } = fsrρ(u)hsρ(w)g s(v) = γ +
srρ(u)csρ(ζ ′′)γ −

s (v) ,

and it is not hard to verify that the last term equals the right hand side of (3.3).

4. The case of compound Poisson processes.

When X(t) is a compound Poisson process, Theorem 1 can be derived from Theorem 2
in the same way as in Theorem 45.5 of Sato [10, p. 335].

A compound Poisson process {X(t)} can be expressed as

(4.1) X(t) = Sπ(t), t ≥ 0 ,

where {Sn} is a random walk in Rd with S0 = 0 and {π(t)} is a Poisson process with intensity
c; it is assumed that {Sn} and {π(t)} are independent. Let 0 < τ1 < τ2 < · · · be the jumping
times of {π(t)} and let τ0 = 0. Then τn − τn−1, n ≥ 1, are exponential random variables with
mean 1/c. Let A(t) and An be defined by (2.1) and (3.1), respectively. We have the following
relations. If τn < t < τn+1, then

π(t) = n, X(t) = Sn, M ′(t) = M ′
n ,(4.2)

H−(t) = τH−
n
, H+(t) =

{
τH+

n +1 if H+
n < n ,

t if H+
n = n ,

(4.3)

M−(t) = M−
n , M+(t) = M+

n , A(t) = An − αH−(t) − βH+(t) .(4.4)

Therefore, for any λ > 0, α ≥ 0, β ≥ 0 and for any u, v, w satisfying 	1u = ξ ≤
0, 	1v = η ≥ 0 we have

∫ ∞

0
E{e−λt+A(t)}dt(4.5)

=
∞∑

n=0

∫ ∞

0
E{e−λt+A(t); τn < t < τn+1}dt

=
∞∑

n=0

∫ ∞

0
E{e−λt+An−αH−(t)−βH+(t); τn < t < τn+1}dt ,
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E{e−λt+An−αH−(t)−βH+(t); τn < t < τn+1}(4.6)

= E{e−λt+An−A′
n; τn < t < τn+1, H+

n < n}
+ E{e−λt+An−A′′

n(t); τn < t < τn+1, H+
n = n}

(with A′
n = ατH−

n
+ βτH+

n +1 and A′′
n(t) = ατH−

n
+ βt)

=
∑

0≤m≤	≤n−1

E

{
e−λt+A(m,	,n)−ατm−βτ	+1 ; τn < t < τn+1

H−
n = m, H+

n = 	

}

+
∑

0≤m≤n

E

{
e−λt+A(m,n,n)−ατm−βt ; τn < t < τn+1

H−
n = m, H+

n = n

}

(with A(m, 	, n) = u · Sm + w · (S	 − Sm) + v · (Sn − S	))

=
∑

0≤m≤	≤n

E{eA(m,	,n); H−
n = m, H+

n = 	}E(t; m, 	, n) ,

where

E(t; m, 	, n) =
⎧⎪⎨
⎪⎩
E{e−λt−ατm−βτ	+1 ; τn < t < τn+1} for 	 ≤ n − 1 ,

E{e−(λ+β)t−ατm; τn < t < τn+1} for 	 = n .

On the other hand we have, for 0 ≤ m ≤ 	 ≤ n − 1 with n ≥ 1,

∫ ∞

0
E(t; m, 	, n)dt(4.7)

= E

{∫ τn+1

τn

e−λt−ατm−βτ	+1dt

}

= 1

λ
E{e−ατm−βτ	+1−λτn − e−ατm−βτ	+1−λτn+1}

= 1

λ
E{e−ατm−βτ	+1−λτn}E{1 − e−λ(τn+1−τn)}

= 1

λ + c
E{e−ατm−βτ	+1−λτn}

= 1

λ + c
E{e−(λ+α+β)τm}E{e−(λ+β)(τ	+1−τm)}E{e−λ(τn−τ	+1)}

= 1

λ + c

(
c

λ + α + β + c

)m(
c

λ + β + c

)	+1−m(
c

λ + c

)n−	−1

= 1

λ + β + c

(
λ + β + c

λ + α + β + c

)m (
λ + c

λ + β + c

)	 (
c

λ + c

)n

,
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and similarly, for 0 ≤ m ≤ n with n ≥ 0,∫ ∞

0
E(t; m,n, n)dt(4.8)

= 1

λ + β + c

(
λ + β + c

λ + α + β + c

)m (
λ + c

λ + β + c

)	 (
c

λ + c

)n

with 	 = n .

From (4.5)–(4.8) we have∫ ∞

0
E

{
e−λt+A(t)

}
dt(4.9)

=
∞∑

n=0

∑
0≤m≤	≤n

E{eA(m,	,n); H−
n = m, H+

n = 	}

· 1

λ + β + c

(
λ + β + c

λ + α + β + c

)m (
λ + c

λ + β + c

)	 (
c

λ + c

)n

= 1

λ + β + c

∞∑
n=0

snE{eAnrH−
n ρH+

n }
(

with s = c

λ + c
, r = λ + β + c

λ + α + β + c
and ρ = λ + c

λ + β + c

)

= 1

λ + β + c
(1 − s)−1 exp

( ∞∑
n=1

Bn

n

)
(by (3.3)) ,

where Bn is given by (3.2).

LEMMA 4.1. For any θ > 0 and for any u = (ξ + iξ ′, iξ ′′), v = (η+ iη′, iη′′), w =
(ζ + iζ ′, iζ ′′) with ξ ≤ 0, η ≥ 0, ξ ′, η′, ζ, ζ ′ ∈ R and ξ ′′, η′′, ζ ′′ ∈ Rd−1, we have

(i)
∫ ∞

0

1

t
e−θtE{eu·X(t) − 1; X′(t) > 0}dt

=
∞∑

n=1

1

n

(
c

θ + c

)n

E{eu·Sn − 1; S′
n > 0} ;

(ii)
∫ ∞

0

1

t
e−θtE{ei〈ζ ′′,X′′(t)〉 − 1; X′(t) = 0}dt

=
∞∑

n=1

1

n

(
c

θ + c

)n

E{ei〈ζ ′′,S ′′
n〉 − 1; S′

n = 0} ;

(iii)
∫ ∞

0

1

t
e−θtE{ev·X(t) − 1; X′(t) < 0}dt
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=
∞∑

n=1

1

n

(
c

θ + c

)n

E{ev·Sn − 1; S′
n < 0} ;

(iv)

∫ ∞

0

1

t
e−θtP

{
X′(t) > 0

}
dt =

∞∑
n=1

1

n

(
c

θ + c

)n

P {S′
n > 0} ;

(v)

∫ ∞

0

1

t

(
e−θt − e−θ ′t

)
P

{
X′(t) = 0

}
dt

= log
θ ′ + c

θ + c
+

∞∑
n=1

1

n

{(
c

θ + c

)n

−
(

c

θ ′ + c

)n}
P {S′

n = 0}

(θ ′ is also positive) .

PROOF. (i) The left hand side is equal to

∞∑
n=0

E

{∫ τn+1

τn

e−θt (eu·Sn − 1)
dt

t
; S′

n > 0

}

=
∞∑

n=1

E

{∫ τn+1

τn

e−θt dt

t

}
E{eu·Sn − 1; S′

n > 0} ,

which can be identified with the right hand side by virtue of a simple equality

(4.10) E

{∫ τn+1

τn

e−θt dt

t

}
= 1

n

(
c

θ + c

)n

.

The equalities (ii), (iii) and (iv) can be proved similarly. As for (v) the left hand side can be
expressed as

E

{∫ τ1

0
(e−θt − e−θ ′t )

dt

t

}
+

∞∑
n=1

E

{∫ τn+1

τn

(e−θt − e−θ ′t )
dt

t

}
P {S′

n = 0} ,

which is equal to the right hand side because of (4.10) and

E

{∫ τ1

0
(e−θt − e−θ ′t )

dt

t

}
= log

θ ′ + c

θ + c
.

The proof of the lemma is finished.
We can now end this section. From Lemma 4.1, (4.9) and (3.2) with

s = c

λ + c
, r = λ + β + c

λ + α + β + c
, ρ = λ + c

λ + β + c
,
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we have∫ ∞

0
E{e−λt+A(t)}dt

= 1

λ + β + c

(
1 − c

λ + c

)−1

exp

{
− log

λ + c

λ + β + c

}
exp

{∫ ∞

0
B(t)

dt

t

}

= 1

λ
exp

{∫ ∞

0
B(t)

dt

t

}
,

where B(t) is given by (2.2). This proves Theorem 1 when X(t) is a compound Poisson
prosess.

5. Proof of Theorem 1.

Any Lévy process can be approximated by a compound Poisson process. Our proof of
Theorem 1 for general Lévy processes is based on this approximation. So suppose we are

given an arbitrary Lévy process {X(t)} in Rd with X(0) = 0 and let {Xε(t)} be an approx-
imating compound Poisson process which is to be chosen suitably. We are going to give a
considerably simpler proof to Theorem 1 by taking for {Xε(t)} a compound Poisson process
which is subordinate to {X(t)} with a suitable subordinator {Tε(t)}.

Let τ ′
k, k = 1, 2, · · · , be independent exponential random variables with mean 1, let

{π(t)} be a Poisson process with intensity 1 and assume that {X(t)}, {τ ′
k, k ≥ 1} and {π(t)}

are independent. Let τ0 = 0 and τn = ∑n
k=1 τ ′

k for n ≥ 1. Then the process {Tε(t)}, defined
by Tε(t) = ετπ(t/ε) for each fixed ε > 0, is a subordinator and we can easily show that

(5.1) for any fixed t > 0, sup
0≤s≤t

|Tε(s) − s| → 0 as ε ↓ 0, a.s.

We also set

(5.2) Xε(t) = X(Tε(t)) .

Then {Xε(t)} is a compound Poisson process and it is not hard to prove that

(5.3) Xε(t) → X(t) (in the Skorohod topology) as ε ↓ 0 , a.s.

Moreover, for each n ≥ 1, the random variable ετn has the �-distribution with density

(5.4) γ1/ε,n(t) = {
εn�(n)

}−1
tn−1e−t/ε , t > 0 .

As in §2 we write X(t) = (X′(t),X′′(t)), Xε(t) = (X′
ε(t),X

′′
ε (t)) and consider A(t), B(t),

Aε(t), Bε(t) defined for X(t) and Xε(t), respectively (see (2.1) and (2.2)). Then an applica-
tion of Theorem 1 for the compound Poisson process {Xε(t)} implies

(5.5)

∫ ∞

0
e−λtE{eAε(t)}dt = 1

λ
exp

{∫ ∞

0
Bε(t)

dt

t

}
,
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under the condition (2.4). In the following lemma we set

bε(t; θ) = t−1
{

exp

(
− θt

1 + θε

)
− exp

(
− t

ε

)}
,

cε(t; θ) = t−1
{

exp

(
− θt

1 + θε

)
− exp

(
− λt

1 + λε

)}
.

LEMMA 5.1. Under the condition (2.4) we have∫ ∞

0
Bε(t)

dt

t
=

∫ ∞

0
bε(t; λ + α + β)E{eu·X(t) − 1; X′(t) > 0}dt(5.6)

+
∫ ∞

0
bε(t; λ + β)E{ei〈ζ ′′ X′′(t)〉 − 1; X′(t) = 0}dt

+
∫ ∞

0
bε(t; λ)E{ev·X(t) − 1; X′(t) < 0}dt

+
∫ ∞

0
cε(t; λ + α + β)P {X′(t) > 0}dt

+ log
1 + λε

1 + (λ + β)ε
+

∫ ∞

0
cε(t; λ + β)P {X′(t) = 0}dt .

PROOF. We make use of the expression

(5.7) Bε(t) = e−(λ+α+β)tE{eu·Xε(t) − 1; X′
ε(t) > 0} + four similar terms.

With θ = λ + α + β we have∫ ∞

0

1

t
e−(λ+α+β)tE{eu·Xε(t) − 1; X′

ε(t) > 0}dt

=
∞∑

n=1

∫ ∞

0

1

t
e−θt · e−t/ε · (t/ε)n

n! E{eu·X(ετn) − 1; X′(ετn) > 0}dt

=
∞∑

n=1

n−1(1 + θε)−nE{eu·X(ετn) − 1; X′(ετn) > 0}

=
∞∑

n=1

n−1(1 + θε)−n

∫ ∞

0
E{eu·X(t) − 1; X′(t) > 0}γ1/ε,n(t)dt

=
∫ ∞

0
bε(t; λ + α + β)E{eu·X(t) − 1; X′(t) > 0}dt ,
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where we used the following elementary equalities:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ ∞

0

1

t
e−θt−t/ε (t/ε)n

n! dt = n−1(1 + θε)−n ,

∞∑
n=1

n−1(1 + θε)−nγ1/ε,n(t) = bε(t; θ) .

(5.8)

The integrals corresponding to the other four terms in the expression (5.7) can be computed
similarly. The proof of the lemma is finished.

From Lemma 5.1 we can obtain a formal proof of Theorem 1 by letting ε ↓ 0 in (5.4),
but for a rigorous proof we need some lemmas.

LEMMA 5.2 ([10]). Suppose that {X′(t)} is not a compound Poisson process and that
X′(·) �≡ 0. Then, for any t > 0, P

{
H−(t) = H+(t)

} = 1.

For the proof see Lemma 49.4 of Sato [10, p. 370].
Next we remark that X′′(H−(t)∗) and X′′(H+(t)∗) are well defined a.s. for each fixed

t . When {X(t)} is a compound Poisson process the well-definedness was clear from (4.4). In
a general case the well-definedness is supported by the following lemma.

LEMMA 5.3. For each fixed t > 0, X′′(·) is continuous at H−(t) almost surely on the
event that X′(·) is continuous at H−(t). The same assertion holds when H−(t) is replaced by
H+(t).

PROOF. Since it is clear that X′′(·) is continuous at H−(t) ( resp. H+(t)) almost surely
on the event {H−(t) = t} (resp. {H+(t) = t}), we prove the formula

(5.9) P

{
H−(t) < t and X′(·) is continuous at H−(t)

but X′′(·) is not continuous at H−(t)

}
= 0

and the same one for H+(t) hold. Firstly we consider the case where sup0<s<ε X′(s) > 0
for any ε > 0 almost surely. For each n ≥ 1, let θn,k, k = 1, 2, · · · , be the stopping times
defined by

θn,1 = inf

{
s > 0 : ∣∣X′′(s) − X′′(s−)

∣∣ >
1

n

}
,

θn,k = inf

{
s > θn,k−1 : ∣∣X′′(s) − X′′(s−)

∣∣ >
1

n

}
, k ≥ 2 .
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Then the left hand side in (5.9) is dominated by

∞∑
n=1

∞∑
k=1

P {H−(t) = θn,k < t and X′(·) is continuous at H−(t)}

≤
∞∑

n=1

∞∑
k=1

P {θn,k < t and X′(·) takes a local maximum at θn,k}

≤
∞∑

n=1

∞∑
k=1

P

{
θn,k < t and sup

0<s<ε

X′(s + θn,k) ≤ X′(θn,k) for some ε > 0

}

≤
∞∑

n=1

∞∑
k=1

E

[
P

{
sup

0<s<ε

X′(s) ≤ 0 for some ε > 0

}
; θn,k < t

]
= 0 ,

and hence (5.9) holds. Since H−(t) = H+(t) (a.s.) by Lemma 5.2, (5.9) also holds with the
replacement of H−(t) by H+(t). Secondly we consider the case where inf0<s<ε X′(s) < 0
for any ε > 0 almost surely. We set Y (s) = X((t − s)−) − X(t−) for 0 ≤ s < t . Since
the process {Y (s), 0 ≤ s < t} is identical in law to {−X(s), 0 ≤ s < t}, sup0<s<ε Y ′(s) is
also identical in law to − inf0<s<ε X′(s) which is strictly positive a.s. Therefore, by a similar
argument applied to {Y (s), 0 ≤ s < t} we can prove (5.9) and the same one for H+(t).
Thirdly it remains to treat the case where X′(·) is a compound Poisson process, but in this
case the assertion of the lemma follows immediately from

(5.10)

⎧⎪⎨
⎪⎩
P {H−(t) > 0 and X′(·) is continuous at H−(t)} = 0 ,

P {H+(t) < t and X′(·) is continuous at H+(t)} = 0 .

The proof of the lemma is finished.

LEMMA 5.4. For each fixed t > 0, H−
ε (t), H+

ε (t), M−
ε (t) and M+

ε (t) tend to

H−(t), H+(t), M−(t) and M+(t), respectively, as ε ↓ 0 almost surely.

PROOF. The proof of limε↓0 X′′
ε (H−(t)∗) = X′′(H−(t)∗) and limε↓0 X′′

ε (H+(t)∗) =
X′′(H+(t)∗) is the most crucial part. To clarify the essential point of our proof we take up the
event

Λ = {0 < H−(t) < t and X′(H−(t)−) = M ′(t) > X′(H−(t))}
and prove that

(5.11)

{
H−

ε (t), M ′
ε(t) and X′′

ε (H−
ε (t)∗) tend to H−(t), M ′(t) and

X′′(H−(t)∗), respectively, as ε ↓ 0 almost surely on Λ .

The other cases can be treated in the same spirit. In the following argument the adverb phrases
"for all sufficiently small ε > 0" and "almost surely on Λ" are needed frequently but often
omitted for simplicity. For instance, the assertion (5.12) below should be read as "for all
sufficiently small ε > 0 there exists n′ ≤ n(ε, t) such that M ′

ε(t) = X′(ετn′), almost sure
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on Λ." Since {X(·)} and {τn, n ≥ 0} are independent, it is clear that, for each ε > 0 and
for any n ≥ 0, H−(t) �= ετn a.s. on Λ. Therefore there exists n = n(ε, t) such that
ετn < H−(t) < ετn+1 (a.s. on Λ). Taking into account that the subordinator {Tε(·)} takes
values in the (random) set {ετn, n ≥ 0} and also noting that H−(t) = H+(t) a.s. on � (when
X′(·) is a compound Poisson process, P(�) = 0), we can easily see that

(5.12) there exists m ≤ n(ε, t) such that M ′
ε(t) = X′(ετm) .

Denoting by m(ε, t) the smallest m in (5.12), we now claim that

(5.13) ετm(ε,t) → H−(t) as ε ↓ 0,

(5.14) H−
ε (t) → H−(t) as ε ↓ 0 , Tε(H

−
ε (t)) = ετm(ε,t) < t .

In fact, the proof of (5.13) is easy. To prove (5.14) let 0 < σ1 < σ2 < · · · be the jumping
times of Poisson process {π(·)}. Then it is easy to see that (5.13) implies

lim
ε↓0

εσm(ε,t) = lim
ε↓0

ετm(ε,t) · m(ε, t)

τm(ε,t)

· σm(ε,t)

m(ε, t)
= H−(t) ,

and hence εσm(ε,t) < t for all sufficiently small ε > 0. Therefore we have H−
ε (t) =

εσm(ε,t) → H−(t) as ε ↓ 0 and

Tε(H
−
ε (t)) = ετ [π(H−

ε (t)/ε)] = ετ [π(σm(ε,t))] = ετm(ε,t) ,

which implies (5.14). From (5.13) and (5.14) we see that Tε(H
−
ε (t)) is less than t and tends

to H−(t) as ε ↓ 0, a.s. on Λ. Consequently

lim
ε↓0

X′′
ε (H−

ε (t)∗) = lim
ε↓0

X′′(Tε(H
−
ε (t))) = X′′(H−(t)−) = X′′(H−(t)∗) ,

and this proves (5.11). The proof of the lemma is finished.

LEMMA 5.5. (i) For any λ > 0 and u = (iξ ′, iξ ′′) with ξ ′ ∈ R and ξ ′′ ∈ Rd−1

(5.15)

∫ ∞

0

1

t
e−λtE{|eu·X(t) − 1|}dt < ∞ .

(ii) For any λ > 0 and θ ≥ 0

(5.16)

∫ ∞

0

1

t
e−λtE{1 − e−θ |X′(t)|}dt < ∞ .

PROOF. (i) Making use of the fact that a Lévy process has finite absolute moments
of all positive orders if the support of the Lévy measure is a bounded set (e.g. see Sato
[10, p. 159]), we can express the Lévy process Y (t) := −iu · X(t) as Y (t) = Y1(t) +
Y2(t) where {Y1(t)} is a Lévy process with E{|Y1(t)|2} < ∞ and {Y2(t)} is a compound
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Poisson process independent of {Y1(t)}. Let T be the first jumping time of {Y2(t)}. Then
P {T ≤ t} = 1 − e−ct , t > 0, with some constant c ≥ 0. Therefore

E{|eu·X(t) − 1|} = E{|eiY1(t) − 1|; T > t} + E{|eiY (t) − 1|; T ≤ t}(5.17)

≤ E{|eiY1(t) − 1|} + 2P {T ≤ t} .

Using the elementary inequality |eix − 1| ≤ |x| (for any real x), we have

E{|eiY1(t) − 1|} ≤ E {|Y1(t)|} ≤ const. t1/2 for 0 ≤ t ≤ 1 ,

and hence (5.17) yields

E{|eu·X(t) − 1|} ≤ const. t1/2, 0 ≤ t ≤ 1 .

This implies (5.15).
(ii) As in (i), we make use of a decomposition X′(t) = X′

1(t)+X′
2(t) where {X′

1(t)} is a

Lévy process with E{|X′
1(t)|2} < ∞ and {X′

2(t)} is a compound Poisson process independent

of {X′
1(t)}. Let T be the first jumping time of {X′

2(t)}. Then

E{1 − e−θ |X′(t)|} ≤ E{1 − e−θ |X′
1(t)|; T > t} + P {T ≤ t}

≤ E
{
θ |X′

1(t)|
} + P {T ≤ t} ≤ const. t1/2 for 0 ≤ t ≤ 1 ,

from which (5.16) follows.
We are now able to complete the proof of Theorem 1 by letting ε ↓ 0 in (5.5). By

Lemma 5.4 the left hand side in (5.5) tends to
∫ ∞

0 e−λtE{eA(t)}dt as ε ↓ 0. As for the right
hand side in (5.5), first we rewrite it using Lemma 5.1 and then apply Lebesgue’s dominated
convergence theorem, which is guaranteed by Lemma 5.5. Thus we see that the right hand

side tends to λ−1 exp{∫ ∞
0 B(t) dt

t
} as ε ↓ 0. This complete the proof of Theorem 1.
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