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Abstract. We show that on a p-adic Lie group, any normal semistable measure has a unique semistable em-
bedding. This, in particular, implies the uniqueness of semistable embedding of any (operator-)semistable measure
on a finite dimensional p-adic vector space. We compare two classes of probability measures on a unipotent p-adic
algebraic group: the class of semistable measures and that of measures whose domain of semistable attraction is
nonempty.

1. Introduction

Let G be a locally compact (Hausdorff) group with identity e and let M '(G) denote the
topological semigroup of probability measures on G with weak topology and convolution ‘x’
as the semigroup operation. Let Aut(G) denote the group of continuous automorphisms of G
(with compact-open topology).

A probability measure p on G is said to be (t, c)-semistable for T € Aut(G) and ¢ €
10, 1[ if « is embeddable in a continuous (real) one-parameter semigroup {it;};>0 C M 1(G)
as w = pp such that t(u;) = pe forall t > 0; we also call {u}s>0 (7, c)-semistable.
A measure p (resp. {i}r=0) in MY (G) is said to be semistable if it is (t, ¢)-semistable for
some 7 € Aut(G) and some ¢ € 0, 1[. Note that in case of (finite dimensional) p-adic (resp.
real) vector spaces, this definition corresponds to that of operator-semistable (resp. strictly
operator-semistable) measures.

It is well-known that if any locally compact group G admits a semistable measure jt em-
beddable in a (7, ¢)-semistable {u;};>0 C M'(G) for t and c as above, then u is supported
on the closure of the K-contraction group of t, namely Cx(r) = {x € G | T"(x)K —
K in G/K}, where K is a compact subgroup such that ;1o = wg, the normalised Haar mea-
sure of K. The structure of C(t) = Cy.}(7), the contraction group of 7, is well-known. If
G admits a contracting automorphism t; i.e. C(7) = G, then it is a direct product GY x D,
where G is a simply connected nilpotent contractible group and D is a totally disconnected
contractible group (cf. [Si]). Semistable measures on real vector spaces, or more generally,
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on simply connected nilpotent groups, have been studied in details (see [HSi2] and references
cited therein). In this article, we are interested in investigating some aspects of semistability
for measures on p-adic Lie groups, which form a significant subclass of totally disconnected
groups, (see [V] or [S] for exposition on p-adic Lie groups).

In case G is a p-adic Lie group and t € Aut(G), by Theorem 3.5 of [W], C(7) is a
unipotent p-adic algebraic group (see section 2 for some details). Also, if 7(K) = K then
Ck (7)isclosed and Ck (t) = C(7)-K, asemidirect product. Moreover, any (7, ¢)-semistable

one-parameter semigroup {u;};>0 on G can be expressed as u; = /L;O) ¥ WK = WK * ,ufo)

for all ¢, where { ;L,(O) }i>0 is a (7, ¢)-semistable one-parameter semigroup supported on C(t)
(cf. [DSh1]; a similar result is true for real Lie groups also, see [HSil]). For a survey of
results on semistable measures on locally compact groups, the reader is referred to [HSi2] and
for semistable measures on p-adic groups in particular to [DSh1], [Sh1], and also [MSh1]-
[MSh2] for more recent results.

For any x € G, let 8, denote the dirac measure supported on x. Let u € M 1(G). Let
i € M'(G) be defined as fi(B) = u(B~!) for all Borel subsets B of G.  is said to be
normal if w* @ = % p. Let G(u) denote the closed subgroup generated by supp u, the
support of w andlet Z(u) = {x € G | §x * u = u * 6y = u} which is a compact subgroup of
G. We also define the invariance group of u as Inv(u) = {r € Aut(G) | t(n) = u};itisa
closed subgroup of Aut(G).

We say that a semistable measure on G has a unique semistable embedding if the follow-
ing holds: if u is embeddable in (7, c)-semistable and (¢, d)-semistable one-parameter semi-
groups {is}>0 and {v;};>0 in MYG) respectively as w1 = u = vy, for some t, ¥ € Aut(G)
and ¢, d €]0, 1[, then u; = v, forall ¢t > 0.

In section 2, we discuss the uniqueness of semistable embedding on a p-adic Lie
group G under certain conditions and show that any normal semistable measure on G has
a unique semistable embedding (see Theorem 2.1). In particular, this implies the uniqueness
of semistable embedding of any (operator-)semistable measure on any p-adic vector space.
In section 3, on a unipotent p-adic algebraic group, we compare semistable measures with
measures whose domain of semistable attraction is nonempty, (in particular, see Theorem
3.1).

2. On the uniqueness of semistable embedding on p-adic groups

In this section, we discuss the uniqueness of semistable embedding on a p-adic Lie
group G under certain conditions. The reader is referred to [C] for generalities on p-adic
vector spaces and to [V] and [S] for p-adic Lie groups.

For a prime p, let Q,, denote the field of p-adic numbers with the usual p-adic absolute
value | - |,. Let GL;,,(Q)) be the group of m x m non-singular matrices with entries in Q,,

with the topology as a subset of Q'I’,'z. Then GL,,(Qp) is a p-adic Lie group. Let G be a
p-adic algebraic group and let G = G(Qp) be the Q-rational points of G. ie. G (resp. G)
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is the set of common zeros in GL,, (Q_p) (resp. in GL,,(Q)p)) of finitely many polynomials

with coeffifients in Q,, where Q_p denotes the algebraic closure of Q,. Then G is a closed
subgroup of GL,,(Qp) for some m € N (the set of natural numbers), in particular, it is a
p-adic Lie group; We will occasionally call G itself a p-adic algebraic group. A subgroup H
of G = G(Qp) is said to be algebraic if H = fI(QP) for some algebraic group HC é; H is
closed in G. An algebraic group G is said to be unipotent if it consists of unipotent elements.
If G is unipotent, then G = G(Q p) is a subgroup of Uy, (Q,) (for some m € N), the group of
m X m upper triangular matrices with all diagonal entries equal to 1, (see [B], [Ho] and [Hu]
for generalities on algebraic groups).

Let G be a p-adic algebraic group and let G = GQ p). For a probability measure
w on G, we will denote by G (i) the smallest (closed) algebraic subgroup of G containing
supp 1. A probability measure p on G is said to be full (resp. S-full) if Gn) =G (resp.
G(,u % 1) = G). Note that these definitions are consistent with the definitions on (p-adic)
vector spaces as all its algbraic subgroups are subspaces.

We note that any symmetric semistable measure on any locally compact group has a
unique semistable embedding. This is because if a symmetric measure is embeddable in
a continuous one-parameter semigroup which consists of symmetric measures then such an
embedding is unique and if {u;};>0 is (7, c)-semistable for some automorphism 7 and some
¢ €]0, 1[ where w1 is symmetric then t” (u1)™ = pmen is symmetric for m, n € N, and since
{ttmen | m,n € N} is a dense subset of {u,};>0, each u; is symmetric. Here, we show that
any normal semistable measure on a p-adic Lie group G has a unique semistable embedding.
In particular, any (operator-)semistable measure on a p-adic vector space (or more generally)
on an abelian p-adic Lie group has a unique semistable embedding. Note that on a simply
connected nilpotent group, the uniqueness of semistable embedding has been shown (see [H]).

THEOREM 2.1. Any normal semistable measure on a p-adic Lie group has a unique
semistable embedding.

The following corollary follows easily from the above theorem. In particular, it holds for
any (operator-)semistable measure on any p-adic vector space.

COROLLARY 2.2. Any semistable measure on an abelian p-adic Lie group has a
unique semistable embedding.

Before proving the above theorem, we state and prove several results, some of which
will be of independent interest. We also state a specific case of convergence-of-types theorem
which we will use often.

THEOREM 2.3 ([Sh2]). Let G be a unipotent p-adic algebraic group. Let {u,} C
MY (G) and {t,} C Aut(G) be such that Un — W and t, (L) — A for some full measures
and ) in MY (G). Then {1} is relatively compact in Aut(G). Moreover, for any limit T of {t,}
in Aut(G), T(u) = A. In particular, Inv(u) is compact in Aut(G).
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THEOREM 2.4. Let G be a p-adic Lie group and let {ii;};>0 and {v;}i>0 be respec-
tively (t, ¢)-semistable and (\, d)-semistable one-parameter semigroups in M (G) for some
T, € Aut(G) and c,d €10, 1[ such that u1 = vi = i # 8, and o9 = 8.. Then logc and
logd are commensurable. Moreover, If T and  commute with each other, then u; = v; for
allt > 0.

PROOF. Since G is totally disconnected, it is well known that u, and v, are supported
on G(u) and, in fact, G(u;) = G(u) = G(vy), t > 0. Therefore, T(G(n)) = G(u) and
Y (G(n)) = G(n). Hence without loss of any generality, we may assume that G = G(u).
Since (o = 8., G = C(t) (cf. [Si]). This implies that G = G(Qp), where G is a unipotent
p-adic algebraic group, (cf. [W], Theorem 3.5), and t contracts G. Also, 7 and v are Q-
rational automorphisms of G (cf. [Sh2], Theorem 2.1).

Step 1: If possible, suppose log ¢ and logd are incommensurable. Then ¢ and d gen-
erate a dense subsemigroup (say) B of R’} (the semigroup of positive real numbers with the
usual topology). Hence, for any ¢+ € R, there exist sequences {/,}, {m,} C Z such that
I, - —oc and m, — oo and ¢"d" — t. For any r € R, let [r] denote the largest integer
less than or equal to ». We have, forn € N,

) = pl" s, . where by =d" —[d"], 0<b, <1.

Here, {vy,} is relatively compact and since T is contracting, we get T (vp,) — .. Also,

¢"np, — 0 and hence ¢ [d""] — t. Now we get

In
g/ 1/11" (n) =t (u[d Ik Vb,) = Memngin) % T (Vp,) = Hy -

Since each u; is full, the above implies, by the convergence-of-types theorem (cf. Theorem
2.3), that {t" '} is relatively compact and for any limit point o of it, we have that o (1) =
;. That is, all limit points of {t”*#y/"} are contained in 7; Inv(u) for some 7; € Aut(G),
1 € R. Moreover, by the convergence-of-types theorem, we get that {r; Inv(u)};cg: form
a continuous image of R in the quotient space Aut(G)/ Inv(n) and hence it is a connected
set. Since Aut(G) is totally disconnected and locally compact, Aut(G)/Inv(u) is totally
disconnected. Hence 7; Inv() = 71 Inv(u) = Inv(w) for all # > 0. This implies that © = u;
for all # and hence u = §,, a contradiction. Therefore, log ¢ and log d are commensurable.

Step 2: Now we assume that T and ¥y commute with each other and show that y; = v;
for all #. Since logc and logd are commensurable, there exist @ > 0 and /,m € N such
that c = a! and d = @”. Then ¢™ = d' and hence {ie}i=0 (resp. {vi}r=o0) is (v, c™)-
semistable (resp. (!, d')-semistable). If necessary, replacing t and ¥ by v and ¥/ respec-
tively, without loss of any generality, we may assume ¢ = d, i.e. {{t/};>0 and {v;};>0 are
respectively (7, ¢)-semistable and (i, ¢)-semistable on a unipotent p-adic algebraic group G
and u = py = vy is full on G.

Now for the sequence {k, = [c "]} C N, we have that t” (%) — p and ¥" (%) — p.
Moreover, t"(u*ly — 1, and ¥" (u*»'1y — v, for all r > 0. From the first assertion,
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Wt T (k) = Y (uF) — . Since w is full, using the convergence-of-types theorem
(cf. Theorem 2.3), we get that {0, = "t ™"} is relatively compact and all its limit points
belong to Inv(w). Also, since 7 and ¥ commute with each other, we can choose o, = p,a, =
o pn, Where o, € Inv(w), o, and p, commute with both v and ¥, and p, — I, the identity
in Aut G. Now for all r > 0,

v = lim " () = lim o, 7" (1)

=lim "0, (1)
n

=lim " p, (u!1"1)
n

= lim p, 7" (u*)
n

=Mt .

The above also implies that vy = pp. This completes the proof. O
We now state a simple result which will be useful.

LEMMA 2.5. Let G be a p-adic Lie group, let w € M'(G) and leti € {1, 2}. Suppose
W is embeddable in {ji;}:>0 and {vi}>0 in MY(G), (as w = u1 = vy1), which are (11, c1)-
semistable and (12, c2)-semistable respectively for some t; € Aut(G) and ¢; €10, 1[. Let
K1, K3 be compact subgroups of G such that py = wg, and vo = wg,. Then C(t))NG(u) =

C()NG () = U is a closed nilpotent normal subgroup of G(), U = 0(Qp), where U is a
unipotent p-adic algebraic group, G(n) = K; -U, a semidirect product and, 7;(K;) = K; and
ti(U) = U foreachi. Moreover, there exists a (11, c1)-semistable (resp. (12, ¢3)-semistable)
0 _
0 =

one-parameter semigroup {,ufo)},zo, (resp. {v,(o)}tzo) such that | v(()o) = 8., each ,ufo)

(resp. v,(o)) is supported on U, j1; = wk, * ,ufo) = y,t(o) * WK, Vi = WK, * v,(o) = v,(o) * WK,,

t > 0, and K1 and K, are isomorphic. Also, if 7 : G(u) — G(w)/lU, U] is the natural

projection then 7 (K1) = 7(K2) = m(Z()) and 7 (11\") = 7 (v\?).

PrROOF. Leti € {l,2}. As earlier, we have that G(i;) = G(n) = G(v), t > 0,
and 7;(G(n)) = G(r) and 7;(K;) = K; C G(u) for K; as above. Hence, we assume that
G =G(w). Let Uy = C(tj). Then t;(U;) = U; and U; = U,-(Qp), where f]i is a unipotent
p-adic algebraic group (cf. [W], Theorem 3.5). Also, G = K; - U;, a semidirect product (cf.
[DSh1], Theorem 3.1), each U; is closed and normal in G. We first show that U; = U,. This
will also imply that K and K3 are isomorphic as each quotient group G/ U; is isomorphic
to K;. Since each U; is unipotent, it is a divisible nilpotent group. Let 71 : G — G/U;
be the natural projection. Then 71 (U>) is a divisible nilpotent group and its closure L, being
compact, is also divisible. It is well-known that any compact divisible nilpotent group is
connected. But L is totally disconnected, hence it is a trivial subgroup in G/U;. Therefore,
U, C Uj. Similarly, we get that Uy C Uz, ie. Uy = U, =U.
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From Theorem 4.1 of [DShl], we have u; = wg, * ufo) = /L;O) * wg, (resp. v; =

WK, * v,(o) = v,(O) * wg,), where {,ufo)}tzo (resp. {v,(o)}tzo) is a (71, c1)-semistable (resp.

(72, c2)-semistable) continuous one-parameter semigroup on U with ME)O) = v(()o) = §, and

0 0
/LZle*[LE)Za)KZ*Uf ).

Let 7 be as in the hypothesis. Suppose that U is abelian and 7 is an identity homomor-
phism. Then using Fourier transforms, one can show that 7 (/Lgo)) =7 (vfo)) = {e}. Hence
Z(u) = K1 = K2 = K (say). Thatis, G = K -U, a semidirect product and hence M§0) = v{o).
Now suppose that U is not abelian. We have that [U, U] is closed and characteristic and
U/[U, Ulis abelian. Also, {7 (11;)}s>0 (resp. {7 (v;)};>0) is (t{, c1)-semistable (resp. (t5, ¢2)-
semistable) one-parameter semigroup on (G (u)), where ri'(rr x)) = 7(ri(x)), x € G(w),
both 7{ and 7} are automorphisms of 77(G(11)). Now the last assertion in the theorem follows
from above. O

REMARK 2.6. Theorem 2.4 is valid even without the condition that g = 8,. For
{ts}i=0, {vi}i=0, T, ¥, c and d as in the hypothesis of the theorem, suppose o = wg, and
V) = wg, for some compact subgroups Ky, K> in G and 1 = vi = pu # wgk,. Then
G(u) = K; - U, where U = C(t) = C(¢) as shown above. Here, U # {e} as u # wg,. Let
7 : G — G(u)/[U, U] be as above. Then if log ¢ and logd are incommensurable, we
can replace {1;};>0 (resp. {v;};>0) in the proof with {n(uf’))}eo (resp. {n(vt(o))},zo) which
is (t’, ¢)-semistable (resp. (¥, d)-semistable) on 7 (U) with ﬂ(uéo)) = n(v(()o)) = 85(e), for
7’ (resp. ¥') defined on w (G (w)) as /(7w (x)) = w(t(x)) (resp. ¥/ (7 (x)) = 7 (¥ (x))) for all
x € G(u), and arrive at a contradiction. For the second assertion, if 7 and ¥ commute then
it is easy to show that 7(K») = K», ¥ (K1) = K and K1 = K3 and hence Mgo) = v%o) and
again we can work with {;L,(O)},zo and {vt(o)},zo in place of {i;};>0 and {v;};>0 and show for

all 7, /Lt(o) = vt(o) and hence p; = vy.

LEMMA 2.7. Let G be a unipotent p-adic algebraic group and let i € M'(G) be
a full semistable measure which is embeddable in a (z, c)-semistable {{t;};>0 C MY (G) as
w = w1 for some v € Aut(G) and some ¢ €10, 1[. Let T : Aut(G) — Aut(G) be an
automorphism defined as T (p) = T,O‘L'_l, p € Aut(G). Then
G K= ﬂtzo Inv(w,) is a compact subgroup of Aut(G) and T (K) = IC,
(1) Npen T"Anv(u)T™" = (50 Inv(1tr) and
(ii1) Inv(u) C Cc(T).

PROOF. Here, K is obviously a group. Let ¢ > 0. Since 1 = p is full so is each p;, and
hence Inv(u,) is compact. (cf. Theorem 2.3). Therefore I is compact. Since t(;) = (e,
r(Inv(:))t ™" = Inv(ier). Therefore, T(K) = K. Thus (i) holds. Here, 7" () = t" (1) =
wer and hence " Inv(u)t™" = Inv(uen) C Inv(ugen) for all n, k € N. In particular, the
inclusion ‘D’ is obvious in (ii). Also, since each u; is full and since {kc" | k, n € N} is dense
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in Ry, we can easily show, by using the convergence-of-types theorem (cf. Theorem 2.3), that
(Mpen 7" Inv(p)T™" C Inv(u,) for each ¢ > 0. This proves (ii).

Let p € Inv(u). From above, T"(p) € Inv(uuyen) forall n, k € N. For a fixed ¢ > 0, let
rn = [tc™"], n € N. Since T"(p) € Inv(u,,c) and since pu,,» — s, by the convergence-
of-types theorem, we get that {T"(p)} is relatively compact and all its limit points belong to
Inv(u;), since this is true for all # > 0, we get that p € Cyxc(T). Thus the assertion (iii) is
proved. O

PROPOSITION 2.8. Let G be a locally compact group and let ;n € M'(G). Suppose
W is embeddable in a (t, c)-semistable one-parameter semigroup {ji;}i>0 C MY (G) as w=
U1 # o for some T € Aut(G) and some c €10, 1[. Consider the following statements:

(1) Inv(u) =Inv(u?) foralln € N.

(i) t normalises Inv(u).

(iii) p has a unique semistable embedding.
Then (iii) = (1) < (ii). They are all equivalent if G = G(Qp), Gisa unipotent p-adic
algebraic group and . € M (G) is full.

PROOF. Step 1: Let G be any locally compact group. Since {u;};>0 is (7, ¢)-
semistable and 1 = u, " () = per and hence " Inv(u)t ™" = Inv(uen), n € N. Thus, it
is clear that (i) and (ii) are equivalent.

Step 2: Suppose (iii) holds. It is enough to show that (ii) holds. If possible, suppose
tInv(u)t~! # Inv(p). Suppose that there exists p € Inv(u) such that p ¢ Inv(u)r .

Since p(u) = u, we get that  is embeddable in {0 (i;)},>0 which is (pTp~!

But pe # p(ue) as p & TInv()t ! = Inv(u,).
Now suppose there exists p’ € 7 Inv(u)t ! such that p’ & Inv(u). Let p = 1~ 1p/'t €

, ¢)-semistable.

Inv(w). Then p(u) = wand p € v~ ' Inv(u)t. Now arguing as above, we get that p is
embeddable in {p(us)}r>0 which is (ptp~ !, ¢)-semistable. But p(pe=1) # He-1 as p &
t Inv(w)t = Inv(u.-1). Thus, in both cases we get that u is embeddable in two different
semistable one-parameter semigroups, a contradiction. Therefore, Inv(u) = Inv(,u)r_l.

Step 3: Let G = G(Qp), where G is a p-adic algebraic group and let 4 € M'(G)
be full, then each w, is also full, r > 0. Suppose (i) holds. Then Inv(x) = Inv(ue) =
" Inv(u)r " forall n € N. Now from Lemma 2.7(ii), Inv() = (),~ Inv(i;). We show that
w has a unique semistable embedding. If possible, suppose there exists a (¥, d)-semistable
one-parameter semigroup {v;};>o such that © = v;. Then by Theorem 2.4 and Remark 2.6
we get that log ¢ and logd are commensurable. Also, if  normalises Inv(u), so does its
power. Replacing 7 and i by its suitable powers if necessary, we may assume that p is
(7, ¢)-semistable and (y, c¢)-semistable. Then as in Step 2 of proof of Theorem 2.4, we get
that for k,, = [¢™"],n € N,

"% > p, and Y R > v, 1>0.
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Since w1 = v; = w, by the convergence-of-types theorem, {y/" ="} is relatively compact
and all its limit points belong to Inv(u) = ﬂtzo Inv(u,). Therefore, from the above equation,
we get that u, = v, for each + > 0 and hence for t = 0. This completes the proof. a

REMARK 2.9. It follows from the proposition that if i is a full semistable measure on
aunipotent p-adic algebraic group G such that Inv(y) is trivial then p has a unique semistable
embedding. This also holds for non-full semistable measures on G if A = {& € Aut(G(w)) |
a() = w}is trivial. More generally, if u is a semistable measure on any p-adic Lie group G
with Z () = {e} and A as above is trivial then © has a unique semistable embedding. In view
of the above, it will be interesting to find conditions under which Inv(u) is trivial.

PROOF OF THEOREM 2.1. Let i be a normal semistable measure on a p-adic Lie group
G. As in the proof of Lemma 2.5, we may assume that G = G(u). Suppose there exist
7,% € Aut(G) and ¢, d €10, 1[ such that u is both (7, ¢)-semistable and (v, d)-semistable.
That is, there exist continuous one-parameter semigroups {/; };>0 and {v;};>0 in M 1(G) such
that u1 = u = vy and t(us) = e and ¥ (v;) = vy, for all t € Ry. We have to show that
u: = vy forall z.

For k, = [¢7"], t(u*)y — w1t e R?* . Hence since j is normal, each p; is also
normal. Similarly, each v; is normal. This implies that p * [t is embeddable in {u; * [i;}r>0
and {v; %V };>0. But since both the one-parameter semigroups consist of symmetric measures
and w* @ = @y * i1 = v| * V1, we have by the uniqueness of symmetric embedding,
We % Ly = vy % v, for all ¢. In particular, g = vop = wg, (where K = Z(w)). If u = wg,
then u; = vy = wg for all . Suppose, u # wg. By Lemma 2.5, we have G = K - U,
a semidirect product, where U = C(tr) = C(¢), U = l}(Qp), Uisa unipotent p-adic

algebraic group, t° = 7|y and ¥° = |y are Q-rational morphisms and u; = wg * ,ufo)

and v, = wg * vt(o), where MEO) = vl(o) and {ufo)},zo is (9, ¢)-semistable and {v,(o)},zo is

(1//0, d)-semistable with ,u(()o) = v(go) = §,. Also, ,u(lo) = v{o) # §, 1s a normal measure. Now

it is enough to prove that ut(o) = v,(o) for all . Therefore, replacing u by /LEO) = vfo) we may

assume that u # 8., G = G(Qp) is a unipotent p-adic algebraic group and 7, ¢y € Aut(G)
are contracting automorphisms which are also Q -rational. Also, by Theorem 2.4, log ¢ and
log d are commensurable.

Here, since p is full on G which is unipotent, Inv(x) is a compact subgroup of Aut(G)
(cf. Theorem 2.3). Let £ = (), Inv(u,). Then K is a compact subgroup of Aut(G). Let
T : Aut(G) — Aut(G) be defined as follows: T (p) = tpt’l for all p € Aut(G). Then T
is a continuous automorphism of Aut(G) which is a p-adic Lie group. Now by Lemma 2.7,
T(K) = K and Inv(u) C Cx(T). We also have Cic(T) = K - C(T) (cf. [DSh1]). Since
is embeddable and G is totally disconnected, we have G(u) = G(u * 1) and since u is full
so is w * ft. Hence Inv(u * 1) = H (say) is compact. Since u * & has a unique semistable
embedding, we get by Proposition 2.8 that 7(H) = ‘H. Therefore, H N C(T) = {I}, but
Inv(e) C H, and hence  C H and Inv(n) € H N (K- C(T)) = K. This implies that
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Inv(u) = K. Now by Proposition 2.8, i is embeddable in a unique semistable one-parameter
semigroup. O

3. Domain of semistable attraction and semistable measures on unipotent p-adic
groups

For a probability measure ¢ on a locally compact group G, we define DSSA (), the
domain of semistable attraction of i, as follows:

DSSA(n) ={v € M! (G) | there exist 7, € Aut(G) and k,, € N

such that 7, V) — w and k,/kns1 — ¢ €10, 1[}.

Note that our definition is slightly different from an earlier definition in [T], as we do not
assume that {7, (v)} is infinitesimal. It is easy to see that for any (7, ¢)-semistable measure
w, DSSA(u) is nonempty. For, u itself belongs to DSSA (i), since v (u)* — 1, where
k, = [c™"], n € N. Conversely, we have the following.

THEOREM 3.1. Let i be an S-full probability measure on a unipotent p-adic algebraic
group G such that Z(u) = {e} and DSSA () is nonempty. Then [ is semistable.

Before proving the theorem let us state and prove several results which will be useful.

LEMMA 3.2. Let G be a unipotent p-adic algebraic group and let j1,, u € M'(G) be
such that i, — . If u is full (resp. S-full) in M'(G), then so is ., for all large n.

We need following notations for the proof of the lemma. For a p-adic vector space V
isomorphic to Q’l’,' (m € N), let {eq, ..., ey} be abasis of V. For any x,y € V, we have

x =Y xiejand y = > /' yie; and we define (x, y) = Y /L, x;y;. It is a continuous bi-
linear map from V2 to Q p- Any one-dimensional projection of V is of the form y — (x, y)

for some x € V. Also, x — |[|x||, = [{x, )c)|},/2 on V defines anormon V. For x € V \ {0},
let V., = Ker(y + (x, y)); it is a subspace of co-dimension 1 in V. Also, any subspace W of
co-dimension 1 in V is of this form, i.e. W = V, for some x € V \ {0}. For u € M'(V) and
x € V, let (x, u) denote the image of n under the map y — (x, y).

PROOF OF LEMMA 3.2. Let G, u, and u be as in the hypothesis. Since u, — wu,
Wn % by — W . Also, u is S-full if and only if u * @ is full. Hence it is enough to prove
that fullness of u implies that of u, for all large n. Let 7 : G — G/[G, G] be the natural
projection. Then G/[G, G] is an abelian unipotent p-adic algebraic group. It is easy to see
that any probability measure v is full on G if and only if 7 (v) is full on G/[G, G], which is
isomorphic to a p-adic vector space. Now since 7 (u,) — m(w), it is enough to prove the
assertion in case G is a p-adic vector space.

Now we may assume G = V, an m-dimensional p-adic vector space and supp 1 gener-
ates V as a vector space. We fix a basis {ey, ..., ¢, } for V. If possible, suppose 1, is not full
on V for infinitely many n. Passing to a subsequence if necessary, we get that supp u, C V,,
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where V,, is a proper subspace of co-dimension 1 in V for all n. Let x, € V \ {0} be such
that V, = V,, = {y € V | {xp, y) = 0}. Replacing x,, by x,,/[[x, | », we may assume that
lxzll, = 1 for all n. Then (x,, ) = o on Q, for all n. Here, {x,} is relatively compact,
it has a limit point x (say), then ||x||, = 1. Since u, — u, (x, u) = 8o on Q,. In partic-
ular, suppp C Vi, which is a subspace of co-dimension 1 in V as x # 0. This leads to a
contradiction as w is full. Hence u,, is full for all large n. O

PROPOSITION 3.3. Let G = GL;,(Qp) and let U be the subgroup of G consisting of
all upper triangular matrices. Let {a,} be a sequence in G and Vr, be an inner automorphism
defined by {r,, (x) = anxan_lfor allx e G,n e N. Let H={x € G | ¥,,(x) — e} and let
C={ve MY(G) | Yu(v) — 8.}, where the identity e = I, the identity matrix in GL;,, (Qp).
Then

(i) H is a (closed) algebraic subgroup of G and there exists a € G such that H C
aUa~" and

(i1) foranyv € C, suppv is contained in H.

The above proposition can be deduced along the same lines as Theorem 2.1 of [DSh2];
this theorem uses Lemma 2.2 of [DSh2], which is also valid for any locally compact first
countable group. Also, instead of the polar decomposition of a,, one has to use the decom-
position a, = c¢pdyky,, where ¢y, k;, € GL;;(Z)), which is compact, where Z), is the ring
of p-adic integers, and d,, are diagonal matrices which can be chosen to have entries whose
p-adic absolute values are in the ascending order (cf. [Ma]), subsequently also, one has to use
the p-adic absolute value instead of the real absolute value. We will not repeat the proof here.

THEOREM 3.4. LetG = G(Qp) be a unipotent p-adic algebraic group and let {t,} C
Aut(G). Let H ={x € G | 7,(x) — e} andlet C = {v € MY(G) | T7,(v) = &8.}. Then H
is a (closed) algebraic subgroup of G such that for any v € C, supp v is contained in H. In
particular, if there exists a v € C which is full on G, then H = G and t,(t) — ¢ for all
ne MY (G). That is, if C contains a full measure, then C = M (G).

REMARK 3.5. The above theorem is also valid for any Zariski connected semisimple
p-adic algebraic group with trivial center. It can also be shown to hold for any Zariski con-
nected p-adic algebraic group G = G(Q p) such that the maximal central torus of G is trivial
and {7,} C Aut(G) are Q-rational automorphisms. In both these cases, a similar proof (as
given below) works and H will be a unipotent algebraic subgroup of G.

PROOF OF THEOREM 3.4. Since G is unipotent, any continuous automorphism of G is
Q-rational and the group Aut(G) is also a group of rational points of a p-adic algebraic group
and the action of Aut(G) on G is Q-rational (cf. [Sh2], Theorems 2.1, 3.1). As in the proof
of Main Theorem in [Sh2], we can form a semidirect product L = Aut(G) - G, L = LQ p)is
a p-adic algebraic group, with the group operation (z, g)(z’, ¢') = (zt/, gt(¢))), for 7, 7" €
Aut(G) and g, ¢ € G. That is, the action of Aut(G) on G is given by tgr~! = 7(g) for all
7 € Aut(G) and g € G. Also, L C GL;,,(Qp) for some m € N.
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Wehave H = {x €e G | 1,(x) > ¢} = {x € G | t,,xtn_l

— ein L}. This implies
H = H' NG, where H = {x € GL,(Q)) | 7,x7,7 ! — e}, here e = I, the identity matrix.
By Proposition 3.3 (i), H' is an algebraic subgroup of GL,,(Q)) and hence H is an algebraic
subgroup of G. In particular, it is a closed subgroup of G. Since G is closed in GL,,(Qp),
C = MY (G)N C’, where C" = {v € M'(GL,(Q))) | ta(v) — 8.}. Letv € C. Using
Proposition 3.3 (ii), we get that suppv € H' NG = H. Now, assume that v is full on G.
Then since H is an algebraic subgroup of G, we get that G = G(v) C H and hence G = H.
Moreover, from the definition of H, it is clear that for any u € M'(G), t,(1) — &, i.e.

C = MYG). O

For any o € M'(G), let F(x) be the set of (two-sided) factors of «, i.e. F(a) = {8 €
MY G)|Bxy =y *pB =aforsomey € M'(G)).

LEMMA 3.6. Let G be a p-adic algebraic group. Let {v,} C M'(G) and n € M'(G)
be such that 1 is full and v,]f" — W for some {k,} C N. Then we have the following:
(i) Let Z be the center of G and let 1 : G — G/Z be the natural projection. For
A={v" | m <k, neN}, 7(A) is relatively compact.
(i) {v, * v} is relatively compact and all its limit points are supported on Z(1).

PROOF. As p is full, Theorem 4.1 of [Sh3] implies (i), and it also implies that {v, %5, }
is relatively compact for some sequence {z,} C Z. For every m € N, {v)’ * §;m},eN, and
hence {v))" % V)''} N is relatively compact. Let A be a limit point of {v, * &, }. Then the above
implies that A" € F(u), m € N. Again by Theorem 4.1 of [Sh3], we get that {A" * §,/ } is
relatively compact for some sequence {z),,} C Z; let 8 be any limit point of it. It is clear that
B € F(u) and ,32 € F(B). This implies that B = wpy * §, = §y * wy for some compact
subgroup H C Z(u). We also have A € F(B). Therefore, suppA C Hy = yH for some
y € supp A and hence supp(i s &) C Z(u). Since any limit point of {v, * 7,} is of the form
2% A for some A as above, we get that all limit points of {v, ¥, } are supported on Z (11). This
proves (ii). O

PROOF OF THEOREM 3.1. Let u be an S-full probability measure on a unipotent p-
adic algebraic group G such that Z(u) = {e} and DSSA(u) # . Then there exist sequences
{t,} C Aut(G), {k,} C N and a measure v € M (G) such that 7, (v)*» — wand k, /kp+1 —
c€]0, 1[.

Since p is S-full, u is also full and by Lemma 3.6, 7,(v * v) — 8, as Z(u) = {e}. By
Lemma 3.2, for all large n, 7, (V) is S-full, and hence so is 7, (v). This implies that 7,, (v * V)
is full. Also each 7, is Qp-rational (cf. [Sh2], Theorem 2.1). Therefore, v * ¥ is also full.
Since 7, (v * V) — &,, by Theorem 3.4, t,(x) — e for all x € G, and hence 7,,(v) — 8.

Now we have that 1, (v)k" — U, T, (v) = 8¢, ky/kn+1 — ¢ €]0, 1] (this condition has
not been used so far), and u is full on a unipotent p-adic algebraic group. Hence the assertion
follows from Theorem 4.6 of [T]. O
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REMARK 3.7. 1. Theabove theorem generalises Theorem 4.6 of [T] in the case of S-
full probability measures p with Z(u) = {e}, as we do not assume that {7,,(v)} is infinitesimal
in the hypothesis but derive it as a consequence.

2. In view of Theorem 4.6 of [T] stated for the semisimple group case, we would like
to note that there does not exist any nontrivial (non-idempotent) full semistable measure on
G =G@Q »), where G is any semisimple p-adic algebraic group. That is, if y is a full
semistable measure, on such a group G, embeddable in (t, c)-semistable {u;};>0 C M LG),
with (1o = wg, then as mentioned earlier © = p is supported on Cx(t) = K - C(t) (cf.
[DSh1], Theorem 3.1), and hence Ck (t) is Zariski dense in G. In particular, this implies that
C(7) isnormal in G, but C(7) is a unipotent algebraic subgroup of G (cf. [W], Theorem 3.5).
Since G is semisimple, the above implies that C(t) = {e}, hence G(u) = K and u = wg,
with t(K) = K.

We now give examples to show that in the hypothesis of Theorem 3.1, S-fullness of
can not be replaced by fullness of 1, and also the condition that Z(i) = {e} is necessary.

EXAMPLE 1. LetG = Q. Letv = 4, for some x € G such that x # 0, Take 7, = 1,

the identity in Aut(G), and k, = p" + 1 foralln € N. Then k,,/k,1 — 1/p, 1, (v)k" — Oy,
hence DSSA(Sy) # @ but 8, is not semistable. Here Z(8,) = {0}, &y is full but not S-full. O

EXAMPLE 2. Let G = Qp and v = wy * §, for some compact open subgroup H
of G and some x € G \ H. So n is S-full. Let {7,} and {k,} be as in Example 1. Then
kn/kny1 — 1/p, T, (V% = wy *x 8, for all large n, hence DSSA(wpy * 8;) # @ but wy * 8y
is not semistable as it is not even embeddable. Note that Z(wy * 6x) = H # {0}. O

Now we state a result comparing semistable measures and measures with nonempty do-
main of semistable attraction on any totally disconnected locally compact group.

THEOREM 3.8. Let G be any totally disconnected locally compact group and n €
MY(G). Then the following are equivalent:
(i) wis (z, c)-semistable.
(ii) There exist {t,} C Aut(G), v € MY (G), {k,} C N such that t,V*) — p,
kn/knt1 — ¢ €10, 1[ (i.e. DSSA() # ¥), with the additional properties that
Tn+1 tn’l — 1t and 1,(v) — wpy for some compact subgroup H of G.

PROOF. “(i) = (ii)” is obvious. Now we assume (ii) and show that (i) holds. By
Theorem 2.1 of [Sh4], the set A = {7, (V)" | m < k,, n € N}is relatively compact. Now from
Theorem 3.6 of [T], u is embeddable in a continuous one-parameter semigroup {it;};>0 C
M! (G) such that, for some sequence {n;} C N,

itl

) tim 7, ()" =
J—

uniformly on compact subsets of ]0, ool.
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-1
Ty — T and k,/kyym — ™. Leta; = knj_m/k,,j,

Let m € N be fixed. Clearly, 1,
then a; — ™. For any fixed r € N,

2) lim 7, ()™ ™ = 1im 5, )" =
j—ooo n— 00

from the uniform convergence on compact sets of ]0, co[ in (1) above (see the proof of Theo-
rem 4.6 of [T]). Also,

. rky . — . -1 rky . —
3) Tim 7, 0) 7 = lim g, (G 0) ) = 2 )

From (2) and (3), for all m,r € N, we have that ()" = pu,em, and hence t(upem) =
Wpem+t. Let M = {rc¢™ | r,m € N}. Then t(u;) = e forallt € M. Since M is dense in R
and 7 is continuous we get that (i) = pe forall # € Ry, ie. {is}r>0 is (7, ¢)-semistable
with w1 = u. O
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