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Abstract. We show that on a p-adic Lie group, any normal semistable measure has a unique semistable em-
bedding. This, in particular, implies the uniqueness of semistable embedding of any (operator-)semistable measure
on a finite dimensional p-adic vector space. We compare two classes of probability measures on a unipotent p-adic
algebraic group: the class of semistable measures and that of measures whose domain of semistable attraction is
nonempty.

1. Introduction

Let G be a locally compact (Hausdorff) group with identity e and let M1(G) denote the
topological semigroup of probability measures onG with weak topology and convolution ‘∗’
as the semigroup operation. Let Aut(G) denote the group of continuous automorphisms ofG
(with compact-open topology).

A probability measure µ on G is said to be (τ, c)-semistable for τ ∈ Aut(G) and c ∈
]0, 1[ if µ is embeddable in a continuous (real) one-parameter semigroup {µt }t≥0 ⊂ M1(G)

as µ = µ1 such that τ (µt ) = µct for all t ≥ 0; we also call {µt }t≥0 (τ, c)-semistable.

A measure µ (resp. {µt }t≥0) in M1(G) is said to be semistable if it is (τ, c)-semistable for
some τ ∈ Aut(G) and some c ∈ ]0, 1[. Note that in case of (finite dimensional) p-adic (resp.
real) vector spaces, this definition corresponds to that of operator-semistable (resp. strictly
operator-semistable) measures.

It is well-known that if any locally compact groupG admits a semistable measure µ em-

beddable in a (τ, c)-semistable {µt }t≥0 ⊂ M1(G) for τ and c as above, then µ is supported
on the closure of the K-contraction group of τ , namely CK(τ) = {x ∈ G | τn(x)K →
K in G/K}, where K is a compact subgroup such that µ0 = ωK , the normalised Haar mea-
sure of K . The structure of C(τ) = C{e}(τ ), the contraction group of τ , is well-known. If

G admits a contracting automorphism τ ; i.e. C(τ) = G, then it is a direct product G0 × D,

where G0 is a simply connected nilpotent contractible group and D is a totally disconnected
contractible group (cf. [Si]). Semistable measures on real vector spaces, or more generally,
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on simply connected nilpotent groups, have been studied in details (see [HSi2] and references
cited therein). In this article, we are interested in investigating some aspects of semistability
for measures on p-adic Lie groups, which form a significant subclass of totally disconnected
groups, (see [V] or [S] for exposition on p-adic Lie groups).

In case G is a p-adic Lie group and τ ∈ Aut(G), by Theorem 3.5 of [W], C(τ) is a
unipotent p-adic algebraic group (see section 2 for some details). Also, if τ (K) = K then
CK(τ) is closed andCK(τ) = C(τ)·K , a semidirect product. Moreover, any (τ, c)-semistable

one-parameter semigroup {µt }t≥0 on G can be expressed as µt = µ
(0)
t ∗ ωK = ωK ∗ µ(0)t

for all t , where {µ(0)t }t≥0 is a (τ, c)-semistable one-parameter semigroup supported on C(τ)
(cf. [DSh1]; a similar result is true for real Lie groups also, see [HSi1]). For a survey of
results on semistable measures on locally compact groups, the reader is referred to [HSi2] and
for semistable measures on p-adic groups in particular to [DSh1], [Sh1], and also [MSh1]–
[MSh2] for more recent results.

For any x ∈ G, let δx denote the dirac measure supported on x. Let µ ∈ M1(G). Let

µ̃ ∈ M1(G) be defined as µ̃(B) = µ(B−1) for all Borel subsets B of G. µ is said to be
normal if µ ∗ µ̃ = µ̃ ∗ µ. Let G(µ) denote the closed subgroup generated by suppµ, the
support of µ and let I(µ) = {x ∈ G | δx ∗ µ = µ ∗ δx = µ} which is a compact subgroup of
G. We also define the invariance group of µ as Inv(µ) = {τ ∈ Aut(G) | τ (µ) = µ}; it is a
closed subgroup of Aut(G).

We say that a semistable measure onG has a unique semistable embedding if the follow-
ing holds: if µ is embeddable in (τ, c)-semistable and (ψ, d)-semistable one-parameter semi-

groups {µt }t≥0 and {νt }t≥0 in M1(G) respectively as µ1 = µ = ν1, for some τ,ψ ∈ Aut(G)
and c, d ∈ ]0, 1[, then µt = νt for all t ≥ 0.

In section 2, we discuss the uniqueness of semistable embedding on a p-adic Lie
group G under certain conditions and show that any normal semistable measure on G has
a unique semistable embedding (see Theorem 2.1). In particular, this implies the uniqueness
of semistable embedding of any (operator-)semistable measure on any p-adic vector space.
In section 3, on a unipotent p-adic algebraic group, we compare semistable measures with
measures whose domain of semistable attraction is nonempty, (in particular, see Theorem
3.1).

2. On the uniqueness of semistable embedding on p-adic groups

In this section, we discuss the uniqueness of semistable embedding on a p-adic Lie
group G under certain conditions. The reader is referred to [C] for generalities on p-adic
vector spaces and to [V] and [S] for p-adic Lie groups.

For a prime p, let Qp denote the field of p-adic numbers with the usual p-adic absolute
value | · |p. Let GLm(Qp) be the group of m × m non-singular matrices with entries in Qp,

with the topology as a subset of Qm2

p . Then GLm(Qp) is a p-adic Lie group. Let G̃ be a

p-adic algebraic group and let G = G̃(Qp) be the Qp-rational points of G̃. i.e. G̃ (resp. G)
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is the set of common zeros in GLm(Qp) (resp. in GLm(Qp)) of finitely many polynomials

with coeffifients in Qp, where Qp denotes the algebraic closure of Qp. Then G is a closed
subgroup of GLm(Qp) for some m ∈ N (the set of natural numbers), in particular, it is a
p-adic Lie group; We will occasionally call G itself a p-adic algebraic group. A subgroup H

ofG = G̃(Qp) is said to be algebraic if H = H̃ (Qp) for some algebraic group H̃ ⊂ G̃; H is

closed in G. An algebraic group G̃ is said to be unipotent if it consists of unipotent elements.

If G̃ is unipotent, thenG = G̃(Qp) is a subgroup of Um(Qp) (for some m ∈ N), the group of
m×m upper triangular matrices with all diagonal entries equal to 1, (see [B], [Ho] and [Hu]
for generalities on algebraic groups).

Let G̃ be a p-adic algebraic group and let G = G̃(Qp). For a probability measure

µ on G, we will denote by G̃(µ) the smallest (closed) algebraic subgroup of G containing

suppµ. A probability measure µ on G is said to be full (resp. S-full) if G̃(µ) = G (resp.

G̃(µ ∗ µ̃) = G). Note that these definitions are consistent with the definitions on (p-adic)
vector spaces as all its algbraic subgroups are subspaces.

We note that any symmetric semistable measure on any locally compact group has a
unique semistable embedding. This is because if a symmetric measure is embeddable in
a continuous one-parameter semigroup which consists of symmetric measures then such an
embedding is unique and if {µt }t≥0 is (τ, c)-semistable for some automorphism τ and some
c ∈ ]0, 1[ where µ1 is symmetric then τn(µ1)

m = µmcn is symmetric form,n ∈ N, and since
{µmcn | m,n ∈ N} is a dense subset of {µt }t≥0, each µt is symmetric. Here, we show that
any normal semistable measure on a p-adic Lie group G has a unique semistable embedding.
In particular, any (operator-)semistable measure on a p-adic vector space (or more generally)
on an abelian p-adic Lie group has a unique semistable embedding. Note that on a simply
connected nilpotent group, the uniqueness of semistable embedding has been shown (see [H]).

THEOREM 2.1. Any normal semistable measure on a p-adic Lie group has a unique
semistable embedding.

The following corollary follows easily from the above theorem. In particular, it holds for
any (operator-)semistable measure on any p-adic vector space.

COROLLARY 2.2. Any semistable measure on an abelian p-adic Lie group has a
unique semistable embedding.

Before proving the above theorem, we state and prove several results, some of which
will be of independent interest. We also state a specific case of convergence-of-types theorem
which we will use often.

THEOREM 2.3 ([Sh2]). Let G be a unipotent p-adic algebraic group. Let {µn} ⊂
M1(G) and {τn} ⊂ Aut(G) be such that µn → µ and τn(µn) → λ for some full measures µ

and λ inM1(G). Then {τn} is relatively compact in Aut(G). Moreover, for any limit τ of {τn}
in Aut(G), τ (µ) = λ. In particular, Inv(µ) is compact in Aut(G).



386 RIDDHI SHAH

THEOREM 2.4. Let G be a p-adic Lie group and let {µt }t≥0 and {νt }t≥0 be respec-

tively (τ, c)-semistable and (ψ, d)-semistable one-parameter semigroups in M1(G) for some
τ,ψ ∈ Aut(G) and c, d ∈ ]0, 1[ such that µ1 = ν1 = µ �= δe and µ0 = δe. Then log c and
log d are commensurable. Moreover, If τ and ψ commute with each other, then µt = νt for
all t ≥ 0.

PROOF. Since G is totally disconnected, it is well known that µt and νt are supported
on G(µ) and, in fact, G(µt) = G(µ) = G(νt ), t > 0. Therefore, τ (G(µ)) = G(µ) and
ψ(G(µ)) = G(µ). Hence without loss of any generality, we may assume that G = G(µ).

Since µ0 = δe, G = C(τ) (cf. [Si]). This implies that G = G̃(Qp), where G̃ is a unipotent
p-adic algebraic group, (cf. [W], Theorem 3.5), and τ contracts G. Also, τ and ψ are Qp-
rational automorphisms of G (cf. [Sh2], Theorem 2.1).

Step 1: If possible, suppose log c and log d are incommensurable. Then c and d gen-
erate a dense subsemigroup (say) B of R∗+ (the semigroup of positive real numbers with the
usual topology). Hence, for any t ∈ R∗+, there exist sequences {ln}, {mn} ⊂ Z such that

ln → −∞ and mn → ∞ and cmndln → t . For any r ∈ R+, let [r] denote the largest integer
less than or equal to r . We have, for n ∈ N,

ψln(µ) = µ[dln ] ∗ νbn , where bn = dln − [dln] , 0 ≤ bn < 1 .

Here, {νbn} is relatively compact and since τ is contracting, we get τmn(νbn) → δe. Also,

cmnbn → 0 and hence cmn[dln] → t . Now we get

τmnψln(µ) = τmn(µ[dln ] ∗ νbn) = µcmn [dln ] ∗ τmn(νbn) → µt .

Since each µt is full, the above implies, by the convergence-of-types theorem (cf. Theorem
2.3), that {τmnψln} is relatively compact and for any limit point σ of it, we have that σ(µ) =
µt . That is, all limit points of {τmnψln} are contained in τt Inv(µ) for some τt ∈ Aut(G),
t ∈ R∗+. Moreover, by the convergence-of-types theorem, we get that {τt Inv(µ)}t∈R∗+ form

a continuous image of R∗+ in the quotient space Aut(G)/ Inv(µ) and hence it is a connected
set. Since Aut(G) is totally disconnected and locally compact, Aut(G)/ Inv(µ) is totally
disconnected. Hence τt Inv(µ) = τ1 Inv(µ) = Inv(µ) for all t > 0. This implies that µ = µt

for all t and hence µ = δe, a contradiction. Therefore, log c and log d are commensurable.
Step 2: Now we assume that τ and ψ commute with each other and show that µt = νt

for all t . Since log c and log d are commensurable, there exist a > 0 and l,m ∈ N such

that c = al and d = am. Then cm = dl and hence {µt }t≥0 (resp. {νt }t≥0) is (τm, cm)-

semistable (resp. (ψl, dl)-semistable). If necessary, replacing τ and ψ by τm and ψl respec-
tively, without loss of any generality, we may assume c = d , i.e. {µt }t≥0 and {νt }t≥0 are
respectively (τ, c)-semistable and (ψ, c)-semistable on a unipotent p-adic algebraic group G
and µ = µ1 = ν1 is full on G.

Now for the sequence {kn = [c−n]} ⊂ N, we have that τn(µkn) → µ andψn(µkn) → µ.
Moreover, τn(µ[knt ]) → µt and ψn(µ[knt ]) → νt for all t > 0. From the first assertion,
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(ψnτ−n)τn(µkn) = ψn(µkn) → µ. Since µ is full, using the convergence-of-types theorem
(cf. Theorem 2.3), we get that {σn = ψnτ−n} is relatively compact and all its limit points
belong to Inv(µ). Also, since τ andψ commute with each other, we can choose σn = ρnαn =
αnρn, where αn ∈ Inv(µ), αn and ρn commute with both τ and ψ , and ρn → I , the identity
in AutG. Now for all t > 0,

νt = lim
n
ψn(µ[knt ])= lim

n
σnτ

n(µ[knt ])

= lim
n
τnσn(µ

[knt ])

= lim
n
τnρn(µ

[knt ])

= lim
n
ρnτ

n(µ[knt ])
= µt .

The above also implies that ν0 = µ0. This completes the proof. �

We now state a simple result which will be useful.

LEMMA 2.5. Let G be a p-adic Lie group, let µ ∈ M1(G) and let i ∈ {1, 2}. Suppose

µ is embeddable in {µt }t≥0 and {νt }t≥0 in M1(G), (as µ = µ1 = ν1), which are (τ1, c1)-
semistable and (τ2, c2)-semistable respectively for some τi ∈ Aut(G) and ci ∈ ]0, 1[. Let
K1,K2 be compact subgroups ofG such thatµ0 = ωK1 and ν0 = ωK2 . Then C(τ1)∩G(µ) =
C(τ2)∩G(µ) = U is a closed nilpotent normal subgroup ofG(µ), U = Ũ(Qp), where Ũ is a
unipotent p-adic algebraic group,G(µ) = Ki ·U , a semidirect product and, τi(Ki) = Ki and
τi(U) = U for each i. Moreover, there exists a (τ1, c1)-semistable (resp. (τ2, c2)-semistable)

one-parameter semigroup {µ(0)t }t≥0, (resp. {ν(0)t }t≥0) such that µ(0)0 = ν
(0)
0 = δe, each µ(0)t

(resp. ν(0)t ) is supported on U , µt = ωK1 ∗ µ(0)t = µ
(0)
t ∗ ωK1 , νt = ωK2 ∗ ν(0)t = ν

(0)
t ∗ ωK2 ,

t ≥ 0, and K1 and K2 are isomorphic. Also, if π : G(µ) → G(µ)/[U,U ] is the natural

projection then π(K1) = π(K2) = π(I(µ)) and π(µ(0)1 ) = π(ν
(0)
1 ).

PROOF. Let i ∈ {1, 2}. As earlier, we have that G(µt) = G(µ) = G(νt ), t > 0,
and τi(G(µ)) = G(µ) and τi(Ki) = Ki ⊂ G(µ) for Ki as above. Hence, we assume that

G = G(µ). Let Ui = C(τi). Then τi(Ui) = Ui and Ui = Ũi(Qp), where Ũi is a unipotent
p-adic algebraic group (cf. [W], Theorem 3.5). Also, G = Ki · Ui , a semidirect product (cf.
[DSh1], Theorem 3.1), each Ui is closed and normal in G. We first show that U1 = U2. This
will also imply that K1 and K2 are isomorphic as each quotient group G/Ui is isomorphic
to Ki . Since each Ui is unipotent, it is a divisible nilpotent group. Let π1 : G 
→ G/U1

be the natural projection. Then π1(U2) is a divisible nilpotent group and its closure L, being
compact, is also divisible. It is well-known that any compact divisible nilpotent group is
connected. But L is totally disconnected, hence it is a trivial subgroup in G/U1. Therefore,
U2 ⊂ U1. Similarly, we get that U1 ⊂ U2, i.e. U1 = U2 = U .
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From Theorem 4.1 of [DSh1], we have µt = ωK1 ∗ µ(0)t = µ
(0)
t ∗ ωK1 (resp. νt =

ωK2 ∗ ν(0)t = ν
(0)
t ∗ ωK2 ), where {µ(0)t }t≥0 (resp. {ν(0)t }t≥0) is a (τ1, c1)-semistable (resp.

(τ2, c2)-semistable) continuous one-parameter semigroup on U with µ(0)0 = ν
(0)
0 = δe and

µ = ωK1 ∗ µ(0)1 = ωK2 ∗ ν(0)1 .
Let π be as in the hypothesis. Suppose that U is abelian and π is an identity homomor-

phism. Then using Fourier transforms, one can show that I(µ(0)1 ) = I(ν(0)1 ) = {e}. Hence

I(µ) = K1 = K2 = K (say). That is,G = K ·U , a semidirect product and henceµ(0)1 = ν
(0)
1 .

Now suppose that U is not abelian. We have that [U,U ] is closed and characteristic and
U/[U,U ] is abelian. Also, {π(µt)}t≥0 (resp. {π(νt )}t≥0) is (τ ′

1, c1)-semistable (resp. (τ ′
2, c2)-

semistable) one-parameter semigroup on π(G(µ)), where τ ′
i (π(x)) = π(τi(x)), x ∈ G(µ),

both τ ′
1 and τ ′

2 are automorphisms of π(G(µ)). Now the last assertion in the theorem follows
from above. �

REMARK 2.6. Theorem 2.4 is valid even without the condition that µ0 = δe. For
{µt }t≥0, {νt }t≥0, τ , ψ , c and d as in the hypothesis of the theorem, suppose µ0 = ωK1 and
ν0 = ωK2 for some compact subgroups K1,K2 in G and µ1 = ν1 = µ �= ωK1 . Then
G(µ) = Ki · U , where U = C(τ) = C(ψ) as shown above. Here, U �= {e} as µ �= ωK1 . Let
π : G(µ) 
→ G(µ)/[U,U ] be as above. Then if log c and log d are incommensurable, we

can replace {µt }t≥0 (resp. {νt }t≥0) in the proof with {π(µ(0)t )}t≥0 (resp. {π(ν(0)t )}t≥0) which

is (τ ′, c)-semistable (resp. (ψ ′, d)-semistable) on π(U) with π(µ(0)0 ) = π(ν
(0)
0 ) = δπ(e), for

τ ′ (resp. ψ ′) defined on π(G(µ)) as τ ′(π(x)) = π(τ(x)) (resp. ψ ′(π(x)) = π(ψ(x))) for all
x ∈ G(µ), and arrive at a contradiction. For the second assertion, if τ and ψ commute then

it is easy to show that τ (K2) = K2, ψ(K1) = K1 and K1 = K2 and hence µ(0)1 = ν
(0)
1 and

again we can work with {µ(0)t }t≥0 and {ν(0)t }t≥0 in place of {µt }t≥0 and {νt }t≥0 and show for

all t , µ(0)t = ν
(0)
t and hence µt = νt .

LEMMA 2.7. Let G be a unipotent p-adic algebraic group and let µ ∈ M1(G) be

a full semistable measure which is embeddable in a (τ, c)-semistable {µt }t≥0 ⊂ M1(G) as
µ = µ1 for some τ ∈ Aut(G) and some c ∈ ]0, 1[. Let T : Aut(G) → Aut(G) be an

automorphism defined as T (ρ) = τρτ−1, ρ ∈ Aut(G). Then
(i) K = ⋂

t≥0 Inv(µt ) is a compact subgroup of Aut(G) and T (K) = K,

(ii)
⋂
n∈N τ

n(Inv(µ))τ−n = ⋂
t≥0 Inv(µt ) and

(iii) Inv(µ) ⊂ CK(T ).

PROOF. Here, K is obviously a group. Let t > 0. Sinceµ1 = µ is full so is eachµt , and
hence Inv(µt ) is compact. (cf. Theorem 2.3). Therefore K is compact. Since τ (µt ) = µct ,

τ (Inv(µt ))τ−1 = Inv(µct ). Therefore, T (K) = K. Thus (i) holds. Here, τn(µ) = τn(µ1) =
µcn and hence τn Inv(µ)τ−n = Inv(µcn) ⊂ Inv(µkcn) for all n, k ∈ N. In particular, the
inclusion ‘⊃’ is obvious in (ii). Also, since each µt is full and since {kcn | k, n ∈ N} is dense
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in R+, we can easily show, by using the convergence-of-types theorem (cf. Theorem 2.3), that
⋂
n∈N τ

n Inv(µ)τ−n ⊂ Inv(µt ) for each t > 0. This proves (ii).
Let ρ ∈ Inv(µ). From above, T n(ρ) ∈ Inv(µkcn) for all n, k ∈ N. For a fixed t > 0, let

rn = [tc−n], n ∈ N. Since T n(ρ) ∈ Inv(µrncn) and since µrncn → µt , by the convergence-
of-types theorem, we get that {T n(ρ)} is relatively compact and all its limit points belong to
Inv(µt ), since this is true for all t > 0, we get that ρ ∈ CK(T ). Thus the assertion (iii) is
proved. �

PROPOSITION 2.8. Let G be a locally compact group and let µ ∈ M1(G). Suppose

µ is embeddable in a (τ, c)-semistable one-parameter semigroup {µt }t≥0 ⊂ M1(G) as µ =
µ1 �= µ0 for some τ ∈ Aut(G) and some c ∈ ]0, 1[. Consider the following statements:

(i) Inv(µ) = Inv(µnc ) for all n ∈ N.
(ii) τ normalises Inv(µ).

(iii) µ has a unique semistable embedding.

Then (iii) ⇒ (i) ⇔ (ii). They are all equivalent if G = G̃(Qp), G̃ is a unipotent p-adic

algebraic group and µ ∈ M1(G) is full.

PROOF. Step 1: Let G be any locally compact group. Since {µt }t≥0 is (τ, c)-
semistable and µ1 = µ, τn(µ) = µcn and hence τn Inv(µ)τ−n = Inv(µcn), n ∈ N. Thus, it
is clear that (i) and (ii) are equivalent.

Step 2: Suppose (iii) holds. It is enough to show that (ii) holds. If possible, suppose
τ Inv(µ)τ−1 �= Inv(µ). Suppose that there exists ρ ∈ Inv(µ) such that ρ �∈ τ Inv(µ)τ−1.

Since ρ(µ) = µ, we get that µ is embeddable in {ρ(µt)}t≥0 which is (ρτρ−1, c)-semistable.

But µc �= ρ(µc) as ρ �∈ τ Inv(µ)τ−1 = Inv(µc).
Now suppose there exists ρ′ ∈ τ Inv(µ)τ−1 such that ρ′ �∈ Inv(µ). Let ρ = τ−1ρ′τ ∈

Inv(µ). Then ρ(µ) = µ and ρ �∈ τ−1 Inv(µ)τ . Now arguing as above, we get that µ is

embeddable in {ρ(µt)}t≥0 which is (ρτρ−1, c)-semistable. But ρ(µc−1) �= µc−1 as ρ �∈
τ−1 Inv(µ)τ = Inv(µc−1). Thus, in both cases we get that µ is embeddable in two different

semistable one-parameter semigroups, a contradiction. Therefore, Inv(µ) = τ Inv(µ)τ−1.

Step 3: Let G = G̃(Qp), where G̃ is a p-adic algebraic group and let µ ∈ M1(G)

be full, then each µt is also full, t > 0. Suppose (i) holds. Then Inv(µ) = Inv(µcn) =
τn Inv(µ)τ−n for all n ∈ N. Now from Lemma 2.7(ii), Inv(µ) = ⋂

t≥0 Inv(µt ). We show that
µ has a unique semistable embedding. If possible, suppose there exists a (ψ, d)-semistable
one-parameter semigroup {νt }t≥0 such that µ = ν1. Then by Theorem 2.4 and Remark 2.6
we get that log c and log d are commensurable. Also, if τ normalises Inv(µ), so does its
power. Replacing τ and ψ by its suitable powers if necessary, we may assume that µ is
(τ, c)-semistable and (ψ, c)-semistable. Then as in Step 2 of proof of Theorem 2.4, we get
that for kn = [c−n], n ∈ N,

τn(µ)[knt ] → µt and ψn(µ)[knt ] → νt , t > 0 .
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Since µ1 = ν1 = µ, by the convergence-of-types theorem, {ψnτ−n} is relatively compact
and all its limit points belong to Inv(µ) = ⋂

t≥0 Inv(µt ). Therefore, from the above equation,
we get that µt = νt for each t > 0 and hence for t = 0. This completes the proof. �

REMARK 2.9. It follows from the proposition that if µ is a full semistable measure on
a unipotent p-adic algebraic groupG such that Inv(µ) is trivial then µ has a unique semistable
embedding. This also holds for non-full semistable measures on G if A = {α ∈ Aut(G(µ)) |
α(µ) = µ} is trivial. More generally, if µ is a semistable measure on any p-adic Lie groupG
with I(µ) = {e} and A as above is trivial then µ has a unique semistable embedding. In view
of the above, it will be interesting to find conditions under which Inv(µ) is trivial.

PROOF OF THEOREM 2.1. Letµ be a normal semistable measure on a p-adic Lie group
G. As in the proof of Lemma 2.5, we may assume that G = G(µ). Suppose there exist
τ,ψ ∈ Aut(G) and c, d ∈ ]0, 1[ such that µ is both (τ, c)-semistable and (ψ, d)-semistable.
That is, there exist continuous one-parameter semigroups {µt }t≥0 and {νt }t≥0 in M1(G) such
that µ1 = µ = ν1 and τ (µt ) = µct and ψ(νt ) = νdt for all t ∈ R+. We have to show that
µt = νt for all t .

For kn = [c−n], τ (µ[knt ]) → µt , t ∈ R∗+. Hence since µ is normal, each µt is also
normal. Similarly, each νt is normal. This implies that µ ∗ µ̃ is embeddable in {µt ∗ µ̃t }t≥0

and {νt ∗ ν̃t }t≥0. But since both the one-parameter semigroups consist of symmetric measures
and µ ∗ µ̃ = µ1 ∗ µ̃1 = ν1 ∗ ν̃1, we have by the uniqueness of symmetric embedding,
µt ∗ µ̃t = νt ∗ ν̃t for all t . In particular, µ0 = ν0 = ωK , (where K = I(µ)). If µ = ωK ,
then µt = νt = ωK for all t . Suppose, µ �= ωK . By Lemma 2.5, we have G = K · U ,

a semidirect product, where U = C(τ) = C(ψ), U = Ũ(Qp), Ũ is a unipotent p-adic

algebraic group, τ 0 = τ |U and ψ0 = ψ|U are Qp-rational morphisms and µt = ωK ∗ µ(0)t
and νt = ωK ∗ ν(0)t , where µ(0)1 = ν

(0)
1 and {µ(0)t }t≥0 is (τ 0, c)-semistable and {ν(0)t }t≥0 is

(ψ0, d)-semistable with µ(0)0 = ν
(0)
0 = δe. Also, µ(0)1 = ν

(0)
1 �= δe is a normal measure. Now

it is enough to prove that µ(0)t = ν
(0)
t for all t . Therefore, replacing µ by µ(0)1 = ν

(0)
1 we may

assume that µ �= δe, G = G̃(Qp) is a unipotent p-adic algebraic group and τ,ψ ∈ Aut(G)
are contracting automorphisms which are also Qp-rational. Also, by Theorem 2.4, log c and
log d are commensurable.

Here, since µ is full on G which is unipotent, Inv(µ) is a compact subgroup of Aut(G)
(cf. Theorem 2.3). Let K = ⋂

t Inv(µt ). Then K is a compact subgroup of Aut(G). Let

T : Aut(G) → Aut(G) be defined as follows: T (ρ) = τρτ−1 for all ρ ∈ Aut(G). Then T
is a continuous automorphism of Aut(G) which is a p-adic Lie group. Now by Lemma 2.7,
T (K) = K and Inv(µ) ⊂ CK(T ). We also have CK(T ) = K · C(T ) (cf. [DSh1]). Since µ
is embeddable and G is totally disconnected, we have G(µ) = G(µ ∗ µ̃) and since µ is full
so is µ ∗ µ̃. Hence Inv(µ ∗ µ̃) = H (say) is compact. Since µ ∗ µ̃ has a unique semistable
embedding, we get by Proposition 2.8 that T (H) = H. Therefore, H ∩ C(T ) = {I }, but
Inv(µ) ⊂ H, and hence K ⊂ H and Inv(µ) ⊂ H ∩ (K · C(T )) = K. This implies that
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Inv(µ) = K. Now by Proposition 2.8, µ is embeddable in a unique semistable one-parameter
semigroup. �

3. Domain of semistable attraction and semistable measures on unipotent p-adic
groups

For a probability measure µ on a locally compact group G, we define DSSA(µ), the
domain of semistable attraction of µ, as follows:

DSSA(µ) = {ν ∈ M1(G) | there exist τn ∈ Aut(G) and kn ∈ N

such that τn(νkn) → µ and kn/kn+1 → c ∈ ]0, 1[} .
Note that our definition is slightly different from an earlier definition in [T], as we do not
assume that {τn(ν)} is infinitesimal. It is easy to see that for any (τ, c)-semistable measure
µ, DSSA(µ) is nonempty. For, µ itself belongs to DSSA(µ), since τn(µ)kn → µ, where
kn = [c−n], n ∈ N. Conversely, we have the following.

THEOREM 3.1. Letµ be an S-full probability measure on a unipotent p-adic algebraic
groupG such that I(µ) = {e} and DSSA(µ) is nonempty. Then µ is semistable.

Before proving the theorem let us state and prove several results which will be useful.

LEMMA 3.2. Let G be a unipotent p-adic algebraic group and let µn,µ ∈ M1(G) be

such that µn → µ. If µ is full (resp. S-full) in M1(G), then so is µn for all large n.

We need following notations for the proof of the lemma. For a p-adic vector space V
isomorphic to Qm

p (m ∈ N), let {e1, . . . , em} be a basis of V . For any x, y ∈ V , we have

x = ∑m
i=1 xiei and y = ∑m

i=1 yiei and we define 〈x, y〉 = ∑m
i=1 xiyi . It is a continuous bi-

linear map from V 2 to Qp. Any one-dimensional projection of V is of the form y 
→ 〈x, y〉
for some x ∈ V . Also, x 
→ ‖x‖p = |〈x, x〉|1/2p on V defines a norm on V . For x ∈ V \ {0},
let Vx = Ker(y 
→ 〈x, y〉); it is a subspace of co-dimension 1 in V . Also, any subspaceW of
co-dimension 1 in V is of this form, i.e. W = Vx for some x ∈ V \ {0}. For µ ∈ M1(V ) and
x ∈ V , let (x, µ) denote the image of µ under the map y 
→ 〈x, y〉.

PROOF OF LEMMA 3.2. Let G, µn and µ be as in the hypothesis. Since µn → µ,
µn ∗ µ̃n → µ ∗ µ̃. Also, µ is S-full if and only if µ ∗ µ̃ is full. Hence it is enough to prove
that fullness of µ implies that of µn for all large n. Let π : G → G/[G,G] be the natural
projection. Then G/[G,G] is an abelian unipotent p-adic algebraic group. It is easy to see
that any probability measure ν is full on G if and only if π(ν) is full on G/[G,G], which is
isomorphic to a p-adic vector space. Now since π(µn) → π(µ), it is enough to prove the
assertion in case G is a p-adic vector space.

Now we may assume G = V , an m-dimensional p-adic vector space and suppµ gener-
ates V as a vector space. We fix a basis {e1, . . . , em} for V . If possible, suppose µn is not full
on V for infinitely many n. Passing to a subsequence if necessary, we get that suppµn ⊂ Vn,
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where Vn is a proper subspace of co-dimension 1 in V for all n. Let xn ∈ V \ {0} be such
that Vn = Vxn = {y ∈ V | 〈xn, y〉 = 0}. Replacing xn by xn/‖xn‖p, we may assume that
‖xn‖p = 1 for all n. Then (xn, µn) = δ0 on Qp for all n. Here, {xn} is relatively compact,
it has a limit point x (say), then ‖x‖p = 1. Since µn → µ, (x, µ) = δ0 on Qp. In partic-
ular, suppµ ⊂ Vx , which is a subspace of co-dimension 1 in V as x �= 0. This leads to a
contradiction as µ is full. Hence µn is full for all large n. �

PROPOSITION 3.3. Let G = GLm(Qp) and let U be the subgroup of G consisting of
all upper triangular matrices. Let {an} be a sequence in G and ψn be an inner automorphism

defined by ψn(x) = anxa
−1
n for all x ∈ G, n ∈ N. Let H = {x ∈ G | ψn(x) → e} and let

C = {ν ∈ M1(G) | ψn(ν) → δe}, where the identity e = I , the identity matrix in GLm(Qp).
Then

(i) H is a (closed) algebraic subgroup of G and there exists a ∈ G such that H ⊂
aUa−1 and

(ii) for any ν ∈ C, supp ν is contained in H .

The above proposition can be deduced along the same lines as Theorem 2.1 of [DSh2];
this theorem uses Lemma 2.2 of [DSh2], which is also valid for any locally compact first
countable group. Also, instead of the polar decomposition of an, one has to use the decom-
position an = cndnkn, where cn, kn ∈ GLm(Zp), which is compact, where Zp is the ring
of p-adic integers, and dn are diagonal matrices which can be chosen to have entries whose
p-adic absolute values are in the ascending order (cf. [Ma]), subsequently also, one has to use
the p-adic absolute value instead of the real absolute value. We will not repeat the proof here.

THEOREM 3.4. LetG = G̃(Qp) be a unipotent p-adic algebraic group and let {τn} ⊂
Aut(G). Let H = {x ∈ G | τn(x) → e} and let C = {ν ∈ M1(G) | τn(ν) → δe}. Then H
is a (closed) algebraic subgroup of G such that for any ν ∈ C, supp ν is contained in H . In
particular, if there exists a ν ∈ C which is full on G, then H = G and τn(µ) → δe for all

µ ∈ M1(G). That is, if C contains a full measure, then C = M1(G).

REMARK 3.5. The above theorem is also valid for any Zariski connected semisimple
p-adic algebraic group with trivial center. It can also be shown to hold for any Zariski con-

nected p-adic algebraic group G = G̃(Qp) such that the maximal central torus of G̃ is trivial
and {τn} ⊂ Aut(G) are Qp-rational automorphisms. In both these cases, a similar proof (as
given below) works and H will be a unipotent algebraic subgroup of G.

PROOF OF THEOREM 3.4. SinceG is unipotent, any continuous automorphism ofG is
Qp-rational and the group Aut(G) is also a group of rational points of a p-adic algebraic group
and the action of Aut(G) on G is Qp-rational (cf. [Sh2], Theorems 2.1, 3.1). As in the proof

of Main Theorem in [Sh2], we can form a semidirect product L = Aut(G) ·G, L = L̃(Qp) is
a p-adic algebraic group, with the group operation (τ, g)(τ ′, g ′) = (ττ ′, gτ (g ′)), for τ, τ ′ ∈
Aut(G) and g, g ′ ∈ G. That is, the action of Aut(G) on G is given by τgτ−1 = τ (g) for all
τ ∈ Aut(G) and g ∈ G. Also, L ⊂ GLm(Qp) for some m ∈ N.
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We have H = {x ∈ G | τn(x) → e} = {x ∈ G | τnxτ−1
n → e in L}. This implies

H = H ′ ∩G, where H ′ = {x ∈ GLm(Qp) | τnxτ−1
n → e}, here e = I , the identity matrix.

By Proposition 3.3 (i),H ′ is an algebraic subgroup ofGLm(Qp) and henceH is an algebraic
subgroup of G. In particular, it is a closed subgroup of G. Since G is closed in GLm(Qp),

C = M1(G) ∩ C′, where C′ = {ν ∈ M1(GLm(Qp)) | τn(ν) → δe}. Let ν ∈ C. Using
Proposition 3.3 (ii), we get that supp ν ⊂ H ′ ∩ G = H . Now, assume that ν is full on G.

Then since H is an algebraic subgroup of G, we get that G = G̃(ν) ⊂ H and hence G = H .

Moreover, from the definition of H , it is clear that for any µ ∈ M1(G), τn(µ) → δe, i.e.

C = M1(G). �

For any α ∈ M1(G), let F(α) be the set of (two-sided) factors of α, i.e. F(α) = {β ∈
M1(G) | β ∗ γ = γ ∗ β = α for some γ ∈ M1(G)}.

LEMMA 3.6. Let G be a p-adic algebraic group. Let {νn} ⊂ M1(G) and µ ∈ M1(G)

be such that µ is full and νknn → µ for some {kn} ⊂ N. Then we have the following:
(i) Let Z be the center of G and let π : G → G/Z be the natural projection. For

A = {νmn | m ≤ kn, n ∈ N}, π(A) is relatively compact.
(ii) {νn ∗ ν̃n} is relatively compact and all its limit points are supported on I(µ).
PROOF. As µ is full, Theorem 4.1 of [Sh3] implies (i), and it also implies that {νn ∗ δzn}

is relatively compact for some sequence {zn} ⊂ Z. For every m ∈ N, {νmn ∗ δzmn }n∈N, and
hence {νmn ∗ ν̃mn }n∈N is relatively compact. Let λ be a limit point of {νn ∗ δzn}. Then the above
implies that λm ∈ F(µ), m ∈ N. Again by Theorem 4.1 of [Sh3], we get that {λm ∗ δz′m} is

relatively compact for some sequence {z′m} ⊂ Z; let β be any limit point of it. It is clear that

β ∈ F(µ) and β2 ∈ F(β). This implies that β = ωH ∗ δx = δx ∗ ωH for some compact
subgroup H ⊂ I(µ). We also have λ ∈ F(β). Therefore, suppλ ⊂ Hy = yH for some

y ∈ suppλ and hence supp(λ ∗ λ̃) ⊂ I(µ). Since any limit point of {νn ∗ ν̃n} is of the form

λ∗ λ̃ for some λ as above, we get that all limit points of {νn ∗ ν̃n} are supported on I(µ). This
proves (ii). �

PROOF OF THEOREM 3.1. Let µ be an S-full probability measure on a unipotent p-
adic algebraic group G such that I(µ) = {e} and DSSA(µ) �= ∅. Then there exist sequences

{τn} ⊂ Aut(G), {kn} ⊂ N and a measure ν ∈ M1(G) such that τn(ν)kn → µ and kn/kn+1 →
c ∈ ]0, 1[.

Since µ is S-full, µ is also full and by Lemma 3.6, τn(ν ∗ ν̃) → δe as I(µ) = {e}. By
Lemma 3.2, for all large n, τn(ν)kn is S-full, and hence so is τn(ν). This implies that τn(ν ∗ ν̃)
is full. Also each τn is Qp-rational (cf. [Sh2], Theorem 2.1). Therefore, ν ∗ ν̃ is also full.
Since τn(ν ∗ ν̃) → δe, by Theorem 3.4, τn(x) → e for all x ∈ G, and hence τn(ν) → δe.

Now we have that τn(ν)kn → µ, τn(ν) → δe, kn/kn+1 → c ∈ ]0, 1[ (this condition has
not been used so far), and µ is full on a unipotent p-adic algebraic group. Hence the assertion
follows from Theorem 4.6 of [T]. �
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REMARK 3.7. 1. The above theorem generalises Theorem 4.6 of [T] in the case of S-
full probability measuresµ with I(µ) = {e}, as we do not assume that {τn(ν)} is infinitesimal
in the hypothesis but derive it as a consequence.

2. In view of Theorem 4.6 of [T] stated for the semisimple group case, we would like
to note that there does not exist any nontrivial (non-idempotent) full semistable measure on

G = G̃(Qp), where G̃ is any semisimple p-adic algebraic group. That is, if µ is a full

semistable measure, on such a group G, embeddable in (τ, c)-semistable {µt }t≥0 ⊂ M1(G),
with µ0 = ωK , then as mentioned earlier µ = µ1 is supported on CK(τ) = K · C(τ) (cf.
[DSh1], Theorem 3.1), and hence CK(τ) is Zariski dense inG. In particular, this implies that
C(τ) is normal inG, but C(τ) is a unipotent algebraic subgroup ofG (cf. [W], Theorem 3.5).
Since G is semisimple, the above implies that C(τ) = {e}, hence G(µ) = K and µ = ωK ,
with τ (K) = K .

We now give examples to show that in the hypothesis of Theorem 3.1, S-fullness of µ
can not be replaced by fullness of µ, and also the condition that I(µ) = {e} is necessary.

EXAMPLE 1. Let G = Qp. Let ν = δx for some x ∈ G such that x �= 0, Take τn = I ,

the identity in Aut(G), and kn = pn + 1 for all n ∈ N. Then kn/kn+1 → 1/p, τn(ν)kn → δx ,
hence DSSA(δx) �= ∅ but δx is not semistable. Here I(δx) = {0}, δx is full but not S-full. �

EXAMPLE 2. Let G = Qp and ν = ωH ∗ δx for some compact open subgroup H
of G and some x ∈ G \ H . So µ is S-full. Let {τn} and {kn} be as in Example 1. Then

kn/kn+1 → 1/p, τn(ν)kn = ωH ∗ δx for all large n, hence DSSA(ωH ∗ δx) �= ∅ but ωH ∗ δx
is not semistable as it is not even embeddable. Note that I(ωH ∗ δx) = H �= {0}. �

Now we state a result comparing semistable measures and measures with nonempty do-
main of semistable attraction on any totally disconnected locally compact group.

THEOREM 3.8. Let G be any totally disconnected locally compact group and µ ∈
M1(G). Then the following are equivalent:

(i) µ is (τ, c)-semistable.
(ii) There exist {τn} ⊂ Aut(G), ν ∈ M1(G), {kn} ⊂ N such that τn(νkn) → µ,

kn/kn+1 → c ∈ ]0, 1[ (i.e. DSSA(µ) �= ∅), with the additional properties that

τn+1τ
−1
n → τ and τn(ν) → ωH for some compact subgroup H of G.

PROOF. “(i) ⇒ (ii)” is obvious. Now we assume (ii) and show that (i) holds. By
Theorem 2.1 of [Sh4], the set A = {τn(ν)m | m ≤ kn, n ∈ N} is relatively compact. Now from
Theorem 3.6 of [T], µ is embeddable in a continuous one-parameter semigroup {µt }t≥0 ⊂
M1(G) such that, for some sequence {nj } ⊂ N,

lim
j→∞ τnj (ν)

[knj t ] → µt ,(1)

uniformly on compact subsets of ]0,∞[.
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Let m ∈ N be fixed. Clearly, τnτ
−1
n−m → τm and kn/kn+m → cm. Let aj = knj−m/knj ,

then aj → cm. For any fixed r ∈ N,

lim
j→∞ τnj (ν)

rknj−m = lim
n→∞ τnj (ν)

[rknj aj ] = µrcm ,(2)

from the uniform convergence on compact sets of ]0,∞[ in (1) above (see the proof of Theo-
rem 4.6 of [T]). Also,

lim
n→∞ τnj (ν)

rknj−m = lim
n→∞ τnj τ

−1
nj−m(τnj−m(ν)

rknj−m) = τm(µ)r .(3)

From (2) and (3), for all m, r ∈ N, we have that τm(µ)r = µrcm , and hence τ (µrcm) =
µrcm+1 . LetM = {rcm | r,m ∈ N}. Then τ (µt ) = µct for all t ∈ M . SinceM is dense in R+
and τ is continuous we get that τ (µt ) = µct for all t ∈ R+, i.e. {µt }t≥0 is (τ, c)-semistable
with µ1 = µ. �
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