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Abstract. Graph divide links were introduced as an extension of the class of A’Campo’s divide links. We show
that some of such links cannot be represented as the links ofany graph divides including less circles or less cycles.

1. Introduction

In [1], A’Campo constructed the links of divides as an extension of the class of algebraic
links. A divide is a generic relative immersion of a disjoint union of intervals (and circles) in
a 2-dimensional disk. We review the links of divides in Section 2. In [2], he showed that any
divide link is ambient isotopic to a transverseC-link, where atransverse C-link is the link
represented as the transversal intersection of a complex plane curve and the unit sphere in the

2-dimensional complex vector spaceC2 [17]. An algebraic link is the link of a singularity
of a complex plane curve, which is a transverseC-link. We note that there exist transverse
C-links which are not algebraic [16].

Ishikawa [10] and the author [12] independently showed that the links of divides are
quasipositive, by using the visualization algorithm due to Hirasawa [8]. Aquasipositive braid
is the product of conjugate braids with positive braids, and aquasipositive link is an ori-
ented link which has a closed quasipositive braid diagram. Apositive braid is the product
of canonical generators of the braid group, that is, a braid which has a diagram without neg-
ative crossings. It is well known that any algebraic link admits a representation as a closed
positive braid. In [16], Rudolph showed that quasipositive links are transverseC-links. In
[3], Boileau and Orevkov proved that transverseC-links are quasipositive, by the theory of
pseudoholomorphic curves.

In [7], Gibson and Ishikawa constructed links offree divides, non-relative immersions of
intervals in a 2-dimensional disk. In [13], as an extension of the class of the links of divides
and free divides, the author constructed the links ofgraph divides, generic immersions of
finite graphs. We review the definitions of a graph divide and its links in Section 2. She also
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showed that any graph divide link is quasipositive, and that there exist quasipositive links
which cannot be graph divide links.

A’Campo [2], Gibson and Ishikawa [7] determined the gordian numbers of the links of
(free) divides given as immersed intervals. In [13] the author determined the four-dimensional
clasp numbers of the links oftree divides, graph divides given as immersed trees. In [5]
Gibson determined the gordian numbers of such links under some conditions. In [14] the
author determined the gordian numbers and the four-dimensional clasp numbers of the links
of divides given as certain immersed circles, and showed that her formula does not hold if a
divide consists of a limaçon or concentric circles. In their arguments, the immersed image of
circles or cycles may be obstructions for the decision of such invariants.

If the set of immersed intervals and trees could represent all divide links, then their
gordian numbers or four-dimensional clasp numbers would be determined. In Section 3, we
give an example of immersed circles of divides which can be replaced with immersed intervals
as link representations. Though in general,we cannot replace circles with trees in graph
divides as a link representation. We show it in Section 4. Furthermore we show in Section 5
that there exists a graph divide link which cannot be represented by any graph divide given as
a sum of immersed trees and circles.

2. Review of the divide link theory

In this section, we review the links of divides defined by A’Campo [1], the links of
oriented divides defined by Gibson and Ishikawa [6], and the links of graph divides [13].

Let D be the unit disk in the real planeR2, that isD = {x = (x1, x2) ∈ R2 | ||x||2 =
x2

1 + x2
2 ≤ 1}. A divide P is a generic relative immersion in the unit disk(D, ∂D) of a finite

number of 1-manifolds, i.e., copies of the unit interval(I, ∂I) and the unit circle [1, 2, 8, 10].
We also call the image of such an immersion adivide. We call a divideP acircle divide (resp.
aninterval divide) if P is an immersion of only circles (resp. intervals).

Let TxX be the tangent space at a pointx of a manifoldX, andT X be the tangent bundle

over the manifoldX. We identify the 3-sphereS3 with the set

ST R2 = {(x, u) ∈ T R2 | x ∈ R2, u ∈ TxR2, ||x||2 + ||u||2 = 1} .

We orient the 3-sphere and the linkL(P) as follows. We identify the tangent bundleT R2 =
R4 with the 2-dimensional complex vector spaceC2 by the map

((x1, x2), (u1, u2)) �→ (x1 + √−1u1, x2 + √−1u2) .

The tangent bundleT R2 is oriented by the complex orientation ofC2, and the 3-sphere is
naturally oriented by the complex orientation of the 4-ball

{(x, u) ∈ T R2 | x ∈ R2, u ∈ TxR2, ||x||2 + ||u||2 ≤ 1} .

Thelink of a divide P is the set given by

L(P) = {(x, u) ∈ ST R2 | x ∈ P, u ∈ TxP } .
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Let [a, b] be a small interval witha < b. Let φ : [a, b] → D be an embedding
whose image lies onP . We orient a part of the linkL(P) as the image of the map

t �→ (φ(t),

√
1 − ||φ(t)||2

||φ̇(t)|| φ̇(t)), whereφ̇(t) is the differential ofφ(t). We can extend this

orientation toL(P). A divide link is the oriented link ambient isotopic to the link of some
divide.

In [6], Gibson and Ishikawa constructed links associated with oriented divides. Anori-
ented divide is the image of a generic immersion of finite number of copies of the unit circle
in the unit disk, with a specific orientation assigned to each immersed circle. Thelink of an
oriented divide Q is the set ofLori(Q) given by

Lori(Q) = {(x, u) ∈ ST R2 | x ∈ Q,u ∈ �TxQ} ,

where�TxQ is the set of tangent vectors in the same direction as the assigned orientation ofQ.
The linkLori(Q) naturally inherits its orientation fromQ.

In [4], Gibson showed the following theorem.

THEOREM 2.1 ([4]). Any link can be represented as the link of some oriented divide.

We note that a regular isotopy of a given divide or oriented divide in the space of generic
immersions does not change the isotopy type of its link.

There exist some transformations which do not change the isotopy type of the links of
divides or oriented divides. The transformations illustrated on the top of Figure 1 areinverse
self-tangency moves. The bottom transformation on oriented divides is atriangle move. If the
bottom one is on divides (or graph divides), we call it adivide triangle move.

LEMMA 2.2 ([7]). The isotopy type of the link of an oriented divide does not change
under inverse self-tangency moves and triangle moves. Furthermore, the isotopy type of the
link of a divide or a graph divide does not change under divide triangle moves.

REMARK 2.3. In [4], Gibson showed that there exist several other transformations on
oriented divides which do not change the link isotopy type.

FIGURE 1. Inverse self-tangency moves and a (divide) triangle move.
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In [13], a link is associated to any immersed graphs and circles in the unit disk as follows.
Let G be a disjoint union of copies of the unit circle and finite graphs without point com-

ponents. Agraph divide P = (G, ϕ) is a generic immersionϕ : G → D or its image, with
the following properties. Each graph might have loops and multiple edges. The singularities
are only transversal double points of two arcs in edges and circles. We suppose that the point
of P ∩ ∂D is the image of a vertex of degree 1. We regard the unit interval as a finite graph.
The image of vertices of degree 1 might not lie in the boundary of the unit disk. We call a
point of such image afree endpoint of P and denote byEP the set of all free endpoints ofP .
We denote byTP the set of all vertices except free endpoints and points in∂D. We denote
VP = EP ∪ TP . If TP is empty andϕ is a non-relative immersion,P is called afree divide
[7].

A branch of P is the image of each component ofG. We shall call the image of an
interval component aninterval branch, the image of a circle component acircle branch, and
the image of a tree component atree branch. In [7], Gibson and Ishikawa considered free
divides with only interval branches, though a free divide means a sum of interval and circle
branches in this article. We note that a divide is also a free divide as they commented in [7]
and hence it is a graph divide.

In [13], the definition of the links of divides was extended as follows. We need ‘signs’ to
vertices of a graph divide, because the link is not associated to a graph divide alone. Letx be
a vertex ofG. We also denote the imageϕ(x) by x. If x lies in∂D, x does not need a sign. If
x is a point ofVP , we givex a signεx = + or εx = −.

For a given graph divideP = (G, ϕ) and given signs of vertices, we construct an oriented
divide d(P ; {εx}x∈VP ) as follows. For each branchB of P , except near the points ofVP ,
we draw the boundary of ‘very small’ neighborhood ofB in the diskD, assigned with the
clockwise orientation, as illustrated in Figure 2 (a), (b), and (c), where interrupted curves
represent∂D. In particular, we draw a ‘sharp’ around each double point ofP as (c), and draw
a ‘hairpin curve’ around each point ofP ∩ ∂D as (b). We suppose that such hairpin curves lie
in the interior ofD. Aroundx ∈ EP with εx = −, we draw a ‘hairpin curve’, as illustrated in
Figure 2 (e). Aroundx ∈ EP with εx = +, we draw a ‘small kink’, as illustrated in Figure 2
(d). Aroundx ∈ TP with εx = −, we draw oriented curves such that each curve approachesx

along an edge and turns to its neighbor edge on the left, as illustrated in Figure 2 (g). Around
x ∈ TP with εx = +, we draw oriented curves such that each curve approachesx along an
edge and turns to its neighbor edge on the right, as illustrated in Figure 2 (f). We denote the
obtained curves byd(P ; {εx}x∈VP ) and call it thedoubling of the graph divideP with signs
{εx}x∈VP .

DEFINITION 2.4. Thelink of a graph divide P with signs{εx}x∈VP is the set given by

L(P ; {εx}x∈VP ) = Lori(d(P ; {εx}x∈VP )) .

We note that the link of a given graph divide depends on signs of vertices. For fixed
signs of vertices({εx}x∈VP ), a regular isotopy ofP in the space of generic immersions does
not change the isotopy type of the oriented divided(P ; {εx}x∈VP ), therefore it does not change
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FIGURE 2. The doubling of graph divides.

the isotopy type of the linkL(P ; {εx}x∈VP ). A graph divide link is the oriented link ambient
isotopic to the link of some graph divide with some signs of vertices.

EXAMPLE 2.5 ([13], cf. [5]). For a graph divideP with signed vertices illustrated in
Figure 3, the doubling ofP is illustrated as the right ofP . Then the link ofP is the knot
illustrated at the bottom of Figure 3. It is known that this knot is not fibered ifn is a positive
integer. Then it is not a divide link since divide links are all fibered.

Indeed, the knot ofP with signed vertices illustrated in Figure 3 cannot be represented

by any free divide forn ≥ 21 ([13], cf. [5]). In [7], Gibson and Ishikawa checked that the
knot of the free divide with only one double point must be the trefoil or the mirror image of
the knot 52 in the table due to Rolfsen [15]. In [13], the author showed that the number of the
double points of a tree divide is equal to the 4-dimensional clasp number of its link.

1The author would like to apologize for incorrectly writingn ≥ 0 in the paragraph after Remark 6.6 in [13].
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EXAMPLE 2.6 ([13]). For a graph divideP with signed vertices illustrated in Figure
4, the doubling ofP is illustrated as the right ofP . Then the link ofP is the knot illustrated at
the bottom of Figure 4. This knot is the mirror image of 821 in the table of Rolfsen [15]. It is
well known that the knot 821 is fibered. We note that there is no (free) divide which represent
this knot as checked in [13].

By the argument in [13], for any graph divideP = (G, ϕ), there exists a graph divide
P ′ = (G′, ϕ′), whereG′ is a sum of uni-trivalent graphs and copies of circles, such that
L(P ′; {εx}x∈VP ′ ) is ambient isotopic toL(P ; {εx}x∈VP ).

The above definition of a graph divide gives a natural extension of the class of divide
links. If P is a classical divide, this definition is same as the visualization algorithm due to
Hirasawa [8]. IfP has no circle branches andEP = VP , the linkL(P ; {εx}x∈VP ) is ambient
isotopic to thelink of a free divide originally constructed by Gibson and Ishikawa [7].

Furthermore, the class of links of tree divides which Gibson defined in [5] is the subclass
of links of graph divides [13]. In this article, we callP a tree divide if G is a union of trees
and intervals.

3. A family of circle branches which can be changed to interval branches

Figure 5 gives an example of a circle divide which can be changed to an interval divide
or tree divide as the link representation. An embedded circle in the disk is the divide which
represents the Hopf link. The sum of a vertical line and a horizontal line also gives the divide

FIGURE 3. An example of a (non-fibered) graph divide knot.
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FIGURE 4. An example of a graph divide knot.

representing the same link. In this section, we observe more circle branches which can be
changed to interval branches as representations of links.

Let B be an intersection of a given graph divideP and a small square[a1, b1] × [a2, b2]
in the unit diskD. Let fB be the projection(x1, x2) �→ x2 restricted toB. We suppose that

f −1
B (y) is the set ofn points for anyy ∈ [a2, b2] except{y1, . . . , yk}, and that eachf −1

B (yj )

is the set ofn−2 regular points and the double point. We suppose thatfB has neither maximal
points nor minimal points. We shall call suchB ann-braid part of P . Then-braid part ofP
may be regarded as the projection image of ann-braid to the plane.

Let P be a graph divide which has a braid partB surrounded with a circle branchC
as illustrated on the left of Figure 6. LetP ′ andP ′′ be graph divides obtained fromP by
changingC as illustrated in Figure 6. We suppose that the signεx of eachx ∈ VP is pre-
served. The divideP ′ is obtained fromP by divide triangle moves. The oriented divide
d(P ′; {εx}x∈VP ′ ) is obtained fromd(P ′′; {εx}x∈VP ′′ ) by inverse self-tangency moves and tri-

angle moves. By Lemma 2.2, the linksL(P ′; {εx}x∈VP ′ ) andL(P ′′; {εx}x∈VP ′′ ) are ambient

FIGURE 5. Divides representing the Hopf link.
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FIGURE 6. Changing circle branches to interval branches.

FIGURE 7. An oriented divide which represents the square knot.

isotopic toL(P ; {εx}x∈VP ). Then the linksL(P ′; {εx}x∈VP ′ ) andL(P ′′; {εx}x∈VP ′′ ) are ambi-
ent isotopic toL(P ; {εx}x∈VP ).

4. Circle divide links without tree divide representations

In this section, we prove the following theorem.

THEOREM 4.1. There exist circle divides whose links cannot be represented as the link
of any tree divides.

In [13], the author showed there exist links which cannot be graph divide links. Before
the proof of Theorem 4.1, we present such examples.

LEMMA 4.2 ([13]). If a graph divide knot K is slice, then K is trivial.

EXAMPLE 4.3. We denote the mirror image of a linkL by L!. The knot 31 in the
knot table by Rolfsen [15] is the left hand trefoil. The square knot 31�(31!), the connected
sum of the left hand and right hand trefoils, is slice. By Lemma 4.2, the knot 31�(31!) is
not a graph divide link. However, by Theorem 2.1, there exists an oriented divideQ with
Lori(Q) = 31�(31!). Figure 7 gives an example of suchQ.

EXAMPLE 4.4 ([13]). The mirror image of the knot 820 in the Rolfsen’s table [15] is
quasipositive. It is not a graph divide link because it is slice. By Theorem 2.1, there exists an
oriented divide which represents 820!. Figure 8 gives such an example.
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FIGURE 8. The oriented divide which represents the knot 820!.

FIGURE 9. An example of an essential circle branch.

REMARK 4.5. Theslice euler characteristic of a link L is the maximal number of
euler characteristics for compact oriented 2-manifolds in the 4-ball with boundaryL. We
denote it byχs(L). In [11], Ishikawa showed that the equality−χs(L) = T B(L) holds for
any graph divide linkL, whereT B(L) is the maximal Thurston-Bennequin number ofL. He
also noted that this equality does not hold for the knot 820!.

Theorem 4.1 is obtained from the following proposition.

PROPOSITION 4.6. Let P = (S1, ϕ) be a divide given by an immersed circle. We give
P an orientation o and denote this oriented divide by (P, o). If the knot Lori(P, o) is not a
graph divide link, then the link L(P) cannot be represented as the link of any tree divides.

PROOF. We assume that a tree divideP ′ = (T , ϕ′) with signs{ε} represents the link
L(P). The link L(P) has two components sinceP is an immersed circle. ThenT is the
disjoint sum of two connected treesT1 andT2. Each component ofL(P) is ambient isotopic
to one ofL((Ti, ϕ

′|Ti ); {ε}|Ti ). The non-trivial knotLori(P, o) is a component ofL(P). It
contradicts the supposition. �

PROOF OFTHEOREM 4.1. LetK be a non-trivial knot. We suppose thatK is not a
graph divide link. By Theorem 2.1, there exists an oriented divideQK with Lori(QK) = K.
LetPK be a circle divide obtained fromQK by ignoring the orientation. We apply Proposition
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4.6 toPK . Then the 2-component linkL(PK) cannot be represented as the link of any tree
divide. �

For example, the circle divide shown in Figure 9 has an essential circle branch, that is,
we cannot expect a graph divide representation of its link without circle branches.

5. Essential cycles of graph divides

In this section, we prove the following theorem.

THEOREM 5.1. There exist graph divide links which cannot be represented as the links
of graph divides with only tree branches and circle branches.

In the proof, the following result is used.

LEMMA 5.2 ([6]). Let o1 and o2 be different orientations of an immersed circle P .
Let (P, oi) be an oriented divide obtained from P and the orientation oi . Then the link
Lori(P, o2) is the same link as Lori(P, o1) but with the opposite orientation.

PROOF OFTHEOREM 5.1. LetK be a non-trivial knot. We suppose thatK is not a
graph divide link. LetPK be the circle divide constructed in the proof of Theorem 4.1. We
add an immersed edgeα to PK as illustrated in Figure 10. Figure 11 is the caseK = 820!. By
Lemma 5.2, for any signε of the vertex of degree 3, the linkL(PK ∪α; {ε}) is a 2-component
link such that one component is the connected sum of the knotsK and 31!, and the other isK
with the opposite orientation.

We assume that there exists a graph divideP ′ such that each branch ofP ′ is a circle
branch or a tree branch and that the linkL(P ′; {ε′

x}x∈VP ′ ) is ambient isotopic toL(PK ∪α; {ε})
for some signs{ε′

x}x∈VP ′ . This link has 2 components, thenP ′ is either an immersion of a
single circle or an immersion of two trees. By almost same argument as that in the proof of
Proposition 4.6,P ′ cannot be a tree divide. HenceP ′ should be a circle divide(S1, ϕ′).

By Lemma 5.2, the components of the linkL(P ′) are the same knot but with opposite
orientations to each other. ThenK is ambient isotopic to the connected sum ofK and 31!.
It contradicts the unique factorization theorem and hence the linkL(PK ∪ α; {ε}) is not the
link of any circle divide. Therefore, the graph divideP cannot be changed to a sum of circle
branches and tree branches. �

6. Strongly quasipositivity

A strongly quasipositive braid is the product of positive bands. Thepositive band is the

braidσij = σi · · · σj−1σjσj−1
−1 · · · σi

−1, whereσk ’s are the canonical generators of the braid
group andi is less thanj . A strongly quasipositive link is the closure of a strongly quasipos-
itive braid. For any strongly quasipositive link, the slice euler characteristic is equal to the
euler characteristic. Hirasawa recently showedthat any divide link is strongly quasipositive
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FIGURE 10. Addingα to the circle dividePK .

FIGURE 11. An example of an essential cycle in a graph divide.

[9]. The knot of Example 2.6 is fibered, but not strongly quasipositive, because the slice euler
characteristic is−1 but the euler characteristic is−3, so the slice euler characteristic is not
equal to the euler characteristic.

The result due to Rudolph on plumbing of Seifert surface of strongly quasipositive links
[18] implies the following proposition.

PROPOSITION 6.1 (cf. [18]). Let L1 and L2 be strongly quasipositive links. A con-
nected sum of L1 and L2 is strongly quasipositive if and only if L1 and L2 are strongly
quasipositive.

By this proposition, the linkL(PK∪α; {ε}), which is constructed in the proof of Theorem
5.1, is strongly quasipositive, since this link is a connected sum of divide links. Instead ofα,
we attach the graph divide in Figure 4 to the circle dividePK as illustrated in Figure 12.
The link of this graph divide isL(PK)�(821!). The knot 821! is not strongly quasipositive as
commented in [13]. Then the linkL(PK)�(821!) is not strongly quasipositive by Proposition
6.1. By same argument as that forPK ∪ α, the linkL(PK)�(821!) is neither a tree divide link
nor a circle divide link.

Figure 13 describes the inclusion relations for graph divide links and quasipositive links
shown by A’Campo [1, 2], Boileau, Orevkov [3], Gibson, Ishikawa [7, 10], Hirasawa [9],
Rudolph [16], and the author [12, 13]. LetL1 be a divide link without tree divide repre-
sentation, whose existence is shown in Theorem 4.1. LetL2 be the link of the graph divide
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FIGURE 12. A graph divide whose link is not strongly quasipositive.

FIGURE 13. The inclusion relations for graph divide links.
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without circle and tree divide representation, constructed in Section 5. LetL3 be the link of
the graph divide which has no circle and tree divide representation, and which is not strongly
quasipositive. Then the linksL1, L2, andL3 lie as described in Figure 13.

ACKNOWLEDGMENT. The author would like to thank Yuichi Yamada for his sugges-
tion for the existence of circle branches which can be changed to tree branches. She also
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