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Abstract. Graph divide links were introduced as an extension of the class of ACampo’s divide links. We show
that some of such links cannot be represented as the lindesyograph divides including less circles or less cycles.

1. Introduction

In [1], ACampo constructed the links of divides as an extension of the class of algebraic
links. A divideis a generic relative immersion of a disjoint union of intervals (and circles) in
a 2-dimensional disk. We review the links of divides in Section 2. In [2], he showed that any
divide link is ambient isotopic to a transver€elink, where atransverse C-link is the link
represented as the transversal intersection of a complex plane curve and the unit sphere in the
2-dimensional complex vector spa€é [17]. An algebraic link is the link of a singularity
of a complex plane curve, which is a transve@sénk. We note that there exist transverse
C-links which are not algebraic [16].

Ishikawa [10] and the author [12] independently showed that the links of divides are
guasipositive, by using the visualization algorithm due to Hirasawa [&juasi positive braid
is the product of conjugate braids with positive braids, argliasipositive link is an ori-
ented link which has a closed quasipositive braid diagranpogtive braid is the product
of canonical generators of the braid group, that is, a braid which has a diagram without neg-
ative crossings. It is well known that any algaiz link admits a representation as a closed
positive braid. In [16], Rudolph showed that quasipositive links are transziseks. In
[3], Boileau and Orevkov proved that transvef3dinks are quasipositive, by the theory of
pseudoholomorphic curves.

In [7], Gibson and Ishikawa constructed linksfode divides, non-relative immersions of
intervals in a 2-dimensional disk. In [13], as an extension of the class of the links of divides
and free divides, the author constructed the linkgi@iph divides, generic immersions of
finite graphs. We review the definitions of a graph divide and its links in Section 2. She also

Received April 19, 2005; revised May 10, 2006
The author was partially supported by Grant-in-Aid ¥@ung Scientists (B) (No. 15740044), The Ministry of Edu-
cation, Culture, Sports, Science and Technology.



516 TOMOMI KAWAMURA

showed that any graph divide link is quasipositive, and that there exist quasipositive links
which cannot be graph divide links.

ACampo [2], Gibson and Ishikawa [7] determined the gordian numbers of the links of
(free) divides given as immersed intervals. 18]fhe author determined the four-dimensional
clasp numbers of the links dfee divides, graph divides given as immersed trees. In [5]
Gibson determined the gordian numbers of such links under some conditions. In [14] the
author determined the gordian numbers and the four-dimensional clasp numbers of the links
of divides given as certain immersed circles, and showed that her formula does not hold if a
divide consists of a limagon or concentric circles. In their arguments, the immersed image of
circles or cycles may be obstructions for the decision of such invariants.

If the set of immersed intervals and trees could represent all divide links, then their
gordian numbers or four-dimensional clasp numbers would be determined. In Section 3, we
give an example of immersed circles of divides which can be replaced with immersed intervals
as link representations. Though in generaké cannot replace circles with trees in graph
divides as a link representation. We show it in Section 4. Furthermore we show in Section 5
that there exists a graph divide link which cannot be represented by any graph divide given as
a sum of immersed trees and circles.

2. Review of thedividelink theory

In this section, we review the links of divides defined by ACampo [1], the links of
oriented divides defined by Gibson and Ishikawa [6], and the links of graph divides [13].

Let D be the unit disk in the real plari®?, thatisD = {x = (x1,x2) € R? | ||x||? =
xf + x% < 1}. A divide P is a generic relative immersion in the unit digR, d D) of a finite
number of 1-manifolds, i.e., copies of the unit interggld 7) and the unit circle [1, 2, 8, 10].
We also call the image of such an immersiativade. We call a divideP acircledivide (resp.
aninterval divide) if P is an immersion of only circles (resp. intervals).

Let 7, X be the tangent space at a poirgf a manifoldX, and7T X be the tangent bundle
over the manifoldX. We identify the 3-spher§® with the set

STRZ = {(x,u) e TR? | x e R%, u € T\RZ, ||x| 1% + |[u||® = 1} .

We orient the 3-sphere and the lifik P) as follows. We identify the tangent bundigR? =
R4 with the 2-dimensional complex vector spa&&by the map

((x1, x2), (u1, u2)) > (x14 v/ =1u1, x2 + v/—1uz) .

The tangent bundl&R? is oriented by the complex orientation 6%, and the 3-sphere is
naturally oriented by the complex orientation of the 4-ball

{((x,u) e TR? | x € R?, u € TuR?, ||x||> + |Ju]® < 1}.
Thelink of a divide P is the set given by
L(P)={(x,u) € STR? |x € P,u € T, P}.
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Let [a, b] be a small interval witu < b. Let¢ : [a,b] — D be an embedding
whose image lies orP. We orient a part of the linkL(P) as the image of the map
\/ﬁ
s (o, Y10l

oM
orientation toL(P). A divide link is the oriented link ambient isotopic to the link of some
divide.

In [6], Gibson and Ishikawa constructed links associated with oriented dividesriAn
ented divide is the image of a generic immersion of finite number of copies of the unit circle
in the unit disk, with a specific orientation assigned to each immersed circlelirkaf an
oriented divide Q is the set ofL,,; (Q) given by

(1)), whereg (1) is the differential ofg(r). We can extend this

Lori(Q) = {(x,u) € STR? | x € Q,u € T, 0},

whereT, Q is the set of tangent vectors in the same direction as the assigned orientafion of
The link L,,; (Q) naturally inherits its orientation fron®.
In [4], Gibson showed the following theorem.

THEOREM 2.1 ([4]). Any link can be represented as the link of some oriented divide.
O

We note that a regular isotopy of a given divide or oriented divide in the space of generic
immersions does not change the isotopy type of its link.

There exist some transformations which do not change the isotopy type of the links of
divides or oriented divides. The transformations illustrated on the top of Figureitvarse
self-tangency moves. The bottom transformation on oriented divides tsiangle move. If the
bottom one is on divides (or graph divides), we call digde triangle move.

LEmmMA 2.2 ([7]). Theisotopy type of the link of an oriented divide does not change
under inverse self-tangency moves and triangle moves. Furthermore, the isotopy type of the
link of a divide or a graph divide does not change under divide triangle moves.

REMARK 2.3. In[4], Gibson showed that there exist several other transformations on
oriented divides which do not change the link isotopy type.

RS
Ay

FIGURE 1. Inverse self-tangency moves and a (divide) triangle move.
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In[13], alink is associated to any immersed drapnd circles in the unit disk as follows.

Let G be a disjoint union of copies of the unit circle and finite graphs without point com-
ponents. Agraph divide P = (G, ¢) is a generic immersiop : G — D or its image, with
the following properties. Each graph mightedoops and multiple edges. The singularities
are only transversal double points of two arcs in edges and circles. We suppose that the point
of P N aD is the image of a vertex of degree 1. We regard the unit interval as a finite graph.
The image of vertices of degree 1 might not lie in the boundary of the unit disk. We call a
point of such image &ee endpoint of P and denote by p the set of all free endpoints @f.
We denote byl'p the set of all vertices except free endpoints and pointslin We denote
Vp = Ep UTp. If Tp is empty andp is a non-relative immersiorg is called afree divide
[7].

A branch of P is the image of each component 6f We shall call the image of an
interval component amterval branch, the image of a circle componentacle branch, and
the image of a tree componentrae branch. In [7], Gibson and Ishikawa considered free
divides with only interval branches, though a free divide means a sum of interval and circle
branches in this article. We note that a divide is also a free divide as they commented in [7]
and hence it is a graph divide.

In [13], the definition of the links of divides was extended as follows. We need ‘signs’ to
vertices of a graph divide, because the ligkbt associated to a graph divide alone. +.ée
a vertex ofG. We also denote the imagex) by x. If x liesind D, x does not need a sign. If
x is a point ofVp, we givex a signe, = + 0ore, = —.

For a given graph divid® = (G, ¢) and given signs of vertices, we construct an oriented
divide d(P; {ex}xcv,) as follows. For each branch of P, except near the points dfp,
we draw the boundary of ‘very small’ neighborhood ®fin the diskD, assigned with the
clockwise orientation, as illustrated in Figure 2 (a), (b), and (c), where interrupted curves
represend D. In particular, we draw a ‘sharp’ around each double poirnk @fs (c), and draw
a ‘hairpin curve’ around each point &N d D as (b). We suppose that such hairpin curves lie
in the interior of D. Aroundx € Ep with ¢, = —, we draw a ‘hairpin curve’, as illustrated in
Figure 2 (e). Around: € Ep with ¢, = +, we draw a ‘small kink’, as illustrated in Figure 2
(d). Aroundx € Tp with e, = —, we draw oriented curves such that each curve approaches
along an edge and turns to its neighbor edge on the left, as illustrated in Figure 2 (g). Around
x € Tp with ¢, = +, we draw oriented curves such that each curve approaché&mg an
edge and turns to its neighbor edge on tight; as illustrated in Figure 2 (f). We denote the
obtained curves by (P; {e,}xcv,) and call it thedoubling of the graph divideP with signs

{SX}XEVP'

DEFINITION 2.4. Thelink of a graph divide P with signs{e,}.cv, is the set given by
L(P; {8x}erp) = Lo (d(P; {8x}erp)) .

We note that the link of a given graph divide depends on signs of vertices. For fixed
signs of verticeg{e,}xcv,), a regular isotopy oP in the space of generic immersions does
not change the isotopy type of the oriented divid®; {¢,}.cv,), therefore it does not change
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FIGURE 2. The doubling of graph divides.

the isotopy type of the linlL.(P; {ex}rev,). A graphdivide link is the oriented link ambient
isotopic to the link of some graph divide with some signs of vertices.

ExampLE 2.5 ([13], cf.[5]). For a graph divide® with signed vertices illustrated in
Figure 3, the doubling oP is illustrated as the right of. Then the link ofP is the knot
illustrated at the bottom of Figure 3. It is known that this knot is not fiberedsfa positive
integer. Thenitis not a divide link since divide links are all fibered.

Indeed, the knot o with signed vertices illustrated in Figure 3 cannot be represented
by any free divide for > 21 ([13], cf. [5]). In [7], Gibson and Ishikawa checked that the
knot of the free divide with only one double point must be the trefoil or the mirror image of
the knot % in the table due to Rolfsen [15]. In [13], the author showed that the number of the
double points of a tree divide is equal to the 4-dimensional clasp number of its link.

1The author would like to apologize for incorrectly writing> 0 in the paragraph after Remark 6.6 in [13].
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ExampPLE 2.6 ([13]). For a graph divide with signed vertices illustrated in Figure
4, the doubling of? is illustrated as the right aP. Then the link ofP is the knot illustrated at
the bottom of Figure 4. This knot is the mirror image of & the table of Rolfsen [15]. Itis
well known that the knot § is fibered. We note that there is no (free) divide which represent
this knot as checked in [13].

By the argument in [13], for any graph divide = (G, ¢), there exists a graph divide
P' = (G, ¢"), whereG’ is a sum of uni-trivalent graphs and copies of circles, such that
L(P’; {ex}xev,,) is ambient isotopic td.(P; {ex}xevp)-

The above definition of a graph divide gives a natural extension of the class of divide
links. If P is a classical divide, this definition is same as the visualization algorithm due to
Hirasawa [8]. If P has no circle branches afth = Vp, the link L(P; {ex}xcv,) iS ambient
isotopic to thdink of a free divide originally constructed by Gibson and Ishikawa [7].

Furthermore, the class of links of tree divides which Gibson defined in [5] is the subclass
of links of graph divides [13]. In this article, we call atree divideif G is a union of trees
and intervals.

3. A family of circle brancheswhich can be changed to interval branches

Figure 5 gives an example of a circle divide which can be changed to an interval divide
or tree divide as the link representation. An embedded circle in the disk is the divide which
represents the Hopf link. The sum of a vertical line and a horizontal line also gives the divide

N,
(2n+1) half twists

FIGURE 3. Anexample of a (hon-fibered) graph divide knot.
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FIGURE 4. An example of a graph divide knot.

representing the same link. In this section, we observe more circle branches which can be
changed to interval branches as representations of links.

Let B be an intersection of a given graph diviteand a small squaites, b1] x [az, b2]
in the unit diskD. Let fp be the projectiorixi, x2) — x2 restricted toB. We suppose that
f7X(y) is the set ofz points for anyy € [az, ba] except{y1, ..., yx}, and that eactfz *(y;)
is the set ofi — 2 regular points and the double point. We suppose fhdtas neither maximal
points nor minimal points. We shall call sughann-braid part of P. Then-braid part ofP
may be regarded as the projection image ofiébraid to the plane.

Let P be a graph divide which has a braid p&rtsurrounded with a circle branafi
as illustrated on the left of Figure 6. L&t and P” be graph divides obtained from by
changingC as illustrated in Figure 6. We suppose that the gigof eachx € Vp is pre-
served. The divideP’ is obtained fromP by divide triangle moves. The oriented divide
d(P’; {ex}rev,,) is obtained fromi(P"; {ex}rev,,) by inverse self-tangency moves and tri-
angle moves. By Lemma 2.2, the linkgP’; {ex}ev,,) andL(P"; {ex}rev,,) are ambient

FIGURE 5. Divides representing the Hopf link.
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C

FIGURE 6. Changing circle branches to interval branches.

FIGURE 7. An oriented divide which represents the square knot.

isotopic toL(P; {ex}xev,). Thenthe linksL(P’; {e}xev,,) andL(P"; {,}xev,,) are ambi-
ent isotopic taL (P; {ex}revy)-

4. Circledividelinkswithout tree divide representations

In this section, we prove the following theorem.

THEOREM 4.1. Thereexist circledivideswhose links cannot be represented asthelink
of any tree divides.

In [13], the author showed there exist links which cannot be graph divide links. Before
the proof of Theorem 4.1, we present such examples.

LEMMA 4.2 ([13]). If agraphdivideknot K isdlice, then K istrivial.

ExAmMPLE 4.3. We denote the mirror image of a linkby L!. The knot 3 in the
knot table by Rolfsen [15] is the left hand trefoil. The square kng{3!), the connected
sum of the left hand and right hand trefoils, is slice. By Lemma 4.2, the knB3a) is
not a graph divide link. However, by Theorem 2.1, there exists an oriented dividéh
Loy (Q) = 314(31!). Figure 7 gives an example of su¢h

EXAMPLE 4.4 ([13]). The mirror image of the knob8in the Rolfsen’s table [15] is
quasipositive. It is not a graph divide link because it is slice. By Theorem 2.1, there exists an
oriented divide which representsg8 Figure 8 gives such an example.
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FIGURE 9. An example of an essential circle branch.

REMARK 4.5. Thesdlice euler characteristic of a link L is the maximal number of
euler characteristics for compact oriented 2-manifolds in the 4-ball with bouridanye
denote it byy,(L). In [11], Ishikawa showed that the equalityy,(L) = T B(L) holds for
any graph divide link_, whereT B(L) is the maximal Thurston-Bennequin numberdofHe
also noted that this equality does not hold for the kngt.8

Theorem 4.1 is obtained from the following proposition.

PROPOSITION 4.6. Let P = (S1, ¢) be a divide given by an immersed circle. e give
P an orientation o and denote this oriented divide by (P, o). If the knot L,,; (P, o) isnot a
graph dividelink, then the link L(P) cannot be represented as the link of any tree divides.

PrROOF. We assume that a tree divid€ = (T, ¢’) with signs{s} represents the link
L(P). The link L(P) has two components since is an immersed circle. Thefi is the
disjoint sum of two connected tre@s and7>. Each component af (P) is ambient isotopic
to one of L((7;, ¢'|7;); {e}7;). The non-trivial knotL,,; (P, o) is a component oL(P). It
contradicts the supposition. O

PROOF OFTHEOREM 4.1. LetK be a non-trivial knot. We suppose thitis not a
graph divide link. By Theorem 2.1, there exists an oriented dig@dgewith L,,;(Qkx) = K.
Let Pk be a circle divide obtained fromd ¢ by ignoring the orientation. We apply Proposition
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4.6 to Px. Then the 2-component link(Px) cannot be represented as the link of any tree
divide. O

For example, the circle divide shown in Figure 9 has an essential circle branch, that is,
we cannot expect a graph divide representation of its link without circle branches.

5. Essential cyclesof graph divides

In this section, we prove the following theorem.

THEOREM 5.1. Thereexist graph divide links which cannot be represented asthe links
of graph divides with only tree branches and circle branches.

In the proof, the following result is used.

LEMMA 5.2 ([6]). Let o1 and o2 be different orientations of an immersed circle P.
Let (P, 0;) be an oriented divide obtained from P and the orientation o;. Then the link
Loi(P, 02) isthesamelink as L,,; (P, o1) but with the opposite orientation.

PROOF OFTHEOREM 5.1. LetK be a non-trivial knot. We suppose th&tis not a
graph divide link. LetPx be the circle divide constructed in the proof of Theorem 4.1. We
add an immersed edgeto P as illustrated in Figure 10. Figure 11 is the c&Se= 8,¢!. By
Lemma 5.2, for any sign of the vertex of degree 3, the link(Px Uw; {¢}) is a 2-component
link such that one component is the connected sum of the Kaaisd 3!, and the other iX
with the opposite orientation.

We assume that there exists a graph diviRlesuch that each branch &f is a circle
branch or atree branch and that the linkP’; {& }cv,,) is ambientisotopic td.(Px Ua; {})
for some signge} }xev,,. This link has 2 components, theti is either an immersion of a
single circle or an immersion of two trees. By almost same argument as that in the proof of
Proposition 4.6’ cannot be a tree divide. Henéé should be a circle divides?, ¢').

By Lemma 5.2, the components of the lidkP’) are the same knot but with opposite
orientations to each other. Thénis ambient isotopic to the connected sumibdfand 3!.

It contradicts the unique factaation theorem and hence the lilkPg U «; {¢}) is not the
link of any circle divide. Therefore, the graph dividecannot be changed to a sum of circle
branches and tree branches. ]

6. Strongly quasipositivity

A strongly quasipositive braid is the product of positive bands. Thesitive band is the
braido;; = 0; ---0j_10j0;-171---0; 1, whereoy s are the canonical generators of the braid
group and is less thary. A strongly quasipositive link is the closure of a strongly quasipos-
itive braid. For any strongly quasipositive link, the slice euler characteristic is equal to the
euler characteristic. Hirasawa recently showrat any divide link is strongly quasipositive
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FIGURE 11. Anexample of an essential cycle in a graph divide.

[9]. The knot of Example 2.6 is fibered, but not strongly quasipositive, because the slice euler
characteristic is-1 but the euler characteristic 83, so the slice euler characteristic is not
equal to the euler characteristic.

The result due to Rudolph on plumbing of Seifert surface of strongly quasipositive links
[18] implies the following proposition.

PROPOSITION 6.1 (cf. [18]). Let L1 and L2 be strongly quasipositive links. A con-
nected sum of L1 and L is strongly quasipositive if and only if L; and L, are strongly
guasipositive.

By this proposition, the linl. (Px Ue; {€}), which is constructed in the proof of Theorem
5.1, is strongly quasipositive, since this link is a connected sum of divide links. Instead of
we attach the graph divide in Figure 4 to the circle diviéle as illustrated in Figure 12.
The link of this graph divide id.(Px)t(821!). The knot 81! is not strongly quasipositive as
commented in [13]. Then the link( Pk )t(821!) is not strongly quasipositive by Proposition
6.1. By same argument as that ¢ U «, the link L(Px)#(821!) is neither a tree divide link
nor a circle divide link.

Figure 13 describes the inclusion relations for graph divide links and quasipositive links
shown by ACampo [1, 2], Boileau, Orevkov [3], Gibson, Ishikawa [7, 10], Hirasawa [9],
Rudolph [16], and the author [12, 13]. Léy be a divide link without tree divide repre-
sentation, whose existence is shown in Theorem 4.1.Lkdie the link of the graph divide
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Strongly
quasipositive
links

10130!  101as!

820!

Free divide
links

8!

Tree divide links
Ls
\ Graph divide links //

\ Quasipositive links = Transverse C-links

FIGURE 13. The inclusion relations for graph divide links.
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without circle and tree divide representation, constructed in Section 5L4 be the link of
the graph divide which has no circle and tree divide representation, and which is not strongly
guasipositive. Then the links;, Lo, andL3 lie as described in Figure 13.
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